
Fast Learning from Strings of 2-Letter Rigid

Grammars

Yoav Seginer

ILLC, Universiteit van Amsterdam, The Netherlands

Abstract. It is well-known that certain classes of classical categorial
grammars are learnable, within Gold’s paradigm of identification in the
limit, from positive examples. In the search for classes which can be
learned efficiently from strings, we study the class of 2-letter rigid gram-
mars, which is the class of classical categorial grammars with an alphabet
of two letters, each of which is assigned a single type. The (non-trivial)
structure of this class of grammars is studied and it is shown that gram-
mars in this class can be learned very efficiently. The algorithm given
for solving this learning problem runs in time linear in the total length
of the input strings. After seeing two or more strings in a language, the
algorithm can determine precisely the (finite) set of grammars which can
generate those strings.

1 Introduction

It is well-known that certain classes of classical categorial grammars are learn-
able, within Gold’s paradigm of identification in the limit, from positive exam-
ples. In [3], Kanazawa showed that the class of k-valued categorial grammars, in
which every letter in the alphabet (lexicon) is assigned at most k types, is learn-
able from positive example strings (sequences of letters generated by the gram-
mar). While this general result guarantees that k-valued grammars are learnable,
it does not guarantee that this can be done efficiently. In fact, Kanazawa’s ap-
proach is based on learning from a richer input - structural examples. Structural
examples give the learner not only the strings but also the tree structure for
each string. For k-valued grammars with 2 ≤ k it has been shown in [1] that
the learning problem from structural examples (under reasonable assumptions)
is NP-hard. To extend this method of learning to strings, one needs to try out
all possible tree structures for each string. Even for 1-valued grammars (also
called rigid grammars), where learning from structural examples can be done in
polynomial time, the associated method for learning from strings is intractable.
There may be, of course, other methods for learning grammars from strings.

These methods may have to be tailored specifically for each class of grammars
we wish to learn. To find them, we must both identify grammar classes for which
this can be done and find an algorithm that learns the grammars in the class. In
this paper we examine what is probably one of the simplest classes of classical
categorial grammars - rigid grammars over an alphabet of two letters. We will

see that this class of grammars, which produces a non-trivial class of languages,
has a combinatorial structure which allows very efficient learning.
Languages generated by 2-letter rigid grammars may have finite or infinite

overlaps with each other or even be contained in each other. The language class
does not have the property of finite thickness - there are strings which belong to
infinitely many different languages (but, as shown by Kanazawa, the class does
have finite elasticity). Many of the languages in this class are not regular.
Underneath this complex surface structure, there are properties which allow

for very quick learning. All learning algorithms used here run in time linear in the
size of the input strings. Moreover, the algorithms learn all that can be learned
from any given input. This means that the algorithms can always give exactly
the family of grammars whose languages contain the input strings. When these
languages are contained in each other, the minimal language is given (which
implies conservative learning).
The exact sequence in which strings are presented to the learner may influence

how quickly the algorithms converge to a correct grammar. For every language
there is a pair of strings which allows the algorithms to converge immediately
to a correct grammar.
In what follows, we confine our attention to rigid grammars over two letters.

We begin, in Sect. 2, by giving a labeled graph representation of these grammars.
We then characterize the structure of the graphs. This will serve as the basis
for the rest of the analysis. In Sect. 3 we give the learning algorithm for these
grammars, step by step. At each step, an additional parameter in the structure of
the associated graph will be inferred. Even when such inference is not complete,
it is shown to be sufficient for the next step in the algorithm to be carried out.

2 A Graph Representation for Grammars

In classical categorial grammars, each string is associated with a type. These
types determine the way in which strings may be combined together (by con-
catenation) into longer strings. The set of types consists of primitive types (which
include the distinguished type t) and functor types, which are formed by com-
bining types. For any two types t1 and t2, the functor types t1/t2 and t2\t1 are
defined. The type t2 is the argument type of the functor types t1/t2 and t2\t1.
If string s1 has type t1/t2 and string s2 has type t2, the concatenation s1s2

may be formed. Similarly, if s1 has type t2\t1, the concatenation s2s1 is formed.
In both cases, the concatenation is assigned the type t1. We call this operation
a functor application. The direction of the slash determines the order in which
the two strings are concatenated. When we wish to ignore the direction of the
slash, we write t1|t2 for both functor types t1/t2 and t2\t1.
A categorial grammar is defined over an alphabet (set of letters). Each letter

in the alphabet is assigned one or more types. The language generated by a
grammar is the set of strings of type t that can be generated from the alphabet
by functor applications. A rigid grammar is a grammar in which each letter in
the alphabet is assigned exactly one type.

In this paper, we work over the alphabet {a, b} and use directed graphs
to represent rigid grammars over this alphabet. A graph has a single node for
every type which can be generated by the corresponding categorial grammar.
The nodes, however, are not labeled by types (there is always some arbitrariness
possible in the choice of types and we wish to avoid it).

Two kinds of directed edges are used in constructing the graphs, argument
edges (dashed arrows in diagrams) and functor edges (solid arrows in diagrams).
An argument edge connects a node representing a functor type with the node
representing the argument type of that functor (e.g. t1/t2 99K t2). A functor
edge connects a node representing a functor type with the node representing the
type which is the result of the application of that functor (e.g. t1/t2 → t1).

The construction of the graph corresponding to a categorial grammar begins
with two nodes which are labeled by the letters a and b and by the type assigned
to each of these letters by the grammar (the type labeling of nodes is only
temporary and is not part of the final graph). We call these two nodes the start
nodes. At each step in the construction we look for two nodes which are labeled
by types t2 and t1|t2 but are not yet connected by an argument edge. We first
add an argument edge from the node labeled t1|t2 to the node labeled t2. If there
is no node yet labeled t1, we create such a node. We then add a functor edge
from the node labeled t1|t2 to the node labeled t1. We repeat this process until
no more edges and nodes can be added (the process must terminate).

Next, we look for a node labeled by the distinguished type t. We select this
node to be the terminal node (if no such node exists, the categorial grammar
generates an empty language and is not interesting). We also assign slashes to
nodes which have edges leaving them. Such nodes must be labeled by a functor
type and we assign each such node the main slash of its type (i.e. if the type
is t1/t2, assign / and if the type is t2\t1, assign \). Finally, we remove all type
labeling. For an example, see Fig. 1. When the slashes are removed from a graph
G, we get the edge structure of G, which we denote by E(G).

/

/
ba t (t/t)/t

t/t

Fig. 1. The graph for the categorial grammar a 7→ t, b 7→ (t/t)/t. On the left appears
the graph as constructed. On the right the nodes of the graph are labeled by the
corresponding types (which are not part of the graph). Start nodes are indicated by
squares and the terminal node is indicated by a hollow node (in this particular case,
the left start node).

Strings can be generated at the graph nodes by a simple rule. Whenever
a configuration ν1 L99 ν2 → ν3 of three nodes has strings s1 and s2 already
generated at nodes ν1 and ν2, the concatenation of s1 and s2 is generated at
ν3 (s1s2 or s2s1 depending on the direction of the slash on ν2). The process
begins with the strings a and b at the start nodes. It is not difficult to see that
the strings generated at the terminal node of a graph are exactly the language
generated by the grammar that the graph represents. We write L(G) for the
language generated at the terminal node of the graph G.

2.1 Characterizing the Graphs of 2-Letter Rigid Grammars

There is a simple characterization of the structure of graphs representing 2-
letter rigid grammars. We define a functor path to be a directed path (in a
graph) consisting of functor edges only. Since the graphs contain no directed
loops, it is possible to number the nodes along a functor path. We write p(i) for
the i’th node on functor path p. The graphs for 2-letter rigid grammars are then
characterized by the next theorem (see Fig. 2 for typical examples). Note that
this characterization is given only in terms of the edge structure of the graph.
Any slash assignment to the nodes is possible.

y2 = 8

y0 = 0

y1 = 4
3 = x1

0 = x0 0 = x0

9 = y2, 5 = x1

y1 = 4

y0 = 0

Fig. 2. Typical graphs for 2-letter rigid grammars. A loopless graph (left) and a looping
graph (right). The nodes labeled by xi and yj are as in Theorem 1. In diagrams, we
always have pα on the left and pβ on the right.

Theorem 1. A graph represents a 2-letter rigid categorial grammar iff:

1. All graph nodes lie on two functor paths pα and pβ, which begin at the two
start nodes. The two functor paths either do not meet at all or meet only
once, at the last node of both paths. The terminal node is the last node on a
functor path.

2. There are two strictly increasing sequences of natural numbers {xi}0≤i≤m

and {yj}0≤j≤n, with 0 ≤ n−1 ≤ m ≤ n such that x0 = y0 = 0, the last node
in path pα is pα(xm) and the last node in path pβ is pβ(yn). All argument
edges are given by:

(a) If i+ 1 ≤ n then for yi ≤ l < yi+1 there is an argument edge from pβ(l)
to pα(xi).

(b) If i+1 ≤ m then for xi ≤ l < xi+1 there is an argument edge from pα(l)
to pβ(yi+1).

2.2 Looping and Loopless Graphs

From the theorem we see that there are two types of graphs. Graphs in which the
two functor paths meet we call looping graphs. Graphs in which the two functor
paths do not meet we call loopless graphs. In the analysis of looping graphs, we
look separately at the base and the loop of the looping graph (see Fig. 3). The
base of a looping graph is a loopless graph.

τ σ

1

0k
τ σ
τ σ

base(G)

k − 1

1

τ

1

σ

d

Fig. 3. A looping graph G (left), its base (center bottom), its loop (center top) and the
graph NL(G, d) (right) which generates a string with the same letter count as strings
generated by G. Only the last nodes and argument edge of the base are shown.

In loopless graphs (and therefore also in the base of looping graphs) strings
are generated strictly from the bottom up, that is, when a string is generated at
a node, it is a concatenation of strings generated at lower nodes. Therefore, only
one string is generated at each node of a loopless graph. On the loop, however,
the strings generated at the terminal node can be used to generate additional
strings on the loop.
In looping graphs, a loop is attached on top of a base. The generation of

strings in these graphs therefore begins by generating two strings sτ and sσ at
the top nodes τ and σ of the base. These two strings then serve as input for the
concatenations which take place on the loop. Any string generated on the loop
must be a concatenation of copies of the two strings sτ and sσ. One can think
of sτ and sσ as the two words of the language, which the loop then combines
into sentences.

A simple consequence of this description of the way strings are generated
by a graph is a simple method for distinguishing between languages generated
by looping and by loopless graphs. A language generated by a loopless graph
consists of only one string, while a language generated by a looping graph is
infinite.

3 Learning 2-Letter Rigid Grammars

Since the languages of loopless grammars consist of only one string, they are
not interesting in terms of learnability. We therefore concentrate on learning
languages generated by looping graphs. However, because the base of a looping
graph is a loopless graph, we will return to the analysis of loopless graphs.
To learn the language generated by a looping graph G, a learner must deduce

several parameters of the graph G from a sample of strings generated by G. The
structure of the class of graphs for 2-letter rigid grammars is such that the
learning process has two main stages. First, the learner has to discover the two
strings sτ and sσ (the words of the language). These two strings are determined
by the base of the graph. Having learned sτ and sσ, the learner can then learn
the way these two strings are put together (on the loop) to construct the final
strings (sentences) of the language.
The rest of this paper is concerned with answering these two questions based

on a sample of strings from L(G). Answering these questions requires answering
a sequence of sub-questions. This can be done efficiently because the questions do
not need to be answered simultaneously, but can be answered in sequence. The
answer to one question then makes answering the next question in the sequence
easy. Very often there remains some uncertainty as to the answer to a certain
question. This uncertainty is such, however, that it does not effect the ability to
answer the next question in the sequence.

3.1 Letter Assignment to the Start Nodes

The learning procedure is based on the graph representation as given in Theorem
1. The representation given in this theorem is not symmetric, however. There
is always an argument edge from the start node of the path pβ (right in the
diagrams) to the start node of the path pα (left in the diagrams) and never the
other way around.
There are, therefore, two ways of assigning the letters of the alphabet to

the start nodes. The standard assignment of letters assigns a to pα and b to pβ .
The inverse assignment creates languages which are “negatives” of the languages
with the standard assignment. The learner can distinguish languages with the
standard and the inverse assignment of letters by counting the number of a’s
and b’s in the sample strings.
We write #a(s) for the number of a’s in a string s and #b(s) for the number

of b’s in the string. The pair [#a(s),#b(s)] which we also denote by [s], we call
the letter count of the string s. As will be seen in the next section, a great part of

the structure of a grammar can be deduced from the letter counts of the strings
in its language. At this stage we only observe that strings generated by graphs
with the standard assignment of letters 1 have #b(s) < #a(s), while strings
generated by graphs with the inverse letter assignment have #a(s) < #b(s).
The learner can, therefore, easily distinguish the two types of languages. From
now on we assume that the grammar has the standard assignment (for the inverse
assignment, we simply have to exchange the roles of a and b).

3.2 Inferring the Strings sτ0
and sσ0

According to our original plan, we now need to find the strings sτ and sσ.
This, however, cannot always be done. What we can do, is find two strings sτ0
and sσ0

. The strings sτ and sσ are either equal to sτ0 and sσ0
or composed of

concatenations of sτ0 and sσ0
(in which case sτ0 and sσ0

are the “syllables” within
the words sτ and sσ). In either case, every string in L(G) is a concatenation of
copies of sτ0 and sσ0

and therefore, these string will do just as well as sτ and sσ.
The discovery of sτ0 and sσ0

involves two basic steps. First, the letter counts
[sτ0] and [sσ0

] are determined. Next, strings with these letter counts are extracted
from the ends of the available sample strings of L(G).
Since the letter counts of strings generated by a graph G are independent

of the slashes assigned to the nodes of G, letter counts of strings generated at
the nodes of G can be determined from the edge structure E(G). We therefore
attempt to discover the edge structure E(G). As a first step in this direction, we
show that the edge structure of a loopless graph can be inferred from the letter
count of the single string generated by the graph.

Inferring the Edge Structure of Loopless Graphs. The process of gener-
ating a string on a loopless graph begins with the two strings a and b which have
letter counts [1, 0] and [0, 1]. The generation then proceeds by going “up” the
graph, each time concatenating two previously generated strings. Concatenation
of strings amounts to the vector addition of their letter counts. This process is
very similar to what happens in the so-called Stern-Brocot tree. The edge struc-
ture of every loopless graph is equivalent to a branch in the Stern-Brocot tree
and the letter count of the string generated by a loopless graph is the same as
the vector on the corresponding branch in the tree (see [2] for details about the
Stern-Brocot tree).
The Stern-Brocot tree has several interesting properties which translate im-

mediately to properties of loopless graphs. In the Stern-Brocot tree every branch
produces a different vector and there is an algorithm which, given a vector in
the Stern-Brocot tree, calculates the branch of that vector. We give a version of
this algorithm which takes as input a string letter count and outputs an edge
structure which generates a string with this letter count. The translation from
loopless graphs to tree branches matches two loopless graphs with every branch

1 This fails for one (simple) graph and the three strings b,ab,ba, which can be dealt
with separately.

in the right half of the Stern-Brocot tree. These two graphs are very similar and
we fix a representative graph from each such pair, which we call the standard
loopless graph. The algorithm returns the standard loopless graph.

Algorithm 1. The algorithm takes as input a letter count [x, y] of some string
generated by a loopless graph with the standard letter assignment (so x ≤ y). Let
c1 and c2 be variables, which have nodes as their values. We begin with two start
nodes and let c1 be the start node labeled by a and c2 the start node labeled by b.

1. Create a new node, ν. Add an argument edge from c2 to c1 and a functor
edge from c2 to ν.

2. If [x, y] = [1, 1], stop.
3. If x > 2y or [x, y] = [2, 1], set [x, y] := [x − y, y], c2 := ν and repeat the

algorithm.
4. If x < 2y, set [x, y] := [y, x− y], c2 := c1, c1 := ν and repeat the algorithm.

Inferring the Edge Structure of the Base of a Looping Graph. We
cannot use Algorithm 1 directly to discover the edge structure of the base of the
looping graph G, because the sample strings are generated on the loop of G and
not in the base. Fortunately, it turns out that for every string s ∈ L(G), there is
a 0 ≤ d such that the loopless graph NL(G, d), given in Fig. 3, generates a string
with the same letter count as s (but not necessarily the exact same string).
Since Algorithm 1 only looks at the letter count of the input string and not

at the order of the letters within the string, applying the algorithm to a string
s ∈ L(G) results 2 in the edge structure of the graph NL(G, d), for some d. We
are looking for the edge structure of the base of G, and, as can be seen in Fig.
3, the base of G is the bottom of the graph NL(G, d). To get the base of G,
all we need to do is remove a few nodes off the top of the graph NL(G, d). The
question is how many nodes off the top of NL(G, d) should be removed.
We say that several nodes belong to the same node sequence if the nodes

just below these nodes (along the functor path) are all connected with argument
edges to the same node. This property can be read off a graph directly. Looking
at the diagram in Fig. 3, we see that to obtain the base of G, all we need to do
is remove the last node sequence from each functor path in NL(G, d).
There remain two slight problems. The first is that when k = 1, a node

sequence has to be removed only from one functor path, while when 1 < k, node
sequences have to be removed from both functor paths. Since we do not know
the value of k, we do not know how many nodes to remove. A second problem
is that when k = 1, the nodes which should be removed and some nodes in the
base of G (which should not be removed) belong to the same node sequence (this
can be seen in Fig. 3, since, when k = 1, the node labeled k − 1 and the node
labeled σ in the figure are the same node).

2 Because Algorithm 1 returns a standard loopless graph and NL(G, d) is not always
standard, the graph returned may be slightly different from NL(G, d), but, using
two strings from the sample, this problem can easily be solved.

Despite these problems, our algorithm always removes the last node sequence
from each of the functor paths of the graph NL(G, d). Note that this results in
the same graph for every value of d and therefore we can denote the resulting
(edge structure) graph by B(G). When 1 < k, B(G) is exactly the base of G.
When k = 1, however, too many nodes are removed by the algorithm and, as a
result, B(G) is only the bottom part of the base of G. The missing part, though,
is not too large. It is only the two last nodes sequences of the base of G.
Let τ0 and σ0 be the top nodes of B(G). Since string letter counts do not

depend on the slashes assigned to a graph, it is possible to calculate, from the
edge structure B(G), the letter counts [sτ0] and [sσ0

] of the strings sτ0 and sσ0

which are generated at τ0 and σ0 (that is, generated after we assign slashes to
the edge structure).
In case 1 < k, the strings sτ0 and sσ0

are exactly the strings sτ and sσ. When
k = 1, because sτ0 and sσ0

are generated lower down in the base of G than sτ
and sσ, the strings sτ and sσ must be concatenations of copies of sτ0 and sσ0

. In
either case, every string in L(G) must be a concatenation of copies of the strings
sτ0 and sσ0

.
Finally, we note that when the loop length of G is 1 < k, the length of the

node sequence removed above the node σ is k − 1. Therefore, once we deduce
that indeed 1 < k, we can immediately deduce the number k.

Extracting sτ0
and sσ0

from the Prefixes of Sample Strings. Let s ∈
L(G) be a string in the sample available to the learner. The string s is a con-
catenation of copies of sτ0 and sσ0

. Therefore, s must have at least one of the
strings sτ0 or sσ0

as a prefix. It is not known, however, which of the two strings
is such a prefix and at which end (left or right) of the string s. Knowing [sτ0]
and [sσ0

], we know not only the lengths of the prefixes we are looking for, but
also their letter counts. However, it may happen that a string s has a prefix with
letter count [sτ0], but that this prefix is not equal to sτ0 . The same can happen
with sσ0

.
By looking at Fig. 3, one sees that sτ0 is a concatenation of several copies of

sσ0
with a single copy of some other string sπ0

which is generated at some node
in the base of G. It turns out that this fact guarantees that at least one of the
three methods described in the next algorithm must succeed in finding at least
one of the strings sτ0 or sσ0

:

Algorithm 2. Given is a string s ∈ L(G) and the letter counts [sτ0] and [sσ0
]

deduced for G.

1. If the left and right prefixes of s of length |sτ0 | are identical, then this is the
string sτ0 .

2. If the left and right prefixes of s of length |sσ0
| are identical, then this is the

string sσ0
.

3. If the letter counts of the left and right prefixes of s of length |sτ0 | are differ-
ent, then one of these letter counts must be equal to [sτ0]. The corresponding
prefix is sτ0 . The prefix of length |sσ0

| at the other end of s must be the string
sσ0

.

Example 1. Let G be a graph with loop length 2 which has sσ0
= sσ = a,

sπ0
= sπ = b and sτ0 = sτ = sσsσsπ = aba (it is simple to construct the

appropriate base for G). Assume both slashes on the loop of G are forward
slashes (/). The language L(G) then contains the two strings sσsτsτ = aabaaba
and sσ(sσsτsτ)sτ = aaabaabaaba. The |sτ0 |-length left and right prefixes of the
first string are aab and aba. Both have letter count [sτ0] = [2, 1] and therefore
the algorithm cannot determine which of them is the string sτ0 . For the second
string, the prefixes are aaa and aba. Since aaa does not have letter count [sτ0],
the algorithm can determine that sτ0 = aba. For both strings the algorithm can
determine sσ0

since |sσ0
| = 1 and all prefixes of that length are the single letter

a.

3.3 Inferring the Loop Structure

The loop of the graph G generates strings by concatenating copies of sτ and sσ.
To infer the structure of the loop, we must first parse strings in the sample as
concatenations of sτ0 and sσ0

(which are either equal to sτ and sσ or substrings
of sτ and sσ).

Parsing Strings. In order to parse a sample string s as a concatenation of sτ0
and sσ0

, it is enough to know one of the two strings sτ0 or sσ0
. ¿From now on,

we assume the learner found sτ0 . The treatment of the case in which the learner
discovers sσ0

is similar, in principle, though some of the technical details differ.
To parse a sample string s, the learner simply tries to match sτ0 with segments

of s. This begins at one end (left or right) of s. Each time the compared segment
of s is identical to sτ0 , that segment is marked as uτ . When the match fails,
the learner assumes an sσ0

was reached and marks the appropriate segment (of
known length |sσ0

|) as uσ. The process then continues to the next segment. The
segments marked uτ are clearly identical to sτ0 . It is less obvious, but true, that
the segments marked uσ are always identical to each other and have the same
letter count as [sσ0

]. However, depending on the direction of the parse (from the
right or left), different parses may result and the string marked by uσ may differ,
as in the following example, where sτ0 = baaba. The parse from the left is given
above the string and the parse from the right is given below the string:

uτ

uτ
︷︸︸︷ uσ

uτ
︷︸︸︷ uσ

baaba baa ba aba baa ba aba
uτ uσ ︸︷︷︸

uτ

uσ ︸︷︷︸

uτ

Whether the two parses are identical or different is a property of the strings
sτ0 and sσ0

, and therefore is the same for all strings in L(G). The two parses
can differ only by a “shift” of one uτ . When different, the right to left parse can
be transformed into the left to right parse by removing one uτ from the right
end and attaching it at the left end (as in the example). Note that at least one
parse must be a correct parse, which reflects the way the string was generated
by the graph.

Completing the Language Inference. Let l and r be the number of back-
slashes (\) and forward slashes (/), respectively, assigned to the loop of a graph
G (so l+r = k). The language L(G) generated by the loop of a graph G is easily
seen to consist of the string sτ and strings of the form s1 . . . slsσsl+1 . . . sl+r,
where s1, . . . , sl+r are strings in L(G). We outline the way in which the numbers
l and r can be deduced from the parses described in the previous section. Since
the parses also give an hypothesis for the string sσ0

, this completes the language
inference. The uncertainties involved in the inference procedure may result in
a graph being hypothesized which is slightly different from the original graph
G that generated the sample. The language hypothesized, however, is always
correct.
A language generated by a graph of loop length 1 must have one of the

following forms (where k is the number deduced when calculating B in Sect.
3.2):

1. L(G) = {siτ0(sσ0
sk−1
τ0
)q+nsσ0

sk−i
τ0

| 0 ≤ n}.

2. L(G) = {siτ0sσ0
(sk−1

τ0
sσ0
)q

′

sτ0(s
k−1
τ0

sσ0
)q+nsk−1−i

τ0
| 0 ≤ n}.

3. L(G) = {siτ0(sσ0
sk−1
τ0
)q+nsτ0(sσ0

sk−1
τ0
)q

′

sσ0
sk−1−i
τ0

| 0 ≤ n}.

When all parses of strings in the sample match one of these forms, the corre-
sponding language is hypothesized. Since no more than one of the above forms
can fit the same two strings, any two strings from the sample are sufficient in
order to construct such a hypothesis. Any graph of loop length greater than 1,
which generates strings with such parses, generates a language which strictly
contains this hypothesized language. Therefore, as long as the sample does not
contain a string whose parse does not fit the loop length 1 hypothesis, this hy-
pothesis can be safely maintained.
Only one uncertainty remains. The parameter n in the above forms is added

to some constant q. For the parses of the sample strings, it is possible to de-
termine q + n, but not q and n separately. The solution is to assume that the
shortest string in the sample has n = 0. This guarantees that the hypothesized
language is contained in the language L(G). When new strings are added to
the sample, a shorter string may require the hypothesized parameter q to be
decreased.
Once the sample contains strings whose parses cannot be interpreted as being

generated by a loop length 1 graph, the learner can deduce that the language was
generated by a graph of loop length greater than 1. This means that sτ0 = sτ
and sσ0

= sσ. Moreover, from the algorithm in Sect. 3.2, the learner also knows
the length k of the loop.
Once k is known, there is a linear time algorithm which can determine those

values of l, r which can generate the sample. For some samples there may be
more than one such pair (some languages overlap). We do not give here the full
algorithm, but only a partial algorithm (based on the same principles). This
algorithm only finds upper bounds for the numbers l and r. To calculate an
upper bound for l, the algorithm should be applied to a parse from left to right.
To calculate an upper bound for r, it should be applied from right to left.

Algorithm 3. Let k be the loop length of G. Given is a parse P of a string
s ∈ L(G). The algorithm begins at one end of P and advances one by one
along the symbols of P . The bound calculated by the algorithm is returned in the
variable ρ. The algorithm begins with ρ := k and δ := 0.

1. If the current symbol in the parse is uτ , increase δ by 1 and continue to the
next symbol in the parse.

2. If the current symbol in the parse is uσ, set ρ := min(ρ, δ) and then δ :=
max(0, δ − (k − 1)).

We conclude by commenting that in every language there is a string from
which even the simple Algorithm 3 can calculate the values of l and r exactly.
When the left and right parses are identical, the simple string slτsσs

r
τ will do.

When the left and right parses are different, a more complicated string disam-
biguates the language. For example, if the correct parse is from left to right
and 2 ≤ l, then the string slτsσs

l
τsσs

2r+l−2
τ sσs

2l+r−2
τ sσs

r
τsσs

r
τ will always do.

Applying Algorithm 3 to the incorrect parse of this string will result in the pair
l − 1, r, which does not sum together to k. This allows the learner to reject the
parse.

4 Conclusion

Even the very simple class of 2-letter rigid grammars has a complex structure.
While learning a grammar in this class can be done efficiently, it is not a trivial
task. The learning algorithm must be carefully devised to make use of the spe-
cial properties of the class of grammars being learned. Moreover, receiving the
“wrong” input may delay (indefinitely) learning the correct grammar. At the
same time, receiving the “right” input can lead to very fast convergence to the
correct grammar.
The properties of the 2-letter rigid grammars which were used here cannot

be easily extended to other classes of grammars (but do apply to any 2-letter
sub-language of a rigid grammar). Even the 3-letter rigid grammars are already
a more complex class. However, one may try to identify other classes of gram-
mars which can be characterized by parameters which can be solved sequentially.
These parameters may be hidden below the surface of the standard representa-
tion of categorial grammars through types.

References

1. Costa Florêncio C. Consistent Identification in the Limit of any of the Classes

k-Valued is NP-Hard, In de Groote P., Morril G., Retoré C., Eds., Logical Aspects
of Computational Linguistics, vol. 2099 of Lecture Notes in Artificial Intelligence,
p. 125-138, Springer, 2001.

2. Graham R., Knuth D., Potashnik O. Concrete Mathematics, 2nd ed. Addison-
Wesley, 1994.

3. Kanazawa M. Learnable Classes of Categorial Grammars, Studies in Logic Lan-
guage and Information, CSLI Publications, 1998.

