
Learning Context Free Grammars in the Limit

Aided by the Sample Distribution

Yoav Seginer

ILLC, Universiteit van Amsterdam
yseginer@science.uva.nl

Abstract. We present an algorithm for learning context free grammars
from positive structural examples (unlabeled parse trees). The algorithm
receives a parameter in the form of a finite set of structures and the class
of languages learnable by the algorithm depends on this parameter. Every
context free language belongs to many such learnable classes. A second
part of the algorithm is then used to determine this parameter (based
on the language sample). By Gold’s theorem, without introducing addi-
tional assumptions, there is no way to ensure that, for every language,
the parameter chosen by the learner will make the language learnable.
However, we show that determining the parameter based on the sample
distribution is often reasonable, given some weak assumptions on this
distribution. Among other things, repeated learning, where one learner
learns the language the previous learner converged to, is guaranteed to
produce a learnable language after a finite number of steps. This set of
limit languages then forms a natural class of learnable languages.

1 Introduction

The problem of learning context free grammars (in the limit) from structural
examples has attracted much attention ([6],[7],[2],[4]). A structural example for
a sentence consists of the parse tree structure of that sentence without the non-
terminal labels. Also known as a tree language, the parse trees of a context
free language can be characterized by a tree automaton ([6],[7]). This allows
methods for learning regular languages to be extended to the learning of context
free languages from structural examples (see [6],[7],[2]).

When Gold [3] first presented his paradigm of learning in the limit, he also
showed that within this paradigm the class of context free grammars is not
learnable from positive examples. While the use of structural examples does
seem to make the learning problem easier, it is still not enough to get around
Gold’s theorem and (just as with the class of regular languages) the class of
context free languages is not learnable from structural examples. For some, this
is sufficient reason to reject Gold’s learning paradigm altogether. Others, who
still want to apply this paradigm to the learning of context free grammars, may
resort to two methods. The first is to supply the learner with some additional
information, the other, to restrict the class of languages which has to be learned
to a subclass of the context free languages.

Sakakibara presented solutions of both types. In [6], the learner is allowed
to use structural equivalence and membership queries, thus gaining additional
information about the language, while in [7] only positive examples are used
but the algorithm is restricted to the class of reversible context free grammars.
The two approaches can also be combined, of course. Fernau [2] extended [7]
to learning the δ-distinguishable tree languages. Every choice of a distinguish-
ing function δ results in a learnable class. For any language, when the learning
algorithm is equipped with an appropriate distinguishing function, it is guaran-
teed to learn the language correctly from positive examples. Clearly, by Gold’s
theorem, to guarantee a correct choice of the distinguishing function δ for every
language, the learner must make use of some information beyond the positive
examples for the language.

The algorithm we present in this paper also learns context free grammars
from structural examples. The learning algorithm, which is very simple and
natural, uses a finite set of structures, the context set. Similarly to Fernau’s
distinguishing functions, every context set makes a subclass of the context free
languages learnable and together these subclasses cover the whole class of context
free grammars. Another property shared with Fernau’s algorithm is that even
when a language is outside the class of languages learnable by the algorithm (for
a given context set), the algorithm converges to a language containing (over-
generalizing) the original language. The resulting language does not depend on
the order in which the language is presented to the learner (compare this with the
approximation property in [1]). Beyond these similarities, the learning algorithm
itself is of a completely different nature, as the ability to distinguish trees, which
is given as an oracle (the distinguishing function) to Fernau’s algorithm, does
not exist for our algorithm (until the learning process actually converges). The
workings of our algorithm can in some ways be compared with the family of
tail algorithms presented in [5], even though these algorithms are not learning
algorithms in the sense of Gold (as convergence in the limit is not guaranteed).

In addition to presenting the basic algorithm (section 2) and proving its con-
vergence (section 3) we present (in section 5) a method for choosing the context
set to be used, based on the sample being presented to the learner. It relies on
the fact that even when the learning process is confined to receiving positive ex-
amples, the learner has access not only to the positive examples themselves, but
also to the order and frequencies in which they appear. Whether this contains
any information about the language being learned depends on the way in which
the examples are generated. Usually, when learning within Gold’s paradigm of
identification in the limit, the only assumption one makes about the process
generating the examples is that every sentence will eventually be generated by
it. It has often been observed that this is a very strong requirement (even in
Gold’s original paper some alternatives are examined).

The method presented here constructs the context set out of the most fre-
quent structures in (some initial segment of) the language sample. Such frequent
structures are clearly evident in natural languages and it has already been ob-
served by linguists [8] that these structures may play an important role in lan-

guage acquisition by children. Whether this procedure produces a good context
set for the language to be learned depends on the settings in which we wish to
apply the algorithm and is usually an empirical question. There are, however,
several properties of the learning algorithm which make this method a good
candidate. We discuss this in section 5.

A basic property shown in sections 4 and 5 is that there is a natural process
which leads to learnable languages and if a language becomes unlearnable (for
whatever reason) there is a way of returning to a learnable language (even if a
somewhat different one). Beginning with any language, repeated learning (that
is, every learner learning the language which the previous learner converged to)
is bound to arrive (after a finite number of steps) at a language learnable by
all subsequent learners. The class of these limit languages is then a very natural
learnable class.

2 The Learning Algorithm

The learning algorithm receives trees as input and produces a set of rules (the
grammar) as output. It learns, therefore, from structural examples. The algo-
rithm creates grammar rules by looking at subtrees of the sample trees and the
context trees in which they appear. We begin by defining all these structures.

A tree T is either a single terminal σ ∈ Σ or a tuple 〈T1, . . . , Tl〉 (1 ≤
l) where T1, . . . , Tl are trees. We write T (Σ) for the set of all trees over the
terminal set Σ. A context is a tree in which a single leaf can be substituted
by a tree to create a tree. We assume that ∗ 6∈ Σ (∗ indicates the leaf in the
context where a tree can be substituted). A context c is either the symbol ∗
or c = 〈T1, . . . , Ti−1, c

′, Ti+1, . . . , Tl〉 (1 ≤ l, 1 ≤ i) where c′ is a context and
T1, . . . , Ti−1, Ti+1, . . . , Tl ∈ T (Σ). We write CT (Σ) for the set of all contexts
over the terminal set Σ.

Given a context c and a tree T we write c(T) for the tree created by substi-
tuting T for the (unique) leaf labeled ∗ in c. Given a tree T and a node ν in this
tree, we can always write T = c(S) where S is the subtree rooted at the node ν
(when ν is the root of the tree T , c = ∗). A tree S is a subtree of tree T if there
exists a context c such that T = c(S). We define S(T) = {S ∈ T (Σ) : ∃c ∈
CT (Σ) s.t. T = c(S)}, the set of subtrees of T . Given a set of trees X (e.g. a
language L), the set of subtrees of X is S(X) =

⋃

T∈X S(T).
Central to the operation of the algorithm is a finite context set C ⊆ CT (Σ).

This context set C is allowed to change a finite number of times as the language
is being presented to the learner, so we have a finite sequence of context sets
C1, . . . , Cn. However, in what follows we will assume that the last context set, Cn,
is used throughout the presentation of the language sample. This is a legitimate
assumption, since, in the worst case, each time the context set changes, the
algorithm can rerun all previous learning steps using the updated context set.
For the algorithm presented here it will become clear that much less is needed.
The way in which the context set sequence C1, . . . , Cn is determined will be
discussed later, in section 5. Therefore, from now on we will assume a finite

context set C which is fixed at the beginning of the learning process. It is also
required that ∗ ∈ C.

To construct grammar rules, the algorithm uses the partially ordered set
O = (2C ∪ Σ,≤) with the subset ordering on the elements of 2C (the elements
in Σ are neither comparable with elements in 2C nor with each other). Every
grammar rule is then of the form (y|x1, . . . , xl)d where y ∈ 2C , x1, . . . , xl ∈ O,
1 ≤ l and 0 ≤ d. The natural number d is the level of the rule.

Let R be a set of such rules. We define the function ctxR(T) which maps
a tree T into an element in O based on the rules in the rule set R. If T =
σ ∈ Σ then ctxR(T) = σ. Otherwise T = 〈T1, . . . , Tl〉 and ctxR(T) =

⋃

{y :
∃(y|x1, . . . , xl)k ∈ R s.t. k ≤ depth(T), xi ≤ ctx(Ti), 1 ≤ i ≤ l} where depth(T)
is defined recursively as depth(T) = 1 +maxi=1,...,l depth(Ti) and depth(σ) = 0
(for a terminal σ ∈ Σ). The language L(R) generated by a rule set R is defined
to be L(R) = {T ∈ T (Σ) : ∗ ∈ ctxR(T)}.

The algorithm maintains a set of pre-rules, P. A pre-rule is of the form
(y|T1, . . . , Tl) where y ∈ 2C and T1, . . . , Tl are trees. A projection πR from
pre-rules to rules, based on the rule-set R, is defined. If the pre-rule P is
(y|T1, . . . , Tl) then π

R(P) = (y|ctxR(T1), . . . , ctx
R(Tl))depth(〈T1,...,Tl〉). The num-

ber depth(〈T1, . . . , Tl〉) is the depth of the pre-rule P , which is equal to the level
of the rule πR(P).

The algorithm is initialized with an empty set of pre-rules P and may change
this pre-rule set at every step. For every pre-rule set P, the rule set hypoth-
esized by the algorithm is the unique rule set R such that R = πR(P) =
{

πR(P) : P ∈ P
}

. This rule set is easy to calculate from P because of the
level assigned to each rule. When computing πR(P) for a a pre-rule of depth
d, the function ctxR makes use only of rules of a level strictly smaller than d.
Therefore, the computation can advance in a straightforward manner through
P, in increasing order of depth.

We now define an ordering of the rules by (y|x1, . . . , xl)d ≤ (z|w1, . . . , wm)k
iff l = m, xi ≤ wi for i = 1, . . . , l, y ≥ z and d ≤ k. After having calculated
the rule set R associated with a pre-rule set P, the algorithm removes from P
any pre-rule P ∈ P such that the rule πR(P) is not minimal in R. Removing
pre-rules from P entails the removal of rules in R. However, it is easy to see
that, because of the way the rule ordering is defined, this does not change the
function ctxR and there is therefore no need to recalculate the rule set.

When presented a sample tree S, the algorithm traverses all its nodes (except
for the leaves) in increasing order of depth (the depth of a node being the depth
of the subtree rooted at it). For each such node ν, the tree S can be written as
S = c(T), where T is the subtree rooted at ν and c is an appropriate context.
Let T = 〈T1, . . . , Tl〉 (ν is not a leaf) and let P and R be the pre-rule set
and corresponding rule set as calculated by the algorithm up to this point. The
algorithm then performs the following operations:

1. Check whether there is a rule R ∈ R such that R ≤ πR(C ∩ {c}|T1, . . . , Tl).
If there is such a rule in R then go on to the next node.

2. Otherwise, if there exists already a pre-rule (y|T1, . . . , Tl) in P then this
pre-rule is replaced by the pre-rule (y ∪ (C ∩ {c})|T1, . . . , Tl). Otherwise, the
pre-rule (C ∩ {c}|T1, . . . , Tl) is added (as is) to P.

3. After the pre-rule set is updated, the corresponding rule set is calculated
and all non-minimal rules (and corresponding pre-rules) are removed.

3 Convergence of the Algorithm

Given any finite context set C and any context free language L, the algorithm
will be shown to converge to a language LC , which is independent of the specific
language sample which is presented to the algorithm and such that L ⊆ LC .
Not only the language but also the grammar (rule set) hypothesized by the
algorithm will be shown to converge. However, the exact grammar which the
algorithm converges to may depend on the order in which the examples are
presented to it.

From now on we assume that the context set C has been fixed. We begin by
constructing a rule set RL which will be shown to generate the language LC to
which the algorithm converges. The algorithm need not necessarily converge to
the same rule set, but will be shown to converge to an equivalent one. We define
the set PL = {({c ∈ C : c(T) ∈ L}|T1, . . . , Tl) : T = 〈T1, . . . , Tl〉 ∈ S(L)} of

pre-rules and then define R̂L to be the unique rule set such that R̂L = πR̂
L

(PL).
Finally, we define RL to be the set of minimal elements in R̂L. Because the
language L is generated by a finite context free grammar, there is a bound on
the degree of nodes of the trees in L. From this, together with the fact that C is
finite, it follows that the rule set RL is finite.

Lemma 1. For any finite context set C and context free language L, L ⊆ L(RL).

Proof. It follows from the definition of the rule ordering that RL and R̂L gen-
erate the same language. By the construction of R̂L, for every tree T , {c ∈ C :

c(T) ∈ L} ⊆ ctxR̂
L

(T). This proves the lemma, since ∗(T) = T ∈ L implies

∗ ∈ ctxR̂
L

(T) and then, by definition, T ∈ L(R̂L) = L(RL). ut

We write ctxL for the function ctxR
L

. For every rule R = (y|x1, . . . , xl)d ∈
RL and for every c ∈ y, we define the representative class CL(R, c) = {S ∈
L : S = c(〈T1, . . . , Tl〉) ∈ L, ctxL(Ti) = xi, 1 ≤ i ≤ l,depth(〈T1, . . . , Tl〉) = d}.
There are finitely many such classes. We call a sample S̄ = {Si}∞i=1 class fat,
if it contains infinitely many trees from CL(R, c) for every such class. To fulfill
this condition, trees from each class may be repeated.

The only condition we impose on the language sample is that it be class
fat. Since the algorithm can simply remember all examples presented to it and
repeat the calculations on them as needed, the class fat sample requirement can
be replaced, at the expense of increased memory and time resources, by the
requirement that at least one tree from each class appear in the sample. This
last condition is even weaker than the standard assumption that all sentences

in the language appear in the sample. We prefer to assume the repetition of the
necessary examples because the repetition seems reasonable in many settings
and reduces the resources required by the algorithm.

We will usually assume some fixed language sample S̄ = {Si}∞i=1. Relative
to this sample, we wish to examine the pre-rule and rule sets generated by the
algorithm at each step. We therefore write Pn and Rn for the pre-rule set and
the corresponding rule set as generated by the algorithm at the end of the n’th
step (one algorithm step is applied for every non-leaf node of a sample tree and
so several steps may be needed for the processing of a single sample tree).

The rule set will be shown to converge level by level, beginning with the
lowest level rules. We therefore write Rnk for the rules of depth at most k in Rn

and similarly RLk for rules of level at most k in RL. We also write ctxLk = ctxR
L

k ,
ctxn = ctxR

n

and ctxnk = ctxR
n

k . The first lemma shows convergence of the rule
set for any given level.

Lemma 2. For any context free language L, any finite context set C, any class
fat sample S̄ of L and for any 0 ≤ k there is a number Nk such that for every

Nk ≤ n, RNk

k = Rnk and for every tree T , ctxLk (T) = ctxnk (T).

Proof. By induction on k. For k = 0, the claim is immediate from the definitions.
We now assume the claim for k and prove it for k + 1. Let Nk < n and let
R = (y|x1, . . . , xl)d ∈ R

n
k+1. There exists some S = 〈S1, . . . , Sl〉 ∈ S(L) of depth

d ≤ k+1 such that xi = ctxn(Si) (1 ≤ i ≤ l) and y ⊆ {c ∈ C : c(S) ∈ L}. Since
depth(S) ≤ k + 1 and by the induction hypothesis, xi = ctxn(Si) = ctxnk (Si) =
ctxLk (Si) = ctxL(Si) (1 ≤ i ≤ l). Therefore, ({c ∈ C : c(S) ∈ L}|x1, . . . , xl)d ∈

R̂L and it follows that there is a rule R′ ∈ RL such that R′ ≤ R. As this is true
for any rule R ∈ Rnk+1, ctx

n
k+1(T) ≤ ctxLk+1(T) for any tree T .

We next show that for every tree T there is an n(T) such that for any
n(T) ≤ n, ctxnk+1(T) = ctxLk+1(T). The proof is by induction on the depth of
the tree T . For T = σ ∈ Σ (tree of depth 0) the claim is immediate from the
definitions. We assume the claim for d and prove it for a tree T = 〈T1, . . . , Tl〉 of
depth d+1. It is immediate from the way the algorithm works and the induction
hypothesis on k that ifNk ≤ n < m and R ∈ Rnk+1 then there is a rule R′ ∈ Rmk+1

such that R′ ≤ R. Therefore, for every tree T , the sequence {ctxnk+1(T)}Nk≤n is

monotonically increasing (in O). It remains to show that if c ∈ ctxLk+1(T) then
there is an Nk ≤ n such that c ∈ ctxnk+1(T). By the class fat sample assumption,

since c ∈ ctxLk+1(T), there must be a tree S = 〈S1, . . . , Sl〉 ∈ S(L) such that

c(S) ∈ L, depth(S) ≤ min(k + 1, d + 1), ctxL(Si) ≤ ctxLk+1(Ti) (1 ≤ i ≤ l) and
there is some Nk, N(T1), . . . , N(Tl) < n such that at step n, the algorithm tries
to add the pre-rule ({c}|S1, . . . , Sl). Therefore, after this step, there is R ∈ R

n
k+1

such that R ≤ ({c}|ctxn(S1), . . . , ctx
n(Sl))depth(S). By what has been shown in

the previous paragraph, the assumptions on S and the induction hypothesis on
d, ctxn(Si) = ctxnk+1(Si) ≤ ctxLk+1(Si) = ctxL(Si) ≤ ctxLk+1(Ti) = ctxnk+1(Ti)
and therefore the rule R applies in calculating ctxnk+1(T) and c ∈ ctxnk+1(T),
which completes the proof of the claim.

Since there is a finite number of trees of depth at most k + 1, there is an N

such that for every N ≤ n and every tree T of depth at most k+1, ctxnk+1(T) =

ctxLk+1(T). For step N < n, if the algorithm tries to add a pre-rule (y|S1, . . . , Sl)
for S = 〈S1, . . . , Sl〉 of depth at most k + 1 then, since {c ∈ C : c(S) ∈ L} ⊆
ctxL(S) = ctxLk+1(S), y ⊆ ctxLk+1(S) = ctxn−1k+1(S). Since also |y| ≤ 1, there must

be a rule R ∈ Rn−1k+1 such that R ≤ πR
n−1

((y|S1, . . . , Sl)) and the pre-rule is not

added. It follows that Rnk+1 = RNk+1 for any N ≤ n. Since for every tree T there

is an N(T) such that, for N(T) ≤ n, ctxnk+1(T) = ctxLk+1(T) and since the rules
of level at most k + 1 do not change after step N , it follows that N(T) ≤ N for
every tree T . Therefore, we can take Nk+1 = N . ut

Based on the convergence of levels we can now prove the convergence of the
whole rule set.

Theorem 1. For any context free language L, any finite context set C and any

class fat sample S̄ of L, the algorithm converges to a rule set R such that L ⊆
L(RL) = L(R).

Proof. That L ⊆ L(RL) is a restatement of Lemma 1. We therefore show that
L(RL) = L(R). Let k be the level of the highest level rule in RL. Using Lemma
2 we take N = Nk. Let N ≤ n and assume that at step n + 1, the algorithm
attempts to add the pre-rule P = (y|S1, . . . , Sl). Writing S = 〈S1, . . . , Sl〉 we
have, by definition, that y ⊆ {c ∈ C : c(S) ∈ L} and (as in the proof of
Lemma 1) y ⊆ ctxL(S). By the choice of k and Lemma 2, y ⊆ ctxL(S) =
ctxLk (S) = ctxnk (S) ⊆ ctxn(S). Therefore, since |y| is either 0 or 1, there is a
rule R = (z|x1, . . . , xl)d ∈ R

n such that y ⊆ z and xi ≤ ctxn(Si) (1 ≤ i ≤ l)
and d ≤ depth(S). In other words, R ≤ πR

n

(P) and the algorithm does not add
the pre-rule. Therefore, the pre-rule set does not change. This shows that the
rules set converges at step Nk. To complete the proof, it remains to prove that
for any tree T , ctxNk(T) = ctxL(T). This follows immediately from Lemma 2,
because there are finitely many rules in RNk and applying Lemma 2 for the level
of the highest level rule in RNk gives the required equality (notice that RNk may
contain rules of level higher than k). ut

Our next step is to prove that for any context free language L there is a
context set C such that LC = L. We will actually show that for every finite set
of languages we can find a context set which makes them all learnable. From
the proof it will immediately be clear that for every language L there are many
different context sets which guarantee convergence to L. As a result, an algorithm
for finding the context set C enjoys a considerable amount of flexibility.

Theorem 2. For every finite set L of context free languages, there is a finite

set of contexts CL such that for any finite set of contexts CL ⊆ C and any L ∈ L,
LC = L.

Proof. It is enough to prove the theorem for |L| = 1 since then we can take
CL =

⋃

L∈L C
{L}. Fix a context free language L. For every tree T , we define the

set C(T) = {c ∈ CT (Σ) : c(T) ∈ L}. Since the language L is generated by a
finite number of rules, the sub-trees S(L) of L can be assigned only finitely many
different types by the context free grammar which generates L. Since two trees
of the same type appear in the same contexts in the language L, there are only
finitely many different sets C(T). Let C1, . . . , Ch be these different sets. The set
C{L} is constructed by taking, for every i 6= j, a context c ∈ Ci \ Cj (if such a
context exists). We also add ∗ to C{L} (if it is not already there). From now on
we fix some set C as the context set for the algorithm, such that C{L} ⊆ C.

We will show that for every tree T of depth at least 1, ctxL(T) = C ∩ C(T).
This proves the theorem because trees of depth zero cannot be in any language
and for trees of depth at least 1, T ∈ LC ⇐⇒ T ∈ L(RL) ⇐⇒ ∗ ∈
ctxL(T) ⇐⇒ ∗ ∈ C(T) ⇐⇒ T ∈ L and therefore LC = L.

If T = 〈T1, . . . , Tl〉 ∈ S(L) then, since {c ∈ C : c(T) ∈ L} = C ∩ C(T),
there is a rule (C ∩ C(T)|ctxL(T1), . . . , ctx

L(Tl))depth(T) ∈ R̂
L and it follows

that C ∩ C(T) ⊆ ctxL(T). If T 6∈ S(L) then C ∩ C(T) ⊆ ctxL(T) trivially, since
C(T) = ∅.

It remains to show that ctxL(T) ⊆ C ∩C(T). Since, by definition, ctxL(T) ⊆
C, we show (by induction on the depth of T) that ctxL(T) ⊆ C(T). The claim
is immediate for a tree of depth 1, since in this case T = 〈σ1, . . . , σl〉 where
σ1, . . . , σl ∈ Σ and there can be at most one rule in R̂L which matches this tree,
namely, (C ∩ C(T)|σ1, . . . , σl)1. We now assume the claim for trees of depth k

and prove it for trees of depth k + 1.
Let T = 〈T1, . . . , Tl〉 be a tree of depth k + 1 and let c ∈ ctxL(T). There

must be a rule (y|x1, . . . , xl)d ∈ R
L such that c ∈ y, xi ≤ ctxL(Ti) (1 ≤ i ≤ l)

and d ≤ k + 1. Therefore, there is a tree S = 〈S1, . . . , Sl〉 of depth at most
k + 1 such that ctxL(Si) = xi for i = 1, . . . , l and y = C ∩ C(S). For any
1 ≤ i ≤ l, if depth(Si) = 0 then xi = Si = σi ∈ Σ and therefore also ctxL(Ti) =
σi which implies that Ti = Si. In the same way, if depth(Ti) = 0 then Ti =
Si. If 0 < depth(Si) (and therefore also 0 < depth(Ti)) it follows, using the
induction hypothesis, that C ∩ C(Si) = ctxL(Si) ⊆ ctxL(Ti) = C ∩ C(Ti). By
the construction of C, this means that C(Si) ⊆ C(Ti) or, in other words, that
Ti can appear in L in any context in which Si appears. This is, of course, true
also for Si with depth(Si) = 0 since then Si = Ti. Since c(〈S1, . . . , Sl〉) ∈ L this
implies that c(〈T1, . . . , Sl〉) ∈ L and repeating this argument we conclude that
c(T) = c(〈T1, . . . , Tl〉) ∈ L. Therefore, c ∈ C(T). ut

The grammars produced by the algorithm are not context free grammars.
However, Theorem 2 shows that for any context free grammar, the algorithm
can generate a grammar which is strongly equivalent to it (that is, generates the
same trees). It is also not too difficult to check that for any rule set R, L(R) is
a context free language. We omit the proof of this here.

4 Stabilizing to a Learnable Language

As we saw in the previous section, the learning algorithm always converges,
but may over-generalize and converge to a language which contains the original

language. In this section we show that repeated learning (that is, each learner
learning the language to which the previous learner converged) is bound (after a
finite number of steps) to arrive at a language learnable by subsequent learners.
It is not even necessary for every learner in the sequence to use the same context
set C and the context set can be some random function of the language being
learned (as will be discussed in detail later on).

To prove this, we need some notation for the cycles of learning. First, we
assume that we have a sequence of finite context sets C̄ = {Cn}

∞
n=0. We then

define recursively LC̄(n) =
(

LC̄(n−1)
)Cn−1

where LC̄(0) = L. When there is no

risk of confusion, we omit the C̄ superscript and simply write L(n). The language
L(n) is the n’th generation language of L.

Since L will usually be fixed, we (usually) omit it from the notation and write

R(n) forRL
(n)

and ctx(n)(T) for ctxL
(n)

(T). Note thatR(n) is the rule set learned
(by the algorithm) from L(n) and that this rule set generates the language L(n+1).
So as to be able to compare context sets in different generations, we define C∞ =
⋃

0≤n Cn, which then allows us to define C(n)(T) = {c ∈ C∞ : c(T) ∈ L(n)}.

Lemma 3. For any context free language L, any context set sequence C̄, any
0 ≤ n and any parse tree T with 1 ≤ depth(T), C(n)(T) ∩ Cn ⊆ ctx(n)(T) ⊆
C(n+1)(T) ∩ Cn.

Proof. The left inclusion is easy, since for T = 〈T1, . . . , Tl〉 ∈ S(L
(n)), the rule

(C(n)(T) ∩ Cn|ctx
(n)(T1), . . . , ctx

(n)(Tl))depth(T) is in R̂
L(n)

.

We now prove the right inclusion. Let c ∈ ctx(n)(T). We show that c(T) ∈
L(n+1). Let T = 〈T1, . . . , Tl〉. Since c ∈ ctx(n)(T), there is a tree S = 〈S1, . . . , Sl〉
such that c(S) ∈ L(n), ctx(n)(Si) ≤ ctx(n)(Ti) (1 ≤ i ≤ l) and depth(S) ≤
depth(T). This means that any rule which applies to the calculation of ctx(n)(S)
also applies to the calculation of ctx(n)(T) and therefore ctx(n)(S) ⊆ ctx(n)(T).
Together with depth(S) ≤ depth(T) this implies that T can appear in L(n+1) in
any context in which S can. Since c(S) ∈ L(n) ⊆ L(n+1), we can conclude that
c(T) ∈ L(n+1). ut

Our main assumption from now on is that C∞ is finite. In other words, while
the context sets used by the algorithm may vary from generation to generation,
they are all bounded by a common finite set.

We now define a language L∞ to which the language sequence
{

L(n)
}

0≤n

will be shown to converge. For every tree T with 1 ≤ depth(T), let C∞(T) =
⋃

0≤n C
(n)(T) and for T = σ ∈ Σ (tree of depth 0) let C∞(T) = σ. Let

S∞(L) = S
(

⋃

0≤n L
(n)
)

, that is, the set of all subtrees in all generations. The

language L∞ is defined to be the language generated by the rule set R̂∞(L) =
{

(C∞(T)|C∞(T1), . . . , C
∞(Tl))depth(T) : T = 〈T1, . . . , Tl〉 ∈ S

∞(L)
}

. We take

R∞(L) to be the set of minimal rules in R̂∞(L). Clearly, L∞ = L(R∞(L)). We
write ctx∞(T) for ctxR

∞(L)(T).

Theorem 3. For any context free language L and any context set sequence C̄
such that C∞ is finite, there exists an N such that for every N ≤ n, L∞ = L(n).

Proof. Let T ∈ L(n). Then, by Lemma 3, ∗ ∈ ctx(n−1)(T) ⊆ C(n)(T) ∩ Cn−1 ⊆
C∞(T). Therefore ∗ ∈ C∞(T). It is easy to check by induction that C∞(T) ⊆
ctx∞(T) and therefore T ∈ L∞. This shows that L(n) ⊆ L∞ for all n.

To complete the proof, we show that there exists an N such that for every
N < n, L∞ ⊆ L(n). Since {L(n)}0≤n is an increasing sequence of languages,
{C(n)(T)}0≤n is an increasing sequence of sets. From this, together with the
assumption that C∞ is finite, it follows that for every tree T with 1 ≤ depth(T)
there is a number N(T) such that for every N(T) ≤ n, C(n)(T) = C∞(T). Since
for every d the number of trees of depth no greater than d is finite, there is a
number N(d) such that for every tree T ∈ S∞(L) with depth(T) ≤ d and for
every N(d) ≤ n, T ∈ S(L(n)) and if 1 ≤ depth(T) then also C(n)(T) = C∞(T).
We prove the claim by taking N = N(k)+1 where k is the maximal level of any
rule in R∞(L).

Fix some N ≤ n. We prove the claim by constructing a rule set R such
that L∞ ⊆ L(R) ⊆ L(n). Let φ(x) be defined by φ(σ) = σ for σ ∈ Σ and
φ(y) = y ∩ Cn−1 for y ⊆ CT (Σ). For a rule R = (y|x1, . . . , xl)d we can then
define φ(R) = (φ(y)|φ(x1), . . . , φ(xl))d. The rule set R is then defined by R =
{φ(R) : R ∈ R∞(L)}.

Let R ∈ R, then there is a rule R′ ∈ R∞(L) such that R = φ(R′). By the
choice of k, R′ = (C∞(S)|C∞(S1), . . . , C

∞(Sl)) for some S = 〈S1, . . . , Sl〉 ∈
S∞(L) of depth at most k. By the choice of N , S ∈ S(L(n−1)) and {c ∈ Cn−1 :
c(S) ∈ L(n−1)} = φ(C∞(S)). By Lemma 3 together with the choice of N ,

ctx(n−1)(Si) = φ(C∞(Si)) (1 ≤ i ≤ l). Therefore, R ∈ R̂L
(n−1)

. This shows
that L(R) ⊆ L(R(n−1)) = L(n).

We now show that for every tree T , φ(ctx∞(T)) ≤ ctxR(T). This proves that
L∞ ⊆ L(R) because T ∈ L∞ ⇐⇒ ∗ ∈ ctx∞(T) =⇒ ∗ ∈ ctxR(T) ⇐⇒ T ∈
L(R). We prove the claim by induction on the depth of T . For T = σ ∈ Σ

(depth 0) this is immediate from the definitions. We assume now the claim for
d and let T = 〈T1, . . . , Tl〉 be a tree of depth d + 1. Let c ∈ φ(ctx∞(T)). There
must be a rule R = (y|x1, . . . , xl)j ∈ R

∞(L) (j ≤ d + 1) such that c ∈ y and
xi ≤ ctx∞(Ti) (1 ≤ i ≤ l). Since φ(R) ∈ R and by the induction hypothesis
φ(xi) ≤ φ(ctx∞(Ti)) ≤ ctxR(Ti) (1 ≤ i ≤ l), it follows that the rule φ(R) is used
in calculating ctxR(T) and therefore c ∈ φ(y) ⊆ ctxR(T). ut

We wish to apply this theorem in the following setting. For every context
free language L there is a random variable X(L) which selects a context set for
L (that is, has values in 2CT (Σ)). We assume that there exists a finite context
set Cmax such that for every L, P (X(L) ⊆ Cmax) = 1. In this case, beginning
with any context free language L over Σ, we can generate the random sequence
of languages {LC̄(n)}0≤n where C̄ is defined by Cn = X(L(n)). With probability
1, Theorem 3 is applicable to the sequence generated in this way and we get
that the language sequence converges to a language L∞, that is, there is an
N such that for every N ≤ n, L(n) = L∞. This means that L∞ is learnable

using any Cn with N ≤ n. Every such Cn was generated by the random variable
X(L(n)) = X(L∞). Moreover, since there are infinitely many such n, it follows
that, with probability 1, for any C such that P (X(L∞) = C) > 0, C = Cn for
some N ≤ n. Therefore, with probability 1, L∞ is learnable by any context
to which X(L∞) gives a non-zero probability. This means that if the learner
generates the context set used by the algorithm based on the random variable
X, the language sequence eventually converges to a language which is learnable
by this learner with probability 1. In the next section we will see an example of
such a learning strategy.

5 Choosing the Context Set

One natural way for the learner to choose the context set to be used with the
learning algorithm is to take those contexts which appear most frequently in
the language sample. Since for every language there are many different context
sets which make it learnable, the algorithm is not too sensitive to moderate
(unavoidable) changes in the frequencies and to the exact definition of “most
frequent structures”.

One reason for choosing the most frequent structures is that the more fre-
quent the contexts in the context set are, the sooner will the algorithm see all the
examples it needs to see in order to converge (since the interesting examples are
those in which contexts from the chosen context set appear). We can imagine that
some learners may prefer quick convergence even at the expense of inaccuracy of
learning (over-generalization). Another reason for taking the most frequent con-
texts is that it is reasonable to assume that in most settings, the most frequent
contexts depend not only on the language structure (grammar) but also on lan-
guage usage. The influence of language usage on the chosen context set is then
described by a random variable X(L). This random variable depends, indeed, on
the language being used. However, we assume that even if the language changes
(over the generations) some common properties of language usage remain fixed.
For example, since the size of a context is proportional to the number of words in
the sentence in which it appears and since this directly influences the semantics
of the sentence, it seems reasonable to assume that there is a bound on the size
of the most frequent contexts, regardless of the specific grammar being used. In
this way we satisfy the condition P (X(L) ⊆ Cmax) = 1 of the previous section
for all languages L. As we saw before, this condition guarantees that, with prob-
ability 1, the language sequence will eventually converge to a language which is
learnable with probability 1.

It is possible to come up with different variants of “the most frequent con-
texts” approach outlined here. The discussion above would apply to any of them.
We here present just one, very simple method which is based on the frequencies
of contexts in a predetermined initial segment of the sample. The algorithm se-
lects the k most frequent contexts in the first n examples or, alternatively, can
take all those contexts which appeared at least k times in the first n examples.

This method is certain to construct a finite context set and to stabilize to a
constant set after a finite number of steps.

6 Conclusion

The algorithm presented in this paper is extremely simple and natural. It es-
sentially amounts to reading off rules from examples and discarding rules when
they become redundant (non-minimal). This simplicity allows us to distinguish
those factors essential to the correct functioning of the algorithm from those
details which may be more freely modified. What is essential to the working of
the algorithm is the use of a finite set of structures (the context set), the use of a
grammar based on a partial order and the use of rules already inferred by the al-
gorithm to infer additional rules (through the ctx function). Since inferred rules
may initially be incorrect, the rules are layered to ensure correct convergence.
Other details of the algorithm can be easily modified without changing the basic
results. For example, the use of full contexts can be replaced by sub-structures of
those contexts, sub-structures of the parse trees (equipped with an appropriate
ordering) or even by information which is external to the sentence structure it-
self (such as semantic information). All one has to ensure is that a large enough
variety of structures is available for the algorithm to be able to distinguish trees
of different types (as in Theorem 2). Different choices of such structures can
be made, without any significant effect on the analysis given here. In addition,
different methods for determining the finite structure set (the context set given
as a parameter) can be devised. While all these different variants have the same
basic convergence properties, they may differ greatly in their rate of conver-
gence, extent of over-generalization, computational complexity and applicability
to actual learning situations.

References

1. H. Fernau, Learning Tree Languages from Text. Technical report WSI-2001-19,
Universität Tübingen (Germany), Wilhelm-Schickard-Institut für Informatik, 2001.

2. H. Fernau, Learning Tree Languages from Text. In J. Kivinen and R. H. Sloan
(eds.) Proceedings of COLT 2002, no. 2375 of LNAI, pp. 153-168. Springer, 2002.

3. E. M. Gold, Language Identification in the Limit. Inform. and Control 10, pp.
447-474, 1967.

4. M. Kanazawa, Learnable Classes of Categorial Grammars. Studies in Logic Lan-
guage and Information, CSLI Publications, 1998.

5. T. Knuutila and M. Steinby, The Inference of Tree Languages from Finite Samples:
an Algebraic Approach. Theo. Comp. Sci. 129, pp. 337-367, 1994.

6. Y. Sakakibara, Learning Context-Free Grammars from Structural Data in Polyno-
mial Time. Theo. Comp. Sci. 76, pp. 223-242, 1990.

7. Y. Sakakibara, Efficient Learning of Context-Free Grammars from Positive Struc-
tural Examples. Inform. Comput. 97, pp. 23-60, 1992.

8. J. van Kampen, Bootstraps at Two for Lexicon and Discourse. In Proceedings of
ELA (Early Lexicon Acquisition) 2001.

