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Chapter 1

Introduction

1.1 Topic of thesis

In this thesis the minimalist theory of Chomsky (1995) is studied from the
perspective of Multimodal Categorial Grammar (Moortgat, 1996, MMCG). In
particular we want to formulate an answer to the following question.

How are certain aspects of movement as described by the Minimalist
Program captured in the MMCG framework?

To tackle this problem, we first need to describe the basic components of the
two frameworks. Therefore the thesis starts with an overview of the two theories
that are at the center: Multimodal Categorial Grammar and the Minimalist
Program.

The main goal is to give a deductive account of the operation move. As
the Minimalist Program leaves a formalization of the move operation, we use
another framework that gives a formal description of the minimalist move op-
eration. The formalism of Minimalist Grammar (Stabler, 1999, MG) captures
the basic components of the minimalist framework. Using Stabler’s formalism
we can relate the multimodal framework to the basic operations and principles
of minimalism.

1.2 Hypothesis

In the Minimalist Program, the basic operations in the Computation System
are: merge and move. The merge operation is a structure building operation
and is given by the rules of application as defined in the base logic of MMCG.
Move defines the displacement of a phrase in a sentence. The first step in the
multimodal approach is to translate movement as a structural operation to cap-
ture the phenomenon of displacement. But then one neglects the derivational
meaning of move as an abstraction operation. The second approach regards
move as a complex operation, which can be decomposed in a logical and a struc-
tural part. On the logical side, the concept of hypothetical reasoning provides
a principled account of the abstraction of a phrase. On the structural side, the
structural postulates capture the actual movement of features and phrases in a
structure.
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Movement in the Minimalist Program is led by the need to check uninter-
pretable features on functional categories. The phrase carrying the matching
interpretable feature moves to the checking domain of the functional category
to check the uninterpretable feature. MMCG specifies different control features,
which are lexically anchored on the lexical items that need to be displaced. The
control features trigger the application of the structural postulates. The assign-
ment of higher order types to displaced words invokes hypothetical reasoning,
the logical component of move as an abstraction operation.

1.3 Background

1.3.1 Relation with Cognitive AI

This research is done as part of the Computational Linguistics and Logic compo-
nent of the Cognitive Artificial Intelligence program. Computational linguistics
can be studied from a cognitive or a technological perspective. The two linguis-
tic theories that are compared in this thesis make technological and cognitive
claims. On the one hand MMCG has attractive proof theoretical properties al-
lowing us to use a theorem prover Moot (1996, Grail) to quickly process analysis.
On the other hand Minimalism tries to find an explanation for the Computa-
tional System of human language, thus contributing to our understanding of a
central cognitive ability.

1.3.2 Scientific account

The two theories are the product of two distinct scientific traditions, but they
both aim to give an explanation for grammatical knowledge and the use of that
knowledge. The two theories show similarities in their explanation of linguis-
tic phenomena. For that reason an integration of the two theories should be
researched. With my thesis I want to start to make such an integration by
showing some similarities between their analyses of a ‘Computational System of
Human Language’ (Chomsky, 1995).

Chomsky (1995) concentrates on the description of the basic components
of the Minimalist Program. The two main components are the Lexicon, which
contains all the necessary feature information of words, and the Computational
System, which operates on the lexical elements to form phrasal structures. As
the Minimalist Program lacks a formalization, Stabler (1999) presents a formal
framework to capture the main components of the Minimalist Program. Sta-
bler’s Minimalist Grammar (= MG) defines lexical feature specifications and
tree structures to formulate grammars for natural language. Such a grammar
contains a lexicon, which serves as storage for features, and basic structure
building operations such as merge and move.

Opposite to the minimalist framework, the logical deductive theory of Mul-
timodal Categorial Grammar (= MMCG) lays down a formal theory of natural
language. MMCG is a proof system consisting of a logical, and a structural
part. A multimodal grammar lays down a lexicon, which contains logical for-
mulas assigned to words, and operations to construct structures. The operations
split up into logical inferences defined by the base logic and structural inferences
captured by structural postulates.
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The differences between the two theories are the result of a difference in
bias. One theory, Minimalism, tries to define language with universal principles
(top down), the other, MMCG, tries to find a logical foundation on which to
build the rules and principles used in a language (bottom up). I want to show
that in spite of this difference in bias, both theories try to capture the same
Computational System.

An integration would be an improvement of both theories. The proof-
theoretical approach of Moortgat (1996), also described in Morrill (1994), re-
ceives more linguistic relevance; a more linguistic approach results in a broader
environment to test the theory. The minimalist approach of Chomsky (1995)
receives a logical foundation where the operations can be stated in terms of
logical and structural rules.

1.4 Thesis Overview

The thesis is laid out as follows. In this introduction the scientific and AI-
related position of the thesis are presented. Chapter 2 describes the framework
of Multimodal Categorial Grammar. After a small historic overview in section
2.1, section 2.2 starts with an elaboration of the base logic of Lambek calculus,
followed by section 2.3 on the structural aspects of a derivation. The multimodal
framework is further developed in section 2.4 with an explanation of structural
control. Section 2.5 shows how we can capture the derivational meaning by
decorating the logical rules with terms.

The Minimalist Program is described in chapter 3. As the theory is still un-
der development the basic components of the Minimalist Program are sketched.
In section 3.2 the lexicon is elaborated, giving the basic ideas of its content. The
Computational System within the Minimalist Program takes a central position
in this chapter. Section 3.3 introduces the basic operations of the Computa-
tional System and continues with a comprehensive explanation of the operation
move and of the mechanism that controls the operation. In section 3.5 we
present a sample derivation within the Minimalist framework.

The main chapter is chapter 4, where we focus on movement from a deduc-
tive perspective. As the Minimalist Program as such is not a formalization, a
comparison is hard to make. Section 4.1 starts with an explanation of Stabler’s
algebraic translation of the minimalist framework: Minimalist Grammar. A
mapping from Stabler’s Minimalist Grammar to MMCG in section 4.2 results
in a deductive approach of the different minimalist operations. A deductive
analysis of move on the basis of its derivational meaning leads to the right
translation of move as as an abstraction operation. As an illustration, a Hun-
garian phenomenon of verbal complexes is analyzed in the multimodal frame-
work in section 4.3. This leads to a discussion of the possibilities MMCG has
to offer for the research of a Universal Grammar.

In the conclusion I will present an overview of the different aspects that
this study of the minimalist framework from a deductive perspective brings up.
I formulate an answer to the question: How are certain aspects of minimal-
ist movement described in the multimodal framework? Furthermore I make
some suggestions how to continue the research for a minimal theory of natural
language.





Chapter 2

Multimodal Categorial
Grammar

This chapter describes the multimodal framework starting with a brief history
in section 2.1. MMCG consists of a logical and a structural part. Section 2.2
describes the logical part by introducing the base logic of Lambek calculus and
is followed by section 2.3 explaining the structural part of a derivation. This
section presents the concepts that form the structural landscape. Section 2.4
explains the multimodal part of the categorial framework, the need for multiple
composition operations and modalities to structurally control them. Section 2.5
elaborates the meaning of derivations in terms of term decorations. The last
section ends with a summary of the concepts described in this chapter.

2.1 History

The logical framework of Categorial Grammar goes back to the work of Bar-
Hillel (1964) and Lambek (1958) with their logical analysis of linguistics. Both
logicians based their work on the studies by other philosophers and logicians
who tried to capture the type structure of natural language. After the initial
analysis, the framework was further developed by the work of linguists, logicians,
philosophers and mathematicians. One of these directions extends the basic
Lambek Calculus to Multimodal Categorial Grammar.

2.2 Base Logic

2.2.1 Grammatical composition

In theories of grammar one concept always appears in analyzing sentences: com-
position of words, phrases or sentences. Words merge into phrases that combine
with other phrases to form sentences. Defining a theory of grammar, one needs
to address this concept of composition. Categorial Grammar analyzes words
within their larger context, starting from structures that are taken to be “com-
plete”. By decomposing these “complete” phrases into their parts, one can view
words as dependent on other words. These contextual dependencies are defined
within a grammar.
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Take an example: a noun phrase is decomposed into a determiner and a
noun. Reversely the determiner depends on the noun to form a noun phrase.
Lambek stated that this dependency or grammatical incompleteness can be
captured with an ‘implication’ connective (A → B: if A, then B). Moreover,
the determiner needs to combine with a noun on its right side to account for
directionality. Categorial Grammar uses two connectives {/, \} to indicate di-
rectional dependencies between words. The connective • defines the assembly of
two words. The behavior of the logical connectives is given by the residuation
laws. These laws show how the incompleteness of /, \ relate to the composition
of •.

A ` C/B ⇐⇒ A •B ` C ⇐⇒ B ` A\C

On the basis of these binary connectives, type formulas are formed. The
types are assigned to words to indicate their role within sentences. Some words
and phrases play an essential role within sentences; these words are taken to be
“complete”. The formulas assigned to “complete” words or phrases are basic
types: s for sentences, n for common nouns and np for noun phrases. In the
case of more complex sentences the set of basic types is extended.

The following grammar defines the logical language of formulas F , where A
is the set of atomic formulas, for example the basic types: {s, n, np}.

F ::= A | F/F | F • F | F\F

As an example of the way formulas are built on the basis of this formula
language, we define the lexical entries in Fig. 2.1.

Maria ` np
makes ` (np\s)/np
the ` np/n
tortillas ` n

Figure 2.1: Example of a lexicon

Maria and tortillas are assigned basic categories, while the determiner the
requires a common noun such as tortillas to form a noun phrase. The transitive
verb makes shows the use of directionality; first it needs to combine with a noun
phrase on the right side, then it combines with a noun phrase on the left side
to form a sentence.

2.2.2 Rules of application

The residual nature of the binary connectives is captured by logical rules. Dif-
ferent proof systems are used to define these rules. Two of these proof systems
are regularly used within the categorial tradition: Gentzen calculus for a better
proof search and Natural Deduction for a nicer proof display. The latter proof
system will be used throughout this thesis because our main goal is to use the
logical framework in linguistic applications.

Derivations in natural deduction are presented in a Prawitz style. We reason
about expressions of the form: Γ ` A, asserting that a certain structure Γ has
type A.



Multimodal Categorial Grammar 7

Structures S are built from formulas F with the following grammar rules:

S ::= F | (S ◦ S)

The structural operator ◦ combines the type-logical formulas, presenting the
structure as a binary tree with ◦ as the nodes and the formulas as the leaves.
The structure of the string is built during the application of the logical rules
that define grammatical composition.

Lambek (1958) shows that the basic laws of grammatical composition are
given in the form of Modus Ponens inferences: A/B ◦B ` A and B ◦B\A ` A.
The construction of an expression A/B (or B) and an expression B (or B\A)
results in a composite structure of the two expressions typed byA. In the natural
deduction proof style these Modus Ponens rules extend to the elimination rules
of the connectives {/, \}, as given in Fig. 2.2.

Γ ` A/B ∆ ` B
Γ ◦∆ ` A [/E]

Γ ` B ∆ ` B\A
Γ ◦∆ ` A [\E]

Figure 2.2: Elimination rules for /, \

As an example of a well-formed expression we derive the sentence “Maria
makes the tortillas” of category s using the elimination rules in Fig. 2.2 and the
lexical entries in Fig. 2.1. For clarity, we write the labels of the lexical expres-
sions instead of the formulas to represent the structural side of the derivation
in Fig. 2.3.

Maria ` np
makes ` (np\s)/np

the ` np/n tortillas ` n
the ◦ tortillas ` np [/E]

makes ◦ (the ◦ tortillas) ` np\s [/E]

Maria ◦ (makes ◦ (the ◦ tortillas)) ` s [\E]

Figure 2.3: Natural deduction derivation of “Maria makes the tortillas”

2.2.3 Rules of abstraction

In the last section we considered the composition of grammatical expressions
by deconstructing formulas. The base logic also addresses the possibility of
constructing formulas by abstracting expressions from a composite structure.
The logical rules for abstraction are opposite to the Modus Ponens inferences,
defined by the introduction rules of the binary connectives (Fig. 2.4).

The introduction rules allow us to use hypothetical reasoning : the possibility
to reason on the basis of a conditional assumption. At a certain point in the
derivation the assumption has to be withdrawn by means of /, \-introduction
steps. An example of a theorem which uses hypothetical reasoning is lifting.

Lifting: A −→ B/(A\B), A −→ (B/A)\B
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Γ ◦ B ` A
Γ ` A/B [/I] B ◦ Γ ` A

Γ ` B\A [\I]

Figure 2.4: Introduction rules for /, \

Using this theorem, formulas can be lifted to a higher order formula (e.g. np→
s/(np\s)). One assigns higher order types (types with a nested implication) to
invoke the process of hypothetical reasoning.

Examples of linguistic expressions that use higher order type assignments are
non-constituents (Morrill, 1994) and generalized quantifier expressions. Relative
pronouns, such as which are another example. In the noun phrase “the tortillas
which Maria makes”, which combines with a relative sentence that misses an
object phrase. The verb makes with the type assignment (np\s)/np (see Fig. 2.1)
needs to combine with a hypothesized object first to be able to combine with the
subject Maria. To invoke hypothetical reasoning on the object phrase, which gets
assigned the higher order type: (n\n)/(s/np). Fig. 2.5 shows only the logical
part of the derivation; for the structural part we need ways to restructure.

the
np/n

tortillas
n

which
(n\n)/(s/np)

Maria
np

makes
(np\s)/np

[p1]1
np

np\s
[/E]

s [\E]

s/np
[/I]1

n\n [/E]

n [\E]
np [/E]

Figure 2.5: Derivation of “the tortillas which Maria makes” using hypothetical
reasoning

2.3 Structural Reasoning

The composition of words produces larger phrasal structures. Within Lambek’s
sequent calculus, the resources are structured in two dimensions: linear order
on the horizontal dimension and dominance on the vertical dimension. These
structural dimensions are invoked by the lexical formulas: linear order is stated
by the precedence relations defined by the directionality of {/, \} and dominance
comes from the hierarchical grouping (for example (np\s)/np versus np\(s/np)).
As linguistic examples show, the order and hierarchical grouping sometimes has
to be more flexible than defined in the base logic; one needs ways to reorder and
restructure sentences.
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2.3.1 Reordering/restructuring

A global option

We present derivations in Prawitz style, but structural rules are presented in
an axiomatic style. This style only gives the structural part of the derivation
where the structural operator is the •. The antecedent of a structural postulate
represents the structure of the upper part of a derivation step, the succedent
shows the structure of the lower part:

∆ ` A
Γ ` A [SR] ⇐⇒ Γ −→ ∆ [SR]

An extension of the base logic, the non-associative Lambek calculus (NL)
with two postulates give us the possibility to relax the strict relation of prece-
dence and dominance between the resources. We use Commutativity to alter the
linear order of structures and Associativity to change the immediate dominance
relations.

Associativity: (A •B) • C ←→ A • (B • C)
Commutativity: A •B −→ B •A

Figure 2.6: Structural rules

The structural rules in combination with the logical rules of application and
abstraction allow us to derive more structures than was feasible in the base
logic NL. From the base logic different type logical systems can be obtained
by extending the system with one or both structural postulates. The basic
non-associative Lambek calculus NL enriched with associativity gives the type-
logical system L, with commutativity NLP, and with both LP. Every type
logical level shows some deficiency: without associativity or commutativity one
loses possibilities to restructure or reorder sentences. But with one or both
structural postulates there is the danger of overgeneration: every reordering
and restructuring in a precedence relation is possible. In natural language such
a system is much too flexible. With no structural rules the system is much to
strict, with only logical theorems and rules to build structures. Ways are needed
to regulate the use of the four systems.

Controlled resource management

Moortgat and Oehrle (1994) point out that the structural rules given in Fig. 2.6
are a global option to reorder or restructure sentences. Natural language re-
quires a more local treatment to account for the subtleties in strictness of lin-
guistic composition. They suggest to treat the differences between grammars
with structural options constrained by a package of sorted logical modalities.
Instead of global structural choices, one needs lexical control over resource man-
agement. In this way we account for a grammatical fine-structure from a logical
perspective. The multimodal framework of Categorial Grammar elaborates the
possibilities for restricted use of the structural rules.
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2.4 The Multimodal Framework

As outlined in section 2.3 the four structural settings that form the categorial
landscape have advantages and disadvantages. In the past decade many ex-
tensions to refine the categorial landscape have been proposed. One extension
leads to Multimodal Categorial Grammar. The different resource management
properties and the different directions of refining were the topic of Kurtonina
and Moortgat (1996). The goal is to combine different levels of structure and
order sensitivity in one framework.

This section gives an outline of extending the basic Lambek calculus to
a multimodal framework. The first step is to introduce multiple composition
modes for the binary connectives. The next step is to add unary modal operators
to the logical setting. These connectives can be further refined with different
sorts. The extensions yield a system which is much more fine grained and
discriminating than the non-associative and non-commutative Lambek calculus.

2.4.1 Multiple modes of composition

The logical framework is extended by adding multiple modes of composition;
every binary connective is decorated with an index. An index indicates a cer-
tain composition mode, which follow the same logical rules, but differ on the
structural side. The logical binary connectives have a structural component,
which interacts with the structural postulates. By the assignment of the right
type-logical formulas to the lexical entries, the accompanying structural frame-
work is invoked. The modes on the binary connectives specify which structural
rules can be applied.

The formula language extended with these operators becomes:

F ::= A | F/iF | F •i F | F\iF

With the structural part of the framework:

S ::= F | (S ◦i S)

Instead of global options of a total associative or commutative regime, we can
now define structural postulates that are keyed to certain composition modes.
For example, mode a indicates the possibility to reason with associativity, c
to reason with commutativity, n to have no access to any of the structural
postulates.

Associativity: (A •a B) •a C ←→ A •a (B •a C)
Commutativity: A •c B −→ B •c A

Now we need communication between different structural regimes to have
access to the combined inferential capacities of the different logics (Kurtonina
and Moortgat, 1996). The theory offers two ways to communicate between
the different composition modes: inclusion and interaction postulates. Fig. 2.7
shows an example of possible postulates. The inclusion postulate serves as a
bridge between the modes; they specify an order on the different modes (less
or more informative). For example one could decide that the structure that is
composed with the less informative product has a greater freedom of resource
management than the other. The interaction postulates mix the different modes
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in order to distribute the resources. The first example is called Mixed Commuta-
tivity (MC), because it alters the ordering of the structure. The second example
is called Mixed Associativity (MA), because it restructures the dominance rela-
tion. An important distinction in this thesis is the dependency relation between

Inclusion: A •i B −→ A •j B
Interaction: (A •i B) •j C −→ (A •j C) •i B (MC)

(A •i B) •j C −→ A •i (B •j C) (MA)
i is more informative than j

Figure 2.7: Inclusion and Interaction postulates

two expressions (specifier-head, head-complement or modifier-head). I will cap-
ture this distinction in terms of two binary modes: (<,>); the ‘arrows’ indicate
the position of the head towards its dependency. The interaction postulates
account for the communication between the dependency relations among the
resources.

2.4.2 Control features

The next step is to extend the Lambek calculus by adding two unary operators to
the base logic (♦,2). In this section only the logical and structural properties of
the two modals will be examined. Moortgat (1996) thoroughly describes what
the motivation and implications are for extending Categorial Grammar with
modal operators.

The formula language extended with these operators becomes:

F ::= A | 2F |♦F | F/iF | F •i F | F\iF

With the structural part of the framework:

S ::= F | (S ◦i S) | 〈S〉

The residuation laws show the behavior of the unary modal operators.

♦A ` B ⇐⇒ A ` 2B

The behavior of the unary connectives is also described by the following
theorems. The box and diamond serve as ‘key’ and ‘lock’, since they cancel
each other.

from 2A→ 2A derive (using ⇒ Residuation) ♦2A→ A
from ♦A→ ♦A derive (using ⇐ Residuation) A→ 2♦A

The residual behavior of the two unary connectives as inverted duals, is
captured by the logical rules, where the logical connective on the right-hand side
interacts with the structural connectives on the left-hand side. The interaction
plays an important role in the structural control of the lexical resources. The
rules in natural deduction style in Fig. 2.8 show the interaction between the
structural and logical components of the unary connective.

The structural operator 〈.〉 serves as a control feature for the structural part
of the derivation. As a logical consequence of modal theory this system follows
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Γ ` 2A
〈Γ〉 ` A [2E] Γ ` A

〈Γ〉 ` 2A
[2I]

Γ ` A
〈Γ〉 ` ♦A [♦I]

∆ ` ♦A Γ[〈A〉] ` B
Γ[∆] ` B [♦E]

Figure 2.8: Control features

certain laws, which can be stated as structural postulates. The postulates con-
strain the use of the connectives. Two well-known postulates in modal theory,
but less applicable to linguistics, are the theories: 4 (Transitivity) and T (re-
flexivity) (see Versmissen (1996)). Postulates that can be applied to linguistics
are the distributivity postulates: [K,K1, K2]. The distributivity postulates are
useful in the analysis of movement within minimalist grammars. [K] postu-
lates strong distributivity by splitting the structural operator to both sides of
the composition. The weak distributivity postulates, [K1] and [K2], carry the
structural operator over to one side of the composition relation.

♦(A •B) −→ ♦A • ♦B [K]
♦(A •B) −→ ♦A •B [K1]
♦(A •B) −→ A • ♦B [K2]

The unary connectives are called control features, because they regulate
the use of the structural postulates by structurally decorating expressions with
the unary connective ♦. Fig. 2.9 shows how the structural connective controls
reordering and restructuring postulates.

Commutativity♦: ♦A •i B −→ B •i ♦A
Associativity♦: (A •i B) •i C ←→ A •i (B •i C)

Where one of {A,B, C} is decorated with ♦

Figure 2.9: Structural postulates under control of ♦

2.4.3 Multiple modes of control

The control mechanism is further refined by adding modes to the unary connec-
tives.

The formula language becomes:

F ::= A | 2fF |♦fF | F/iF | F •i F | F\iF

The structural part of the framework:

S ::= F | (S ◦i S) | 〈S〉f

There are two uses for the introduction of multiple sorts of unary connectives.
One use is to store morphosyntactic information as explored by Heylen (1999).
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He uses the different modes of the unary connectives as feature information
packages. Features such as case, gender, person, number, tense and agreement can
be added as modes to the unary connectives to the lexical structures. Additional
feature information helps to derive the right phrasal structures.

The decorated lexical formulas form the feature specification of words. In-
stead of stating that a verb requires a noun phrase as subject in the specifier
position (np\>s), one can now specify the necessary feature information. For
example, loves is a singular, third person, finite verb. Therefore it needs to
combine with a noun phrase with exactly those properties; we can decorate the
type of loves as (2sg23rdnp\>s). The number of unary modalities is equal to
the number of features one would like to specify.

Features are given in the lexicon as 2 decorations on the formula or sub-
formulas of a word. In this way one could specify very precisely what kind of
categories a transitive verb, such as love wants to be merged with.

loves ` 2pres2fin((2nom2sg23rdnp\s)/2acc2numbernp)

Some lexical entries leave the value of some features unspecified. For example
the number feature for the argument of loves is unspecified (number). To be
able to combine loves with an object, which is specified for the number feature,
the relation between unspecified and specified features needs to be determined.
The inclusion postulates regulate the specification relations between features.
For more explanation on the feature landscape see Heylen (1999).

In this thesis I will concentrate on another use of differentiating sorts of unary
connectives: the refinement of structural control. With the use of sorted unary
connectives 2f ,♦f we can make more restrictive use of structural postulates.
With the possibility to decorate the necessary postulates with structural unary
and binary operators, one is able to lexically control the use of these postulates.
Different sorts of unary and binary operators help us to refine the system, which
makes it better applicable to linguistic applications.

2.5 Term Decoration

In this section we consider the possible interpretation of derivations. For the
semantics of derivations Lambda-calculus is used. The term language is defined
as follows, where VA is the set of term variables of type A.

T A ::= VA | (T B\iA T B) | (T A/iB T B) | ∨T 2fA | ∪T ♦fA

T A/iB ::= λVB .T A

T B\iA ::= λVB .T A

T 2fA ::= ∧T A

T ♦fA ::= ∩T A

Now we can label the natural deduction rules for the unary and binary
connectives, as presented in Fig. 2.10 and Fig. 2.11.

2.6 Summary

The non-associative Lambek system introduced in section 2.2 is enriched with
multimodal binary connectives and feature decorated unary operators. One
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x : A ` x : A

Γ ◦i x : B ` t : A
Γ ` λx.t : A/iB

[/I]
Γ ` t : A/iB ∆ ` u : B

Γ ◦i ∆ ` (t u) : A
[/E]

x : B ◦i Γ ` t : A
Γ ` λx.t : B\iA

[\I]
Γ ` u : B ∆ ` t : B\iA

Γ ◦i ∆ ` (t u) : A
[\E]

where i ∈ {<,>}

Figure 2.10: Term decorated ND-rules for the binary connectives

〈Γ〉f ` t : A
Γ ` ∧t : 2fA

[2fI]
Γ ` t : 2A

〈Γ〉f ` ∪t : A
[2fE]

Γ ` t : A
〈Γ〉f ` ∩t : ♦fA

[♦fI]
∆ ` u : ♦fA Γ[〈x : A〉f ] ` t : B

Γ[∆] ` t[∪/x] : B
[♦fE]

Figure 2.11: Term decorated ND-rules for the unary connectives

can derive dominance and direction sensitive ordered structures which show the
dependency relations among the structural resources.

The logical and structural landscape of the multimododal framework de-
scribed in section 2.2 and 2.3 is a rich system, which can define various linguistic
phenomena. The communication between the various type systems is regulated
by the use of multiple composition modes and is controlled by different sorts of
unary connectives.

Section 2.5 introduces semantic labeling that shows the history and the in-
terpretation of the derivation. The semantics of the derivations give possibilities
to check for the interpretation of well-typed expressions.
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The Minimalist Program

The Minimalist Program (Chomsky, 1995, Ch4) is a model of Universal Gram-
mar which attempts to capture the processes involved in understanding human
language. Section 3.1 starts with a schematic overview of the different compo-
nents of the Minimalist Program. The following sections describe the different
components in more detail. Section 3.2 addresses the lexicon with respect to
the content and the way information is stored. Section 3.3 gives the basic op-
erations of the computational system that uses the content of the lexicon to
trigger the right processes to generate PF and LF output. In the second part
of this section we explicate the operation move and the mechanisms that play
a role in extraction phenomena. Section 3.4 shows the extra conditions that
Chomsky (1995) states on the Computational System and on the derivation of
LF and PF structures. As an illustration in section 3.5 we derive an example of
an extraction phenomenon.

3.1 Schematic Overview

As shown in Fig. 3.1, the two major components of the Minimalist Program
are the lexicon and the Computational system of Human Language (CHL). The
lexicon serves as storage for the lexical objects of a language, which are described
in terms of feature bundles. The Computational System is the generator of
grammatical output which serve the cognitive abilities such as hearing, speech
and understanding. Chomsky (1995) distinguishes two forms of grammatical
output: a Phonological Form (PF) and a Logical Form (LF). The phonological
form serves the sensorimotor system (speech, hearing, grammar); the logical
form serves as the instructions to the meaning system (understanding, learning,
thought). The two levels are generated by the application of basic operations
under the influence of a control mechanism defined within the Computational
System. If one wants to capture a grammar of any specific language, one needs to
establish a linguistic landscape which contains at least a lexicon and mechanisms
such as described by the computational system.
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PF

B.O.C.

B.O.C.

LF

NUMERATION

LEXICON
MP

CHL

Select

Merge

Move

Move F

Spell-Out

Figure 3.1: The Minimalist Program

3.2 The Lexicon

The Computational System has access to lexical items on which it can oper-
ate. The lexical items are collected in a lexicon, a storage for information on
form, category, phonology and syntax. Each feature has a specific role in the
Computational System. The CHL uses phonological features to generate PF
forms, other features are necessary to generate the right LF forms. Certain
‘formal’ features influence the application and the performance of operations in
the generation of both forms of output (see section 3.3.2).

Lexicologists discuss how information is stored in the lexicon, for example
inflectional information. Zwart (1997) describes the distinction between weak
and strong lexicalist views. A weak lexicalist view holds a distinction between
derivational and inflectional morphology. Derivational inflection is the manip-
ulation of inflected forms by syntactic rules, whereas inflectional morphology
states that inflection is already present in the lexicon. Strong lexicalism applies
to inflectional morphology, where words enter the syntactic machinery already
fully inflected. Chomsky (1995) holds a strong lexicalist view.

To keep things simple the lexicon of the Minimalist Program is presented as
an unstructured data bank with entries which contain feature information and
semantic information of words. Several theories on lexicon architecture, such as
DATR (Gazdar, 1985), offer ways to structure lexical specifications.
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3.3 The Computational System

This section sketches the basic components, which a minimalist grammar needs
to address. The computational system, CHL in Fig. 3.1 shows the different
components, operations and conditions of the system. The computation starts
with the numeration, a selection of lexical items from the lexicon. A small set
of basic operations works on the numeration to derive both LF and PF. The
derivation begins by selecting lexical items from the numeration. The derivation
continues with a certain number of merge steps that combine lexical items into
larger structures. The merging of structures alternates with move steps, which
are initiated by the need for feature checking. The operation move and the
influence of certain features on this operation is explored more thoroughly in
section 3.3.2. At Spell-Out, the phonological part of the derivation is sent to
PF. The formal and semantic feature information is sent to LF where under
influence of more move steps the derivation reaches the LF structure. The
derivation converges if the numeration is empty and all the conditions (described
in section 3.4) hold.

3.3.1 Basic operations

The Computational System uses three basic operations to generate PF and LF
forms. The presentation of a derivation, as tree structures where the nodes are
labeled by the head category, is just informal. (The discussion about represen-
tation and labeling is left as background reading.)

A derivation starts with a selection of the lexicon, the numeration. The
numeration stores the lexical items needed for the derivation to converge as a
multiset of lexical resources. The lexical items in the numeration contain the
necessary feature information. All extra information imposed from the “outside”
(language dependent) is added to the feature information before the numeration
is formed. An example of such a numeration is:

Numeration = {C, drinks,the,girl,coffee}
The order of the items in the numeration is trivial. Apart from the functional
category C, all lexical resources contain semantic, phonological and formal fea-
ture information. The different groups of features are explained in section 3.3.2.

Select

Select is the first operation in the derivation. Select brings lexical items from
the numeration into the derivation. For example, select removes coffee from
the numeration to form the Syntactic Object {coffee}, as shown in Fig. 3.2.
For clarity, the category of the word is written to indicate the use of this word
within a structure.

N
coffee

Figure 3.2: Syntactic Object

The numeration reduces to:

Numeration = {C, drinks,the,girl}
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Merge

Merge is the next operation in the derivation. Merge takes two Syntactic
Objects and merges them together into a new Syntactic Object. One of the
syntactic objects is determined as the head. Chomsky (1995) suggests that
information about the head of two lexical items is stated in the lexicon where
the selection properties of a lexical head are specified. The argument structure
of a possible head licenses a certain number of arguments. The head selects
its arguments on the basis of its argument structure. The role of the head
is to determine the category of the newly formed structure, which settles the
relation between the head and its subsequent complements or specifiers. The
Computational System uses this lexical information to build the structure of a
derivation.

Fig. 3.3 illustrates the merging of the and girl into the noun phrase the
girl. The determiner, the, with category D (determiner) projects over its ar-
gument, the noun girl. The derivation yields the following syntactic structure,
labeled with the projected category of the head, D.

D
the

merge
N

girl
=⇒

D

D
the

N
girl

Figure 3.3: Sample of Merge

With the two basic operations, select and merge, simple structures can
be derived, such as given in Fig. 3.4. More complex structures are constructed
with the operation move.

C

C V

D

D
the

N
girl

V

V
drinks

N
coffee

Figure 3.4: Simple phrasal structure

Move

Move is the mechanism which describes phenomena of “displacement”. Chom-
sky (1998, page 17) describes the “displacement” property as follows:

“Phrases are interpreted in positions other than those where they are
heard, though in analogous expressions these positions are occupied
and interpreted under natural conditions of locality.”
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The following examples illustrate the displacement property. Linguistic re-
search shows that displacement occurs in many natural languages.

(3.1) What tortillas does Maria make?

∗ Maria makes what tortillas?

(3.2) Haza
Home

fogok
will[1sg]

akarni
want[inf]

menni
go[inf]

‘I will want to go home’

∗ fogok
will[1sg]

akarni
want[inf]

haza
home

menni
go[inf]

(3.3) dat
that

Alice
Alice

de
the

koning
king

wil
want[3sg]

kunnen
be able[inf]

plagen
tease[inf]

‘that Alice wants to be able to tease the king’

∗ dat
that

Alice
alice

de
the

koning
king

plagen
tease[inf]

kunnen
be able[inf]

wil
want[3sg]

Example (3.1) (Stabler, 1996) shows wh-raising of an object phrase, where
the object phrase is obliged to move to precede the finite verb. Example (3.2)
shows an instance of verb modifier climbing in Hungarian (Koopman and Sz-
abolcsi, 1998). In so-called neutral sentences the verb modifier haza has to
climb, to precede the finite verb. Section 4.3 explains more about the Hungar-
ian verbal complex phenomenon. Example (3.3) is an example of Dutch verb
raising (Moortgat and Oehrle, 1994) and shows how the order of the verbs can
change in a SOV-language. Modal auxiliaries, such as wil (= ‘want’), subcate-
gorize for bare infinitival complements on the left, such as kunnen (= ‘be able’).
In the standard order the finite verb appears on the last position, but in forming
a verb cluster the order between the auxiliary and the infinitival complement
changes.

The Computational System has to account for the concept of displacement.
The question arises: What controls the movement of phrases within sentences?
The answer is linked to another linguistic notion: interpretability. Interpretabil-
ity of sentences is an important property within structures. (Un-)interpretability
on LF and PF structures is determined by the Bare Output Conditions (more
on BOC in section 3.4.1). One Bare Output Condition, Full Interpretation,
states that as long as uninterpretable features are present in the derivation, the
derivation cannot converge. The condition prescribes that all uninterpretable
features must have been removed.

3.3.2 Controlling Move

The Computational System has to give an explanation for both linguistic no-
tions: displacement and interpretability. Displacement as described by the ex-
amples (3.1)-(3.3) is a concept that occurs in almost all languages. According
to Chomsky (1995), uninterpretable features are responsible for displacement.
In the Minimalist Program he links these two notions to build a theory on the
operations move/attract and the procedure Feature Checking.
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The procedure of feature checking depends on the kind of features involved.
Every kind of feature plays a certain role within a grammar. The following
inventory1 describes the role of the different features in natural language. Af-
ter explaining the basic mechanisms of feature checking, the operations move

and attract are defined. move/attract transfer feature information to the
position where feature checking can take place.

An inventory of Features

As mentioned in section 3.2, the lexicon is a storage of lexical resources. Ev-
ery lexical item is described by its feature structure. The behavior of a word
depends on the features that make up its feature structure. Chomsky (1995)
distinguishes different groups of features, which fulfill a defined role within the
Computational System. The features can be divided into three groups of se-
mantic, phonological and formal features. The formal features can be further
divided into interpretable or uninterpretable features at PF or LF.

Semantic features Semantic features are needed for the interpretation of
words at LF. The semantic features capture the meaning of words and the
relations between words. For example, a verb like eat needs an agent, an ‘eater’
with the semantic value: ‘animate’. The object of the verb eat could carry the
semantic value: ‘eatable’. The development of semantic theories is a direction
in linguistics that will not be pursued here.

Phonological features The Phonological Form is the interpretational level
that interprets the phonological features. The phonological features carry in-
formation, which at this level, are used to transfer morphological information
to the articulatory-perceptual system. At a certain point in the derivation, at
Spell-Out (see Fig. 3.1), the phonological features are sent to PF. The deriva-
tion continues to generate an LF structure and will crash if some phonological
features are still present at LF.

Formal features The formal features are localized as a bundle of features
on the lexical item. These features influence the working of the Computational
System. Formal features such as φ-features (person, number, gender), category
(noun, verb, preposition), case (nominative, accusative, dative) have their own
function within the Computational System. They play an important role in
the derivation of sentences, as is explicated below in the paragraph on Feature
Checking.

Functional categories, such as determiner, auxiliary and complementizer
form a special class among the formal features with an essential grammati-
cal function in the generation of expressions. Some functional categories have
no phonological or semantic feature information (complementizer, tense); they
only serve the computational system to derive the right word order. The formal
features assigned to functional categories control the application of the opera-
tion move. The features that are involved with controlling movement have a
special status, which is expressed by the interpretability at LF or PF.

1For a complete list of features with their properties, see appendix A
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Interpretability at LF Some features are interpretable at LF, which
means that the LF interface needs these features for interpretation. In con-
trast, the uninterpretable features cannot be interpreted at the LF interface
and therefore need to be deleted. Full Interpretation prescribes that a deriva-
tion will only converge if there are no uninterpretable features left in the deriva-
tion. One needs to have an operation such as feature checking to remove the
uninterpretable features from the lexical structures.

Two examples of formal features that are uninterpretable at LF are the
case feature of nouns and the φ-features of verbs. All the semantic features are
interpretable, but all the phonological features are uninterpretable at LF.

Interpretability at PF The phonological features are the only inter-
pretable features at PF. At Spell-Out these features are removed from the
derivation and sent to the PF interface. Some uninterpretable features at both
PF and LF are distinguished from the other interpretable and uninterpretable
features by assigning them the Strength feature. Strength is a feature of a fea-
ture, which is only assigned to formal features of functional categories. The
strength feature needs to be removed before spell-out. In order to check a fea-
ture with the strength feature assigned to it, the uninterpretable strength needs
to be deleted first.

Feature Checking

The distinction between interpretable and uninterpretable invokes two types of
checking relations: symmetric checking and asymmetric checking. Symmetric
checking is done when both features are interpretable or uninterpretable. Asym-
metric checking is done in all other cases where an uninterpretable feature is in
a checking relation with an interpretable feature.

On the basis of the different sorts of interpretable and uninterpretable fea-
tures the following checking relations can occur. A strong feature, which is
uninterpretable at PF, has to check against a corresponding feature, then the
strength of the feature is deleted. After the checking of the strength the feature
itself can be checked. An uninterpretable feature at LF in a checking relation
with a corresponding uninterpretable feature (for example [case]) results in the
deletion of both uninterpretable features. An asymmetric checking relation be-
tween an uninterpretable and an interpretable feature results in deletion of the
uninterpretable feature.

Along the derivation, interpretable features can get into symmetric check-
ing relations when they move along with an attracted (un-)interpretable feature.
Symmetric checking of two interpretable features leaves deletion, they only ‘com-
municate’ their shared information; if the information differs, the derivation will
crash. For example, two interpretable [person] features where one is instanti-
ated as third person and the other first person cannot check, so the derivation
fails.

Feature checking supports Full Interpretation, which prescribes that unin-
terpretable features must be deleted in order for the derivation to converge.
Feature checking describes how features are deleted. Now it is necessary to
describe when and how features get into a checking relation. The operations
attract and move lay the basis of feature checking.
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Attract/move

Uninterpretable features have to be checked in a checking relation with features
with corresponding feature values. Under influence of the operation attract

the feature that needs to check an uninterpretable feature, is attracted to the
uninterpretable feature. The operation is defined by Chomsky in terms of two
former economy conditions: the Minimal Link Condition and Last Resort. The
Minimal Link Condition states that the distance of the link between a moved
phrase and its original position should be minimal. Last Resort states that all
transformations are driven by the need to check a feature.

Attract Syntactic element K attracts a feature F if F is the closest feature that
can enter into a checking relation with a sublabel of K (Chomsky, 1995,
p.297)

Mainly functional categories carry uninterpretable features, they act as at-
tractors of feature bundles. A functional category with an uninterpretable fea-
ture attracts a corresponding interpretable or uninterpretable feature. The at-
tracted feature carries along other feature information, which can take part in
the feature checking operation. The operation move transfers the feature bun-
dle to the domain of the functional category. The two features will now form a
checking configuration.

A syntactic element with an uninterpretable feature attracts just enough
material for the derivation to converge. For uninterpretable features at LF, the
formal features are the only material needed for convergence. If the attractor
carries an uninterpretable strong feature, which is uninterpretable at PF, the
phonological and semantic feature information is also moved to the checking
domain.

3.4 Conditions

Not all information in a grammar can be stated as feature information in the lex-
icon or as procedures in CHL. Chomsky (1995) posits Bare Output Conditions
and economy conditions to capture this extra information.

3.4.1 Bare Output Conditions

Some conditions are dictated “from the outside” at both interface levels. These
Bare Output Conditions restrict the possible output of the computational sys-
tem. Only a subset of the set of derivations produced by CHL converges under
the influence of the Bare Output Conditions. With regard to the conditions at
PF one could think of unpronounceable sequences of ‘words’. At LF one could
think of uninterpretable sentences, like Chomsky’s famous “Colorless green ideas
sleep furiously”, which is a grammatical expression but without meaning.

3.4.2 Economy Conditions

Move/attract are further restricted by economy conditions; in the evolution
of the Minimalist Program these conditions are incorporated in the definition of
the basic operations. In earlier proposals global economy conditions were stated
to determine admissible derivations, such as Shortest Link and Last Resort.



The Minimalist Program 23

These economy conditions state restrictions on how and when a certain feature is
transferred. In the Minimalist Program only local economy conditions are stated
in the Computational System; most of them are incorporated in move/attract

operations. The only economy condition left is Procrastinate to disfavor the
movement of phonological and semantic features; feature movement at LF is
favored over move operations before Spell-Out.

3.5 A sample derivation

All the components for a minimalist derivation have been introduced in the pre-
vious sections. As an illustration the sentence “Which tortillas did Maria
make”, an example of wh-movement, is derived below. The sentence carries in-
formation on tense, but as we focus on the features that are involved with the
movement of which tortillas, we will abstract away from do-support. So the
Tense position stays empty.

The derivation starts with the numeration with all the necessary lexical
resources to build PF and LF structures. In our simplified example the nu-
meration contains the following elements: {C, T, Maria, tortillas, make,
which}. All lexical elements, apart from the functional categories C and T, carry
formal, semantic and phonological feature information.

One by one the operation select removes all lexical items and introduces
them as Syntactic Objects into the derivation. The basic structure of the sen-
tence is led by the operation merge, which joins Syntactic Objects into phrases.
The features on the Syntactic Objects lead the right application of operations.
After the first merge steps, the derivation arrives at the structure presented
in example (3.4). The structure shows the dominance and precedence relations
between the syntactic objects. The dominance relations between the syntactic
objects are determined by the category labels; for example the syntactic object
which dominates tortillas.

(3.4) C

C
[Q]

T

D
Maria

T

T V

V
make

D

D
which
[wh]

N
tortillas

Under the influence of uninterpretable (strong) features on the functional cat-
egories, the operation move transfers subtrees of the structure to the checking
domain of the functional category. The [Q] feature on the functional cate-
gory C is strong and needs to be checked. The closest feature which can enter
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into a checking relation with [Q], is the [wh] feature which. The operation
move/attract transfer the formal features of which to the checking domain
of C. Because the uninterpretable feature is strong, the semantic and phono-
logical feature information of which and tortillas (because which dominates
tortillas) pied-pipes with the formal features to the checking domain. The
result is the structure presented in example (3.5).

(3.5) C

D

D
which
[wh]

N
tortillas

C

C
[Q]

T

D
Maria

T

T V
make

Feature checking removes the uninterpretable strength of the interpretable
feature [Q]. At this moment the derivation reaches spell-out, because all strong
features are deleted and the numeration is empty. At spell-out the phonolog-
ical features are removed from the structure to form PF. The remains of the
structure, the semantic and formal features, continue the derivation.

The uninterpretable features have to be deleted in order for the derivation to
converge. When all uninterpretable formal features are deleted, LF is reached,
where all formal and semantic features are interpreted. The [wh] feature of
which tortillas and the [Q] on the functional category C account for the
interpretation of the sentence as a wh-question.

3.6 Summary

With the Minimalist Program, Chomsky models a theory on Universal Gram-
mar. We concentrate on the basic principles, which need to be present in gram-
mars of language. The basic elements: the lexicon, the operations and the
output levels, are presented rather informally. The theory lacks an effective
algorithm to compute derivational structures. The next chapter presents the
work of Stabler (1996), further elaborated in Stabler (1999), that will serve as
an algorithm capturing the basic minimalist mechanisms.



Chapter 4

Computational models of
Minimalism

This chapter presents Stabler’s computational account of the Minimalist Pro-
gram. Section 4.1 explains the different components of Stabler’s Minimalist
Grammar formalism (Stabler, 1999). In section 4.2 we use his formalism to
relate the Minimalist Program to Multimodal Categorial Grammar. Section
4.3 illustrates this comparison further with an elaboration of Hungarian verb
movement (Koopman and Szabolcsi, 1998).

4.1 A Minimalist Grammar

Stabler’s framework captures the main components of the Minimalist Program.

4.1.1 Features

A central idea in the Minimalist Program (Chomsky, 1995) is that derivations
are feature driven. In his formalism Stabler explains how features trigger struc-
ture building operations, setting aside many details of recent proposals. He
defines the elementary operations and the basic objects of these operations:
features. With the formalism we can formulate a minimalist grammar for any
language phenomenon.

Features (F) are part of a lexical specification. We distinguish phonological,
semantic and syntactic features. The syntactic features play an active role in
controlling derivations. Every structure building operation is triggered by a cer-
tain syntactic feature. Stabler focuses on the syntactic features, and abbreviates
phonological and semantic feature information. Possible features are given in
the following BNF-specification. Fig. 4.1 gives a summary of these features and
the possible feature values.

F ::= N | =N | +N | −N | /N/ | N

The phonological and semantic non-syntactic features are carried along in
the derivation, but have no effect on the structure building operations. For
simplicity we only write the headword to indicate that non-syntactic material
is present in the derivation.
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• phonological features: /marie/

• semantic features: marie

• syntactic features:

– category features:

∗ basic categories: c, t, v, d, n, . . .
∗ selector features: =c,= t,=v,=d,=n, . . .

– control features:

∗ licensees: −case,−wh, . . .
∗ licensors: +case,+wh, . . .

Figure 4.1: Features of MG

The syntactic features are divided in 2 groups: category features and control
features. The category features state the role of a word in a sentence. Every
word gets assigned a category, for example: complementizer, tense, verb, de-
terminer or noun. Some of these categories show an extended functionality.
Categories such as complementizer, determiner and tense are so-called func-
tional categories, because they play a special role in derivations. The role of a
word is further determined by the selector feature. The selector feature indi-
cates with what kind of category a word can be combined. The two category
features come in pairs; in a derivation a word with a selector feature is always
accompanied by a word with a matching category feature.

Apart from the category features, control features play an important role in
controlling the ordering of words and the movement of phrases within structures.
The licensee features state certain properties of words, such as [−case], [−wh]
and [−tense], while the licensor features indicate the need for such properties.
In a derivation, control features always come in pairs: [+,−]. A licensor feature,
marked with [+], attracts an identical licensee feature, marked with [−].

4.1.2 Lexicon

A lexicon serves as a storage for features. Every lexical item has its own lex-
ical specification, which is solely made up of features. All lexical items, apart
from the functional categories, have semantic and phonological features. The
use and the properties of words are defined by the syntactic category, selector
and licensee features. Licensor features are mainly assigned to functional cate-
gories; they serve as triggers for the movement of phrases with matching licensee
features.

Stabler (1999) presents the lexical specification as a list of feature occur-
rences. The sequence of features in the list determines the order in which the
tree structure is built. Not every order of features is possible, the ordering
depends on the application of the structure building operations. Admissible
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orderings are determined by the following regular expression:

(=f (=f)? (+f)) f (−f)? /f/ f

Parentheses indicate an option of 0 or 1 occurrences, or more if decorated with
a star. A category feature can stand by itself, it can be preceded by a certain
number of selector features or it can be followed by licensee features. Only one
licensor feature can appear before the category feature. A feature specification
ends with the non-syntactic features in the case of the lexical categories; func-
tional categories have no phonological feature information. With this feature
information, we can built lexical entries. Fig. 4.2 shows a small sample of a
lexicon.

n maria
n tortillas
=d =d v making
=n d the
=v +wh c
=n d -wh what

Figure 4.2: Minimalist lexicon: sample entries

4.1.3 Structure building operations

Structures S are built by concatenating, moving or abstracting lexical material
within structures. A phrasal structure is represented with labeled binary trees.
Instead of labeling the trees with the category of the head of the tree, as is done
in the syntactic tradition, Stabler (1999) labels a tree with a direction arrow
{<,>} pointing towards the head. The leaves of the tree are the lexical feature
structures F , built up with features as described above.

S ::= F | S < S | S > S

Two operations are involved with building labeled structures:

1. Merge: S × S → S

2. Move: S → S .

Merge combines two trees t1 and t2 to form a new tree. Tree t1[=c]1,
with first feature =c, combines with tree t2[c] which carries feature category c.
Technically, Merge can be partitioned into two functions: one that combines
with a tree on the right side: (<, t1, t2), and one that combines with a tree on
the left: (>, t2, t1). Tree t2 combines with t1 on the right side if t1 is a lexical
item. Tree t2 combines with t1 as a specifier on the left side if t1 is already
a tree structure. Both selector and category feature are deleted after merging.
Stabler (1999) formalizes merge as shown in the tree diagrams in Fig. 4.3

Move operates on the substructures of a tree. A licensor feature [+f] on
the head of tree t1[+f], attracts a subtree t2[−f]> with a corresponding licensee

1t[F] indicates that F is the prefixed feature of the feature structure of the head of tree t



28 Chapter 4

Merge(t1[=c],t2[c]) =



<

t1 t2

if t1 ∈ Lex

>

t2 t1

otherwise

Figure 4.3: Definition of merge as a tree diagram

feature. The [−f] feature is found at the complement position comp+ or in
the specifier position spec, comp+ of the head of the tree. comp+ is the transi-
tive closure on the binary relation comp, ‘is a complement of’, as given in the
definition of transitive closure.

Transitive closure: Given any binary relation R (such as A comp B: “A is
a complement of B”), the transitive closure R+ is the smallest binary
relation R+ such that R ⊆ R+ and xR+y & yR+z ⇒ xR+z

comp+ the transitive closure of the complement relation comp

spec, comp+ the specifiers of trees in the transitive closure of the complement
relation

Maximal projection: The maximal projection of subtree t[−f]> is the largest
subtree with [−f] as its head

The tree diagram in Fig. 4.4 defines the structure building operation move.
Move is applied to the maximal projection of the subtree carrying the licensee
feature [−f]. After extracting the subtree from the main tree, the subtree is
merged as a specifier to the head of the tree. Both control features are canceled
and removed from the tree. The original occurrence is replaced by an empty
tree, a single node without features.

>

move(t1 [+f])=t2> t1{t2[−f]>/−}

Figure 4.4: Definition of move as a tree diagram

The definition of move assumes some general constraints on movement, as
given by Stabler (1999).

1. The whole feature structure moves, syntactic features as well as semantic
and phonological feature information.

2. Movement can only apply if there is one outstanding [−f] feature.
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3. Not more or less information can be moved than the maximal projection,
t[−f]>.

4. The moved tree must be a comp+ or the specifier of a comp+

5. Both licensor and licensee features are canceled after movement.

The first constraint contrasts with an older version of Stabler’s formalism
that addresses the distinction between strong and weak control features. Un-
der influence of the strong features the whole feature structure moves, while
under influence of the weak features only syntactic features move. The second
constraint is a strong version of the “shortest movement” condition (Chomsky,
1995), where movement cannot apply when two outstanding licensee features
compete for the same position. The third and fourth constraints are proposals
by Koopman and Szabolcsi (1998). They claim that all movement has to be
XP-movement, where the XP is nothing more or less than the maximal pro-
jection of the lexical object carrying the attracted feature. The last constraint
contrasts the distinction between interpretable and uninterpretable features. In
the Minimalist Program only uninterpretable features are canceled. In Stabler’s
formalism both control features involved with the operation move are canceled.

4.1.4 A derivation

The structure building operations enable us to derive sentences on the ba-
sis of lexical specifications. As an illustration we derive the sentence “What
tortillas Maria making” using the lexical specifications in Fig. 4.2. Because
formal features such as tense and case, are not taken into account, the sentence
is ill-formed with regard to the inflection of the verb.

Besides the lexical introduction steps, which introduce the lexical entries
in the derivation, the structure is built with the four merge steps in (3), (5),
(7) and (9). Step (10) is a crucial step in the derivation: the licensor feature
[+wh] on the functional category [c] requires a licensee feature [−wh]. The lexical
specification of what carries the required feature [−wh]. The maximal projection
of t[−wh]> is the entire phrase what tortillas. Under the influence of the
operation move, the subtree is merged to the main tree as the specifier of the
functional category [c]. The derivation ends here, since there are no outstanding
licensor features, and the only syntactic feature is the category feature [c] on
the head of the tree.

1. Lex: =n d -wh what

2. Lex: n tortillas

3. Merge(1,2): <

d -wh what tortillas

4. Lex: lex=d =d v making
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5. Merge(3,4): <

=d v making <

-wh what tortillas

6. Lex: d Maria

7. Merge(5,6): >

Maria <

v making <

-wh what tortillas

8. Lex: =v +wh c

9. Merge(7,8): <

+wh c >

Maria <

making <

-wh what tortillas

10. Move(9):
[+wh] attracts [−wh] >

<

what tortillas

<

c >

Maria making

4.1.5 Summary

Stabler’s formalism shows that the interaction between syntactic features and
structure building operations is straightforward; the feature specifications of
the lexical items predict the phrasal structure of a sentence. Every step in a
derivation is determined by the feature information on the head of the tree.
A derivation fails if the head of the tree has no category, selector or licensor
feature.
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4.2 A mapping: MG and MMCG

In this section we relate Stabler’s formalism to MMCG by mapping the features
and operations of both systems.

4.2.1 Feature correspondence

In MMCG the semantic and syntactic features are described within the lexicon.
The semantic part, which is not taken into account for now, is articulated in
terms of Lambda calculus. The syntactic part is represented by the type-logical
grammar. A lexicon exists of lexical entries with a structural label (the head-
word) and the syntactic formula. As explained in chapter 2, the formulas are
built up within a grammar of basic categories and modally decorated binary
and unary connectives.

As we have seen in section 4.1.1 syntactic features in MG come in pairs:
category-selector and licensee-licensor features. To give a correspondence be-
tween the feature specification in MG and type-logical formulas in MMCG, we
need to be able to reason about different parts of a type-logical formula. In sec-
tion 2.2 we have shown that expressions are given as Γ ` A. The antecedent Γ is
the input, the assumptions, which has a certain type A. The type represents the
output, also called the goal formula. We adopt a way of speaking about the dif-
ferent parts of type-logical formulas: the polarity of a (sub-)formula. The input
receives a positive polarity and the output a negative polarity. On the basis of
the polarity of the whole type-logical formula, the polarities of the subformulas
can be derived with the following rule:

(B\A)p, (A/B)p ; Ap, B−p

The following correspondence is made on the basis of the feature specifica-
tions of MG and the type-logical formulas of MMCG.

Kind of feature MG MMCG
Basic categories c c on the positive head of the formula
Selector features =c c on the negative subformula: c\>-, -/<c
Licensee features [−f] 2f on positive (sub-)formula
Licensor features [+f] 2f on negative (sub-)formula

Figure 4.5: Feature correspondence

We take the same basic categories in MMCG for the categorial types as
the categories in MG. The logical connectives, {/<, \>}, left and right division
have the same function as the selector feature, namely a request for a certain
category. The right division is used to fill the complement position, the left
division fills the specifier position.

In MG the control features, the licensors and the licensees, act as each other
counterpart indicated by the polarities [+] and [−]. Following the polarities
of the type-logical formulas, the licensee feature corresponds to the unary con-
nective {2} on a positive (sub-)formula; in practice the head of the formula
will be decorated. The licensor feature, with an opposite polarity, corresponds
to the unary connective on the negative formula, which generally means on a
subformula or on the goal formula.
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The licensor and licensee features enforce movement of features and therefore
reordering of the structure. The function of the licensor feature as trigger for
the rearrangement of features and lexical resources corresponds to the function
of the unary connectives within MMCG. The licensor feature interacts with the
licensee feature. In MMCG the licensor feature is defined as 2f on the positive
formula of a lexical entry, which interacts with the structural brackets 〈.〉f on
the structural side. In both systems the licensor and licensee feature cancel each
other. In MMCG the unary connectives play the role of ‘key’ and ‘lock’, where
the diamond serves as ‘key’ and the box as ‘lock’ as shown in the following
derivation rule:

♦2A −→ A

4.2.2 Lexical correspondence

On the basis of the feature correspondence we can compute the lexical cor-
respondence between the syntactic feature specifications in MG and the type
assignments in MMCG. As described in section 4.1.2 the MG syntactic feature
specification is described by the regular expression:

(=f (=f)? (+f)) f (−f)?

This regular expression can be transposed to the finite state automaton in
Fig. 4.6. This automaton computes all the possible strings on the basis of
the syntactic features (where [f, g] represent the possible category and control
features).

γ

β

α

f

f +f g

=f

=f

-f

Figure 4.6: Finite state automaton to compute MG feature structures

On the basis of this automaton we build an algorithm that translates MG
syntactic feature structures F into MMCG type formulas. The automaton in
Fig. 4.6 corresponds with the rules on the left side of the algorithm in Fig. 4.7.
In the algorithm, the three states: α, β, γ map parts of the feature specification
to categorial formulas.

The phonological and semantic feature information of the lexical categories is
incorporated into the label of the logical formula. MG also deals with functional
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(f F)α = (F f)γ

(=f F)α = (F)β/<f
(=f F)β = f\>(F)β

(f F)β = (F)γ f
(+f g F)β = (F)γ g with 2f g as goal formula or subformula
(−f F)γ = (F)γ 2f

( )γ = −

Figure 4.7: Algorithm to calculate categorial formulas from MG feature speci-
fications

categories, which have no non-syntactic feature information. MMCG labels
functional categories with their category feature to indicate their function and
position in a structure.

Fig. 4.8 shows an example of the way the algorithm computes the categorial
formula from the MG feature specification of the transitive verb made.

(=d =d v −past made)α

made ` (=d =d v −past)α

made ` (=d v −past)β/<d
made ` (d\>(v −past)β)/<d
made ` (d\>(−past)γ v)/<d
made ` (d\>( )γ2pastv)/<d
made ` (d\>2pastv)/d<

Figure 4.8: Feature translation on the basis of the vertical function

Using the algorithm in Fig. 4.7 we can translate the MG lexicon in Fig. 4.2
into the categorial lexicon in Fig. 4.9.

MG CG
n tortillas tortillas ` n
d Maria Maria ` d
=n d the the ` d/<n
=d =d v making making ` (d\>v)/<d
=n d -wh what what ` 2whd/<n
=v +wh c c/<v with 2whc as goal-formula

Figure 4.9: Lexical correspondence
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4.2.3 Mapping of operations

Merge as application

Compare the operation merge as described in section 4.1.3, with the applica-
tion rules in MMCG. The rules of application are defined in the natural deduc-
tion proof system by the elimination rules {/<, \>}. MG defines merge as a
structure building operation, which combines two tree structures t1 which head
carries a selector feature: [= A] and t2 which head carries a corresponding cat-
egory feature: [A]. The operation merge causes the cancellation of the feature
[= A] against [A]. As tree t1 can select both to the right and to the left, merge

can be split into two operations: Merge< and Merge>.
In MMCG merge is captured by the elimination rules of the binary connec-

tives: {/<, \>}. Fig. 4.10 shows both structure building rules and the matching
elimination rules: merge on the right as complement [/<E] and merge on the
left as specifier [\>E]. As the minimalist operation merge can be split into two
operations: merge< and merge>, the same holds for the logical operations in
MMCG. Fig. 4.10 shows both directions of the elimination rules: left-headed
merge and right-headed merge. In minimalism one prefers to reason about
one merge operation, which is the union of both separated operations:

Merge = Merge< ∪ Merge>

Leftheaded merge: Rightheaded merge:

Merge<(t1[=A],t2[A]) ⇒
<

t1 t2

>

t1 t2

⇐ Merge>(t2[=A],t1[A])

t1 ` B/<A t2 ` A
t1 ◦< t2 ` B

[/<E]
t1 ` A t2 ` A\>B

t1 ◦> t2 ` B
[\>E]

Figure 4.10: Merge as application

In the Minimalist Grammar direction arrows: < and > indicate the head of
the tree. In MMCG indication of the head is implicitly done with a functional
projection; a lexical item with category A/B is applied to a lexical item with
category B to form a phrase of category A. The first lexical item is the function
which takes an argument. In this way the function serves as a head, while the
argument serves as a complement or a specifier. By explicitly marking the binary
connectives, the ‘arrow’ indicates the head of two combined entries defining the
dependency relation between words. For both directions the arrows < and >
are added as modes to the structural combinator ◦. The most common direction
is towards the head of the formula.

Move as structural reasoning

To capture the right behavior of the movement operation, the attraction of the
licensee feature by the licensor feature needs to be accounted for. The trans-
lation of the licensor feature as a feature decorated 2 on a negative formula,
enforces the interaction with the licensee feature via the control diamond, 〈.〉
on the structural side. The structural diamond influences the use of structural
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postulates that capture the possible movements of a phrase from a certain po-
sition in the structure to another. The postulates in Fig. 4.11 can be regarded
as general postulates that define movement.

♦f (A •> B) → ♦fA •> B [P 1]
♦fA •> (B •i C) → B •i (C •< ♦fA) [P 2]
♦fA •> (B •i C) → B •i (♦fA •> C) [P 3]

Where i ∈ {<,>}

Figure 4.11: Movement postulates

The first postulate [P 1] checks if there is a phrase carrying a certain feature
f at the first position. In languages where a word is located at another position,
this postulate could be deleted or changed in such a way that it distributes to
the expected place in the sentence. The second and third postulates percolate
a feature decorated phrase through a structure. [P 2] moves a phrase A from a
complement position to the specifier position of that same phrase headed by B
or C. [P 3] moves a phrase A from the specifier position to a higher specifier
position of a phrase headed by B or C.

As an example we show how these postulates are used in sentences where
wh-movement occurs. For this case, the undefined feature f in the above pos-
tulates is specified as a wh-feature and therefore we rename the postulates to
[Pwh1, Pwh2, Pwh3]:

♦wh(A •> B) → ♦whA •> B [Pwh1]
♦whA •> (B •> C) → B •> (C •< ♦whA) [Pwh2]
♦whA •> (B •< C) → B •< (♦whA •> C) [Pwh3]

With the use of the lexical formulas in Fig. 4.9 we derive the structure “What
tortillas Maria making”. The structural part of this derivation is represented with
binary trees. In natural deduction these trees are given in a flat structure, but
the structural part can also be presented as a full binary tree. Both presentations
are given.

c ` c/<v
Maria ` d

making ` (d\>v)/<d

what ` 2whd/<n tortillas ` n
what ◦< tortillas ` 2whd

[/<E]

〈what ◦< tortillas〉wh ` d
[2whE]

making ◦< 〈what ◦< tortillas〉wh ` d\>v
[/<E]

Maria ◦> (making ◦< 〈what ◦< tortillas〉wh) ` v
[\>E]

c ◦< (Maria ◦> (making ◦< 〈what ◦< tortillas〉wh)) ` c
[/<E]

c ◦< (〈what ◦< tortillas〉wh ◦> (Maria ◦> making) ` c
[Pwh2]

〈what ◦< tortillas〉wh ◦> (c ◦< (Maria ◦> making)) ` c
[Pwh3]

〈(what ◦< tortillas) ◦> (c ◦< (Maria ◦> making))〉wh ` c
[Pwh1]

(what ◦< tortillas) ◦> (c ◦< (Maria ◦> making)) ` 2whc
[2whI]

Figure 4.12: Natural deduction derivation of What tortillas Maria making with
flat structures
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1. what ` 2whd/<n

2. tortillas ` n

3. [/<E], Merge(1,2):

<

what tortillas
` 2whd

4. [2whE]
♦wh

<

what tortillas

` d

5. making ` (d\>v)/<d

6. [/<E], Merge(5,4):

<

making ♦wh

<

what tortillas

` d\>v

7. Maria ` d

8. [\>E], Merge(6,7):

>

Maria <

making ♦wh

<

what tortillas

` v

9. c ` c/<v

10. Merge(9,8):
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<

c >

Maria <

making ♦wh

<

what tortillas

` c

11. Move(10) by Pwh2:

<

c >

♦wh

<

what tortillas

>

Maria making

` c

12. Move(11) by Pwh3

>

♦wh

<

what tortillas

<

c >

Maria making

` c

13. Move(12) by Pwh1

♦wh

>

<

what tortillas

<

c >

Maria making

` c
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14. 2whI:

>

<

what tortillas

<

c >

Maria making

` 2whc

If you compare the tree structure representation with the MG derivation
in section 4.1.4, you can see a few resemblances and some differences. The
representation is different in the way the structural information is separated
from the logical part. Whereas in Stabler’s formalism syntactic, semantic and
phonological information is used within one representation, the MMCG tree
representation separates these components. The left-hand side of the turnstile
shows the hierarchical order of the structure while the right-hand side gives
information on the category and the features of the whole phrase. The structural
brackets, 〈.〉, projected from the logical side, are the structural domains of
phrases where the postulates can work on.

The order of application of the structure building operations is the same
in both systems. First a number of merge steps, followed by the movement
of “what tortillas”. In MG the operation move is triggered from the licensor
feature on the functional category c. In MMCG the feature information of
the functional category is split up: the category features are assigned to the
lexical entry c and the licensor feature is part of the goal formula. To check the
‘licensee’ feature on the lexical entry what against the ‘licensor’ feature on the
goal formula, the control features trigger the use of structural postulates.

Using structural reasoning we can capture the movement operation in MMCG.
With structural postulates we explicitly define the steps that a phrase has to
make to arrive at a certain point in the structure. In MG, movement is done im-
plicitly by abstracting a phrase from its former position, which is determined by
the maximal projection, and by moving the phrase up to the specifier position.

Constraints on Move

As explained in section 4.1, the definition of minimalist movement assumes some
constraints. The constraints on movement as given in section 4.1.3, are repeated
here. Are they respected by the translation of move as structural reasoning?

1. The whole feature structure moves, syntactic features as well as semantic
and phonetic feature information.

2. Movement can only apply if there is one outstanding [−f] feature.

3. Not more or less information can be moved than the maximal projection
of t[−f].

4. The moved tree must be a comp+ or the specifier of a comp+

5. Both licensor and licensee features are deleted after movement.
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The first constraint, that the whole feature specification has to move, is
met with regard to formal and phonological features. The postulates that force
movement, [Pwh2] and [Pwh3], move the lexical structures as a whole. The
other postulate, [Pwh1], must not be mistaken as feature movement, although it
searches through the structure to reach the placeholder of the syntactic feature.
The semantic part of the derivation is done with lambda calculus. This part
is not sensible to structural changes; it only captures the logical part of the
derivation. Section 4.2.4 discusses the role of derivational semantics.

The second constraint, that movement can only apply if there is one out-
standing licensee feature, is met under one extra condition. No structural fea-
ture domain is allowed at the end of the derivation. The structural postulates
projects the licensor feature (2 on the goal formula) on the structural part of
the derivation, such that it occurs as feature domain over the selected structure.
The 2 feature on the goal formula can cancel only one occurrence of 2 coming
from the lexical domain. A structure with two outstanding structural feature
domains (which is the result of two 2 features in the lexical domain) would
be rejected because only one of these feature domains could be checked by the
logical connective on the goal formula. So movement can apply when there are
two outstanding licensee features, but the derivation is rejected.

For the third constraint, that the maximal projection of the licensee feature
moves, maximal projection needs to be defined within MMCG. Two options are
available, the first is already given with the definition of the lexical structures.
As a result of defining what as 2whd/<n the domain of the structural brackets
will extend over the noun tortillas. The domain of structural brackets is exactly
the maximal projection of the head of the formula.

Another option is to put the feature information as a box on the whole posi-
tive formula: 2wh(d/n). In this case you need to define the maximal projection
of the feature information. This can be done with the following two postulates
which distribute the structural brackets over the specifier of the head or over
the complement.

♦wh(A •< B) → ♦whA •< B [K1wh]
♦wh(A •> B) → A •> ♦whB [K2wh]

The first option seems an obvious choice, because no extra postulates are needed.
But in case more licensor features are used, there is the possibility that one
licensor feature blocks the other one by enclosing the other feature in its domain.
The feature domain blocks the inner phrase from moving and checking its own
licensee feature. There are cases where this would even be useful in order to
prevent phrases from moving.

The last constraint, which prescribes the deletion of both control features,
follows the interaction between the logical and the structural part of a derivation.
The introduction and elimination rules of the unary connective 2f in Fig. 4.13
give us a way of reasoning that corresponds with the behavior of the licensor
and licensee features. The elimination step can be seen as the projection of the
licensee feature over the required phrase. The introduction of 2f can be read
as the checking of a licensee feature against a licensor feature.
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Γ ` 2fA

〈Γ〉f ` A
[2fE] 〈Γ〉f ` A

Γ ` 2fA
[2fI]

Figure 4.13: Control features: ND-rules

4.2.4 Move as abstraction operation

The previous section showed how move is defined in terms of structural control.
Using structural reasoning one captures the actual movement of words in a
sentence. As a mechanism which describes phenomena of “displacement”, move

should be regarded as a complex operation, which has both a structural and
a logical component. With the use of hypothetical reasoning as the logical
component, one is able to account for the meaning of move as an abstraction
operation.

This section explores the meaning of the move operation in both MG and
MMCG. In MMCG proof terms indicate the meaning of derivations (Moortgat,
1996) by means of the Curry-Howard morphism. This notion can be extended to
MG and the resulting proof term shows that the meaning move as abstraction
operation is captured.

Derivational Meaning

As explained in section 2.5 derivations can be decorated with terms. A proof
term is the ‘blueprint’ of the logical derivation: all logical steps can be read
from the proof term. In the same way as the logical rules in MMCG can be
decorated, the structure building operations in MG can be labeled with proof
terms. The result gives us a comparison between the MMCG proof system and
the derivational formalism of Stabler (1999).

In his notes Stabler (1998) suggests what semantic values should be assigned
to the operations merge and move. A first idea is to interpret merge as
application and move as abstraction.

Merge as application To capture the meaning of merge as application, the
accompanying term should be defined as follows:
Merge(t1[=c],t2[c]), where t1 is labeled with t and t2 with u.

<

t1 t2
(t u) or

>

t2 t1
(t u)

Move as abstraction To capture the meaning of move is more complicated.
Move consists of two operations: abstraction and application, which need to be
addressed in the proof term. The definition as stated in Fig. 4.4 is repeated in
Fig. 4.14.

The two main tree structures are labeled with semantic terms:

• t1[+f] is the whole tree labeled with term t
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>

move(t1[+f])=t2> t1{t2[−f]>/–}

Figure 4.14: Move in MG

• t2[−f]> is the maximal projection of t2[−f] labeled with u

Fig. 4.15 shows how the move operation is decorated with terms. Tree
t2[−f]>, labeled with term u, is a subtree of tree t1[+f]. The whole tree is
labeled with t{u}, where u is a subterm of term t . During movement, t2[−f]>

is abstracted from t1[+f] yielding the proof term: λx .t{x/u}. The variable x
replaces term u indicating the trace of the extracted subtree t2. At the same
time, the extracted tree t2 is merged to tree t1{t2[−f]>/–} yielding the tree (>,
t2, t1) with proof term: (u λx .t{x/u}).

t{u}B

t2[-f]>

t1{t2[-f]>/-}

t1[+f]

uA
t2>

u(A→B)→B

> (u λx.t)B

(λx.t{x/u})A→B

xA

Figure 4.15: Schematic representation of term decorated move

Every term belongs to a certain type. In section 2.5 we have seen how terms
are built on the basis of their types. With the use of types, we can check whether
a structure is well-typed. To check if the two structures of the definition of move

are well-typed, we need to look at the types that belong to the different terms.
The types are given as exponents of the terms.

The whole tree t1 with term t is of type B and the subtree t2 with term u is
of type A. After abstraction the whole tree (>, t2, t1) still has to be of type B.
Tree t1, where the subtree of type A has been abstracted from, gets assigned
the type A→B. Then the subtree is merged to tree t1 (t2 is applied to t1). To
yield a tree of type B, the type of tree t2 has to be (A→ B)→B. But then
there is a type-clash between the type of term u in the first structure and the
type in the second structure.

We can overcome this type-clash by reasoning hypothetically over the ab-
stracted subtree. One uses term variable x to indicate the position of the ab-
stracted tree structure. The higher order type assigned to tree t2 accomplishes
the abstraction of this subtree. In this way one prevents the type-clash between
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the two occurrences of the subtree. After an example of decorating a minimal-
ist derivation, I will show how MMCG captures the abstraction component of
move with hypothetical reasoning.

Minimalist derivation, term decorated As an example, we derive the
proof term for the sentence “What tortillas Maria making” as given in sec-
tion 4.1.4. Step by step the derivation is decorated with the derivational mean-
ing. For simplicity the semantic terms assigned to the lexical items correspond
to the headword of the feature structure.

1. =n d -wh what ⇒ what

2. n tortillas⇒ tortillas

3. Merge(1,2): <

d -wh what tortillas
⇒ (what tortillas)

4. =d =d v making ⇒ making

5. Merge(4,3): <

=d v making <

-wh what tortillas
⇒ (making (what tortillas))

6. d Maria ⇒Maria

7. Merge(5,6): >

Maria <

v making <

-wh what tortillas
⇒ ((making (what tortillas)) Maria)

8. =v +wh c
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9. Merge(8,7): <

+wh c >

Maria <

making <

-wh what tortillas
⇒ ((making (what tortillas)) Maria)

10. Move(9): >

<

what tortillas

<

c >

Maria making
⇒ ((what tortillas) λx .((making x) Maria)

The result of decorating the derivation with a proof term in this way, is
that the abstraction can be read from the derivational meaning. The proof
term, ((what tortillas) λx .((making x) Maria), can now be compared with
the proof term from the derivation in MMCG with structural reasoning (section
4.2.3). The structural rules are not captured within the proof term, so the
elimination rules are the only logical steps that are shown in the proof term.
The derivational meaning of the derivation using structural reasoning becomes:
((making (what tortillas)) Maria). This proof term does not show any trace
of abstraction as a result of the operation move. Moreover the proof term
deviates largely from the proof term that results after decorating the Minimalist
Derivation.

In section 4.2.3 movement is translated solely by using structural postulates.
But looking at the derivational meaning, it becomes clear that this cannot be
the right translation between Stabler’s formalism and MMCG with regard to
the move operation.

MMCG: Move as abstraction

The other option to define movement within MMCG comes from the possibil-
ity of reasoning hypothetically about merge. In Stabler’s definition of move

abstraction occurs: a subtree is abstracted from the whole structure. With the
use of hypothetical reasoning this phenomenon can be translated in MMCG. As
explained in chapter 2, hypothetical reasoning is defined by the introduction
rules.

The proof term, built during the application of the introduction rules, cap-
tures the abstraction of a phrase out of a fully built phrase. Hypothetical
reasoning is triggered from the lexicon. In our fragment the lexical entry what
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Γ ◦ x : B ` t : A
Γ ` λx.t : A/<B

[/<I]
x : B ◦ Γ ` t : A
Γ ` λx.t : B\>A

[\>I]

Figure 4.16: /<, \> Introduction rules

projects a hypothetical determiner phrase. In MMCG the information on the
functional category and the feature information on the lexical item are com-
bined in the type-logical formula of the lexical item. The formula assigned to
what incorporates the function of the functional category c as a trigger of move

and its own lexical function as a determiner of nouns. The lexical translation
for what is given in Fig. 4.17.

=v +wh c
=n -wh d what

}
(c/>(♦wh2whd\>v))/<n

Figure 4.17: Lexical type assignment for what from MG feature structures

This formula can be read as: after combining with a noun phrase, the ‘higher
order formula’ indicating a determiner phrase looks for a verb phrase, which is
missing an object phrase. Then the determiner phrase merges with the incom-
plete verb phrase into a complementizer phrase. The formula is constructed in
such a way that the phrase what tortillas is still regarded as a specifier of the verb
phrase making tortillas. The connective {/>} carries a direction arrow pointing
towards the argument, to indicate that the argument will be considered as the
head of the structure.

In the translation of what as (c/>(♦wh2whd\>v))/<n the wh-feature on the
♦wh acts as the licensor, the trigger of the movement steps. The 2wh on the
positive subformula d indicates the licensee feature which allows the determiner
phrase to be moved. In this translation, the feature correspondence given in
Fig. 4.5 still holds. The licensee feature corresponds to the 2wh assigned to a
positive subformula of the logical formula. The licensor feature corresponds to
the ♦wh on the positive subformula d, which is the counterpart of a 2wh on a
negative subformula.

Apart from the lexical entry what and functional category c, all other entries
stay the same as given in Fig. 4.9. The categorial feature [c] and the selection
properties of the functional category are captured within the logical formula of
what. Therefore the functional category as a lexical entry is no longer needed.

As an example we derive the sentence “what tortillas Maria making” with the
accompanying proof term. The structural part of the derivation on the left-hand
side is presented as a tree representation, followed by the term decoration and
the type-logical formula on the right-hand side.
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1. p1 ` y : 2whd (hypothesis)

2. [2whE]:
♦wh

p1

` ∨y : d

3. making `making : (d\>v)/<d

4. [/<E], Merge(3,2):

<

making ♦wh

p1

` (making ∨y) : d\>v

5. Maria `Maria : d

6. [\>E], Merge(4,5):

>

Maria <

making ♦wh

p1

` ((making ∨y) Maria) : v

7. Move(6) by Pwh2:

>

♦wh

p1

>

Maria making

` ((making ∨y) Maria) : v

8. [♦E]:

>

r0 >

Maria making

` ((making ∨∪x) Maria) : v

9. [\>I]:

>

Maria making
` λx.((making ∨∪x)) Maria) : ♦wh2whd\>v

10. what ` what : (c/>(♦wh2whd\>v))/<n
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11. tortillas ` tortillas : n

12. [/<E], Merge(10,11):

>

what tortillas
` (what tortillas) : c/>(♦wh2whd\>v)

13. [/>E], Merge(12,9):
>

<

what tortillas

>

Maria making

` ((what tortillas) λx.((making ∨∪x) Maria)) : c

The movement of the hypothesized object is still accomplished by means
of structural reasoning. The two postulates that were needed in the structural
fragment for moving a phrase out of its specifier or its complement position are
still the same. Postulate [Pwh1], responsible for the search of the moved element
and the feature checking, is no longer needed. Postulate [Pwh2] accounts for
the actual movement in this derivation, in order to retract the hypothesized
object.

4.2.5 Lexical meaning

The question now is: Is the proof term belonging to this derivation the equivalent
of the proof term from the Minimalist derivation in section 4.2.4? The difference
between the two proof terms is accomplished by the use of the unary connectives.
Otherwise both proof terms show the movement of what tortillas by leaving a
‘trace’ at the object position of the verb making.

To level both proof terms lexical semantics needs to be taken into account.
Every logical rule has a corresponding operation on the proof term side; the
logical rules labeled with terms are given in Fig. 2.10 for the binary connectives
and Fig. 2.11 for the unary connectives. Every lexical item is decorated with
a term, a semantic label. The semantic label gives the meaning of the logical
information stated in the formula. Every logical connective has a semantic
counterpart, which is stated in the label of the lexical item. As an example of
a lexical item such as making, the semantic term is built up as follows:

making ` λx.λy.((making x) y) : (d\>v)/<d

In this way every lexical item is decorated with a semantic label. Doing so it
is possible to decorate what in such a way that the result of the lexical labeling
leads to an identical proof term. The semantic label follows exactly the logical
formula assigned to what. The semantic label of what becomes:

what ` λx.λy.((what x) λz.(y ∩∧z)) : (c/>(♦wh2whd\>v))/<n
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The lexical semantics is applied to the derivational semantics. Using β-
reduction the proof term can be reduced:

(λx.t) u ; t{u/x}
∨∧t ; t
∪∩t ; t

The resulting proof term is the same as the proof term deduced from the
minimalist derivation in section 4.2.4. For convenience the variable x of the
proof term is renamed to x1.

((λx.λy.((what x) λz.(y ∩∧z)) tortillas) λx1.((making ∨∪x1) Maria))
;β (λy.((what tortillas) λz.(y ∩∧z)) λx1.((making ∨∪x1) Maria))
;β ((what tortillas) λz.((making ∨∪∩∧z) Maria))
;β ((what tortillas) λz.((making ∨∧z) Maria))
;β ((what tortillas) λz.((making z) Maria))
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4.3 Hungarian verb movement

This section explores another linguistic phenomenon to illustrate the correspon-
dence between Multimodal Categorial Grammar and Minimalist Grammar.

4.3.1 Verbal complexes in Hungarian

Koopman and Szabolcsi (1998) explore the phenomenon of Hungarian verbal
complexes. Verbal complexes appear in so-called neutral and non-neutral sen-
tences. Neutral sentences are sentences without focused or negated phrases in
it. The verb complexes are clusters of verbs, that are formed by two distinct
verb complex formation processes. Before describing the different verbal com-
plex formation procedures, the different components involved (verb modifiers
and auxiliaries) are explored.

Verb modifiers (VM) Verb modifiers modify certain verbs by forming a
verbal complex with them. Koopman and Szabolcsi (1998) distinguish three
classes of verb modifiers.

1. prefixes (bare modifiers):

• haza (‘home’) as in haza menni (‘to go home’),

• be (‘in’) as in be menni (‘to go in’),

• el (‘away’) as in el menni (‘to go away’)

2. bigger modifiers:

• a szobá-ba (‘into the room’) as in a szobá-ba menni (‘to go into
the room’)

3. infinitives:

• úsz-ni (‘swim’) as in úsz-ni akarni (‘to want to swim’)

Prefixes are words that are placed in front of another word, in this case
a verb. In contrast with bigger modifiers, prefixes are simple, single affixes.
The bigger modifiers show a similar behavior as the prefixes attached to certain
verbs; the behavior depends on the kind of verb that selects them. The last
kind of modifier are infinitives, which optionally climb to front their selecting
verb.

Auxiliaries Koopman and Szabolcsi (1998) define auxiliaries as verbs that
select infinitival verbs as complements. The finite auxiliaries never carry the
main accent in a sentence. Examples of Hungarian auxiliaries are: akar (‘want’),
fog (‘will’) and kezd (‘begin’).

4.3.2 Verbal complex formation

Koopman and Szabolcsi (1998) distinguish two verbal complex formation pro-
cesses: verb modifier climbing (VM-climbing) and verbal inversion. The first
process only occurs in neutral sentences and describes the climbing of the verb
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modifier to precede the finite verb. The second process describes the recur-
sive inversion of infinitival verbs in non-neutral sentences with focus or negative
phrases. The application of a formation process depends on the kind of verbs
and modifiers that form the context of the sentence.

In this section the two formation processes are elaborated. First one needs
to consider what triggers this formation. The triggers have to be anchored
in the lexicon. The components of a verbal complex, the verb modifier or the
selecting verb, have to carry a lexical requirement. The verb modifiers of the first
class, the prefixes, will always form a verbal complex, so it should be a lexical
requirement on these prefixes. For the other two classes of verbal modifiers, the
complex formation depends on the verb with which they form a verbal complex.
In these cases there should be a lexical requirement on the selecting verb, which
selects a verb modifier. Some verbs, on the contrary, block the formation of a
verbal complex.

Verb modifier climbing

Verb modifier climbing is the process whereby a verb modifier procliticizes to
the finite verb (either a selecting verb or an auxiliary). This type of complex
formation process only appears within neutral sentences and under the influence
of a certain kind of verb modifier. For the verbal modifiers of the third class,
the infinitives, VM-climbing is optional. For the verb modifiers of the second
class it is again obligatory.

Example (4.1) shows how modifier climbing works for a modifier of the first
class, the prefixes. In the following sentences, haza (‘home’) is the verb modifier
and menni/ment (‘to go/went’) is the selecting verb:

(4.1) Haza
Home

men-t-em
go[past, 1sg]

‘I went home’

∗ Men-t-em
go[past, 1sg]

haza
home

[Mari]
[Mari]

haza
home

ment
go[past, 3sg]

‘Mary went home’

∗ [Mari]
[Mari]

ment
go[past, 3sg]

haza
home

In neutral sentences, where the verbal complex is a sequence of infinitival
verbs combined with a finite auxiliary, the verbal modifier of the lowest infinitival
complement precedes the finite auxiliary. As you can see, in example (4.2) haza
precedes the finite verb akarok, in example (4.3) haza precedes the auxiliary
fogok. The prefix is obliged to climb to the first position. Again this climbing
is optional for infinitival verb modifiers.

(4.2) haza
home

akarok
want[1sg]

menni
go[inf]

‘I want to go home’
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∗ akarok
want[1sg]

menni
go[inf]

haza
home

(as neutral sentence)

∗ akarok
want[1sg]

haza
home

menni
go[inf]

(as neutral sentence)

(4.3) haza
home

fogok
will[1sg]

akarni
want[inf]

menni
go[inf]

‘I will want to go home’

∗ fogok
will[1sg]

haza
home

akarni
want[inf]

menni
go[inf]

∗ fogok
will[1sg]

akarni
want[inf]

menni
go[inf]

haza
home

(4.4)∗ haza
home

fogok
will[1sg]

menni
go[inf]

akarni
want[inf]

The sentence in example (4.4) shows that a unique order of the infinitives in
neutral sentences, also called the ‘English order’ is a necessity. It is not possible
to deviate from this order, except in non-neutral sentences under the influence
of verbal inversion.

Verbal Inversion

Verbal inversion, the other verbal complex formation process, occurs in non-
neutral sentences. Non-neutral sentences are sentences which bear Negative or
Focus phrases.

Negative phrases A non-neutral sentence is built up with an auxiliary which
takes a sequence of infinitives and verb modifiers as its complement. These
infinitives form verbal complexes under the influence of one of the verb modifiers.
Optionally these verbal complexes can undergo inversion. The finite auxiliary
is the only verb which cannot invert with the verbal complex.

(4.5) [nem]
[not]

fogok
will[1sg]

be
in

menni
go[inf]

‘I will [not] go in’

∗ [nem]
[not]

be
in

fogok
will[1sg]

menni
go[inf]

(4.6) [nem]
[not]

fogok
will[1sg]

akarni
want

be
in

menni
go[inf]

‘I will [not] want to go in’

[nem]
[not]

fogok
will[1sg]

be
in

menni
go[inf]

akarni
want

‘I will [not] want to go in’
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(4.7) [nem]
[not]

fogok
will[1sg]

kezdeni
begin[inf]

akarni
want[inf]

be
in

menni
go[inf]

‘I will not begin to want to go in’

[nem]
[not]

fogok
will[1sg]

kezdeni
begin[inf]

be
in

menni
go[inf]

akarni
want[inf]

‘I will not begin to want to go in’

[nem]
[not]

fogok
will[1sg]

be
in

menni
go[inf]

akarni
want[inf]

kezdeni
begin[inf]

‘I will not begin to want to go in’

∗ [nem]
[not]

kezdeni
begin[inf]

be
in

menni
go[inf]

akarni
want[inf]

fogok
will[1sg]

Example (4.5) shows that the modifier has to precede its selecting verb.
Additionally the negated fogok cannot be preceded by anything else but the
negation nem. The following example (4.6) shows the recursive inversion, where
first of all, the modifier precedes its selecting verb with which it forms a verbal
complex. Then the verbal complex be menni can invert with the selecting
verb akarni, which results in the verbal complex be menni akarni. Example
(4.7) shows that with any number of infinitival verbs the verbal complex can
optionally invert with its preceding selecting verb up to the finite auxiliary
fogok, which stays at its initial position.

As mentioned, inversion also depends on the kind of verb modifier and on
the kind of verb that takes part in the formation of verbal complexes. The
verb modifiers of the first class, the prefixes, act as described above. For the
second class of bigger modifiers, VM-climbing is obligatory, while inversion is
disallowed. The behavior of the third class of verb modifiers, the infinitives, is
given in example (4.8). The possible structures with the verb modifier úszni
(‘to swim’) show that both VM-climbing and inversion are optional.

(4.8) nem
not

fogok
will[1sg]

kezdeni
begin[inf]

akarni
want[inf]

úszni
swim[inf]

‘I will not begin to want to swim’

nem
not

fogok
will[1sg]

kezdeni
begin[inf]

úszni
swim[inf]

akarni
want[inf]

nem
not

fogok
will[1sg]

úszni
swim[inf]

akarni
want[inf]

kezdeni
begin[inf]

Focus phrases Non-neutral sentences with Focus phrases take a different
treatment. The focused phrase is inverted and put in front of the sentence. A
subphrase which is combined with the rest of the phrase shows the same features
as the inverted phrase. Koopman and Szabolcsi (1998) give example 4.9 in their
manuscript, where the underlined words are focused.

(4.9) be
in

fogok
will

kezdeni
begin

akarni
want

menni
go

‘I will begin to want to go in (and not out/away)’
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be
in

menni
go

fogok
will

kezdeni
begin

akarni
want

‘It is to go in that I will begin to want (I will not begin to want to
look/cry)’

be
in

menni
go

akarni
want

fogok
will

kezdeni
begin

‘It is to want to go in that I will begin (I will not begin to sit/cry)’

? be
in

menni
go

akarni
want

kezdeni
begin

fogok
will

‘It is to begin to want to go in that I will (I will not cry/sit down)’

∗ akarni
want

be
in

menni
go

fogok
will

kezdeni
begin

The examples in (4.9) show that “all inverted sequences can be contrastively
focused”. Any inverted form is used as part of the focus phrase, which indicates
that the forming of these verbal complexes is a form of recursive inversion. The
last sentence is rejected because inverted strings that occur in ‘English order’
cannot be focused.

4.3.3 The formalization of Koopman & Szabolsci’s ap-
proach

In their manuscript Koopman and Szabolcsi (1998) explain how and why verb
complexes are composed. Based on their explanation Stabler (1999) presents
two grammar fragments: one to show the basic ideas of inversion and another
which follows the precise derivational steps of the formation of verbal complexes
under influence of the features on the functional categories.

Koopman and Szabolsci’s approach

An important notion Koopman and Szabolcsi (1998) want to address is “a uni-
fied account of neutral and non-neutral sentences”. Within such an account one
should be able to give a unified feature checking analysis of the three patterns
described:

1. VM-climbing in neutral sentences

2. ‘English order’ in non-neutral sentences (before inversion takes place)

3. ‘Inverted order’ in non-neutral sentences, within the focus and negative
phrases

In their opinion, a good proposal of the derivation of alternative orders
should not rely on optionality, covert (feature) movement or economy conditions.
In their proposal for a grammar they want to tackle some relevant properties of
movement: licensing, projection activation, pied-piping and extraction.

The first property, licensing, is the behavior of a certain word or phrase to
allow, or even require, other words or phrases to move to a certain position
in their domain (for example, the ‘landing position’ of a verb modifier is at
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Build verbal complex : menni haza
Inversion of haza and menni : [w haza menni ]
Build complementizer phrase (CP) : [c [wmenni haza ] ]
Merge akarni : akarni [c [whaza menni ]]
Inversion of haza menni with akarni : [w [w haza menni ] akarni [c ] ]
Move CP to licensor position : [c ][w [w haza menni] akarni ]
Inversion of haza menni akarni with CP : [w [w haza menni ] akarni ] [c ]

Figure 4.18: Inference steps for the derivation of haza menni akarni

the specifier position of its selecting verb). The different licensor relations that
account for the derivation of the different structures show that various XP’s
have their own licensing positions.

The second property describes the activation of projections, which is “a driv-
ing force behind movement” (Koopman and Szabolcsi, 1998). Projection is a
mechanism that causes lexical elements to enter into a local relationship. An
example of this is the local relationship between a verb modifier and its selecting
verb, a lexical requirement on both words. Thus a projection is activated by
lexical material or some feature. In the absence of such material, something has
to move in order to be activated. According to Koopman and Szabolcsi (1998)
the Principle of Projection Activation plays a role in the “shuffling” of lexical
material, where movement of a word does not necessarily involve feature check-
ing. They give a description of Mellowed PPA: “a projection is interpretable
iff it has lexical material at some stage in the derivation, CP and LP(cp) are
interpretable iff they have lexical material, or the trace of lexical material”.

Pied-piping captures an essential feature of linguistic grammars, which pre-
scribes that extra material within the domain of a certain word or phrase be
moved along during climbing or inversion. A requirement of the phenomenon
of Hungarian verbal complexes is that the order of the pied-piped material is
inverted as well.

Extraction is the main property of the inversion of words during the process
of verbal complex formation. The main part of this feature is the specification of
the kind of phrases that can be extracted: “Only specifiers and full complements
. . . can extract”. The grammar explains movement and extraction with XP-
movement because head-movement shows many deficiencies.

The explanation of Koopman and Szabolcsi (1998) for the phenomena de-
scribed in section 4.3.2 still needs a formalization. As an example, we give
the analysis of the phrase “haza menni akarni” as a verbal complex in a non-
neutral sentence. The inverted order is achieved with the inference steps in
Fig. 4.18.
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Stabler’s formalization

Stabler (1999) focuses on verbal inversion in non-neutral sentences. He wrote
two grammars to account for this phenomenon: MG1 and MG22. The first
grammar gives the basic ideas of verbal inversion. He distinguishes two licensor
features, [+m] and [+v]. These features can be seen as triggers for a) VM-
climbing of modifiers decorated with a licensee feature [−m] and b) recursive
inversion for structures decorated with [−v]. The grammar defines nine lexical
entries which derive the three possible structures. Schematically the lexical
entries are V1 (the auxiliary), V2, V3, V4 (infinitival verbs) and M (the verbal
modifier).

Structure 1 Structure 2 Structure 3
=v v V1
=v v V2 =v +v v V2
=v v V3 =v +v v V3 =v +v v -v V3
=m +m v V4 =m +m v -v V4
m -m M

Figure 4.19: MG1, minimalist grammar fragment to derive verbal inversion

With the lexical entries of this grammar, Stabler explains how the three
possible structures are derived. To derive one structure from another, some
of the lexical feature structures need to be changed. The entries in the first
column are used to derive the first structure, for the second structure one needs
to change the entries in the second column and for the last structure one needs
the changes in the third column. Grammar MG1 derives the following three
structures:

1. V1 V2 V3 M V4

2. V1 V2 M V4 V3

3. V1 M V4 V3 V2

The second grammar, MG2, formalizes the inference steps in Fig. 4.18 for
the derivation of the inverted form of verbal complexes. I simplified his original
grammar by stripping the functional category c and its licensor features. With
only the use of the functional category w, the grammar in Fig. 4.20 derives the
same inferences as in Fig. 4.18.

m -i haza
=m v menni
=v +i w -i
=w v akarni

Figure 4.20: MG2, minimalist grammar fragment to derive verbal inversion

2For an overview look at Appendix B
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4.3.4 MMCG approach

In this section we explore the phenomenon of verbal complexes from a deduc-
tive perspective. The two approaches for translation the movement operation
are contrasted. The phenomenon is explored in the same order as presented
in section 4.3.2. For both approaches I implemented fragments in Grail (see
Appendix C).

VM climbing

To account for verb modifier climbing I used MG1, where the features on the
moving elements act as licensees for the movement. In the translation to
MMCG, I focus on the idea that the trigger for movement is a lexical require-
ment on the words involved. If the modifier is a prefix, the prefix is responsible
for the movement.

In Stabler’s grammar MG1, the selecting verb also plays a role in triggering
movement. The modifier is marked with a licensee feature, but the selecting
verb carries the trigger: the corresponding licensor feature. I propose a different
approach; in section 4.2 we have seen that move has a structural and a logical
component. To account for verbal complex formation we use structural reasoning
to project ‘verbal complex’ domains and hypothetical reasoning to implement
abstraction.

We set aside extra information about tense, aspect and other formal features.
The features that are required for the analysis of the different phenomena are
the focus of this section. The following basic categories are involved: vinf for
infinitival verbs, vfin for finite verbs and m for modifiers.

The sentences in 4.10 and 4.11 demonstrate the VM-climbing of prefixes.
For the glosses and the translation of these sentences look at example (4.2) and
(4.3) respectively.

(4.10) haza akarok menni

akarok menni haza (as neutral sentence)

∗ akarok haza menni (as neutral sentence)

(4.11) haza fogok akarni menni

∗ fogok haza akarni menni

∗ fogok akarni haza menni

Move as structural reasoning The different words involved have a certain
categorial status within phrasal structures. The categories of the distinct lexical
entries are determined by the role they play within sentences. The auxiliaries
(akarok/akarni, fogok) are finite or non-finite verbs, which select infinitival verbs
as a complement. The infinitival verb menni selects a prefix as complement. The
prefixes be and haza are modifiers, which climb to precede the finite verb. To
account for the modifier feature as trigger for VM-climbing, a unary connective
decorated with a ‘modifier feature’: 2m is introduced.

All the features and characteristics of words need to be stated in the lexicon.
The auxiliary fogok (= will) is a finite verb which takes an infinitival verb as
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complement. The verbs akarni (= want) and menni (= go) are both infinitival
verbs, which take another infinitival verb or a modifier as a complement. The
licensor feature on the selecting verb corresponds to the 2m feature on the
negative goal formula. The modifier haza (= home) carries the special modifier
feature.

MG1 MMCG
=v v akarni akarni ` vinf/<vinf (‘want[inf]’)
=v v akarok akarok ` vfin/<vinf (‘want[1sg]’)
=v v fogok fogok ` vfin/<vinf (‘will[1sg]’)
=m +m v menni menni ` vinf/<m (‘go[inf]’)
m -m M haza ` 2mm (‘home’)

Figure 4.21: Lexicon for VM-climbing with structural reasoning

How does the modifier trigger VM-climbing? The modifier carries a licensee
feature: 2m. The structural counterpart of the unary connective: 〈.〉m triggers
‘movement’. The movement postulates as given in Fig. 4.11 are transposed for
the modifier feature in Fig. 4.22. The ‘modifier’ feature triggers the application
of these movement postulates.

♦m(A •> B) → ♦mA •> B [K1m]
♦mA •> (B •< C) → B •< (C •< ♦mA) [Mm1]
♦mA •> (B •< C) → B •< (♦mA •> C) [Mm2]

Figure 4.22: Structural postulates for VM climbing

To derive a sentence such as haza akarok menni, the basic “English order” is
built first: akarok menni haza (see Fig. 4.23). The modifier has to move higher in
the structure under influence of its modifier feature. Following postulate [Mm1]
the modifier moves up to precede the finite verb akarok.

akarok ` vfin/<vinf
menni ` vinf/<m

haza ` 2mm

〈haza〉m ` m [2E]

menni ◦< 〈haza〉m ` vinf
[/<E]

akarok ◦< (menni ◦< 〈haza〉m) ` vfin
[/<E]

〈haza〉m ◦> (akarok ◦< menni) ` vfin
[Mm1]

〈haza ◦> (akarok ◦< menni)〉m ` vfin
[K1m]

haza ◦> (akarok ◦< menni) ` 2mvfin
[2I]

Figure 4.23: VM-climbing with structural reasoning

At the end of the formation process, the whole verbal complex has a certain
categorial status, namely a verb phrase which has undergone VM-climbing: a
special kind of verbal complex. The category of the verbal complex phrase is
marked with the same feature as the modifier. The derivation of the neutral
sentence “haza akarok menni”, where verb modifier climbing has taken place,
gives us a sentence of category 2mvfin.
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Move as abstraction As explained in section 4.2, movement can be captured
within the structural domain by defining ‘movement’ postulates. But this does
not capture the meaning of movement as involving abstraction. With the use
of hypothetical reasoning as defined by the introduction rules of the base logic,
one is able to account for the abstraction of a hypothetical phrase out of a fully
build structure:

Γ ◦< x : B ` t : A
Γ ` λx.t : A/<B

[/<I]
x : B ◦> Γ ` t : A
Γ ` λx.t : B\>A

[\>I]

To bring about abstraction, the lexical formula of the word which undergoes
VM-climbing, the prefix, needs to be changed. Haza is lifted to the higher order
type:

haza ` vfin/>(♦m2mm\>vfin)

Haza has to combine with a finite verb phrase where a modifier has been ab-
stracted from. The logical formula assigned to haza contains both licensor 3m

and licensee 2m feature. Doing so, haza is the word that triggers VM-climbing;
the modifier itself is responsible for the abstraction. Again the structural coun-
terpart of this ‘lexical’ licensor feature: 〈.〉m triggers the movement postulates.
Fig. 4.24 shows that the same postulate that was needed for the VM-climbing
in the fragment with structural reasoning is needed here. The postulate moves
the hypothesized modifier out of its former position to the specifier position,
where it is subject to abstraction.

Merge over Move Another option, which makes the derivation more eco-
nomical in a minimalistic sense, is assign haza the type:

haza ` 2m(vinf/>(vinf/<m))

This translation also accounts for movement as abstraction operation. But
it also captures the economy principle of ‘merge over move’ where function
application is favored over structural movement.

The derivation in Fig. 4.25 slightly deviates from the derivation in Fig. 4.23
on two points. First, the order of the applications of words differs: Haza selects
menni to form the substructure haza menni where menni is still regarded as the
head of the structure. the second different is the use of postulate [Mm2], which
moves phrases from a specifier position, instead of postulate [Mm1], which
moves complements.

Verbal inversion

As outlined in section 4.3.2 inversion occurs in non-neutral sentences. The
overall characteristic of the phenomenon is the recursive inversion of verbal
complexes, where the basic surface order, the ‘English order’, contrasts with
the ‘inverted order’ of the verbal complex. Some general principles underlie
inversion: a verbal complex, which is inverted with another verb, has to be in
inverted form itself; the uninverted part of the structure stays in ‘English order’.
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Figure 4.24: VM-climbing with hypothetical reasoning
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akarok ` vfin/<vinf

haza ` 2m(vinf/>(vinf/<m))
〈haza〉m ` vinf/>(vinf/<m)

[2E]
menni ` vinf/<m

〈haza〉m ◦> menni ` vinf
[/>E]

akarok ◦< (〈haza〉m ◦> menni) ` vfin
[/<E]

〈haza〉m ◦> (akarok ◦< menni) ` vfin
[Mm2]

〈haza ◦> (akarok ◦< menni)〉m ` vfin
[K1m]

haza ◦> (akarok ◦< menni) ` 2mvfin
[2I]

Figure 4.25: VM-climbing with hypothetical reasoning to account for ‘merge

over move’

Recursive inversion in Negative phrases The sentences of example (4.7)
and repeated in (4.12) are analyzed by Stabler (1999). He defines a grammar
to formalize the inversion steps. The translation of his formalism into MMCG
gives us a similar analysis for inversion in MMCG.

(4.12) [nem] fogok kezdeni akarni be menni

[nem] fogok kezdeni be menni akarni

[nem] fogok be menni akarni kezdeni

∗ [nem] kezdeni be menni akarni fogok

Move as structural reasoning The categorial grammars that account for
VM-climbing are inspired on grammar MG1 (Fig. 4.19). In this section a map-
ping of Stabler’s second grammar MG2 (Fig. 4.20) is taken into account which
formalizes verbal inversion more precisely.

As described in Koopman and Szabolcsi (1998), the inverted order is achieved
when the inference steps build the succeeding phrases as outlined in figure 4.18.
Stabler implements this recursive inversion of phrases using lexical feature speci-
fications. Functional categories trigger the different inversion steps. The lexical
feature structures are translated into MMCG formulas following the rules in
figure 4.7. The only change in the MG grammar from Stabler’s original gram-
mar is that the feature information of [casus] and the corresponding functional
categories are left out.

The first three lexical structures are the words that appear phonologically.
They carry feature information that will be used by the functional categories.
The other two entries are functional categories, which carry licensor features to
trigger the movement operations. As explained in section 4.2.1 in MMCG the
licensor feature corresponds to a 2f on a negative subformula or on the goal
formula. For example, in the MG grammar the functional category w carries a
licensor feature [+i]. In MMCG it appears as 2i on the negative subformula of
akarni that in turn selects the category feature w: akarni ` v/<2iw.
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MG MMCG
m -i haza haza ` 2im
=m v menni menni ` v/<m
=w v akarni akarni ` v/<2iw
=v +i w -i w ` (2iw/<v)

with 2iw as subformula of akarni
=v +i w w ` (w/<v)

with 2iw as goal formula

Figure 4.26: Lexical correspondence for verbal inversion

To derive the inverted expression haza menni akarni the movement postu-
lates in Fig. 4.27 are needed. With the two postulates the derivation in Fig. 4.28.
It is easy to extend the lexicon to derive the inverted expressions of example
(4.12).

♦iC •> (A •< B) → A •< (B •< ♦iC) [Mi1]
♦i(A •> B) → ♦iA •> B [K1i]

Figure 4.27: Structural postulates for recursive inversion in negative phrases

The derivation starts with all the possible steps, until there are no further
logical steps possible. Then the structural postulates are applied in the same
order in which the inference steps in the minimalist derivation are applied.

w ` w/<v
akarni ` v/<2iw

w ` 2iw/<v

menni ` v/<m
haza ` 2im

〈haza〉i ` m
[2E]

menni ◦< 〈haza〉i ` v
[/<E]

w ◦< (menni ◦< 〈haza〉i) ` 2iw
[/<E]

akarni ◦< (w ◦< (menni ◦< 〈haza〉i)) ` v
[/<E]

w ◦< (akarni ◦< (w ◦< (menni ◦< 〈haza〉i))) ` w
[/<E]

w ◦< (akarni ◦< (〈haza〉i ◦> (w ◦< menni))) ` w
[Mi1]

w ◦< (akarni ◦< 〈haza ◦> (w ◦< menni)〉i) ` w
[K1i]

〈haza ◦> (w ◦< menni)〉i ◦> (w ◦< akarni) ` w
[Mi1]

〈(haza ◦> (w ◦< menni)) ◦> (w ◦< akarni)〉i ` w
[K1i]

(haza ◦> (w ◦< menni)) ◦> (w ◦< akarni) ` 2iw
[2I]

Figure 4.28: Structural derivation of haza menni akarok with functional cate-
gories

Move as abstraction In this section I present another translation of Sta-
bler’s grammar fragment of verbal inversion. This MMCG fragment uses higher
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order type assignments to invoke verbal inversion by reasoning hypothetically
about merge. Although this results in more complex lexical entries this, in my
opinion, gives exactly the right result.

The lexicon from the MG grammar, given in figure 4.18, can be split up into
two: one to derive the simple structure haza menni and another to derive the
structure where recursive inversion on the auxiliary akarni has been applied:
haza menni akarni. Fig. 4.29 shows the lexical correspondence between MG
and MMCG for the inversion of the verbal modifier over the selecting verb.

MG MMCG
=v +i w -
=m v menni menni ` w/<m
m -i haza haza ` w/>(w/<♦i2im)

Figure 4.29: Lexical correspondence for verbal inversion with hypothetical rea-
soning

The feature information captured by the functional categories is transferred
to the lexical entries of both haza and menni. Whereas menni captures all the
selecting information (=v,=m), haza inherits all the control features defined on
the functional category w. The licensor and licensee feature are needed for the
climbing of the modifier; they are translated with ♦i2i in the higher order type
of haza. The way the logical formulas are constructed ‘predicts’ the order of the
structure.

On the basis of these lexical assignments we can derive the inversion of “haza
menni” in Fig. 4.30 with the accompanying proof term: (haza λz .(menni z )) : w .
The proof term shows that abstraction takes place out of the verbal complex
and furthermore that the abstracted modifier haza is applied to the verbal com-
plex. The structure can be completed by applying other auxiliaries such as
(fogok ` w/<w) and negation nem to it, yielding the structure: nem fogok haza
menni.

haza ` w/>(w/<♦i2im)

[r0 ` ♦i2im]1
menni ` w/<m

[p1 ` 2im]2

〈p1〉i ` m
[2E]

menni ◦< 〈p1〉i ` w
[/<E]

menni ◦< r0 ` w
[♦E]2

menni ` w/<♦i2im
[/<I]1

haza ◦> menni ` (haza λz.(menni z)) : w
[/<E]

Figure 4.30: MMCG derivation: haza menni

The succeeding structure is the result of the recursive inversion of the pre-
vious structure with akarni: haza menni akarni. In this phrase also menni has
the property to invert. This is accomplished by decorating the head formula
with ♦i2i. Consequently, the type assigned to the verb modifier also has to be
lifted. This yields the lexicon in Fig. 4.31 on the basis of the MG grammar.

The complex derivation in Fig. 4.32 shows the recursive inversion solely on
the basis of logical inferences. There is no need for structural postulates, the
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MG MMCG
=v +i w -i -
=v +i w -
=w v akarni akarni ` w/<w
=m v menni menni ` (w/>(w/<♦i2iw))/<m
m -i haza haza ` w∗/>(w∗/<♦i2im)

w∗ ` w/>(w/<♦i2iw)

Figure 4.31: Lexical correspondence after lifting

abstraction of phrases and the trigger for this abstraction lies solely on the
lexical entries involved in the derivation.

By lifting one more time one can derive the succeeding phrase haza menni
akarni kezdeni. In the MG grammar another functional category w would be
added. All occurrences of w are lifted to (w/>(w/<♦i2iw)) (w∗). Kezdeni gets
assigned the type w/<w. The derivation is too complex to present here, but the
basic principle is the same as the derivation in Fig. 4.32. The extended lexicon
is presented in Appendix C.

4.4 Discussion

The goal of this chapter is to give a deductive analysis of the different operations
and components of the Minimalist Program. The mapping between MG and
MMCG brings out some crucial issues with respect to the move operation.

At the end of section 4.2 the importance of the derivational meaning of
move becomes apparent. Move is regarded as an abstraction operation; the
abstraction should be reflected by the proof term of a derivation. The translation
of move with structural reasoning alone does not give this derivational meaning.
But by appealing to hypothetical reasoning the derivation shows exactly the
abstraction of a phrase out of a bigger structure. Higher order types are used
to trigger the hypothetical reasoning.

The elimination of functional projections stems from the use of higher order
type assignments. With the possibility to incorporate feature information in the
type-logical formulas assigned to the moving elements, there is no need for lexical
elements such as the functional categories. The trigger of move is lexically
anchored. Whereas the lexicon carries all the necessary feature information, the
cooperation between the structural and logical part of the derivation realizes
the right order and dependency of the words involved.

Consequently the elimination of functional projections is a simplification for
both the lexical and the derivational complexity. One needs fewer lexical entries
and fewer logical application rules (= merge) to get the same result. When
fewer lexical elements take part in the derivation, the structural complexity
reduces as well.

A theory of Universal Grammar has to concentrate on the three different
parts of a derivation and the interaction between these parts: structure, logic
and derivational meaning.
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Figure 4.32: MMCG derivation of haza menni akarni using higher order reasoning
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Conclusion

As seen in the previous chapter, the basic ideas of a minimalist theory of natural
language find their logical justification in the framework of Multimodal Cate-
gorial Grammar. This chapter concludes with a discussion on the results to
find this justification. Section 5.1 gives an overview of some of the similarities
and differences between the two theories explored in this thesis. Section 5.2
formulates an answer to the question raised in chapter 1. Moreover, in section
5.3 we summarize our findings on the main theme in this thesis: Controlling
Movement. Section 5.4 gives some directions for future research.

5.1 Minimalism in a deductive framework

The Minimalist Program intends to define a minimal theory explaining natural
language. Chomsky (1995) strives to capture minimalism in the two main com-
ponents of the Minimalist Program: the lexicon and the Computational System.
The minimality of a theory can be captured by two complexity measures: the
complexity of basic operations and economy of derivations.

Although Chomsky (1995) does not state precisely what he means by econ-
omy or complexity, one could think of the number of steps in a derivation as
a potential measure for the complexity of a derivation. To reduce the number
of steps in a derivation Chomsky (1995) states economy conditions. On the
other hand he also states that a minimal theory should reduce the use of those
conditions.

As derivations are driven by the need to check features, the influence of
features on the execution of operations seems a more efficient way to control
the economy of derivations. Therefore the lexicon as a database system for
all kinds of feature information plays an important role in the measure of the
complexity of a minimal theory.

As seen in section 4.2 it is possible to translate basic components of Min-
imalist Grammar in a logical and structural framework. The mapping of the
Minimalist Program via Stabler’s formalism into MMCG offers ways to relate
the minimality of the two theories. The minimality in MMCG concentrates on
the basic operations, the derivational complexity and the content of the lexicon.



66 Chapter 5

5.1.1 Basic operations

The Computational System of the Minimalist Program contains operations
which have direct influence on the construction of phrasal structures. Like-
wise the base logic in MMCG consists solely of operations that build structures
on the basis of the type assignments of the words involved. The set of possible
operations in MMCG based on the base logic consists solely of elimination and
introduction rules of the available unary and binary connectives. The opera-
tions are defined and controlled within the proof system. Merge is given by
the elimination of the binary connectives {/, \}. move can be captured by the
structural rules as an extension of the proof system.

5.1.2 Derivational complexity

A way to measure the complexity of a derivation is is by the amount of movement
steps taken. Then to consider move as a decomposed operation of abstraction
and application reduces the complexity of a derivation. MMCG defines move

as abstraction by reasoning hypothetically about merge. Because hypothetical
reasoning depends on the higher order types assigned to lexical elements, the
displacement of words can be defined as a derivational property of actual lexical
items. The comparison between the two analysis of VM-climbing in Fig. 4.23
and Fig. 4.24 shows that move on the basis of hypothetical reasoning uses fewer
structural rules to derive the same structural configuration of words. Further-
more the analysis in Fig. 4.25 with higher order reasoning supports the economy
condition of ‘merge over move’, stating that the operation merge is favored
over the operation move.

Apart from the complexity measure by the number of movement steps, other
complexity measures could play a role. This should be researched further and
may result in the construction of a more efficient proof system with directions
how to compute the complexity of a derivation within the Computational Sys-
tem.

5.1.3 The lexicon

Lexical Ambiguity

A lexicon consists of many lexical entries which bear information about the
meaning, the use and other properties of words (section 3.2). Some words may
appear in the lexicon with multiple types while their use or meaning is the
same. For the lexicon to be an efficient database, this kind of ambiguity should
be avoided. An efficient lexicon should consist of lexical entries with only one
type assigned for one kind of derivational use.

As mentioned in section 4.3.3 Stabler (1999) needs several feature structures
for one lexical entry to derive structures based on the same principle. To over-
come the problem of ‘ambiguity overload ’ MMCG uses the internal derivational
power of the proof system. A type assignment can be lifted to a higher order
type; without having to add new lexical entries. In this way lexical entries can
be used dynamically. As seen in section 4.3.4 on verbal inversion words such as
menni(= go) are used to build three different structures by recursively lifting
its category to a higher order type.
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Parametric differences

A Universal Grammar has to capture the parametric differences between lan-
guages. The Minimalist Program uses the feature specification in the lexicon
to capture these differences. Within MMCG three parameters influence the
differences between languages and particular linguistic phenomena.

First, MMCG proposes strong lexicalism (section 3.2): the lexicon captures
all the feature information needed to derive and interpret all the possible struc-
tures. Semantic labels (as seen in section 4.2.5) are added to the lexical entries
in such a way that the derivational meaning of different languages correspond.

Second, similar to the way interpretability of features in the Minimalist
Grammar can be differentiated, the control features can be defined differently in
every lexicon. Every control feature that triggers certain structural postulates,
has a different impact on their use. The ‘strength’ and therefore the use of these
features differs in all languages.

Control features influence the third parameter: the structural postulates.
They record the language specific principles and rules that account for cer-
tain phenomena. In addition the structural postulates change the order and
hierarchical grouping of the structure and cause the displacement of feature
information and lexical phrases.

As seen in chapter 3, the Minimalist Program leaves a distinction between
the structural and the logical part of a derivation. However, the functional cat-
egories show structural and logical behavior; the categorial and formal feature
information on the functional categories direct the derivation to the right struc-
tural order. Therefore the use of functional categories corresponds with the use
of structural postulates which are both under control of features.

5.2 Minimal movement

In this and the following section I formulate a more concrete answer to the
question raised in the introduction of my thesis.

How are certain aspects of movement as described by the Minimalist
Program captured in the MMCG framework?

After a brief summary of the aspects of minimalist movement, we address
the main parts of a multimodal approach towards movement. The answer is
split up into a section on move as a structural operation and a section on the
observation of move as a complex operation.

5.2.1 Movement in the Minimalist Program

As described in section 3.3.2 the Minimalist Program defines the operation
move/attract as the attraction of formal, phonological and semantic features
in order to check an uninterpretable feature on a functional category. The
Minimalist Program concentrates on the interpretability of formal features on
the PF and LF interfaces. As long as uninterpretable features are present,
the derivation continues with operations until all uninterpretable features are
checked. The need for feature checking drives the derivation to its phonological
and logical form.
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5.2.2 Movement in MMCG

Two ways of translating movement in MMCG have been worked out in this
thesis. One way is the translation of move as a structural operation; structural
feature domains move through the structure in order to check against its logical
residual. The second translation focuses on the internal meaning of move as
an abstraction operation.

Move as structural reasoning

The translation of move as structural reasoning captures the actual movement
of a phrase through a structure under the control of certain formal features.
The control features are defined as unary connectives attached to the lexical
formulas of the responsible words.

The distinction in MMCG between the logical and structural parts of a
derivation points to the possibility to interact between the two parts. Features
stated on the lexical category of a word, the logical part, correspond (using
the [2fE] rule) with the structural part of the proof. Fig. 5.1 shows how a
word carrying a control feature has direct influence on the construction of the
structure. A number of merge and move steps that are defined within the proof
system by logical rules and structural postulates, drive the derivation. Feature
checking takes place when the [2fI] rule transfers the structural feature domain
over to the goal formula.

S1 ` 2fA

〈S1〉f ` A
[2fE]

.... merge & move

〈S2〉f ` B
S2 ` 2fB

[2fI]

Figure 5.1: Schematic view of a derivation

To capture the structural behavior of a linguistic phenomenon the right
movement postulates have to be formulated. As seen in section 4.3.2 on verb
modifier climbing and in section 4.3.2 on verbal inversion in Hungarian, the three
postulates in Fig. 5.2 capture the possible movement of phrases and features:

♦f(A •> B) → ♦fA •> B [P 1]
♦fA •> (B •i C) → B •i (C •< ♦fA) [P 2]
♦fA •> (B •i C) → B •i (♦fA •> C) [P 3]

Where i ∈ {<,>}

Figure 5.2: Movement postulates

Move as abstraction

Section 4.2.4 shows move is not a primitive operation. Move can be de-
composed into two operations: abstraction and application. The derivational



Conclusion 69

meaning of move cannot be captured exclusively by structural control. Using
the derivational strength of the base logic, movement can be translated as the
structural control over a hypothesized object by reasoning hypothetically about
merge.

The determination of move as a complex operation with both structural and
logical aspects is another result of the interaction between structure and logic.
This interaction is further advanced by the communication between the higher
order type on the logical side and the hypothesized object on the structural side
via the elimination and introduction rules of the binary connectives, {/, \}.

The use of higher order types as triggers for the construction of different
structural hierarchies makes the use of functional categories as triggers of the
movement of internal phrases and features superfluous. The control of the move-
ment of a modifier during verbal complex formation or the displacement of a
wh-object phrase can be defined on the modifier or the wh-word alone.

5.3 Controlling Move

As the title of my thesis indicates I tried to show what mechanism controls
the operation move in MMCG. In this section once more, I contrast the control
mechanism of the Minimalist Program with the mechanisms that MMCG offers.

5.3.1 Controlling Move in the Minimalist Program

As described in section 3.2, a minimalist lexicon contains the feature informa-
tion of the lexical items on which the Computational System operates. Func-
tional categories play an essential role in the attraction and movement of fea-
tures within derivational structures. The uninterpretable features on the func-
tional categories communicate with corresponding features on substructures.
The interplay between interpretable and uninterpretable features gives rise to
the movement of phrases within structures. The control over movement lies in
the interaction between the uninterpretable features assigned to the functional
categories and the necessity to check all uninterpretable features (Last Resort).

5.3.2 Controlling Move in MMCG

In the translation of move as structural reasoning alone, the features on the
goal formula trigger the application of structural rules to accomplish movement
within the structure. The interaction between structure and logic influences
the way the derivation goes; the features on the goal formula correspond with
the features of the displaced elements in the structure. As long as control
features are still present at the structural side of the derivation and not checked
against the logical features, the derivation has to continue. The control lies in
the interaction and the connection between the features on the words involved
and the features on the goal category of the derivation; the feature on the goal
formula directs the derivation.

In the translation of move as structural control using hypothetical reason-
ing, control is solely captured by the features of the higher order type which is
assigned to the moved element. There is no need for features on the goal formula.
So to say, the licensor and the licensee feature (Stabler, 1999) are both present
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on the element which is subject to displacement. The control over movement is
solely defined on the feature specification of the words involved. The analysis of
verbal inversion in section 4.3.4 shows that functional categories are not neces-
sarily needed and therefore can be eliminated. The role of functional categories
as triggers of movement is taken over by the feature information on the higher
order type which interact with the right determined structural postulates.

5.4 Future research

A lot more needs to be researched before an unified theory on minimalism
and multimodal Categorial Grammar can be formulated. A few directions for
further exploration follow from the discussion of my thesis such as the economy
of derivations, the role of interpretable and uninterpretable features in MMCG,
the possible elimination of functional categories and more worked out fragments
of linguistic phenomena.

As one can see, even for a balanced comparison between the Minimalist
Program and MMCG, we need to explicate a lot of these topics. I hope this
thesis contributes to the integration of two research areas that try to capture
the Computational System of Human Language.
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Index of Features

1. (a) Semantic: +human, -human

(b) Phonological: ± back, ± dental

(c) Formal:

• φ-features: person, number, gender
• category: noun, verb, adjective
• functional categories: V, T, C, D, agreement
• case: nom, acc, dat
• EPP
• Q
• tense: present, past, finite, infinite

2. Strength: Language specific

3. (a) Uninterpretable for the whole Computational System:

• the strength of feature

(b) Uninterpretable at LF:

• case of NP, T, V
• φ-features of V and T
• -V, EPP of T
• -V of v
• phonological features

(c) Interpretable at LF: all other formal features

• all categorial features (except expletives)
• φ-features of NP
• wh, Q
• semantic features

4. (a) Optional:

• number, case of N
• tense, person, number, case of Tense
• Q of C
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(b) Intrinsic: All other formal features such as

• person, category of N
• -V, EPP of Tense
• V of v
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Minimalist Grammars

A Minimalist grammar MG consists of a lexicon Lex and a set of generating
functions G.

• Lex is a finite set of finite sequences of features F

• F ::= N | =N | +N | −N | /N/ | N

• G = {Merge,Move}

B.1 MG1

Grammar MG1 grasps the basic ideas of verbal inversion. Two licensor features,
[+m] and [+v] trigger the inversion of the modifier with feature [−m] and the
recursive inversion of verbal complexes decorated with [−v]. The grammar
defines nine lexical entries which derive the three possible structures.

Lex 1 Lex 2 Lex 3
=v v fogok
=v v akarni =v +v v akarni
=v v kezdeni =v +v v kezdeni =v +v v -v kezdeni
=m +m v menni =m +m v -v menni
m -m haza

Figure B.1: Lexicon of MG1

The three sets of lexical entries derive:

1. Lex 1: fogok kezdeni akarni haza menni

2. Lex 2: fogok kezdeni haza menni akarni

3. Lex 3: fogok haza menni akarni kezdeni
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B.2 MG2

The second grammar, MG2, formalizes the description which Koopman and
Szabolcsi (1998) give for the derivation of the inverted form of verbal sentences
in Hungarian.

Build verbal complex : menni haza
Inversion of haza and menni : [w haza menni ]
Build complementizer phrase (CP) : [c [wmenni haza ] ]
Merge akarni : akarni [c [whaza menni ]]
Inversion of haza menni with akarni : [w [w haza menni ] akarni [c ] ]
Move CP to licensor position : [c ][w [w haza menni] akarni ]
Inversion of haza menni akarni with CP : [w [w haza menni ] akarni ] [c ]

The grammar in Fig. B.2 is the original Minimalist Grammar he presents in
(Stabler, 1999). With the use of the functional categories w,c,lc, the grammar
derives the inferences as given above.

=lc +m c
=w +c lc
=c v akarni
=w c -c
=v +m w -m
=m v menni
m -m haza

Figure B.2: Lexicon of MG2
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Grail fragments

C.1 Introduction to Grail

Grail is an automated deduction prover for multimodal Categorial Grammars. It
is developed as a PhD project at UiL-OTS by Richard Moot. A Tcl-Tk based
interface interacts with the theorem prover. A user manual is available and
describes the different functions of the window system (Moot, 1998). Within
the program one can easily describe a grammar fragment to test and derive
grammatical expressions.

A grammar fragment consists of a lexicon and a set of structural postulates.
The lexicon is a list of words with type formulas assigned to them and option-
ally decorated with lexical semantics. The base logic is extended by defining
structural postulates, which are used by the theorem prover to derive different
structural analysis. On the basis of the grammar fragment one can test and de-
rive grammatical expressions. One can choose between different sorts of output
such as the Natural Deduction Prawitz style as used throughout this thesis.

C.2 Fragments in Grail

The grammar fragments developed in chapter 4 are implemented in Grail. This
appendix displays the lexicon and the structural postulates that we use to derive
the different linguistic expressions in this thesis. Every grammar fragment de-
rives a certain set of grammatical and rejects some ungrammatical expressions.

The different linguistic phenomena that are captured within a grammar frag-
ment are wh-movement, verb modifier climbing and verbal inversion in negative
phrases. The search for the right translation of Move developed different frag-
ments of the same linguistic phenomena. All are presented here: Move as
Structural Reasoning, Move as abstraction and the more economical Merge

over Move.

C.2.1 Wh-movement

The two fragments, tortillas1.pl and tortillas2.pl, are the result of the
mapping between MG and MMCG in section 4.2. Both fragments derive the
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following two expressions with the given type assignments:

Sentences:

tortillas1.pl tortillas2.pl
Maria making the tortillas c c
What tortillas Maria making 2whc c

Move as Structural Reasoning: tortillas1.pl

Lexicon:

c : c/<v
making : (d\>v)/<d
maria : d
the : d/<n
tortillas : n
what : 2whd/<n

Postulates:

♦wh(A •> B) → ♦A •> B [Pwh1]
♦whA •> (B •> C) → B •> (C •< ♦whA) [Pwh2]
♦whA •> (B •< C) → B •< (♦whA •> C) [Pwh3]

Move as abstraction: tortillas2.pl

Lexicon:

making : (d\>v)/<d
maria : d
the : d/<n
tortillas : n
what : (c/>(♦wh2whd\>v))/<n

Postulates:

♦whA •> (B •> C) → B •> (C •< ♦whA) [Pwh2]

C.2.2 VM-climbing

Section 4.3.4 on page 55 explored three ways to account for VM-climbing. All
three grammar fragments are built in Grail. The goal of the three fragments
was to derive or withhold the following sentences.

Sentences:

vm climb1 vm climb2 vm climb3
haza akarok menni 2mvfin vfin 2mvfin
∗ akarok haza menni 2mvfin vfin 2mvfin
∗ akarok menni haza 2mvfin vfin 2mvfin
haza fogok akarni menni 2mvfin vfin 2mvfin
∗ fogok haza akarni menni 2mvfin vfin 2mvfin
∗ fogok akarni haza menni 2mvfin vfin 2mvfin
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Structural Reasoning: vm climb1.pl

Lexicon:

akarni : v inf/<v inf
akarok : v fin/<v inf
fogok : v fin/<v inf
haza : 2mm
menni : v inf/<m

Postulates:

♦m(A •> B) → ♦mA •> B [K1m]
♦mA •> (B •< C) → B •< (C •< ♦mA) [Mm1]
♦mA •> (B •< C) → B •< (♦mA •> C) [Mm2]

Move as abstraction: vm climb2.pl

Lexicon:

akarni : v inf/<v inf
akarok : v fin/<v inf
fogok : v fin/<v inf
haza : v fin/>(♦m2mm\>v fin)
menni : v inf/<m

Postulates:

♦mA •> (B •< C) → B •< (C •< ♦mA) [Mm1]

Merge over Move: vm climb3.pl

Lexicon:

akarni : v inf/<v inf
akarok : v fin/<v inf
fogok : v fin/<v inf
haza : 2m(v inf/>(v inf/<m))
menni : v inf/<m

Postulates:

♦m(A •> B) → ♦mA •> B [K1m]
♦mA •> (B •< C) → B •< (♦mA •> C) [Mm2]

C.2.3 Verbal inversion in negative phrases

The fragments that implement verbal inversion are mappings of the minimalist
grammar MG2, as explained in section 4.3.4 on page 57. The fragments cap-
ture recursive inverted verbal complexes, such as the following expressions:

Sentences:

neg inv1 neg inv2
haza menni akarni 2iw w
haza2 menni2 akarni2 kezdeni2 - w
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Structural Reasoning: neg inv1.pl

Lexicon:

akarni : v/<c
c : c/<2iw
haza : 2im
menni : v/<m
w : 2iw/<v
akarni : v/<2iw
w1 : w/<v

Postulates:

♦i(A •> B) → ♦iA •> B [K1i]
♦iB •> (A •< C) → A •< (B •< ♦iC) [Mi1]

Move as abstraction: neg inv2.pl

Lexicon:

w∗ : w/>(w/<♦i2iw)
akarni : w/<w
akarni2 : w∗/<w
haza : w∗/>(w∗/<♦i2im)
haza2 : (w∗/>(w∗/<♦i2iw))/>((w∗/>(w∗/<♦i2iw))/<♦i2im)
kezdeni2 : w/<w
menni : w∗/<m
menni2 : (w∗/>(w∗/<♦i2iw))/<m

Postulates: -
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