
The Minimalist MOVE operation
in a deductive perspective

Willemijn Vermaat

Universiteit Utrecht
OTS, Trans 10, Utrecht

Willemijn Vermaat@let.uu.nl

Abstract

In this paper we analyze the Computational System as described in the Mini-
malist Program in a multimodal Categorial Grammar (=MMCG) framework. We
can define the basic minimalist operations, such as feature checking,MERGEand
MOVE using the internal logical and structural reasoning facilities of the catego-
rial system. However, we will show how the analysis of the minimalistMOVE

operation in a multimodal categorial setting results in a decomposition ofMOVE

into a logical and a structural part. On the logical side, the concept of hypotheti-
cal reasoning provides a principled account ofMOVE as an abstraction operation.
On the structural side, structural postulates capture the phenomenon of displace-
ment.

1 Introduction

In this paper1 the minimalist theory of Chomsky [1] is studied in the perspective of
Multimodal Categorial Grammar [5, MMCG]. In the Minimalist Program, the basic
operations of the Computational System are the structure building operations:MERGE

andMOVE. MOVE defines the displacement of a phrase in a sentence, which is driven
by the need to check uninterpretable features on functional categories. The Minimalist
Program concentrates on the interpretability of formal features on the PF and LF in-
terfaces. As long as uninterpretable features are present, the derivation continues with
operations until all uninterpretable features are checked. The need for feature checking
drives the derivation to its phonological and logical form.

As indicated by many researchers the minimalist framework as worked out in the
Minimalist Program [1] and resource conscious logics such as Multimodal Catego-
rial Grammar [5] show many similarities. Lecomte [4] and Cornell [2] give different
approaches to interpret the minimalist mechanisms in MMCG.

0Presented at the11th European Summer School in Logic, Language and Information, ESSLLI‘99,
Utrecht, August 99 as part of the workshop onResource Logics and Minimalist Grammars (C.Retor´e &
E. Stabler, organizers)

1This paper is largely based on my master’s thesis [9]. It contains an overview of the two theories that
are at the center:Multimodal Categorial Grammarand the Minimalist Program, which can be read as
background for this paper.

1

In MMCG, MERGE is given straightforwardly by modus ponens as defined in the
base logic. The MMCG extensions♦ and2 gives us different possibilities to control
the MOVE operation. I consider two approaches: A first approach is to regard move-
ment as a structural operation that captures the phenomenon of displacement. A better
approach is to regardMOVE as a complex operation, which can be decomposed in a
logical and a structural part. On the logical side, the concept of hypothetical reasoning
provides a principled account of the abstraction of a phrase. On the structural side, the
structural postulates capture the actual movement of features and phrases in a structure.

As the Computational System is not formalized in the Minimalist Program. I use
the MG framework of Stabler [7] to link the Minimalist Program to multimodal Cat-
egorial Grammar. Stabler [7] gives an algebraic framework to capture the main com-
ponents of the Minimalist Program. Section 2 starts with an explanation of Stabler’s
algebraic translation of the minimalist framework:Minimalist Grammar. Section 2.1
describes in which order the different features occur in the feature specifications of
words. Section 2.2 explains how the feature specifications are stored in the lexicon.
On the basis of these feature specifications the structure building rules are defined in
section 2.3. After every section, a correspondence is made from Stabler’s Minimalist
Grammar to MMCG which results in a deductive approach of the different minimalist
operations in section 2.4. A deductive analysis ofMOVE on the basis of its derivational
meaning in section 2.5 leads to the right treatment ofMOVE as as a complex operation.

2 A computational model of Minimalism

2.1 Features

A central idea in the Minimalist Program [1] is that derivations are feature driven. In
the Minimalist Grammar formalism Stabler [7] explains how features trigger structure
building operations. He defines the basic operations and the basic objects of these
operations: features. With this formalism, we can formulate a minimalist grammar for
in principle any kind of language phenomenon.

Features are part of a lexical specification. We distinguish phonological, semantic
and syntactic features. The syntactic features play an active role in controlling deriva-
tions. Every structure building operation is triggered by a certain syntactic feature
F . Features represent the lexical propertiesN of words like its category and other
properties such as case, gender and number. Like Stabler [7], we focus on the syntac-
tic features, and abbreviate phonological and semantic feature information. Possible
syntactic features are given in the following specification.

F ::= N | =N | +N | −N

The syntactic features are divided in 2 groups:categoryfeatures (N ,=N) and
control features (+N ,−N). The category features state the role of a word in a sen-
tence. Every word gets assigned a categoryN , for example:complementizer, tense,
verb, determineror noun. Some of these categories show an extended functionality.
Categories such as complementizer, determiner and tense are so-called functional cat-
egories, because they play a special role in derivations. The role of a word is further
determined by the selector feature,=N . The selector feature indicates with what kind

2

of category a word can be combined. The category features come in pairs: in a deriva-
tion, a word with a selector feature is always associated with and accompanied by a
word with a matching category feature.

Apart from the category features, the control features play an important role in
controlling the order of words and the movement of phrases within structures. The
licensee features−N state certain properties of words, such as[−case], [−wh] and
[−tense], while the licensor features+N indicate the need for such properties. Con-
trol features also come in pairs:[+,−]. A licensor feature, marked with[+], attracts
an identical licensee feature, marked with[−].

The phonological and semantic non-syntactic features are carried along in the
derivation (pied-piping), but have no effect on the structure building operations. For
simplicity, we only write the headword to indicate that non-syntactic material is present
in a derivation.

Feature correspondence In MMCG, the semantic and syntactic features are de-
scribed within the lexicon. The semantic part, which is not taken into account for
now, is articulated in terms of Lambda calculus. The syntactic part is represented by
the type-logical grammar [5]. The following formula language is used to build the
syntactic type formulasF of the grammar.

F ::= A | 2f F |♦f F | F/iF | F •i F | F\iF
Type logical formulasF are built up from binary and unary connectives and atomic

types.A is the set of atomic formulas, for example the basic types:{s, n, np}. The
logical framework assigns multiple modes of composition; every binary connective
is decorated with an indexi. In this paper we will distinguish two modesi: < for
left-headed composition and> for right-headed composition.

The unary connectives act as control features. For this reason they are refined
with featuresf which play an important role in the application of feature checking and
movement postulates. The behavior of the unary and binary connectives is given by
the residuation laws:

♦fA ` B ⇐⇒ A ` 2fB
A ` C/iB ⇐⇒ A •i B ` C ⇐⇒ B ` A\iC

The behavior of the control features is presented in natural deduction by the intro-
duction and elimination rules of♦f and2f . We will give the natural deduction rules
of the binary connectives when we discuss the operationsMERGE andMOVE.

Γ ` 2fA

〈Γ〉f ` A
[2fE] 〈Γ〉f ` A

Γ ` 2fA
[2f I]

Γ ` A

〈Γ〉f ` ♦fA
[♦f I]

∆ ` ♦fA Γ[〈A〉f] ` B

Γ[∆] ` B
[♦fE]

As has been said, syntactic features in MG come in pairs:category-selectorand
licensee-licensorfeatures. To give a correspondence between the feature specification
in MG and type-logical formulas in MMCG, we need to be able to reason about differ-
ent parts of a type-logical formula. In MMCG, expressions are given asΓ ` A. The

3

antecedentΓ is the input, the structured assumptions, which has a certain typeA. The
type formulaA represents the output, also called the goal formula. We adopt a way of
speaking about the different parts of type-logical formulas: thepolarity of a formula.
We distinguish an input polarity• and an output polarity◦. On the basis of the polar-
ity of the whole type-logical formula, the polarities of the subformulas can be derived
with the following rules (and similarly for the\>) :

(A/<B)• ; A•/<B◦ and (A/<B)◦ ; A◦/<B•

The following correspondence is made on the basis of the feature specifications of
MG and the type-logical formulas of MMCG.

Kind of feature MG MMCG
Basic categories c c•

Selector features =c c◦: for example(c\>−)•, (−/<c)•

Licensee features [−f] 2f on a formula with polarity•

Licensor features [+f] 2f on a formula with polarity◦

Figure 1: Feature correspondence

We take the same basic categories in MMCG for the categorial types as the cat-
egories in MG. The logical connectives left\> and right/< division have the same
function as the selector feature, namely a request for a certain category. The right divi-
sion is used to fill the complement position, the left division fills the specifier position.

In MG, the control features, licensor and licensee, act as each other’s counterpart,
indicated by the polarities[+] and [−]. Following the polarities of the type-logical
formulas, the licensee feature corresponds to the unary connective2f on a formula
with input polarity•; in practice the head of a formula will be decorated. The licensor
feature, with an opposite polarity, corresponds to the unary connective on a formula
with output polarity◦, which generally means on a subformula with input polarity• or
on the goal formula.

The licensor and licensee features enforce movement of features and therefore
reordering of the structure. The function of the licensor feature as trigger for the re-
arrangement of features and lexical resources corresponds to the function of the unary
connectives within MMCG (for more background reading, see Heylen [3]). The li-
censor feature interacts with the licensee feature. In MMCG the licensor feature is
defined as2f on a formula with polarity◦, which interacts with the structural brackets
〈.〉f on the structural side with polarity•. In both systems the licensor and licensee
feature cancel each other. In MMCG the unary connectives play the role of ‘key’ and
‘lock’, where the diamond serves as ‘key’ and the box as ‘lock’ as given in the rule:
♦2A −→ A

2.2 Lexicon

A lexicon serves as a storage for features. Every lexical item has its own lexical spec-
ification, which is solely made up of features. All lexical items, apart from the func-
tional categories, havesemanticandphonologicalfeatures. The use and the properties
of words are defined by its feature specification which is built up with a syntactic

4

feature and possibly selector and licensee features. In the MP,licensor features are
assigned to functional categories; they serve as triggers for the movement of phrases
with matchinglicenseefeatures.

Stabler [7] presents the lexical specification as a list of feature occurrences re-
specting certain constraints. The sequence of features in the list determines the order
of application of operations and thus the way in which the tree structure is built. Not
every order of features is possible, the ordering depends on the application of the struc-
ture building operations. Admissible orderings are determined by the following regular
expression:

(=f (=f)? (+f)) f (−f)? /f/ f

Parentheses indicate an option of 0 or 1 occurrences, or more if decorated with a star. A
category feature can stand by itself, it can be preceded by a certain number of selector
features or it can be followed by licensee features. Only one licensor feature can
appear before the category feature. A feature specification ends with the non-syntactic
features (phonological features/f/ and semantic featuresf) in the case of the lexical
categories; functional categories have no phonological feature information. With this
feature information, we can build lexical entries.

Lexical correspondence In MMCG, a lexicon exists of lexical entries with a struc-
tural label (the headword) and the syntactic formula. Formulas are built up with the
grammar rules given in the formula language (see page 3). On the basis of the fea-
ture correspondence in Fig. 1, we can compute the lexical correspondence between the
syntactic feature specifications in MG and the type assignments in MMCG.

Using the regular expression we can build an algorithm that translates MG syn-
tactic feature structuresF into MMCG type formulas. The different successions of
the regular expression correspond with the rules on the left side of the algorithm. The
three states:α, β, γ map parts of the feature specification to categorial formulas.

(f F)α = (F)γ f
(=f F)α = (F)β/<f
(=f F)β = f\>(F)β

(f F)β = (F)γ f
(+f g F)β = (F)γ g with 2f g on a formula with polarity◦

(−f F)γ = (F)γ 2f

()γ = −
The phonological and semantic feature information of the lexical categories is in-

corporated into the label of the logical formula. MG also deals with functional cate-
gories that have no non-syntactic feature information; in MMCG we label functional
categories with their category feature to indicate their function and position in a struc-
ture.

With the algorithm we can compute an MMCG formula type from an MG feature
specification. For example:

=n d -wh what ; what ` 2whd/<n

5

2.3 Structure building operations

StructuresS are built by concatenating lexical and phrasal structures or moving lexical
material within structures. A phrasal structure is represented with labeled binary trees.
Instead of labeling the trees with the category of the head of the tree, as is done in
the syntactic tradition, Stabler [7] labels a tree with a direction arrow{<,>} pointing
towards the head. The leaves of the tree are the lexical feature structuresF , built up
with features as described above.

S ::= F | S < S | S > S
Two operations are involved with building labeled structures:
MERGE: S × S → S and MOVE: S → S.

M ERGE MERGE combines two treest1 and t2 to form a new tree. Treet1[=c]2,
with first feature= c, combines with treet2[c] which carries category featurec. The
operationMERGE causes the cancellation of the feature[= A] against[A]. Techni-
cally, MERGE can be partitioned into two functions: one that combines with a tree
on the right side,MERGE<: (<, t1, t2), and one that combines with a tree on the left,
MERGE>: (>, t2, t1). Treet2 combines witht1 on the right side ift1 is a lexical item.
Treet2 combines witht1 as a specifier on the left side ift1 is already a tree structure.
Both selector and category feature are deleted after merging. Stabler [7] formalizes
MERGE as shown in the following tree diagrams.

MERGE(t1[=c],t2[c]) =




<

t1 t2

if t1 ∈ Lex

>

t2 t1

otherwise

M OVE MOVE operates on the substructures of a tree. A licensor feature[+f] on the
head of treet1[+f], attracts a subtreet2[−f]> with a corresponding licensee feature.
The[−f] feature is found at the complement positioncomp+ or in the specifier position
spec, comp+ of the head of the tree.comp+ is the transitive closure on the binary
relationcomp, ‘is a complement of’.

>

MOVE(t1[+f])=t2
> t1{t2[−f]>/−}

The tree diagram defines the structure building operationMOVE. MOVE is applied
to the maximal projection3 of the subtree carrying the licensee feature[−f]. After
extracting the subtree from the main tree, the subtree is merged as a specifier to the
head of the tree. Both control features are canceled and removed from the tree. The
original occurrence is replaced by an empty tree, a single node without features.

2t[F] indicates thatF is the prefixed feature of the feature structure of the head of treet
3The maximal projection of subtreet[−f]> is the largest subtree with[−f] as its head.

6

The definition ofMOVE assumes some general constraints on movement as given
by Stabler [7]: “all movement is overt, phrasal, leftward”.

2.4 Merge and Move as rules of inferences

Merge as modus ponens Compare the operationMERGE as described in section
2.3, with the modus ponens rules in MMCG. These rules are defined in the natural
deduction proof system by the elimination rules. The elimination rules of the binary
connectives{/< and\>} capture both partitions of theMERGEoperation. Fig. 2 shows
both structure building rules and the matching elimination rules:MERGE on the right
as complement[/<E] andMERGEon the left as specifier[\>E]. As the minimalist op-
erationMERGE can be split into two operations: leftheadedMERGE< and rightheaded
MERGE>, the same holds for the logical operations in MMCG. In minimalism one
prefers to reason about oneMERGE operation, which is the union of both separated
operations:

MERGE = MERGE< ∪ MERGE>

LeftheadedMERGE: RightheadedMERGE:

MERGE<(t1[=A],t2[A]) ⇒
<

t1 t2

>

t1 t2

⇐ MERGE>(t2[=A],t1[A])

t1 ` B/<A t2 ` A

t1 ◦< t2 ` B
[/<E]

t1 ` A t2 ` A\>B

t1 ◦> t2 ` B
[\>E]

Figure 2: MERGEas modus ponens

In the Minimalist Grammar direction arrows:< and> indicate the head of the tree.
In MMCG indication of the head is by marking the binary connectives. The ‘arrow’
indicates the head of two combined entries defining the dependency relation between
words. For both directions the arrows< and> are added as modes to the structural
combinator◦. The most common direction is towards the head of the formula.

Move as structural reasoning A first approach is to directly translate StablersMOVE

as Structural Reasoning. To capture the right behavior of this operation, the attraction
of the licensee feature by the licensor feature needs to be accounted for. The transla-
tion of the licensor feature as a feature decorated2f on a formula with output polarity
◦, enforces the interaction with the licensee feature via the control diamond,〈.〉f on
the structural side. The structural diamond influences the use of structural postulates
that capture the possible movements of a phrase from a certain position in the structure
to another. The following postulates can be regarded as general postulates that define
movement.

♦f (A •> B) →♦fA •> B [P1]
♦fA •> (B •i C) → B •i (C •< ♦fA) [P2]
♦fA •> (B •i C) → B •i (♦fA •> C) [P3]

Wherei ∈ {<,>}

7

The postulates account for the constraints onMOVE as defined by Stabler [7]. The
first postulate[P1] captures the constraint that movement is leftward. It checks if a
phrase carrying a certain featuref has been moved to the first position. The second and
third postulates consider the overt movement of feature decorated phrasal structures.
[P2] moves a phraseA from a complement position to the specifier position of that
same phrase headed byB or C. [P3] moves a phraseA from the specifier position to
a higher specifier position of a phrase headed byB or C.

As an example we show how these postulates are used in a sentence where wh-
movement occurs. For this case, the undefined featuref in the above postulates is
specified as awh-feature. We derive the structure “What tortillas Maria making” in a
natural deductionpresentation. The left-hand side of the turnstile shows the hierarchi-
cal order of the structure, while the right-hand side gives information on the category
and the features of the whole phrase. The structural brackets,〈.〉, projected from the
logical side, are the structural domains of phrases where the postulates can work on.

c ` c/<v

Maria ` d

making ` (d\>v)/<d

what ` 2whd/<n tortillas ` n

what ◦< tortillas ` 2whd
[/<E]

〈what ◦< tortillas〉wh ` d
[2whE]

making ◦< 〈what ◦< tortillas〉wh ` d\>v
[/<E]

Maria ◦> (making ◦< 〈what ◦< tortillas〉wh) ` v
[\>E]

c ◦< (Maria ◦> (making ◦< 〈what ◦< tortillas〉wh)) ` c
[/<E]

c ◦< (〈what ◦< tortillas〉wh ◦> (Maria ◦> making)) ` c
[P2]

〈what ◦< tortillas〉wh ◦> (c ◦< (Maria ◦> making)) ` c
[P3]

〈(what ◦< tortillas) ◦> (c ◦< (Maria ◦> making))〉wh ` c
[P1]

(what ◦< tortillas) ◦> (c ◦< (Maria ◦> making)) ` 2whc
[2whI]

Figure 3: ND derivation withMOVE as structural reasoning

The order of application of the structure building operations is the same in both
systems. First a number ofMERGE steps, followed by the movement of ‘what tortillas’.
In MG, the operationMOVE is triggered from the licensor feature on the functional
categoryc. In MMCG the feature information of the functional category is split up:
the category features are assigned to the lexical entryc and the licensor feature is
part of the goal formula. To check the ‘licensee’ feature on the lexical entrywhat
against the ‘licensor’ feature on the goal formula, the control features trigger the use
of structural postulates.

Using structural reasoning we can capture the movement operation in MMCG.
With structural postulates we explicitly define the steps that a phrase has to make
to arrive at a certain point in the structure. In MG, movement is implicitly done by
abstracting a phrase from its former position, which is determined by the maximal
projection, and by moving the phrase up to the specifier position.

2.5 Derivational meaning of MG operations

To reason about the use of operations in a derivation, one should look at the derivational
meaning of such an operation. The derivational meaning of a sentence is accomplished
by decorating derivations with terms. A proof term is the ‘blueprint’ of the logical

8

derivation: all logical steps can be read from the proof term. In the same way as the
logical rules in MMCG can be decorated, the structure building operations in MG can
be labeled with proof terms. The result gives us a comparison between the MMCG
proof system and the derivational formalism of Stabler [7].

In his notes, Stabler [8] suggests what semantic values should be assigned to the
operationsMERGE andMOVE. A first idea is to interpretMERGE asapplicationand
MOVE asabstraction. The abstraction part needs to be reflected in the proof term.

Merge as application To capture the meaning ofMERGE as application, the accom-
panying term should be defined as follows:
MERGE(t1[=c],t2[c]), wheret1 is labeled witht andt2 with u.

<

t1 t2
(t u) or

>

t2 t1
(t u)

Move as abstraction Stabler [8] indicates that the derivational meaning of the op-
erationMOVE should reflectabstraction. To obtain this meaning in Lambda calculus,
we decorate the trees of the MG definition ofMOVE with terms. The MG definition of
MOVE as given on page 6 is repeated more schematically.

t{u}B

t2[-f]>

t1{t2[-f]>/-}

t1[+f]

uA
t2>

u(A→B)→B

> (u λx.t)B

(λx.t{x/u})A→B

xA

The figure shows how theMOVE operation is decorated with terms. First, the two
main tree structures are labeled with semantic terms:t1[+f] is the whole tree labeled
with term t and t2[−f]> is the maximal projection oft2[−f] labeled withu. Tree
t2[−f]> is a subtree of treet1[+f]. Therefore, the term of the whole tree can be
written ast{u}, whereu is a subterm of termt .

During movement,t2[−f]> is abstracted fromt1[+f] yielding the proof term:
λx .t{x/u}. The variablex replaces termu indicating the trace of the extracted sub-
treet2. At the same time, the extracted treet2 is merged to treet1{t2[−f]>/–} yielding
the tree (>, t2, t1) with proof term:(u λx .t{x/u}). This term captures the meaning
of MOVE as abstraction.

Every term belongs to a certain type. With the use of types, we can check whether
a structure is well-typed. To check if the two structures of the definition ofMOVE are
well-typed, we need to look at the types that belong to the different terms. The types
are given as exponents of the terms.

The whole treet1 with termt is of typeB and the subtreet2 with termu is of type
A. After abstraction the whole tree (>, t2, t1) still has to be of typeB. Treet1, where

9

the subtree of typeA has been abstracted from, gets assigned the typeA→B. Then
the subtree is merged to treet1 (t2 is applied tot1). To yield a tree of typeB, the type
of treet2 has to be(A→B)→B. But then there is atype-clashbetween the type of
termu in the first structureA and the type in the second structure(A→B)→B.

It is not obvious how this problem can be solved in MG. However, the reasoning
facilities in MMCG offer us a way to overcome this type-clash: by reasoning hypo-
thetically over the abstracted subtree. One uses term variablex to indicate the position
of the abstracted tree structure. The higher order type assigned to treet2 accomplishes
the abstraction of this hypothetical phrase. In this way one prevents the type-clash
between the two occurrences of the subtree in a derivation.

2.6 Decomposing move

Section 2.4 shows howMOVE is defined in terms of structural control. Using structural
reasoning one captures the actual movement of words in a sentence. But looking at the
derivational meaning, it becomes clear that this cannot be the right translation between
Stabler’s formalism and MMCG with regard to theMOVE operation. In Stabler’s def-
inition of MOVE abstraction occurs: a subtree is abstracted from the whole structure.
With the use ofhypothetical reasoningthis phenomenon can be translated in MMCG.
Hypothetical reasoning is defined by the introduction rules.

Γ ◦< x : B ` t : A

Γ ` λx.t : A/<B
[/<I]

x : B ◦> Γ ` t : A

Γ ` λx.t : B\>A
[\>I]

The proof term, built during the application of the introduction rules, captures the
abstraction of a phrase out of a fully built phrase. Hypothetical reasoning is triggered
by a higher order type. In our fragment, the lexical entry ‘what’ projects a hypothetical
determiner phrase. In MMCG, the information on the functional category and the
feature information on the lexical item are combined in the type-logical formula of the
lexical item. The formula assigned to ‘what’ incorporates the function of the functional
categoryc as a trigger ofMOVE and its own lexical function as a determiner of nouns.
The lexical translation for ‘what’ is captured by integrating the MG lexical feature
specifications of the functional categoryc and the lexical entrywhat .

=v +wh c
=n -wh d what

}
(c/>(♦wh2whd\>v))/<n

This formula can be read as: after combining with a noun phrase, the ‘higher order
formula’ indicating a determiner phrase looks for a verb phrase, which is missing an
object phrase. Then the determiner phrase merges with the incomplete verb phrase into
a complementizer phrase. The formula is constructed in such a way that the phrase
‘what tortillas’ is still regarded as a specifier of the verb phrase ‘making tortillas’. The
connective/> carries a direction arrow pointing towards the argument, to indicate that
the argument will be considered the head of the structure.

In the translation of ‘what’ as (c/>(♦wh2whd\>v))/<n, the wh-feature on the
♦wh acts as the licensor, the trigger of the movement steps. In this translation, the
feature correspondence given in Fig. 1 still holds. The2wh on the subformulad
with polarity • indicates the licensee feature which allows the determiner phrase to

10

be moved. The licensor feature corresponds to the♦wh on the subformula(d)•, which
is the counterpart of a2wh on a formula with output polarity◦.

Apart from the lexical entry ‘what’ and the functional categoryc , all other entries
stay the same. As an example, we derive the sentence “what tortillas Maria making”
with the accompanying proof term. The structural part of the derivation on the left-
hand side is presented as a tree representation, followed by the type-logical formula on
the right-hand side.

[r0 ` ♦wh2whd]1

maria ` d

making ` (d\>v)/<d

[p1 ` 2whd]2

〈p1〉wh ` d
[2E]

making ◦< 〈p1〉wh ` d\>v
[/<E]

maria ◦> (making ◦< 〈p1〉wh) ` v
[\>E]

〈p1〉wh ◦> (maria ◦> making) ` v
[P2]

r0 ◦> (maria ◦> making) ` v
[♦E]2

maria ◦> making ` ♦wh2whd\>v
[\>I]1

....
what ` (c/>(♦wh2whd\>v))/<n tortillas ` n

what ◦< tortillas ` c/>(♦wh2whd\>v)
[/<E]

....

(what ◦< tortillas) ◦> (maria ◦> making) ` c
[/>E]

Figure 4: ND derivation with decomposedMOVE

The proof term, ((what tortillas) λx.((making x) Maria)) belonging to this deriva-
tion, exactly captures the abstraction of the object phrase out of the fully built phrase
((making x) Maria). The movement of the hypothesized object is still accomplished
by means of structural reasoning. The two postulates that were needed in the structural
fragment in Fig. 3 for moving a phrase out of its specifier or its complement position
are kept. Postulate[P1], responsible for the determination of the position of the ab-
stracted element, is no longer needed. Postulate[P2] accounts for the actual movement
in this derivation, in order to retract the hypothesized object.

3 Conclusion

As the previous section shows, it is possible to give a deductive analysis of the different
operations and components of the Minimalist Program. The mapping between MG and
MMCG brings out some crucial issues with respect to theMOVE operation.

In the translation ofMOVE as structural reasoning alone, the features on the goal
formula trigger the application of structural rules to accomplish movement within the
structure. The interaction between structure and logic influences the way the derivation
goes; the features on the goal formula correspond with the features of the displaced
elements in the structure. As long as control features are still present at the structural
side of the derivation and not checked against the logical features, the derivation has
to continue. In this case the feature on the goal formula directs the derivation.

Looking at the derivational meaning,MOVE should be regarded as an operation
involving abstraction. As seen in section 2.5 the accompanying proof term reflects the
meaning ofMOVE as an abstraction operation and thus the translation ofMOVE with
structural reasoning alone does not give the right derivational meaning. Appealing to

11

hypothetical reasoning, we get the meaning ofMOVE as abstraction. This leads to
the decomposition ofMOVE into structural control and hypothetical reasoning. The
control mechanism for this decomposed operation relies solely on the features of the
higher order type. There is no longer need for features on the goal formula. The
licensorand thelicenseefeature [7] are both present on the element which is subject
to displacement.

The use of higher order types as triggers for the construction of different struc-
tural hierarchies makes the use of functional categories superfluous. The control over
the movement of internal phrases and features are defined on the elements involved.
Doing so, functional categories are not needed and therefore can be eliminated. The
trigger ofMOVE becomes lexically anchored. Whereas the lexicon carries all the nec-
essary feature information, the cooperation between the structural and logical part of
the derivation realizes the right order and dependency of the words involved.

Consequently, the elimination of functional projections is a simplification for both
the lexical and the derivational complexity. One needs fewer lexical entries and fewer
logical application rules (=MERGE) to get the same results. When fewer lexical ele-
ments take part in the derivation, the structural complexity reduces as well.

The determination ofMOVE as a complex operation with both structural and logi-
cal aspects is the result of the interaction between structure and logic. This interaction
is further advanced by the communication between the higher order type on the log-
ical side and the hypothesized object on the structural side via the elimination and
introduction rules of the binary connectives,/ and\. The complexity of a derivation
depends on the interaction between the logical and structural aspects of a language.

References

[1] N. Chomsky.The Minimalist Program. The MIT Press, 1995.

[2] T. Cornell. A type-logical perspective on minimalist derivations. In G. van
Kruijf and R. Oehrle, editors,Formal Grammar’97, Aix-en-Provence, 1997.
ESSLLI’97.

[3] D. Heylen. Types and sorts: resource logics for feature checking. PhD Thesis,
Utrecht University, 1999.

[4] A. Lecomte. Categorial minimalism. In Moortgat [6].

[5] M. Moortgat. Categorial type logics. In J. van Benthem and A. ter Meulen,
editors,Handbook of Logic and Language, chapter 2, pages 93–178. Elsevier,
1997.

[6] M. Moortgat, editor. Logical Aspects of Computational Linguistics, LACL‘99.
LNCS/LNAI, Springer (to appear).

[7] E. Stabler. Remnant movement and structural complexity. In G. Bouma, H. Hin-
richs, G.J. Kruijff, and R. Oehrle, editors,Constraints and Resources in Natu-
ral Language, Studies in Logic, Language and Information. CSLI Publications,
Stanford.

12

[8] E. Stabler Eliminating covert movement. Slides with notes for lectures at OTS.
Forthcoming report.

[9] W. Vermaat. Controlling Movement: Minimalism in a deductive perspective.
Doctorandus thesis, University of Utrecht, 1999.

13

