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If it can be done, why do it?
Gertrude Stein

1. Introduction

The motto of this paper expresses our surprise upon finding that, while the idea of
applying AI techniques such as the event calculus to natural language semantics,
in particular the progressive, has been around for some time (see e.g. Steedman’s
article in the Handbook of Logic and Linguistics, Steedman (1997)), no one seems
to have done the actual computations. Here, we set out to remedy this situation,
because we believe that the event calculus is indeed the proper theory to treat
a group of phenomena including nominalisation, Aktionsart and the progressive.
Clearly, however, ours is not the first treatment of these topics, so we briefly indicate
why we believe that previous approaches still leave something to be desired. On the
one hand there are the event-based approaches following Davidson’s lead, such as
that of Parsons (1990). Here, verbs are provided with an argument for events, and
the formal language is extended with predicates such as Cul(e, t) and Hold(e, t),
meaning respectively that event e culminates at time t, and that e holds at t. The
meaning of these predicates is not axiomatised, although sometimes the set of events
is equipped with a lattice structure (i.e. in the work of Bach (1986b), Link (1987)
and Krifka (1989)); but even then the trouble with this approach is that the set
of events has much less structure than is necessary for the intended applications.
On the other hand, there exist the more intensional approaches based on possible
worlds, as in for example Dowty’s use of so called inertia worlds to explain the
semantics of the progressive. The trouble with this approach is that it is formally
rather unconstrained, so that its set of predictions is not sharply delineated.

This brief discussion indicates what we think are desirable features for a formal
theory in this area: it should have great expressive power; it should allow for inten-
sionality; and it should be presentable in axiomatic form, so that it is entirely clear
what it does, and does not, predict.

The event calculus and its precursor, the situation calculus, were developed in AI to
model reasoning with time and change. Formally, it is a many sorted predicate logic
with sorts for individual objects, timepoints and two kinds of events, or rather event
types: the fluents, which are time-dependent properties, and the time-independent
event types proper. There are a number of distinguished predicates, for instance
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the predicate HoldsAt(f, t), which expresses that fluent f is true at instant t, and
axioms which connect the distinguished predicates. To the novice the event calculus
initially may seem bewildering, because what is usually conceived of as a predicate,
e.g. Go(x, y), is freely treated here as a term go(x, y), a function which maps pairs
of objects on event types. This process is known as reification, and is usually kept
outside the formal system itself.

Interestingly, however, we cannot just take existing formalisms from the literature
and apply them. To accommodate the linguistic phenomena we are interested in,
a major change is necessary, namely the formalisation of the reification procedure
alluded to above, within the theory itself (see section 5). This turns the predicate
HoldsAt into a fullfledged self-referential truth predicate, applicable to fluents de-
fined in terms of itself. We therefore have to graft a formal theory of truth onto the
event calculus, and for this purpose we have chosen Feferman’s type-free calculus.

We close with a few remarks on the paper’s methodology. We are roughly in agree-
ment with the main tenets of cognitive or conceptual semantics, in that meaning
should be explicated with reference to a system of mental representations in terms
of which reasoning, planning, or formation of beliefs and intentions takes place. The
primitives of such a conceptual system may include cause, event, path, go, etc.
Where we differ from most adherents of conceptual semantics, is that we think that
this approach is entirely compatible with, and even invites, logical and mathemati-
cal methods, even though these are different from possible worlds semantics in any
of its guises.

The results of this paper do raise several possibly interesting questions on cognition.
The fact that there is a ‘pre-established harmony’ between different kinds of nom-
inalisations and the event calculus may just be due to the fact that the originators
of the event calculus are native speakers of English, but it may also indicate that
this way of carving up the world is essential to cognition. Typological linguistics
might be of help here. The study of Koptjevskaja-Tamm 1993 shows that, syntacti-
cally speaking, the action nominal constructions of 70 languages can be ordered in
a spectrum one end of which is a sentence, while the other is an NP corresponding
to a perfect nominal. Koptjevskaja-Tamm remarks on this classification

Thus in English, noun phrases which refer to events are further
from the corresponding independent sentences than those which
refer to facts and propositions. As we shall see, this situation is not
at all unique and is also reflected in the internal structure of [action
nominal constructions] across languages.

The main problem then would be to determine whether or not all constructions
across the spectrum can be mapped semantically onto either events or fluents. There
exist some data from Akatek Maya and Japanese which support this conjecture
(Hamm et al. (1998)), but many more languages remain to be checked.

The remainder of the paper is organised as follows. The next section discusses
nominalisation in English and introduces the data to be explained. Sections 3, 4
and 5 are the technical heart of the paper: they introduce Feferman’s theory of



EVENT CALCULUS, NOMINALISATION, AND THE PROGRESSIVE 3

truth, the event calculus, and their combination. Section 6 applies the resulting
theory to nominalisation, and section 7 does the same for Aktionsart and aspect,
in particular the progressive.

2. Nominalisation: syntax and compositionality

In chapter five of Linguistics in Philosophy, Zeno Vendler discusses two classes of
nominalised predicates, the class of perfect and the class of imperfect nominals,
and further two classes of verbal contexts which are sensitive to these nominals.
In the following two sections, we introduce the most important characteristics of
the notions involved. A more detailed discussion of these issues can be found in
Vendler (1967) and Vendler (1968). In section 2.3 we briefly describe the syntax of
these constructions and the last section of this chapter contains a short discussion
of Chierchia’s motivation for introducing a kind of type lowering operation into
semantic frameworks dealing with nominalisations.

2.1. Perfect and Imperfect Nominals. Vendler’s differentiation between per-
fect and imperfect nominals and his observations about their most important prop-
erties are illustrated in (1) and (2). Perfect nominals like those in (1) occur with
determiners, can be modified by adjectives but not by adverbs, and cannot appear
in different tenses or be modalised. Further, it is impossible to negate perfect nom-
inals. To summerize, perfect nominals are nominalised forms which have lost their
verbal characteristics and behave like “real” nouns. This is why Vendler dubbed
them “perfect”.

(1) a. The singing of the song.
b. beautiful singing of the song.
c. *quickly cooking of the dinner.
d. *having cooked of the dinner.
e. *being able to cook of the dinner.
f. *not revealing of the secret.

Imperfect nominals show the opposite behaviour, as the examples in (2) demon-
strate. They cannot occur with nominal determiners, they can be modified by ad-
verbs1 but not by adjectives, they can occur in different tenses or be modalised,
and it is possible to negate them.

(2) a. *The singing the song.
b. *beautiful singing the song.
c. Singing the song beautifully.
d. quickly cooking the dinner.
e. having cooked the dinner.
f. being able to cook the dinner.
g. not revealing the secret.

1They therefore can occur with adverbial determiners like always.
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So, imperfect nominals can occur externally in noun phrase positions, but their
internal structure strongly resembles the structure of the V P or the S they are
derived from. This is, of course, the reason why Vendler called them “imperfect”.
We shall henceforth use the term perfect nominal both for the respective nominal
and for the NP which contains a perfect nominal.

Abney (1987) develops a detailed syntactic account of gerunds, which are part of the
classes of perfect and imperfect nominals. He distinguishes four types of gerunds:

(3) a. Acc-ing: John being a spy.
b. PRO-ing: singing loudly.
c. Poss-ing: John’s knowing the answer.
d. Ing-of: singing of the song.

Assuming that PRO-ing is a special case of Acc-ing or Poss-ing, there are three
classes of gerunds, which differ with respect to their syntactic properties. For ex-
ample, Abney shows that Acc-ing and Poss-ing constructions show differences with
regard to agreement, long distance binding, pied piping, etc.. But what about se-
mantic differences? Of course, Ing-of gerunds and Poss-ing gerunds are among the
perfect and imperfect nominals2 introduced in this section, and Vendler’s thesis is
(see section 2.2) that there is a category distinction, i.e. something genuinely se-
mantic, involved with these notions. In this paper it will be assumed that Acc-ing
and Poss-ing constructions are semantically in the same class, the class of imperfect
nominals.

Vendler (1968) demonstrates that the genitive in Poss-ing gerunds is not a “real”
genitive like John’s in John’s house. This is shown by the following examples:

(4) a. John’s house
b. The house of John
c. John’s singing the song
d. *The singing the song of John

Example (4-b) is a paraphrase of (4-a). An analogous paraphrase for (4-c) does not
exist.

Compared with the genitive in Poss-ing gerunds the genitive of perfect nominals
behaves like a “real” genitive. This is shown by the following observation: It is
possible to delete the genitive of embedded imperfect nominals if it is coreferential
with the matrix subject. Deletion in the case of perfect nominals however leads to
ungrammaticality.

2The concepts perfect and imperfect nominal are used by Vendler primarily to refer to sets
of structural properties, which are assumed to be conditioned by two different semantic types.
This is especially clear when imperfect nominals are considered. This is a huge and structurally
heterogeneous class including Poss–ing, Acc–ing gerunds, absolutive constructions, infinitives and
even that–clauses, which are traditionally not thought of as nominal at all. Perfect nominals
however are more coherent. This class contains Ing–of gerunds and some derived nominals.
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(5) a. He shocked us by telling a dirty joke.
b. *He entertained us by singing of arias. (Vendler (1968):50)

For more arguments in favour of the claim that the genitive of Poss-ing gerunds is
not the same as the genitive in Ing-of nominals see Vendler (1968).

2.2. Narrow and Loose Containers. Vendler also considers verbal contexts,
which somehow discriminate between the above two classes of nominals. Expressions
like surprised us, is unlikely are examples of loose containers. Their name derives
from the fact that they accept both kinds of nominals as arguments as is shown in
(6).

(6) a. The beautiful singing of the aria surprised us.
b. John’s not revealing the secret is unlikely.
c. The singing of the song is fun.
d. John’s quickly cooking the dinner surprised us.
e. They were surprised by the sudden coming in of a stranger.3

f. They were surprised by a stranger coming in suddenly.

Verbal contexts like was slow, occurred , etc. which are called narrow by Vendler,
show a more restrictive behaviour. They accept only perfect nominals as is shown
in (7).

(7) a. *The soprano’s singing the aria was slow.
b. The soprano’s singing of the aria was slow.
c. John’s revealing of the secret occurred at midnight.
d. *John’s revealing the secret occurred at midnight.
e. *John’s not revealing the secret occurred at midnight.

Narrow containers can be negated and they stay narrow under negation as the
following examples demonstrate.

(8) a. The singing of the song didn’t occur at noon.
b. John’s kicking the cat didn’t occur at noon.

Note that the nominals arrival of the train and non-arrival of the train in the fol-
lowing examples, though similar to the perfect and imperfect nominals, respectively,
nevertheless behave differently. It may well be that arrival of the train is a perfect
nominal, but non-arrival of the train is not an imperfect nominal in Vendler’s sense
because it can occur with nominal determiners and adjectives but not with adverbs.

(9) a. The arrival of the train surprised us.
b. The non-arrival of the train surprised us.

3This example is from Jespersen (1933),p 327]
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c. The arrival of the train occurred at noon.
d. *The non-arrival of the train occurred at noon.
e. The unexpected non-arrival of the train
f. *The non-arrival of the train unexpectedly

Narrow containers are typical examples for extensional contexts in contrast to loose
containers4.

(10) a. The beheading of the tallest spy occurred at noon.
b. The beheading of the tallest spy surprised us.

If the king and the tallest spy happen to be the same person, then it follows from
(10)(a) that The beheading of the king occurred at noon. But certainly The beheading
of the king surprised us does not follow from (10)(b).

Vendler description of the meanings of perfect and imperfect nominals and their
respective containers is rather vague but he clearly suggests that a category dis-
tinction between events and facts or results forms the philosophical basis for these
empirical findings. Events are taken to somehow be related to the meaning of per-
fect nominals, and facts or results to the meaning of imperfect nominals. We think
it is fair to interpret Vendler as claiming that the relationship between the nominals
and their respective containers is determined by this category distinction, but it is
certainly open whether he wants the other findings to be interpreted in this way or
as conditioned by structural (i.e. syntactic) properties of English.

Schachter suggests that some gerunds – his gerundive nominals – behave like names.

To return to gerundive nominals, I would claim that gerundive nom-
inals without initial possessives or other determiners are also class
names, naming a type of activity in which one can participate, a
type of condition, etc.
Schachter (1976), p 215

If we assume that imperfect nominals are like names then this assumption accounts
immediately for the lack of determiners in such phrases since names can in general
not occur with determiners. This assumption is further supported by the following
observation due to Pullum (Pullum (1991)):

(11) *his leaving her that you predicted.

Neither Acc–ing nor Poss–ing gerunds tolerate restrictive relative clauses. One fur-
ther observation supporting Schachter’s proposal is that Ing–of nominals can some-
times be pluralised but Acc–ing and Poss–ing gerunds definitely can’t. The following
example is from Poutsma.

4The examples are from Parsons (1990)
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(12) He ignored the sayings and doings of the ladies of his family.
Poutsma (1923), p 113.

Observations from Abney (1987), pp 244 show that perfect and imperfect nominals
also differ in their ability to participate in N-bar deletion. For instance, an ellipsis
with a Poss-ing construction as in (13)(a) is bad, while it is possible with an Ing-of
gerund and a narrow container as is shown in (13)(b).

(13) a. *John’s fixing the sink was surprising, and Bill’s was more so.
b. John’s fixing of the sink was skillful, and Bill’s was more so.

Abney claims that the gerund John’s fixing of the sink is ambiguous and can either
refer to the manner in which John fixed the sink - called the Act-reading by Abney
- or the fact that John fixed the sink (Fact-reading). N-bar deletion is only possible
under the Act-reading.

Of course Abney does not develop a formal semantics for his Fact– and Act–
readings. In his work these concepts are just labels which are used to name the
intuitive reason for observations as the ones above. In the following chapters we
will develop a formal theory which allows us to give a precise reconstruction of
Abney’s notions. His Act–reading will be described in terms of event types and his
Fact–reading in terms of fluents. These formal concepts are introduced in section
4.

Finally we note the following examples of iterated nominalisations, a phenomenon
which was not observed by Vendler.

(14) a. John’s supporting his son’s not going to church
b. John’s improving his singing
c. John’s watching the dog’s playing
d. My discovering her not leaving
e. his discussion of John’s revealing the secret

We are interested in these examples because the negation in say, (14-a) seems to
have antonymic force and all examples seem to be factive in the sense that they
presuppose that the fact expressed by the embedded nominal holds. For instance
(14-a) implies that John’s son is not going to church.

In this paper only the Act- and Fact-readings of gerunds are considered5. The
habitual reading of a gerund like eating apples will be neglected6.

2.3. Syntax. Although this is a paper on the semantics of nominalisations we will
briefly discuss in this section two theories about the syntactic structure of at least

5For a thorough empirical discussion of Vendler’s examples the reader is advised to consult
Asher (1993) and Zucchi (1993).

6See Portner (1991) for a discussion of such examples.
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some nominalisations introduced in the previous paragraphs. Our main purpose
here is to show that the formal apparatus we will develop in chapters 3 and 4 al-
lows a strictly compositional interpretation of the discussed nominalisations; but
we also want to stress that this interpretation process is not tied to a specific
syntactic framework. We therefore discuss first Abney’s government and binding
approach and then the GPSG–based theory of Pullum (1991). We have to admit
that this choice is not well balanced since Pullum only analyses what he calls nom-
inal gerund phrases, which are Abney’s Poss–ing gerunds. Pullum’s main interest is
in theoretical syntax. He wants to show that the GPSG–analysis of constructions,
which exhibit verbal as well as nominal features, doesn’t necessarily lead to a trivi-
alisation of the concept head of a phrase. Nevertheless these two approaches are the
theoretically most explicit accounts of the syntax of at least some of the construc-
tions we are interested in. Therefore we will show in chapter 6 how to interpret the
respective syntactic structures compositionally.

Abney’s account is based on a conservative extension of classical X–theory. It is
conservative in the sense that it does not eliminate any inferences of X–theory on
the phrasal level. Abney’s approach differs from the classical theory only insofar
as he assumes that the function of the affix -ing is to convert a verbal category
into a nominal one. The essence of his analysis is then that the differences in the
structures of the various types of English gerunds reduce to the question where in
the projection path of the verb this conversion takes place. It is presumed that -ing
can only be adjoined to the lexical category V and to maximal projections; i.e. VP
and IP7. If –ing is sister of IP the resulting structure is that of Acc–ing.

(15) [Acc–ing]

DP
©©©©©

HHHHH
ing IP

¢
¢

¢

A
A
A

John I’
½

½
I VP

½
½

½½

Z
Z

ZZ
V DP

sing the Marseillaise

7A structure like [CPC[DP −ing[IP. . .]]] is excluded because it violates the selection properties
of C.
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In case –ing is sister of the VP-node, we get in a similar way the structure of the
Poss–ing gerund. The third possibility is that –ing is sister of the lexical category
V. In this case we have the structure of the Ing–of phrases.

It should be noted that –ing does nothing but convert a verbal projection into a
nominal one. This abstract morphological element does not have a syntax of its own
because it does not project any structure. This is the reason why Abney’s system
is a conservative extension of classical X–theory.

In order to give a strictly compositional interpretation we have to deviate slightly
from Abney’s analysis. We have to assume that the –ing which is sister of the lexical
category V is different from the one which is sister of maximal projections. This
assumption is due to the different semantic effects this affix has when it converts a
V to a N in contrast to the conversion of maximal projections. We will write –ingof

for the –ing which is sister to V and –ing for the one which is sister to maximal
projections.

If we moreover assume Chomsky’s rule of of –insertion we get the following tree
which will be compositionally interpreted in section 6.2.

(16)

DP
©©©©©

HHHHH

John’s D’
³³³³³ A

A
AD
N’

½
½½

PPPP
N

´
´

´́
Vingof

sing

NP
½

½
½

½
½

Z
Z

Z
Z

Z

the Marseillaise

We skip the motivation for this rule and refer the reader to Chomsky (1981)(rule 9
on p. 50).

Since we want to make clear that our analysis does not depend on any of the
syntactic details of Abney’s analysis it will be shown that Pullum’s approach allows
a compositional analysis too. Pullum argues for an analysis of nominal gerund
phrases (Abney’s Poss–ing gerunds) which results in the following tree.
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(17) [Pullum’s NGP]

S
©©©©©©

HHHHHH
NP

©©©
NP[POSS:+]

your

HHH
VP[V FORM :prp]

½
½

½½
V[V FORM :prp]

breaking

Z
Z

Z
ZZ

NP
©©©

HHH
Det

the

N’

N

record

VP
©©©

HHH
V

was

NP
½

½½
Z

ZZ
Det

a

N’

N

surprise

The feature [V FORM : prp] says that the verb is in its participle form. Similarly
the feature [POSS : +] indicates that the NP is a possessor NP. These forms are
assumed to be derived in the morphological component of grammar and therefore
only the results of such processes occur in syntax.

2.4. Chierchia. In this section we will briefly sketch Chierchia’s most important
arguments for introducing “type–lowering” operations into the formal system8. This
part will also be used for the illustration of our official notation of the formal
nominalisation operation in Chierchia’s sense. We will introduce this operation here
by way of simple examples. The precise formal details of our formalism, which is
based on work by S. Feferman, are given in section 3.

Chierchia points out that the usual analysis of gerunds and infinitives in terms of
type shifting9 has some serious disadvantages.

Consider the following examples from Chierchia (1988);

(18) a. To be home is nice.
b. Being home is nice.
c. John is nice.

and contrast them with the unacceptable expressions in (19)

(19) a. *Are home is nice.

8We will not discuss his arguments against weak intensional theories here.
9For details see Gamut (1991), p 103
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b. *Is home is nice.

Like a proper name – John in the example above – and unlike finite elements
infinitives and gerunds are allowed in argument positions. From examples like these
Chierchia concludes that VPs like is nice play a double role in the grammatical
system. Disregarding intensionality they can be considered as elements of D〈e,t〉
when they are finite but in their infinitive or gerundial form they can also be taken
as objects. This immediately explains the contrast in (18) and (19).

The type shifting strategy would not only have to assign two different meanings to
is nice in (18) but two different types of meanings; i.e. 〈e, t〉 for (18-c) and 〈〈e, t〉, t〉
for the first two examples. This however proves rather unfortunate once slightly
more complicated examples are considered.

(20) a. Having fun is extremely nice.
b. John is extremely nice.

Now we also have to assign two different types to the adverb extremely. Therefore
the adverbial component of the grammar is infected by the decision to give is nice
a lower and a higher type. It is not hard to see that proceeding this way forces to
assign differing types to practically every major grammatical category. Therefore
the conclusion is that the type shifting strategy infects the whole grammatical
system which is not a very welcome result.

In order to avoid such consequences Chierchia requires that the formal system
contains an operation which transforms predicates and sentences into terms. His
notation for this operation is ∩.

In this paper we will deviate from Chierchia’s notation for the formal nominalisation
operation. Instead we will use the notation introduced in Feferman (1984) which
has the advantage to clearly indicate which variables are bound and which are
free in the nominalised terms resulting from formulas. Let us illustrate this by
representing example (18-a) in our system. We assume that nice and home are
translated as nice(x, s) and home(x, t). The variable t in these translations ranges
over times.

(21) nice(home[x̂, t̂], s).

The term home[x̂, t̂] denotes an object as required by Chierchia. The brackets [, ] in-
dicate the result of the nominalisation operation applied to the formula home(x, t).
The variables x and t are bound by abstraction in this term. By contrast home[x, t̂]
with x a free variable denotes a function which when applied to an appropriate
argument yields an object.

The formal rendering of the examples in (19-a) runs as follows:
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(22) is nice(home(y, t), s)

Now the expression in (22) is not well formed since is nice(x, t) is a function defined
on objects not on functions like home(y, t). Therefore the ungrammaticality of
(19-a) and likewise that of (19-b) is explained by a type mismatch.

Moreover the type lowering strategy now provides a uniform analysis of the adverb
extremely in (20). This is so because in both cases the denotation of the adverb can
be a function which when applied to the function is nice yields a function of the
same type as is nice10. This resulting function can then be applied to the object
home[x̂, t̂] as in (21).

It is thus clear that with the help of Feferman’s notation we can account for the data
considered by Chierchia. The formal properties of this operation are the subject of
the next section.

Let us finally remark that Zucchi (1993) uses a kind of nominalisation operation
in Chierchia’s sense too. Zucchi works within Cresswell’s type theory (Cresswell
(1973)), which differs primarily from Montague’s in the assumption that all func-
tional types contain partial functions. The type 1 is the type of names and 0 the
type of propositions, which are assumed to be sets of possible worlds. The type of
a one–place propositional function in Cresswell’s notation is 〈0, 1〉11.

Zucchi assumes that the imperfect nominal The soprano’s singing the song denotes a
proposition. In order to avoid assigning two different types to is one of my favourite
things in (23-a) and (23-b) he introduces the following semi–formal device, where
V is the valuation function of the model.

V (i) is the function ω ∈ D〈1,0〉 such that for every a ∈ D0, ω(a) = a

This means that V (i) maps a proposition to an entity. On the level of logical form
i therefore transforms a sentence into a term, an expression of type 1.

(23) a. The soprano’s singing the song is one of my favourite things.
b. The soprano’s nose is one of my favourite things.

Using function i example (23-a) may then be roughly formalised in the following
way:

(24) Is one of my favourite things(i(The soprano’s singing the song)).

Analogous to Chierchia’s nominalisation operator Zucchi’s function i allows a uni-
form type assignment for the VP is one of my favourite things.

10In Montague’s notation the adverb would be of type 〈〈e, t〉, 〈e, t〉〉 for both examples in (20).
11Note the reversed ordering in this type notation. In Montague’s type theory 〈0, 1〉 would be

written as 〈e, t〉.
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3. Feferman’s type–free calculi

As our brief review of the literature has made clear, providing a formal semantics
for nominalisation requires a coding procedure whereby formulas are transformed
into terms. Extending this semantics to the progressive and iterated nominalisations
furthermore requires the use of a truth predicate. Here, we introduce these formal
prerequisites in the form of a synopsis of Feferman’s type–free calculi (Feferman
(1984))12.

The Russell paradox shows that one cannot have unrestricted comprehension,
whereas Tarski showed that one cannot consistently add a truth predicate to first
order logic. That is, it is impossible to extend a first order theory S0 to a first order
theory S having truth predicate T and relation of elementhood ∈ satisfying

(25) a. (i) Every formula ϕ in the language L of S has a name in L; formally,
in L there exists a closed term pϕq for ϕ.

(ii) For every formula ψ(x) one can construct a formula ϕ such that
in S, ψ(pϕq) is equivalent to ϕ.

b. S satisfies classical logic.
c. In S, the truth predicate satisfies the following axiom: for all formulas

ϕ in L,
T (pϕq) ↔ ϕ

d. For every formula ϕ(x) there exists in L a term {x | ϕ(x)}, in which
x is a bound variable.

e. S satisfies the following comprehension axiom for every formula ϕ(x)
in L:

∀y[y ∈ {x | ϕ(x)} ↔ ϕ(y)].

Feferman investigates several ways out, among which dropping (25-b) in favour of
a three–valued logic, and modifying (25-c) and (25-e) in such a way that the role
of negation is made more explicit.

3.1. Coding and truth predicates. A necessary ingredient of languages contain-
ing a truth predicate is a coding scheme which maps formulas ϕ to terms pϕq. Let
L0 be some first order language, S0 a theory formulated in L0. We briefly review
the requirements on L0 and S0 which allow such coding.

First, one requires that L0 contains an individual constant 0̄, a binary function
symbol π and two unary function symbols π1 and π2. We shall often write (τ1, τ2) for
π(τ1, τ2). Secondly, we assume that S0 proves the following statements concerning
these functions

(26) a. (x, y) 6= 0̄
b. π1(x, y) = x ∧ π2(x, y) = y

12For a comprehensive study of theories of truth and abstraction the reader is referred to
Cantini (1996).
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If M0 |= S0, (·, ·) is a pairing function in M0, and π1 and π2 are the corresponding
projection functions.

One may now define tuples inductively by putting: (τ) = τ and (τ1, . . . , τk+1) =
((τ1, . . . , τk), τk+1). Similarly one may define the corresponding projection opera-
tions πk

i (1 ≤ i ≤ k) such that: πk
i (x1, . . . , xk) = xi.

These constructs suffice to define an abstract form of Gödel numbering (see Mendel-
son (1987)).

Definition 1. Let L be some extension of L0 (e.g. by means of a truth predicate).
Then we may code formulas of L as terms in L0. We write pϕq for the Gödel
number in L0 of ϕ in L. This notation will be used interchangeably both for the
term in L0 and for the object denoted by that term in a model M0.

We will now put this machinery to work. Let ϕ be a formula with free variables
among x1, . . . , xk, y1, . . . , yn. The L0–term (pϕq, y1, . . . , yn) contains x1, . . . , xk as
bound variables and y1, . . . , yn as free variables. Since the x1, . . . , xk are bound by
abstraction, the following notation makes sense

Definition 2. ∆n ϕ[x̂1, . . . , x̂n, y1, . . . , ym] = (pϕq, y1, . . . , ym). For n = 1 we will
use standard set theoretical notation ∆1 {x | ϕ(x, y1, . . . , yn)} = ϕ[x̂, y1, . . . , yn]. If
both m and n are equal to 0, we write pϕq.

To formalise the truth definition and the comprehension axiom, we add predicates
Tn to L0. The intuitive meaning of Tn(x1, . . . , xn, z) is: the tuple (x1, . . . , xn) sat-
isfies (the formula coded by) z. This leads to the following axiom scheme, which
generalises both truth definition and comprehension axiom:

Axiom 1. (TnA)

Tn(x1, . . . , xn, ϕ[û1, . . . , ûn, y1, . . . , ym]) ↔ ϕ(x1, . . . , xn, y1, . . . , ym)

Important special cases are the axioms for T0

(27) a. (T0A) T0(ϕ[y1, . . . , ym]) ↔ ϕ(y1, . . . , ym)
b. For m = 0: T0(pϕq) ↔ ϕ

and for (T1A),

(28) (T1A) T1(x, {u | ϕ(u, y1, . . . , ym)} ↔ ϕ(x, y1, . . . , ym).

The latter statement shows that one may write ∈ for T1. T1 will be of special
importance for us, since it is identical to the HoldsAt predicate of the event calculus
that will be used in our treatment of the progressive. The purpose of the next section
is to show that the axiom scheme 1 can be consistently added to S0, provided one
makes some alterations to the basic set up.
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3.2. Three–valued logic and partial models. Tarski’s paradox of truth can be
derived in any logic containing minimal logic, so a way out has to be sought in
a different direction. Feferman observed that Kleene’s (strong) three–valued logic
provides the solution. Kleene’s three–valued logic differs from ÃLukasiewicz’ in the
status of the third value u, which in this case means not yet known instead of
‘intermediate’. In other words, u is not a degree of truth, but rather means that
the truth value is undecided. The set of truth values {u, 0, 1} thus has the partial
order u ≤ 0 and u ≤ 1.

Let M0 be a classical model with universe M . Feferman shows how to expand M0

with a truth predicate which is a partial relation.

Definition 3. A partial model M is a tuple of the form (M0, R1, . . . , Rn, . . .), where
M0 is a classical first order structure and the Ri are partial relations13on M .

The ordering ≤ on partial relations naturally extends to an ordering ≤ on partial
models with fixed classical component. The logic of partial models will be given by
the Strong Kleene operations (Kleene (1952)).

p ¬p
1 0
0 1
u u

p q p ∧ q
1 1 1
0 0 0
u u u
1 0 0
1 u u
0 1 0
0 u 0
u 1 u
u 0 0

p q p ∨ q
1 1 1
0 0 0
u u u
1 0 1
1 u 1
0 1 1
0 u u
u 1 1
u 0 u

p q p → q
1 1 1
0 0 1
u u u
1 0 0
1 u u
0 1 1
0 u 1
u 1 1
u 0 u

p q p ↔ q
1 1 1
0 0 1
u u u
1 0 0
1 u u
0 1 0
0 u u
u 1 u
u 0 u

The universal quantifier is defined by means of a generalised conjunction
∧

and the
existential quantifier is then defined as the dual of ∀.

The distinguishing feature of the Kleene operations (including
∧

) is that they are
monotone:

Definition 4. A mapping O from {u, 0, 1}n to {u, 0, 1} is monotone if pi ≤ qi for
all 1 ≤ i ≤ n, implies O(p1, . . . , pn) ≤ O(q1, . . . , qn).

Now let L be the language which results from L0 by the addition of the truth
predicates Tn, for all n. Feferman shows the consistency of the truth axioms with
an arbitrary theory S0 in L0 by means of a fixed point construction.

Definition 5. a. Let M be a set. A n–ary inductive definition (also called a
monotone operation) on M is a function F which maps n–ary relations on

13A n–ary partial relation R is a a pair (R, R), where R, R ⊆ Mn and R∩R = ∅. The ordering
on the truth values leads to an ordering on relations in the following manner: R ≤ R′ if for all
m1, . . . , mn ∈ M , R(m1, . . . , mn) ≤ R′(m1, . . . , mn).
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M to n–ary relations on M , and which is monotone in the following sense:
for all R,S ⊆ Mn one has

R ⊆ S implies F(R) ⊆ F(S)

b. If F(R) = R, then R is called a fixedpoint of F .

Theorem 1. For every model M0 of S0 there exists a smallest expansion to a
partial model M = (M0, T0, . . . , Tn, . . .) which satisfies the property: for every Tn

in L and every formula ϕ(x1, . . . , xn, y1, . . . , ym) from L one has

[[Tn(c1, . . . , cn, ϕ[û1, . . . , ûn, cn+1, . . . , cn+m]) ]]M = [[ϕ(c1, . . . , cn, cn+1, . . . , cn+m) ]]M,

where [[ ϕ ]]M denotes the truth value of ϕ in M.

Proofsketch. We do the proof for T1, the general case is similar. Let M0 be a
model for S0 and suppose a partial interpretation for T1 has been constructed, i.e.
we have predicates E and E representing positive and negative parts of T1. We
now define a monotone operation F on the partial model (M0, E, E), by putting
F(E, E) = (E′, E′), where

(pϕq, c) ∈ E′ iff ϕ(c) is true in (M0, E, E),

and
(pϕq, c) ∈ E′ iff ϕ(c) is false in (M0, E, E).

Since the semantics is monotone, monotonicity of F is immediate. Starting from
any pair (E,E), let M be the smallest fixed point of F , then by definition one has
c ∈ {x | ϕ(x)} is true (false) in M iff ϕ(c) is true (false) in M. ¤

For our later purposes it is important that one can start from any pair (E,E),
and not just from, say, the pair (∅, ∅), since in this way one may put additional
constraints on the truth predicates.

The preceding theorem is not yet quite sufficient to show the validity of the truth
axioms since if, in the above theorem, both sides equal u, the use of the Kleene
biconditional in the axioms gives u as truth value. In this case, the ÃLukasiewicz
biconditional would give truth value 1, but its semantics is not monotone, so it
cannot be used in this context. We shall skip the intermediate steps that Feferman
uses, and jump directly to the final result.

3.3. A fully classical type-free system. Feferman’s trick is to code Kleene’s
three-valued logic into classical logic by splitting the truth predicate Tn into a
definitely positive part, also denoted Tn, and a definitely negative part, denoted
T̄n, such that Tn∩ T̄n = ∅, although Tn∪ T̄n is not necessarily the whole space Mn.
This last possibility corresponds to the value u of the Kleene truth tables.

Again, let L0 be some first order language, and let L be L0 expanded with {Tn, T̄n |
n ∈ IN}. A formula is called positive over L0, if it is equivalent to a formula
constructed from atomic formulas of L, and negations of atomic formulas of L0,
without using negation. Inductively, one defines ϕ+ and ϕ−as follows:

Definition 6. a. ϕ+ = ϕ, for atomic ϕ in L.
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b. If ϕ in L0 is atomic, ϕ− = ¬ϕ; if ϕ = Tn(. . .), ϕ− = T̄n(. . .); if ϕ =
T̄n(. . .), ϕ− = Tn(. . .).

c. (¬ϕ)+ = ϕ− and (¬ϕ)− = ϕ+.
d. (ϕ ∧ ψ)+ = ϕ+ ∧ ψ+ and (ϕ ∧ ψ)− = ϕ− ∨ ψ−.
e. (ϕ ∨ ψ)+ = ϕ+ ∨ ψ+ and (ϕ ∨ ψ)− = ϕ− ∧ ψ−.
f. (∀xϕ)+ = ∀xϕ+ and (∀xϕ)− = ∃xϕ−.
g. (∃xϕ)+ = ∃xϕ+ and (∃xϕ)− = ∀xϕ−.

Let S0 be a theory in L0 comprising at least the axioms for the pairing operation.
S is the extension of S0 by means of the following axioms

Axiom 2. DIS(Tn, T̄n) ¬(Tn(x1, . . . , xn, z) ∧ T̄n(x1, . . . , xn, z)).

Axiom 3.

Tn(x1, . . . , xn, ϕ[û1, . . . , ûn, y1, . . . , ym]) ↔ ϕ+(x1, . . . , xn, y1, . . . , ym)

T̄n(x1, . . . , xn, ϕ[û1, . . . , ûn, y1, . . . , ym]) ↔ ϕ−(x1, . . . , xn, y1, . . . , ym)

Important special cases of these axioms are

(29) For every sentence ϕ:
T (pϕq) ↔ ϕ+

T̄ (pϕq) ↔ ϕ−

(30) For every formula ϕ(x, y1, . . . , yn):
a. x ∈ {u | ϕ(u, y1, . . . , yn)} ↔ ϕ+(x, y1, . . . , yn)
b. x ∈̄ {u | ϕ(u, y1, . . . , yn)} ↔ ϕ−(x, y1, . . . , yn).

But when treating nominalisation we shall also have occasion to use the Tn for
n > 1.

An easy induction on the construction of ϕ+ and ϕ− shows

Lemma 1. (ϕ+ → ϕ) and (ϕ− → ¬ϕ) for every ϕ.

For Feferman, the following is then the main result

Theorem 2. S is a conservative extension of S0, hence if S0 is consistent, so is
S.

For our purposes, this is not yet sufficient, since in our case the theory S0 will be
the event calculus, which already contains axioms involving the truth predicate T1,
in the guise of the predicate HoldsAt. Thus the analogue of Theorem 2 requires a
separate proof, but it will be seen that Feferman’s main steps can be copied in our
case.
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3.4. Extensions of L. We will sometimes have occasion to consider an extension
of L with generalised quantifiers. It is required that these quantifiers Q have a
monotone semantics in the following sense: Q is a set of subsets of a set M satisfying

(31) (X ⊆ Y ⊆ M) ∧X ∈ Q ⇒ Y ∈ Q

The reason for this requirement is that Theorem 2 can be extended to these gener-
alised quantifiers. Thus we have

Theorem 3. Let L0(Q) be an expansion of the first order language L0 with a set of
generalised quantifiers having monotone semantics, and let S0 be a theory in L0(Q).
Then S0 can be conservatively extended to a theory S incorporating the axioms 3
for the expanded language.

3.5. Intensionality. If ϕ(x) is a formula, Feferman’s coding trick allows one to
introduce the set-like object ϕ[x̂], alternatively written as {x | ϕ(x)}. It is important
to realise, however, that these sets are unlike classical sets in that they do not
necessarily satisfy the axiom of extensionality

∀x(x ∈ a ↔ x ∈ b) → a = b.

The analogue would be

∀y(y ∈ {x | ϕ(x)} ↔ y ∈ {x | ψ(x)}) → ϕ[x̂] = ψ[x̂],

but this is in general false.

4. Event calculus and circumscription

The event calculus is a first-order formalism that was originally developed (by
Kowalski and Sergot Kowalski & Sergot (1986)) in the context of solving robot
planning problems, and as such is an alternative to the earlier situation calculus of
McCarthy and Hayes (McCarthy & Hayes (1969)). Surprisingly, the rich ontology
(which distinguishes among different kinds of events) necessary for the robotics do-
main turns out to be extremely helpful for semantics. The event calculus comes with
a nonmonotonic inference mechanism (here we use McCarthy’s circumscruption for
that purpose) which turns out to be well suited to solve the imperfective paradox.
Before we delve into technicalities, some motivation is provided by section 4.1. 14

4.1. The frame problem. Although the frame problem has its roots in artificial
intelligence, it is relevant for the semantics of natural language as well (cf. Steedman
(1997)), insofar as the use of events has gained prominence there.

In a nutshell, the frame problem is this15. When describing the effects of actions
or events on the state of the world, it is also necessary to describe the properties

14Many variants of the event calculus have been proposed in the meantime; the interested
reader may consult the special issue of the Journal of Logic Programming devoted to logics of
action (1995) for further references.

15The frame problem was first identified in McCarthy & Hayes (1969).
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that do not change as the result of the action or the event. Not doing this actually
renders acting in the world impossible. Suppose I am deliberating whether to clean
my desk. The intended effect of cleaning my desk is that I may actually use it again.
However, the following facts about the world should also be considered:

• Cleaning my desk does not change its shape.

• Cleaning my desk does not cause my neighbour’s desk to be cleaned also.

• Cleaning my desk does not cause an earthquake.

• etc. . . .

If I would remain agnostic about these properties of the world, I would be unable
to act; cf. the third fact. But clearly the explicit description of the things that
don’t change is incomparably more involved than a description of the things that do
change. Of course, in ordinary life one never appeals to such an explicit description;
instead one appeals to the common sense law of inertia, which can be roughly
formulated as follows:

(32) Nothing changes, except when there is explicit evidence to the contrary.

4.2. The event calculus. Shanahan’s version of the Event Calculus EC16 is for-
mulated in many-sorted first order logic, which has (at least) sorts for individuals,
instants, event(types) and fluents. Sometimes we will need an additional sort for
numerical parameters such as lengths or angles. A fluent is a time-dependent prop-
erty17. Fluents may be initiated or terminated by an event(token), or they may
undergo continuous change. The various interactions of events and fluents are cod-
ified in nine primitive predicates.

4.2.1. Syntax of the event calculus. Let S be the set of sorts, comprising at least
the sort of individuals, the sort of instants,the sort of fluents, and the sort of
event(types). The language of the event calculus contains variables x1s, x2s, . . . and
constants c1s, c2s, . . . for each sort s ∈ S. For the sake of legibility we shall often
write for a variable over e.g. the sort of fluents not xf but f , and similarly for the
other sorts. Furthermore, for each n, each vector s of sorts, and sort r there exist
function symbols f0, f1, . . . which map a tuple of type s to an element of type r.
Similarly, for each vector s of sorts, there are relation symbols R0, G1, . . . which
take arguments of this type.

The event calculus contains nine distinguished predicates, whose meaning is deter-
mined by axioms or explicit definitions.

16The version used in this paper was developed in a series of papers Shanahan (1996a), Shana-
han (1995), Shanahan (1996b) and Shanahan (1990). Shanahan’s discussion of the frame problem
and his proposed solution can also be found in the book Shanahan (1997).

17The name derives from Newton’s approach to differential calculus, where each variable was
assumed to be implicitly dependent on time.
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The first four predicates concern ‘normal’ change, where a time-dependent property
is switched on or switched off by an event, as when the fluent (water)flowing is
initiated (or terminated) by turning on (off) a tap.

Initially(f): Initially is a property of fluents, which singles out those fluents f which
are true at the beginning of the history considered.

Happens(e, t): Happens is a binary relation between an event(type) e and a time
point t, with the intended interpretation that e occurs at t. Accordingly, the set
{(e, t) | Happens(e, t)} can be interpreted as the set of event tokens corresponding
to e.

Initiates(e, f, t): Initiates is a ternary relation between event types e, fluents f and
instants t, whose intended interpretation is that the realisation of event type e at t
causes f to hold after t. For definiteness it is assumed that f does not yet hold at
t.

Terminates(e, f, t): Terminates is again a ternary relation between event types e,
fluents f and instants t, which says that f does no longer hold after e occurred at
t. Here, it is assumed that f holds at t.

The next two predicates are concerned with continuous change, as when water
flowing into a bucket makes the height of the water in the bucket increase.

Trajectory(f1, t, f2, d): the Trajectory–predicate takes four arguments, fluents f1, f2,
an instant t1 and a length of time d. In a typical application of this predicate to
continuous change, the second fluent-argument represents a property that may vary
with time, such as the height of water in a bucket. Formally, such a property is
represented by a fluent-valued function, such as height(x), where x, the height, may
be a function of time. For example, if the height of the water in a bucket rises
linearly when the tap is on, we may represent this by

∀x1∀t∀d(HoldsAt(height(x1),t) → Trajectory(filling,t,height(x1 +
d),d)),

which (in conjunction with axiom 4 below) says that if the height at time t is x1,
then at time t + d it will be x1 + d.

Releases(e, f, t): Releases is a ternary relation between event types e, fluents f and
instants t, which is necessary to model continuous change consistently. Consider
the fluent height(0), which expresses that the height of the water in the bucket is
0 units. This is true initially, but when water starts flowing, i.e. when a tap–on
event occurs, height(0) should no longer be true; we then obtain true fluents of
the form height(x), for every x in some interval (0, b], where each height(x) is true
for a single instant only. Clearly however, there will be no separate events which
initiate and terminate the fluents height(x) for various values of x, so the vocabulary
previously introduced is of no help here. The predicate Releases indicates that a
special mechanism for continuous change takes over.
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For a smooth formulation of the axioms, it is useful to have two ternary predicates
explicitly defined in terms of the preceding.

Definition 7. Clipped(t, f, t′) := ∃e, s(Happens(e, s) ∧ t < s < t′ ∧
(Terminates(e, f, s) ∨ Releases(e, f, s)))

Definition 8. Declipped(t, f, t′) := ∃e, s(Happens(e, s) ∧ t < s < t′ ∧
(Initiates(e, f, s) ∨ Releases(e, f, s)))

Lastly we need a truth predicate, analogous to Feferman’s T1:

HoldsAt(f, t): HoldsAt is a binary relation between a fluent f and a time point t,
whose intended interpretation is that f is true at t.

The event calculus in its standard form does not contain the characteristic axiom
for a truth predicate. This would require a formal mechanism to map a formula
ϕ(t) on a fluent-term f , so that we could write

HoldsAt(f, t) ↔ ϕ(t).

The event calculus itself does not possess such a mechanism; although it is built on
the idea of reifying properties, the reification of properties is not itself part of the
calculus. We will use Feferman’s type-free system for this purpose.

4.2.2. Axioms for EC. In the following, all variables are assumed to be universally
quantified.

Axiom 4. Initially(f) ∧ ¬Clipped(0, f, t) → HoldsAt(f, t)

Axiom 5. Happens(e, t) ∧ Initiates(e, f, t) ∧ t < t′ ∧ ¬Clipped(t, f, t′)
→ HoldsAt(f, t′)

Axiom 6. Happens(e, t) ∧ Terminates(e, f, t) ∧ t < t′ ∧
¬Declipped(t, f, t′) → ¬HoldsAt(f, t′)

Axiom 7. Happens(e, t) ∧ Initiates(e, f, t) ∧ t < t′ ∧ t′ = t + d ∧
Trajectory(f1, t, f2, d) ∧ ¬Clipped(t, f, t′) → HoldsAt(f2, t

′)

We add some comments on the axioms.

Suppose for a moment that the Release–predicate does not occur in the definition
of Clipped. Then the first axiom just says that if a fluent holds at time 0 and no
event has terminated it at time t > 0, then it still holds at t. The presence of
Release allows us to say in addition that this is only so when the fluent is all the
time subject to the law of inertia.

The second axiom treats the analogous case where the fluent is initiated at some
time t1 > 0. Again, assume first that the Release–predicate does not occur in the
definition of Declipped. The third axiom then says that a fluent f does not hold
at t2, when it has been terminated before t2 and no initiating event has occurred
after termination. However, when f is not subject to the law of inertia, we have no
reason to expect this; the Release–clause takes care of this case.
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The fourth axiom is best explained by means of the example of filling a bucket
with water. So let xf be instantiated by filling, and yf by height(x). If filling has
been going on from t1 until t2, then for a certain x, height(x) will be true at t2,
the particular x being determined by the law of the process as exemplified by the
Trajectory–predicate.

4.3. A model for EC. To facilitate the reader’s comprehension of the axioms, we
will provide an intuitively appealing model of EC, incidentally showing its consis-
tency. The result to be presented is very weak. In practice, the EC axioms are always
used in conjunction with some first order theory (e.g. detailing the properties of the
sensors and effectors of a robot), but this first result says nothing about extending
an arbitrary first order theory with the EC axioms.

The most important concept to be defined is that of a fluent. We interpret fluents
as sets of halfopen intervals (a, b], where a is the instant at which an initiating event
occurs, and b is the instant where ‘the next’ terminating event occurs18. Talk about
‘the next’ seems justified due to the inertia inherent in fluents. A typical fluent
therefore looks as follows:
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For the purpose of constructing the model, we think of event(types) as derivative
of fluents, in the sense that each event either initiates or terminates a fluent, and
that fluents are initiated or terminated by events only. The instants are taken to be
nonnegative reals. Each fluent f is a finite set of disjoint halfopen intervals (a, b],
with the possible addition of an interval [0, c]. Event types e are of the form e = e+

f

or e = e−f where e+
f := {(f, r) | ∃s((r, s] ∈ f)} and

e−f := {(f, s) | ∃r((r, s] ∈ f)}.

This then yields the following interpretations for the distinguished predicates.
HoldsAt := {(f, t) | ∃I ∈ f(t ∈ I)}
Initially := {f | ∃s > 0[0, s] ∈ f)}
Happens := {(e, t) | ∃f((e = e+

f ∨ e = e−f ) ∧ (f, t) ∈ e)}
Initiates := {(e, f, t) | e = e+

f ∧ (f, t) ∈ e}
Terminates := {(e, f, t) | e = e−f ∧ (f, t) ∈ e}
Releases := ∅
Trajectory := {(f1, t1, f2, d) | [∃e(e = e+

f1
∧

(f1, t1) ∈ e) ∧ ∀t(t1 < t ≤ t1 + d → HoldsAt(f1, t))] → HoldsAt(f2, t1 + d)}.
18We allow b to be ∞.
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Obviously these stipulations enforce the following interpretations for Clipped and
Declipped:
Clipped := {(t1, f, t2) | ∃t(t1 < t < t2 ∧ (f, t) ∈ e−f )}
Declipped := {(t1, f, t2) | ∃t(t1 < t < t2 ∧ (f, t) ∈ e+

f )}

Proposition 1. EC is true under the above interpretation.

Proof Given the above interpretation of the distinguished predicates, the meaning
of axiom 4 can be rendered formally as:

∃s > 0([0, s] ∈ f) ∧ ∀t′(0 < t
′
< t → (f, t

′
) 6∈ e−f ) → ∃r, s(t ∈ (r, s] ∈ f)

Define s0 := sup{s | ∃I([0, s] ⊆ I ∈ f)}; s0 exists and is greater than 0. It suffices
to show that t ∈ [0, s0] ∈ f . [0, s0] is clearly in f . Suppose that t 6∈ [0, s0], i.e. s0 < t,
then we would have (f, s0) 6∈ e−f . By definition of s0 and of terminating event we
have, however, that (f, s0) ∈ e−f .

The second axiom (5) receives as interpretation:
∃f ′((e = e+

f ′
∨e = e−

f ′
)∧(f

′
, t1) ∈ e)∧t1 < t2∧e = e+

f ∧(f, t) ∈ e∧∀t(t1 < t < t2 →
(f, t) 6∈ e−f ) → ∃I(t2 ∈ I ∈ f).

It suffices to show that
(e = e+

f ∧ (f, t1) ∈ e) ∧ ∀(t(t1 < t < t2) → (f, t) 6∈ e−f ) → ∃I(t2 ∈ I ∈ f), since we
have
e = e+

f ∧ (f, t) ∈ e → ∃f ′((e = e+
f ′
∨ e = e−

f ′
) ∧ (f

′
, t) ∈ e).

Argue as in the previous case, but now define s0 = sup{s | ∃r < t2∃I(r, s] ⊆ I ∈ f}.
We must show that t2 ≤ s0. By definition of e−f we have:
(f, s0) ∈ e−f and t1 < s0. If s0 < t2, the hypothesis of the axiom would give:
(f, s0) 6∈ e−f , a contradiction.

The remaining two axioms are easy: 6 follows by contraposition and 7 is true by
definition. ¤

Clearly this easy construction works only due to the lack of additional axioms. If
a theory were to contain, in addition to EC, infinitely many axioms of the form
HoldsAt(f, t), and axioms involving the Trajectory–predicate, such simple models
are not likely to be forthcoming. However, the model captures an important intu-
ition, and we shall come back to the question when models of this type exist.

4.4. Circumscription. In terms of the language introduced above, we may now
state the common sense law of inertia as follows

Normally, given any action [or event] and any fluent, the action
doesn’t affect the fluent.
McCarthy & Hayes (1969)
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It is clear that the axioms given have as yet little bearing on this desideratum. The
axioms do embody a notion of persistence: a fluent not affected by an action will
continue to hold (or not to hold, as the case may be). But in itself this carries no
information about which actions affect which fluents. This will be accomplished by
a nonmonotonic reasoning scheme called circumscription. The idea is to minimise
the occurrence of actions and of the influence of actions as much as is compatible
with the data. For example, if the data say that there are two events e1 and e2 such
that Happens(e1, t1) and Happens(e2, t2) then minimising the occurrence of actions
would be equivalent to adding the statement

Happens(e, t) ↔ (e = e1 ∨ e = e2) ∧ (t = t1 ∨ t = t2).

Circumscription provides a general formulation of this idea19.

4.4.1. Definitions.

Definition 9. Let P, Q be predicate symbols of the same arity. Put
P = Q := ∀x(P (x) ↔ Q(x))
P ≤ Q := ∀x(P (x) → Q(x))
P < Q := P ≤ Q ∧ ¬(P = Q)

Definition 10. Let ϕ(P ) be a sentence containing an occurrence of the predicate
symbol P . The circumscription of P in ϕ(P ) is defined as the following formula of
second order logic:

ϕ(P ) ∧ ¬∃p[ϕ(p) ∧ p < P ],
where p is a predicate variable of the same arity as P . The resulting formula will
be denoted by CIRC[ϕ; P ].

Example 1. Let a be an individual constant and ϕ(P ) = P (a). By definition,
CIRC[P (a); P ] is equal to P (a) ∧ ¬∃p[p(a) ∧ p < P ]. It follows that CIRC[P (a); P ]
is equivalent to the first order formula ∀x[P (x) ↔ x = a]. We shall later provide a
number of conditions on ϕ which ensure that CIRC[ϕ; P ] is first order.

Example 2. Let ϕ(P ) = ∀x(Q(x) → P (x)). Then we have CIRC[φ;P ]: ∀x(Q(x) →
P (x))∧¬∃p((∀x(Q(x) → p(x))∧ p < P ); that is, CIRC[φ; P ] ↔ ∀x(Q(x) ↔ P (x)).

Definition 10 is too restrictive for most applications. Note that the effect of 10 is
that P is minimised under the assumption that the interpretations of the other
predicates are kept constant. In many contexts it is important however to study
the effect of minimising P on the interpretations of (some) other predicates. This
idea is better captured by the next definition.20

Definition 11. Let ϕ(P,Z1, . . . , Zm) be a sentence which contains an occurrence
of the predicate symbol P . Let Z1, . . . , Zm be individual constants, predicate symbols
or function symbols different from P . The circumscription of P in ϕ with varying
Z1, . . . , Zm is the following formula of second order logic:

ϕ(P, Z1, . . . , Zm) ∧ ¬∃pz1 . . . zm(ϕ(p, z1, . . . , zm) ∧ p < P ),

19It is also possible to use the theory of completions of (constraint) logic programs for this
purpose, as has been done in van Lambalgen & Hamm (2001).

20It should be noted though that Shanahan’s proposed solution of the frame problem involves
a return to the earlier definition.
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abbreviated by CIRC[ϕ; P ; Z] where Z is shorthand for Z1, . . . , Zm. (Similarly,
z1, . . . , zm will often be written as z.)

Example 3. It is easy to see that CIRC[P (a)∧P (b);P ] equals ∀x[P (x) ↔ (x = a∨
x = b)]. Now consider CIRC[P (a) ∧ P (b); P ; a, b]. The difference with the situation
above is that we may now give P a smaller extension by identifying a and b. Indeed,
CIRC[P (a) ∧ P (b); P ; a, b] is by definition equivalent to

P (a) ∧ P (b) ∧ ¬∃pz1z2[P (z1) ∧ P (z2) ∧ p < P ],

which in turn is equivalent to the first order formula ∀x[P (x) ↔ x = a] ∧ a = b.

We will now make the semantic intuition behind circumscription more precise. As
already indicated, the models of CIRC[ϕ; P ; Z] should be those models of ϕ in
which the extension of P cannot be made smaller even when the interpretation of
Z is allowed to vary. This intuition leads to the following partial order on the class
of models

Definition 12. Let models M1 and M2 be given. M1 ≤P ;Z M2 iff
• M1 = M2

• [[ c ]]M1 = [[ c ]]M2 , for all c not in {P} ∪ Z.
• [[P ]]M1 ⊆ [[P ]]M2

Hence, M1 ≤P ;Z M2 means that the structures differ only with respect to the
interpretations of P and Z and furthermore, that the extension of P in M1 is a
subset of the extension of P in M2. When M1 ≤P ;Z M2 but not M2 ≤P ;Z M1,
we write M1 <P ;Z M2.

Since ≤P ;Z is reflexive and transitive, it makes sense to talk of minimal structures
with respect to this order (which is not to say that such structures must exist!).

Definition 13. A structure M is minimal with respect to ≤P ;Z if and only if there
does not exist a structure M′ with M′ <P ;Z M.

One then easily proves

Lemma 2. A structure M is a model of CIRC[ϕ; P ; Z] if and only if M is minimal
with respect to ≤P ;Z .

4.4.2. Rules for computing circumscriptions. In this section we collect a few recipes
for computing circumscription that will be useful later. Proofs will be omitted; they
can be found in Lifschitz (1994).

The first result is a generalisation of example 2, which will be referred to as predicate
completion.

Lemma 3. If ψ(x) does not contain P , then the circumscription of ∀x(ψ(x) →
P (x)) with respect to P

CIRC [∀x(ψ(x) → P (x));P ]

is equivalent to
∀x(ψ(x) ↔ P (x))
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The second result is an immediate, but useful, consequence of Definition 11.

Lemma 4. Let ψ be a sentence which does not contain P and Z. Then we have
CIRC[ϕ(P, Z) ∧ ψ; P ;Z] ↔ CIRC[ϕ(P, Z); P ;Z] ∧ ψ.

The next lemma is mostly of theoretical interest (although a special case will be
applied in Section 6.5) ; it shows that circumscription with varying constants can
in a sense be reduced to the basic case, Definition 10.

Lemma 5. The formula
CIRC [ϕ(P,Z); P ; Z]

is equivalent to
ϕ(P,Z) ∧ CIRC [∃zϕ(P, z); P ]

The case most relevant for our purposes is where Z is a set of individual constants.
For example, according to Lemma 5 CIRC [P (a) ∧ P (b); P ; a, b] is equivalent to

P (a) ∧ P (b) ∧ CIRC [∃z1z2(P (z1) ∧ P (z2));P ],

which in turn is equivalent to

P (a) ∧ P (b) ∧ ∃x∀y(P (y) ↔ x = y),

since ∃z1z2(P (z1) ∧ P (z2)) is equivalent to ∃zP (z) and circumscribing the latter
formula forces P to contain one element only.

Stronger results can be obtained when one considers specific classes of formulas.
The occurrence of a predicate symbol in a formula is positive, if it occurs in the
scope of an even number of negations, negative otherwise21. A formula ϕ(P ) is
positive with respect to P if all occurrences of P in ϕ are positive; ϕ(P ) is negative
with respect to P if all occurrences of P in ϕ are negative.

Lemma 6. If ϕ(P, Z) is positive with respect to P then

CIRC [ϕ(P,Z); P ; Z]

is equivalent to

ϕ(P, Z) ∧ ¬∃xz[P (x) ∧ ϕ(λy(P (y) ∧ x 6= y), z)].

The analogue for negative ψ(P ) is:

Lemma 7. If ψ(P )is negative, then

CIRC [ϕ(P ) ∧ ψ(P ); P ]

is equivalent to
CIRC [ϕ(P ); P ] ∧ ψ(P ).

Unfortunately, for our applications below positive and negative formulas do not
suffice. Some statements of interest are only definite in P, that is, of the form
F (P ) → P , where P occurs only positively in F .

21We assume that → and ↔ are defined in terms of ¬, ∧ and ∨.
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Lemma 8. Let A(P ) be the universal closure of a formula definite in P , then
CIRC[A(P ); P ] is equivalent to A(P ) ∧ ∀x[P (x) ↔ ∀p(A(p) → p(x))].

We have now seen several examples where the circumscription of a sentence ϕ,
which in principle is a sentence of second order logic, can be reduced to a first order
sentence, and one example where there does not appear to be such a reduction. The
obvious question is, whether these results can be subsumed under a single theorem
which gives necessary and sufficient conditions for the existence of a first order
equivalent. That cannot be done in general, but the next result goes a little way
toward that unattainable goal:

Lemma 9. Let ϕ(P ) be positive and ψ(P ) be negative, both first order. Then the
circumscription CIRC[ϕ(P ) ∧ ψ(P ); P ] is equivalent to a first order formula.

4.4.3. Parallel circumscription. In the applications of circumscription to the event
calculus, we will usually need to circumscribe several predicates simultaneously.
This is not yet covered by Definition 11, so we need a generalisation:

Definition 14. Let ~P = (P1, . . . , Pn) and ~Q = (Q1, . . . , Qn) be sequences of predi-
cate constants.
~P = ~Q iff P1 = Q1 ∧ . . . ∧ Pn = Qn.
~P ≤ ~Q iff P1 ≤ Q1 ∧ . . . ∧ Pn ≤ Qn.
~P < ~Q iff ~P ≤ ~Q ∧ ¬~P = ~Q.

CIRC[ϕ; ~P ; Z] iffϕ(~P ,Z) ∧ ¬∃~pz[ϕ(~p, z) ∧ ~p < ~P ].

It is easy to see how to generalise the definition of the ordering relation M1 ≤P,Z

M2 and the proposition relating minimal models in the ordering and circumscrip-
tion. For our purposes, the following theorem, reducing parallel circumscription to a
conjunction of circumscriptions (albeit only in special cases) is of great importance:

Theorem 4. Let ~P be a sequence of predicate constants. If ϕ(~P ,Z) is positive with
respect to each element Pi of the sequence ~P , then the parallel circumscription

CIRC [ϕ(~P , Z); ~P ; Z]

is equivalent to ∧

i

CIRC [ϕ(~P , Z); Pi; Z]

4.4.4. Existence. We have already noted that talk of minimal models of a (consis-
tent) theory is not to imply that these models exist. Theories which do have this
desirable property are isolated by means of the following definition:

Definition 15. A consistent first order theory ∆ will be called wellfounded with
respect to (P;Z) if and only if for each model M of ∆ there exists a model M′ |= ∆
which is minimal with respect to ≤P ;Z and which satisfies M′ ≤P ;Z M.

Wellfoundedness of a theory is related to its syntactical form. A first order formula
is universal, if it is of the form ∀~xϕ is, where ϕ is quantifier free. A first order
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formula is called almost universal with respect to P , if the formula ϕ satisfies the
condition that P does not occur positively in the scope of quantifiers. The relevance
of almost universality to wellfoundedness is given by

Theorem 5. Suppose ∆ can be axiomatised in such a way that each axiom is
almost universal with respect to P . Then ∆ is wellfounded with respect to P .

This existence theorem thus pertains only to the basic case of circumscription. For
the general case we have

Theorem 6. Suppose the theory ∆ has a universal axiomatisation and suppose
furthermore that Z only contains predicate symbols (i.e. no individual constants).
Then ∆ is wellfounded with respect to (P ; Z).

4.5. Scenarios. In the applications of the event calculus to natural language we
must formulate information about the specific situation at hand in the language
of fluents and events. Such a situation-description will be called a scenario (in the
literature one also finds the term narrative). In order for circumscription to apply,
scenarios are subject to some syntactic restrictions22.

Definition 16. A state at time t is a conjunction of

(1) literals of the form (¬)HoldsAt(f, t), for t fixed and possibly different f ,
(2) equalities between fluent terms, and between event terms
(3) statements formulated in the language {0, 1, +,×, <} of the real numbers.23

In principle we may distinguish between two kinds of lawlike statements F → G
(assumed to be universally quantified): the type where the time variables occurring
in G are different from those in F (called dynamic laws), and the type where this
is not the case (the static laws). It seems sensible to keep the dynamics outside the
circumscription, and to minimise the distinguished predicates only in accordance
with the static laws. In each time slice, we assume only those initiating and ter-
minating events that we are forced to, and we then let the dynamics do its thing.
Generally speaking, the effect of the dynamics is a change of state. On the other
hand, the static laws seem to be of one of the following types, where S(t) is a state
at t:

(1) Initially(f)
(2) S(t) → Initiates(e, f, t)
(3) S(t) → Terminates(e, f, t)
(4) S(t) → Releases(e, f, t)
(5) S(t) ∧ Happens(e′, t) → Happens(e, t).

That is, an action (or event) may initiate or terminate a fluent, if a precondition on
the current state is fulfilled; and certain events may trigger others under suitable
conditions. The latter type appears to be dynamic, but since we want to reserve the

22These restrictions can to a large extent be lifted when the theory is reformulated in a logic
programing framework; see van Lambalgen & Hamm (2001).

23Every such statement is equivalent to one which is quantifier free.



EVENT CALCULUS, NOMINALISATION, AND THE PROGRESSIVE 29

name ‘dynamic’ for continuous change, to be formalised by means of the Trajectory
predicate, we classify instantaneous change as static here. (An example of 5 is
provided by a bump sensor of a robot registering a collision of the robot with a
wall.)

There is one more feature which distinguishes the dynamic and the static parts of
a description: the static part is concerned only with concrete fluents and events.
In the case of fluents, this includes the possibility that the fluent is a function like
height(x), which for each real x yields the time-varying property of being of that
height.

The appropriate circumscription policy now seems to be to minimise the scenario,
while leaving the dynamics untouched. This will be the policy adopted in the sequel,
when treating aspect and the progressive. Note that, formally, circumscription of
1,2, 3 and 4 requires simple predicate completion (Lemma 3), whereas circumscrip-
tion of 5 requires the more involved lemma on definite formulas (Lemma 8), with
attendant loss of first order characterisability. This has important consequences
for the structure of fluents (as functions of time), and we shall leave conditions of
type 5 aside for the moment. Instead, we use a simpler form which leaves out the
Happens clause in the antecedent. A precondition of the form S(t) can still force
events to happen at single instants only; for instance, if the fluent height(g(s)) is
monotone increasing in time s, for a fixed height h HoldsAt(height(d), t) will be
true at one t only, and may thus trigger an event to happen (exactly at) t. How-
ever, we do not force events to be instantaneous; it may very well be the case that
{t | Happens(e, t)} is a set of intervals. In fact, it would be rather awkward to force
events to be instantaneous; compare ‘the burning of the house’. Thus, events and
fluents are distinguished not so much by their time profile as by the respective roles
they play in the theory.

These considerations motivate the following

Definition 17. A scenario is a conjunction of statements of the form

(1) Initially(f), or
(2) ∀t(S(t) → Initiates(e, f, t)), or
(3) ∀t(S(t) → Terminates(e, f, t)), or
(4) ∀t(S(t) → Releases(e, f, t)), or
(5) ∀t(S(t) → Happens(e, t)),

where S(t) is a state in the sense of Definition 16. These formulas may contain ad-
ditional constants for objects, reals or time points and can be prefixed by universal
quantifiers over time points, reals and objects. We do not allow Skolem functions
of time points etc. so that the above formulae do not have implicit existential quan-
tifiers. Quantifiers over fluents or events are not allowed.

Applying circumscription (i.e. predicate completion) to a scenario in this sense
entails that in a minimal model all events and fluents of interest are definable.
For in the axioms of the event calculus, the quantifiers over events and fluents
are always relativised to one or more of the distinguished predicates, so that in
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a minimal model of a scenario the quantifiers must range over definable elements
only.

5. Reification formalised

In this section we show that the event calculus can be extended conservatively by
the truth axioms 3. As already observed, this does not follow automatically from
Theorem 2, since the natural interpretation of the predicate HoldsAt makes it a
special case of T1. To ensure that every model of the combined calculi satisfies this
constraint, we have to devise a separate proof. Before we embark on this, we give
a brief sketch of the history of the problem.

The event calculus and its predecessor, the situation calculus, make heavy use
of the procedure of reification, whereby properties are transformed into terms, i.e.
objects or functions. Although fundamental, the procedure was not itself formalised.
It was thus impossible to formulate the axioms required to turn HoldsAt into a
fullfledged truth predicate. It is somewhat surprising that this apparently has not
been done before, although a related problem has cropped up in the context of
meta(logic)programming. Interpreters, compilers and debuggers take programs as
input, and thus require coding. The solution sometimes adopted in this area is
ambivalent syntax, in which there is literally no distinction between formulas and
terms (originally proposed by Richards (Richards (1974)); see Kalsbeek and Jiang
(M.B.Kalsbeek & Jiang (1995)) for an overview). This suits our purpose less well,
because there is no analogue of the comprehension axioms. A more sophisticated
solution is due to Sato (Sato (1992)), who observes that every metaprogram can be
defined from a truth predicate, and who actually provides an executable version of
Feferman’s T0 in a three-valued setting. Although this comes close, we need all Tn

with their associated axioms, and we want to use classical logic, so we cannot use
Sato’s work.

The formal language we need in order to provide a semantics for nominalisation
and the progressive generally consists of the following parts

(1) an arbitrary first order language L0, representing the nouns, verbs etc. of
natural language; this language may be extended with symbols for mono-
tone generalised quantifiers.

(2) a language for talking about elementary properties of the real numbers, e.g.
the language {0, 1, +,×, <}.

(3) the distinguished predicates of the event calculus (which are assumed not
to occur in L0)24.

(4) the predicates Tn.

Let R be an axiomatisation of the reals in the language {0, 1, +,×, <}, S0 a
consistent theory in L0, and EC the axiomatisation of the event calculus. Then

24Actually we only have to require that HoldsAt does not occur in L0, but since the axioms of
the event calculus involve HoldsAt along with the other predicates, this apparent weakening has
no real import.
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R + S0 + EC is consistent; call the combined language L1. R furnishes the nec-
essary machinery for coding formulas. Interestingly, coding may be used to obtain
important subclasses of the fluents and the event types. Let ϕ(t, x) be a formula of
L1, then a fluent function is obtained by considering ϕ[t̂, x]25, and an event type by
∃t.ϕ[t, x]. It is then clear that we must have

HoldsAt(ϕ[t̂, x], t) iff T1(ϕ[t̂, x], t) iff ϕ(t, x).

Sometimes the Tn for n > 1 are also useful, for example when one wants to eval-
uate formulas at pairs of instants, or when one wants to consider possible worlds
(although we believe that intensionality is best treated differently). Event tokens
may be obtained from event types by means of the Happens predicate:

Happens(∃t.ϕ[t, x], s).

One may similarly construct fluents and event types by coding formulas involving
one or more of the Tn, although now something interesting starts to happen.

Reformulate EC in terms of T1. In axiom 6, replace ¬T1 by its positive counterpart
T1. Let S be the theory resulting from the addition of the axioms 2 and 3 to
R + S0 + EC

′
, where EC

′
is EC thus modified.

Theorem 7. S is a conservative extension of R + S0 + EC
′
.

Proof. The main obstacle to the direct use of Theorem 3 is the occurrence of T1,
in the form of HoldsAt, in EC. Since ¬HoldsAt occurs in the consequence of an
axiom, EC is not monotone in HoldsAt. Since in EC

′
, ¬HoldsAt has been replaced

by its positive counterpart, the resulting axiom system is monotone in (HoldsAt,
HoldsAt), and Feferman’s construction is applicable. ¤
Lemma 10. For fluents f = ϕ[t̂, x] definable in L0,
¬HoldsAt(f, t) iff HoldsAt(f, t).

Proof. This follows from the Formulas (30-a) and (30-b). ¤

Now let EC0 be the event calculus which arises from the original EC by erasing
quantification over fluents, and replacing each axiom by an axiom scheme, one
axiom for each L0–definable fluent. Then we have

Theorem 8. The truth axioms 2 and 3 can be added conservatively to R+S0+EC0.

This is no yet sufficient for providing a semantics for the progressive, because there
the event calculus has to be extended by a scenario and a dynamics. Since the
scenario does not contain nested HoldsAt–predicates it presents no problems. It
will be seen that statements characterising the dynamics are typically of the form

HoldsAt(. . .) → Trajectory(. . .).

Replacing → by its definition in terms of ¬ and ∨, we see that at least for L0–
definable fluents, addition of the dynamics presents no problems. We thus have

Theorem 9. Let SCEN be a scenario and DY N a dynamics. Then the truth
axioms 2 and 3 can be added conservatively to R + S0 + SCEN + DY N + EC0.

25Compare Definition 2.
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To conclude this section, we add some remarks on the lattice structure of fluents.
We have seen that in the standard model for EC, fluents form a Boolean algebra,
since they are defined as sets of halfopen intervals. In the general case we have less
control over the fluents, but the above material shows that always

Lemma 11. The L0–definable fluents form a Boolean algebra.

Interestingly, in case the scenarios are finite, fluents representing activities can
again be represented as finite sets of halfopen intervals, see Theorem 10 below.
Both observations will be of some importance when we discuss the distributional
properties of imperfect nominals.

6. Nominalisation formalised

We first make some general remarks on the roles of time and event variables. It has
become customary to provide the formal denotation of verbs with an argument for
events, and to assume that events are partially ordered by inclusion. However, we
wish to deviate from this convention because in our setup ‘event’ is the notion to
be analysed; and we also want to construct various kinds of events from linguistic
expressions. We therefore have to say a few words about the formal representation
of verbs. In natural language, verbs do not appear to have truth conditions which
depend on explicitly given time points, but only on time points given indexically
(e.g. by the time of utterance). Stassen for example observes in his representative
study of intransitive predication (Stassen (1997)) that in the majority of the lan-
guages in his sample, which contains more than 400 languages, tense is not marked
in the grammatical system at all. This suggests that verbs are represented by pred-
icates which do not have a parameter for time, and that temporal reference is
accomplished by a separate Priorean operator At(t, ϕ), where t does not occur free
in ϕ. Thus, from B(x, y) we may derive a time-dependent predicate A(t, x, y) by
putting A(t, x, y) := B(x, y) ∧ At(t, B(x, y)). However, formally there is not much
of a difference between this and a representation where time is included in the
verb. If A(t, x, y) is a predicate, then we may define a formula B(x, y) and At such
that A(t, x, y) ↔ B(x, y) ∧ At(t, B(x, y)), by putting B(x, y) := ∃tA(t, x, y) and
At(t, B(x, y)) ↔ A(t, x, y). We shall therefore opt for the simpler representation
and incorporate the time parameter into the predicate.

We now choose an interpretation for perfect nominals. As the above discussion
shows, it is reasonable to equate the event type generated by A(t, x, y) with
∃tA(t, x, y)[x, y], which represents the subset {(a, b) | ∃tA(t, a, b)} of the domain
of the model. There is a subtlety hidden here: {(a, b) | ∃tA(t, a, b)} is a real, i.e.
extensional, subset, not a term in Feferman’s calculus. We have chosen this option
in order to stay close to the traditional interpretation of determiners as relation
between (extensionally conceived) sets. If A is constructed from B(x, y) and At,
this operation has the effect of recapturing B[x, y]. More generally:

Definition 18. If ϕ(t1 . . . tn, x) is a formula, the event type generated by ϕ will
be ∃t1 . . . tn.ϕ(t1 . . . tn, x)[x]. (This notation, due to Feferman, was introduced in
Definition 2).
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The form involving several variables for time is useful to derive a lattice structure
on event types, as will be seen below. When no confusion can arise, we shall usually
write ϕ instead of ϕ(t1 . . . tn, x). We allow event types constructed in this way to
occur as event-arguments in applications of the event calculus. It should be noted
at this point that there is a syntactic difference between the At operator and the
Happens predicate, since the latter, but not the former, is a relation between terms.

We have seen that imperfect nominals, as witnessed by their distributional prop-
erties, still contain some vestiges of time. The following definition therefore seems
appropriate.

Definition 19. The denotation of the imperfect nominal deriving from an expres-
sion ϕ(t, x) is the term ϕ[t̂, x]26.

Clearly ϕ[t̂, x] may be substituted for a fluent-argument in the event calculus. Both
from a logical and a linguistic point of view it is then interesting to determine
what the structure of sets of the form ϕ[t̂, x] can be. If the imperfect nominal is an
accomplishment such as ‘building a house’, one would expect that the set of instants
satisfying this description is something like a finite set of intervals. By Tarski’s
theorem on quantifier elimination27 we know that every set of reals definable with
a formula involving only +, ×, 0,1 and ≤ is a finite union of open intervals and
points. The question then becomes whether a result like this is still true when the
theory of the reals is expanded with the predicates and axioms of the event calculus,
together with a scenario. Theorem 10 provides some answers to this question.

With the above definitions in place, we can now explain in greater detail the similar-
ities and differences between the distinguished predicates HoldsAt and Happens. In a
sense, both are truth predicates; but whereas HoldsAt codes truth in models (M, t),
Happens has a different interpretation. Recall that according to Austin (1961), an
indicative sentence ϕ has two components of meaning: the descriptive conventions
of language yield an event type, whereas the demonstrative conventions yield an
event token. Thus, translated into our language, if e is an event type, and (e′, t) is an
event token, then the truth condition (e′, t) |= e is simply e′ ≤ e ∧ Happens(e′, t),
where ≤ derives from the implication between the corresponding formulas. As will
be seen in Section 6.3, there are intimate connections between the two predicates,
and in some cases Happens can be defined in terms of HoldsAt. However, this does
not mean that we can do without Happens, since we want to minimise the number
of occurrences of events without simultaneously minimising HoldsAt.

26This definition does not say that imperfect nominals denote propositions. But the righthand-
side in the following biconditional may denote a proposition:

HoldsAt(φ(x, t̂) ↔ φ(t)

It is compatible with the approach taken here to think of propositions as sets of worlds but the
system does not force this view. Many different notions of proposition are compatible with the
proposed framework. For instance one could also think of propositions as structured meanings. To
develop a novel concept of proposition is not one of the aims of this paper.

27For a proof, one may consult Hodges (Hodges (1993)), Section 8.4.



34 FRITZ HAMM/MICHIEL VAN LAMBALGEN

An important issue that now has to be addressed is that of extensionality versus
intensionality of fluents and event types. It seems advantageous to take fluents as
intensional entities. If we say

(33) Mary predicted the king’s beheading.

then, even in the case that the king is actually identical to the red-haired spy, we
still do not want to infer from this that

(34) Mary predicted the red-haired spy’s beheading.

This can easily be modeled in Feferman’s calculus. Even when the formulas ϕ(t, x)
and ψ(t, x) are logically equivalent, the terms ϕ[t̂, x] and ψ[t̂, x] are different, and
there is no axiom of extensionality which can force equality of the sets these terms
represent. Here is another example of the same phenomenon: if one doesn’t know
that Bill is John’s friend, the following two sentences involving imperfect nominals
can be true simultaneously

(35) a. John’s greeting Bill surprises me.
b. John’s greeting his friend does not surprise me.

A last example is one discussed by Zucchi (Zucchi (1999), p. 185). Suppose Gianni
was going by train from Milan to Florence, but due to a strike of the railroad
workers, he only got as far as Piacenza. On a Parsons-type approach to events,
there is the following problem. Let e be the trip that Gianni took on this occasion
and t the time at which he reached Piacenza. Event e does not culminate at t, since
e is an unfinished trip to Florence, and Gianni is at Piacenza. But e is also a trip to
Piacenza, which does culminate at t. On the present analysis there is no problem
at all, since the trips to Florence and Piacenza would be represented by different
fluents, which simply happen to share their space-time behaviour from Milan to
Piacenza. The predicate Terminates can very well be true of one, but not of the
other fluent. That is, if f is the fluent corresponding to a trip to Florence, and g
the fluent corresponding to a trip to Piacenza, a the event of reaching Piacenza,
b the strike, then the scenario would feature the conditions Terminates(a, g, t) and
Terminates(b, f, t); applying circumscription would then have the effect of enforcing
¬Terminates(a, f, t), as required.

6.1. Systematic Translation: Imperfect Nominals. We start this section with
a systematic translation of Poss–ing gerunds or nominal gerund phrases (NGP) in
Pullum’s terminology. Consider example (36):

(36) John’s singing the Marseillaise
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Let us first assume Abney’s analysis. According to our assumption the verb sing
is represented by the predicate sing(x,y,t). Applying this propositional function to
the object the Marseillaise (m) in the standard way yields: sing(x,m,t). Following
Definition 19 the semantic effect of ing adjoined to VP is: sing[x,m, t̂]. Now an
application of this fluent valued function with regard to John’s results in the fluent
sing[j, m, t̂], a fluent object.

We therefore arrive at a strictly compositional interpretation of Abney’s analysis
of Poss–ing gerunds. The derivation of the interpretation for Acc-ing gerunds is
analogous. The semantic interpretation of Pullum’s analysis however is slightly
different.

Pullum’s structure is much more in accord with traditional grammar and certainly
less abstract than Abney’s. The formation of the participle form of the verb break
is here part of the morphological component of grammar and therefore does not
show up in the syntactic tree. Hence we will assume here that the transformation
of break(x, y, t) to break[x, y, t̂] is taken over by the lexicon. The interpretation
process then works more or less as in the previous case. The fluent–valued function
break[x, y, t̂] is first applied to the record (r) yielding break[x, r, t̂]. Applying this
function to the pronoun your results in the fluent break[your, r, t̂], which is again a
fluent object. As pointed out in the first chapter we do not consider your or John’s
as real (possessive) genitive phrases when these phrases occur in Poss–ing gerunds
in contrast to the case of Ing–of gerunds.

The following assumption concerning the denotations of narrow and loose containers
will explain some of Vendler’s observations.

(37) a. Loose containers denote sets of fluents or propositional functions
defined on the set of fluents.

b. Narrow containers denote propositional functions defined on the set
of event tokens or a set of event tokens, i.e. they are subsets of
Happens.

With these assumptions in place the explanation for the contrast in (38) is imme-
diate.

(38) a. Your breaking the record was a surprise.
b. *Your breaking the record took place at ten.

In (38-a) was a surprise denotes a set of fluents and the fluent break[your, r, t̂]
may well be an element of this set. By contrast the expression took place at ten
denotes a set of event tokens which does not tolerate fluent elements. Therefore
the unacceptability of (38-b) is due to the type conflict postulated in (37). Note
especially that an expression like Happens(break[your, r, t̂], t) is not well formed.

Let us further illustrate the present approach by analyzing a classical example
involving infinitives from Chierchia (1988). Chierchia considers the following data:
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(39) a. John runs.
b. *John to run.
c. John tries to run.
d. *John tries runs.

Our formal representations for these examples are as shown in (40).

(40) a. run(j, t).
b. run[x̂, t̂](j).
c. try(j, run[x̂, t̂])
d. try(j, run).

Here run[x̂, t̂] is the fluent object derived from the propositional function run(x, t).
It is now easy to see why the pattern in (39) results. The function run is defined for
the individual John but since run[x̂, t̂] is an object the denotation of this expression
cannot take John as an argument. The contrast in (39-c) and (39-d) can be derived
in a similar way once one assumes that try denotes a relation between individuals.

This representation of infinitives is in complete accordance with the one given in
classical GB–theory (Chomsky (1981)). An infinitive like the one in He promised
to come is roughly analysed as:

(41) Hei promised [PROi to come]

Here PRO is an ungoverned empty category subject to the theory of control which
has to account for the fact that He and the empty subject of the infinitive have
to be coreferential. Our formalism represents PRO as the variable x bound by
abstraction.

6.2. Systematic Translation: Perfect Nominals and Determiners. We now
turn to the translation of Ing–of gerunds. Consider (42):

(42) John’s singing of the Marseillaise

Since ingof is adjoined to a lexical category in the above example the semantic
effect is slightly different than that of ing. The affix ingof turns sing(x, y, t) into
the function ∃t.sing[x, y, t], which maps two objects to an event type. Since the
temporal variable t is bound by the existential quantifier temporal modification
is no longer possible. Applying this function to the NP the Marseillaise yields
∃t.sing[x,m, t].

In contrast to Poss–ing gerunds the possessive John’s will be analysed as a deter-
miner, i.e. as the universal quantifier restricted to the set of actions that have John
as an agent.
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Let us first illustrate the semantic role of determiners with a concrete example.

(43) Every singing of the aria took place at noon28.

The intuitive idea is that determiners relate event types to event tokens via the
Happens–predicate. Since fluents cannot occur as arguments of the Happens–
predicate this strategy immediately explains why (44) is unacceptable.

(44) *Every singing the aria

The precise formalisation of example (43) is now as follows:

(45) ∀x, s(Happens(∃t.sing[x, a, t], s) → took place at noon(∃t.sing[x, a, t], s).

If we want to interpret the determiner every in a strictly compositional way, we
have to use λ–notation. But note that we use this notation here only as a kind of
book–keeping device.

With the help of this device every will be represented by the term
λPλQ∀x, s(Happens(P (x), s) → Q(P (x), s)). The compositional interpretation of
the NP Every singing of the aria is then given by the application of every to
λy∃t.sing[y, a, t], which results in:

λQ∀x, s(Happens(λy∃t.sing[y, a, t](x), s) → Q(λy∃t.sing[y, a, t](x), s))

This formula reduces further to:

λQ∀x, s(Happens(∃t.sing[x, a, t], s) → Q(∃t.sing[x, a, t], s)).

The general scheme for determiners in Ing–of gerunds is thus:

λPλQ Det x, t(Happens(P (x), t), Q(P (x), t))

We will from now on skip such details and even deviate from this official notation
when we think that a simpler and more transparent formalisation helps with the
presentation of the topic under discussion.

In Section 6.5 we will show that sometimes determiner relate event tokens also
to certain types of fluents. This will allow us to account for Vendler’s observation
that in the context of loose container perfect nominals tend to be interpreted as
imperfect.

28We introduce every explicitly since the more naturally occurring determiners like the or
John’s are special cases of every; for instance the is every with the additional requirement that the
restrictor set has cardinality one. For more detailed information about the semantics of determiners
see Westerst̊ahl (1989).
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6.3. Derived nominals. Derived nominals such as arrival of the train, destruction
of the city show a much less systematic behaviour than ing–of gerunds. This was
one of the reasons why Chomsky excluded them from a syntactic analysis in his
Remarks on nominalisations (Chomsky (1970)). Often it is quite idiosyncratic how
the meaning of the nominalisation is related to the meaning of the verbs it is derived
from. For example there seems to be no significant general pattern that forms the
basis of nominalisations like construction in the Anglo–Saxon genitive construction
and revolution in the French revolution. The relation between construct and con-
struction and revolve and revolution in these cases clearly differs considerably29.
But although many derived nominals are highly ambiguous some of them have the
eventive reading described for Ing–of gerunds among their meanings. For example
destruction of the city has a resultative meaning but the eventive reading as well.
This aspect of the meaning of destruction of the city will therefore be analysed in
the following way:

(46) ∃t.destroy [x, c, t]

Other types of nominalisations however don’t have any of the readings discussed in
this paper, for instance referee or amusement 30.

It is more interesting to compare our proposal with Reichenbach’s observations
on nominalisation presented in Paragraph 48 of his Elements of Symbolic Logic
(Reichenbach (1947)).
Reichenbach correctly observes that the following sentences have the same truth
conditions

(47) Amundsen flew to the North Pole in May 1926.

(48) A flight by Amundsen to the North Pole took place in May 1926.

Here, flight is the nominal derived from fly. Sentence (47) is an example of thing
splitting, whereas sentence (48) is an example of event splitting31. The equivalence of
these two sentences imparts a certain structure to nominalisation which he explains
as follows. He uses an operation ∗ to create a (perfect) nominal from a sentence;
the nominal is an event type viewed as a set of event tokens.32 Thus, if ϕ(a, t)
is a sentence as in (47), the corresponding perfect nominal would be denoted as
[ϕ(a, t)]∗, and (48) is written as ∃v[ϕ(a, t)]∗(v). Reichenbach also gives a second
form of (48), which is actually very much analogous to our proposal: first construct

29See Scalise (1984) for a more thorough discussion of this topic.
30See Spencer (1991) for an overview of theories dealing with these kinds of nominalisation.
31Reichenbach uses the term splitting because he thinks that the predicate–subject form of a

sentence splits the situation it describes into a part corresponding to the predicate and a thing–part
corresponding to the subject.

32Reichenbach conflates events and facts; we find him writing:

Synonymously with the word event we shall use the word fact.
Reichenbach (1947), p. 269
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∃tϕ(a, t) from ϕ(a, t), and then write (48) as ∃v[∃tϕ(a, t)]∗(v, t). Since Reichenbach’s
proposal is similar to ours, we shall conduct the discussion in the remainder of this
section in our own notation.

The equivalence of (47) and (48) for a formula ϕ can then be rendered formally as

(1) ϕ(x, s) ↔ Happens(∃t.ϕ[x, t], s)

or, equivalently but more conveniently,

(2) HoldsAt(ϕ[x, t̂], s) ↔ Happens(∃t.ϕ[x, t], s).

This constraint on the Happens predicate has not been included explicitly so far, but
can be easily incorporated. One may observe that the direction from left to right in
equation 2 is of a syntactic form allowed in scenarios (cf. condition 5 in Definition
17), so that minimising the Happens predicate yields the desired equivalence. This
can be done only for finitely many formulas ϕ at a time, but that suffices. Thus,
we have extensional equivalence of (47) and (48).

We close our discussion of this topic with a formal remark. The reader may have
wondered why we did not add an axiom of the form 2 to the axioms of the event
calculus. One reason is that the proposed axiom’s syntactical form is unpleasant
when combined with the Feferman calculus. A more important reason is that the
axiom would force us to include in a minimal model every event which can be derived
from an (already present) fluent via 2. This may lead to spurious events which do
not occur in the Initiates or Terminates predicates. Putting 2, when necessary at
all, in the scenario, obviates this problem.

6.4. Boolean operations. We have seen in Section 2 that imperfect nominals can
be combined by means of conjunction, disjunction and classical negation. Formally,
this requires defining these operations on the terms interpreting imperfect nominals.
This does not present a problem, since we have already seen in Lemma 11 that these
terms, at least when L0-definable, form a Boolean algebra. Thus, if f1, f2 are L0-
definable fluents, we have

Lemma 12. (1) HoldsAt(f1∧f2, t) ↔ HoldsAt(f1, t) ∧ HoldsAt(f2, t) and sim-
ilarly for ∨;

(2) ¬HoldsAt(f1, t) ↔ HoldsAt(¬f1, t).

Some residual problems remain, however. The first of these is that conditionals
apparently cannot be nominalised. Although the proposition If the professor gives
a talk, then he submits a paper is fully correct, nominalising the proposition as in
if the professor’s having given a talk, then his submitting a paper appears to yield
word-salad. Now clearly the above construction allows the definition of a conditional
on fluents at least in the sense of material implication, and although the material
implication is only the crudest approximation to a conditional, we appear to have a
problem. And in fact, the imperfect nominal the professor’s not having given a talk
or his submitting a paper does not seem to be ungrammatical. Also, the problem
does not appear to lie in the subordinating construction, because
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(49) A student’s not getting a degree when having submitted a thesis, is a cause
for surprise.

is not ungrammatical. However, replacing when by if destroys grammaticality; the
best we can do is something like

(50) If a student has submitted a thesis, his not getting a degree is a cause for
surprise.

The trouble thus seems to arise when a purely hypothetical conditional is used: this
is not perceived as defining a single fluent, but a relation between two fluents.

The second problem has to do with imperfect nominals which cannot be interpreted
as L0-definable fluents, because they somehow already involve a truth predicate.
This can occur for essentially three reasons. The first has to do with the coercion of
perfect nominals in the context of a wide container, as will be explained more fully
in Section 6.5: the collapse of the Germans is unlikely means something like that
the Germans will collapse is unlikely, so that the perfect nominal the collapse of the
Germans is interpreted as the imperfect nominal that the Germans will collapse.
Now any perfect nominal e gives rise to an imperfect nominal f by putting
f = Happens[e, t̂]. However, a glance at the definition of scenario (17) shows
that in models of the scenario which are minimal with respect to Initially, Hap-
pens, Initiates, Terminates and Releases, each of these predicates is definable in
using only HoldsAt and equations between terms. It follows that in such models,
which, as we shall see when discussing the progressive, are actually the only models
of interest, the fluent Happens[e, t̂] is extensionally equal to a fluent involving one
or more occurrences of HoldsAt, i.e. a truth predicate. Now consider what happens
when such a fluent is negated. By Feferman’s axiom 3, occurrences of ¬HoldsAt then
have to be replaced by their positive counterparts HoldsAt . In linguistic terms, this
means that negation in such contexts has antonymic force. And indeed, although
opinions differ as to whether Cooper’s example

(51) Andrew’s not stopping before the traffic light took place at noon.

is quite grammatical, no such problems seem to arise when the container is wide:

(52) Andrew’s not stopping before the traffic light caused a commotion.

except that now ‘not stopping’ appears to have the meaning of an antonym to
‘stopping’, in line with the above analysis. Thus we see that we really need the full
strength of Feferman’s theory, and cannot content ourselves with a truth predicate
that operates on L0-formulas only, as is customary in the treatments of the event
calculus current in artificial intelligence (if done formally at all).

This point is corroborated when we look at iterated nominalisations. Consider



EVENT CALCULUS, NOMINALISATION, AND THE PROGRESSIVE 41

(53) a. John supports his son’s not going to church.
b. John’s supporting his son’s not going to church caused me much cha-

grin.

The implication of the use of support is that John’s son is actually not going to
church, so the semantics of support is roughly of the following form

S(x, f, t) ↔ HoldsAt(f, t) ∧ S
′
(x, f, t).

If f is the fluent John’s son going to church, then (53-a) is formalised by S(j,¬f, t),
so that the fluent occurring in (53-b) is S[j,¬f, t̂]. Sticking this fluent inside HoldsAt
then means that a negative occurrence of HoldsAt is in the scope of HoldsAt, so
that a proper truth condition can only be formulated in terms of HoldsAt .

6.5. Coercion. Vendler observed that in the context of wide containers, perfect
nominals tend to be interpreted as being imperfect: a sentence like

(54) The collapse of the Germans is unlikely.

seems to have the interpretation

(55) That the Germans will collapse is unlikely.

This suggests that the denotation of perfect nominals given in Definition 18 is
reinterpreted when they occur in the context of a wide container.

Definition 20. Let e be an event type, then there exists a canonical fluent f asso-
ciated to e defined by f = Happens[e, t̂].33

Hence it appears to depend on the containers whether interpretation 18 or 20 is
chosen. An example like (56) will therefore be represented as in (57).

(56) The beheading of the king surprised us.

(57) The x, s(Happens(∃t.behead[x, the king, t], s),
surprised us(Happens[∃t.behead[x, the king, t], t̂], s)

We assume here an interpretation of the like the one in Section 6.2 but with the
modification due to coercion that the relates event tokens to fluents derived from
the Happens-predicate.

The obvious question that now arises is: given that we have two possibilities for
forming a fluent, i.e. an imperfect nominal, from a formula ϕ, how are these pos-
sibilities related? This question has actually already been answered implicitly in

33Corollary 3 of Theorem 10 shows that these fluents have the same general characteristics as
those definable in L0.
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Section 6.3, when discussing Reichenbach’s analysis of derived nominals. Equations
1 and 2 both ensure that the fluents ϕ[x, ŝ] and Happens[∃t.ϕ[x, t], ŝ] are equal, at
least extensionally. To enforce strict identity, the circumscription policy would have
to be changed. This can be done by dropping the relevant uniqueness–of–names as-
sumptions, and putting fluent–constants among the varied constants, as in example
3 of Section 4.4. Lemma 5 then shows that also in this case, circumscription reduces
to predicate completion.

This type of coercion is also important for the intensionality that some containers
enforce. Compare sentences (58) and (59)

(58) The beheading of the tallest spy occurred at noon.

(59) Mary predicted the beheading of the tallest spy.

Even when the king = the tallest spy, (59) does not imply

(60) Mary predicted the beheading of the king.

whereas we of course do have

(61) The beheading of the king occurred at noon.

This can now be explained, since the formal translations run as follows:

(62) predict(Mary, The x(Happens[∃t.behead[x, the king, t], t̂], s) ∧ s < now34

Replacing king by the tallest spy would result in the fluent
Happens[∃t.behead[x, the tallest spy, t], t̂] which is different from
Happens[∃t.behead[x, the king, t], t̂], hence (59) and (60) are not equivalent.

The formalization of example (58) is (63).

(63) The x, t(Happens(∃t.behead[x, the tallest spy, t], t),
occurred at noon(∃t.behead[x, the tallest spy, t], t)

34The reader may wonder why we choose to interpret the as a unary quantifier in (62). The
reason is that this is enough to explain our point concerning intensionality versus extensionality.
To insist on a completely uniform representation of the as a binary quantifier would have enforced
the following rather messy formula:
predict(Mary, λB The x, r(Happens(∃t.behead[x, the king, t], r),

B(Happens[∃t.behead[x, the king, t], t̂], r), s) ∧ s < now, where B is a variable for a relation
between fluents and times.



EVENT CALCULUS, NOMINALISATION, AND THE PROGRESSIVE 43

The crucial difference is that occurred at noon like Happens is a relation between
event types and times.

The extensionality inherent in example (58) can then be enforced by the following
axiom:

Axiom 8. Let B be a relation between event types and times and let φ and ψ be
logically equivalent formulas, then

B(∃t1, . . . , tn.φ[x], t) ↔ B(∃t1, . . . , tn.ψ[x], t)

Empirical evidence suggests that narrow containers can always be expressed as a
Boolean combination of the Happens-predicate. On the basis of such a semantic
universal it is possible to state Axiom 8 in a more restricted form.

Axiom 9. Let φ and ψ be logically equivalent formulas, then

Happens(∃t1, . . . , tn.φ[x], t) ↔ Happens(∃t1, . . . , tn.ψ[x], t)

6.6. Lattice structure of event types, and the role of negation. By Defini-
tion 18 of event types as terms of the form ∃t1 . . . tn.ϕ(t1 . . . tn, x)[x], closure under
∨ and ∧ is immediate. Since Happens is not a truth predicate, we have to augment
the event calculus with the

Axiom 10. Happens(e ∧ e′, t) ↔ Happens(e, t) ∧ Happens(e′, t),
and similarly for ∨.

We then have to be a bit careful in minimising a scenario with respect to Happens;
the result will not just be predicate completion, but Happens still has to be closed off
under ∧ and ∨. In any case it is clear that the lattice structure of perfect nominals
is mirrored in that of the event types.

This lattice structure is of interest in view of the observation of Bach (1986a) and
others (e.g. Link (1987), Krifka (1989), Lasersohn (1995), Eckardt (1998)), that
there exists a close parallel between the pair mass/count nouns on the one hand,
and the pair processes/events on the other. Bach puts this in the form of the
following equation:

events:processes :: things:stuff

Now just as there exists a mapping which associates to things the stuff they are
made of, there should exist a mapping which associates to an event type a process,
so that, e.g., a running event is mapped onto the ‘stuff’ it consists of, namely
the activity running. This mapping should commute with conjunction and should
respect temporal relationships such as ‘overlaps’. A remark is in order here: we
require commutation with conjunction whereas Bach and Link require commutation
with disjunction. This is because we have a different view of plural events: whereas
Link (op. cit., p. 247) considers John and Bill hit each other to consist of the
sum of the events John hit Bill and Bill hit John, we believe it might as well be
described as a conjunction. Now clearly our set up yields such a mapping for free,
namely the mapping e 7→ Happens[e, t̂]. This homomorphism satisfies Bach’s main
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desiderata: it is many-to-one (thus explaining why processes do not correspond
to unique event types), and event types may be mapped onto fluents which are
equivalent as functions of time, even though the event types themselves are different.
Bach’s examples are

(64) Jones poison the populace.

(65) Jones pour poison into the water main.

in the situation where Jones intentionally pours poison in the water main (to get
rid of bedfish) without having the intention to poison the populace.

Krifka (1989) uses the equation

events:processes :: things:stuff

as the starting point of an investigation into the relation between the mass:count
distinction in the nominal domain and the atelic:telic distinction in the verbal
domain. A striking phenomenon here is that the object argument of a verb seems
to determine its temporal constitution; compare

(66) a. Mary drank beer (for ten minutes)/(*in ten minutes).
b. Mary drank a glass of beer (*for ten minutes)/(in ten minutes).

In this example, use of the mass noun beer forces an atelic interpretation on drank,
whereas glass of beer enforces a telic interpretation.

These phenomena call for a different kind of mapping, from objects to fluents, where
the sort of objects is now equipped with a lattice structure as in Link (1987). We
shall discuss this mapping in detail in Hamm & van Lambalgen (2002).

It appears that the negation35 of an event type can only marginally be an event
type itself, as (perhaps) in Cooper’s example (51). This observation has been made
several times in connection with perception verb complements. Higginbotham’s
example (Higginbotham (1983)) is

(67) John saw Mary not smoke.

Insofar as this sentence is grammatical, the not seems to turn smoke into an
antonym. This situation can also occur in our context. In general, there seems
to exist some evidence that negation turns an event type into a stative predicate
(cf. Verkuyl (1993)); again, this is analogous to a construction introduced below,
which equates the negation of an event type with a certain fluent.

35An extensive discussion of negation related to nominalisation is contained in Asher (1993).
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We shall first show that there are formal obstacles to introducing a negation-like
operation on event types, and then proceed to give an interpretation of negation
which transforms event types into fluents (but not conversely!).

Suppose then that ∼ is a negation on event types. Perhaps ∼ can be identified with
a function whose domain and range are the set of formulas of the form ∃t.ϕ; but
we do not assume this, and ∼ may create genuinely new event types. However that
may be, ∼ should at least satisfy

(3) ∀e(Happens(∼ e, t) → ¬Happens(e, t)).

This makes ∼ into an operation which yields an antonym of an event type, but not
yet necessarily a classical negation. For this we need

(4) ∀e(¬Happens(e, s) → Happens(∼ e, s)).

The latter statement is highly problematic, since it will be seen to lead to an
unacceptable notion of minimal model36. The problem is not in the syntactic form
of (4); since HoldsAt is a truth predicate, (4) can be reformulated as

(5) HoldsAt(f, t) → Happens(∼ e, t),

where f is the nominalisation of ¬Happens(e, t). Hence, (4) is of the form allowed
in scenarios.

It will be seen below that a proper semantics for the progressive vitally needs
finite scenarios to which circumscription (with respect to Happens etc.) is ap-
plied. Let SCEN be such a scenario, which thus mentions only finitely many
events and fluents. First consider a model N of EC+CIRC[SCEN; Happens]; it
is easy to see that for an event e which is not mentioned in SCEN, N will sat-
isfy ∀t¬Happens(e, t). This is in accord with the intuitive way around the frame
problem: we may assume that irrelevant events don’t occur. Next, consider a model
M for EC+(4)+SCEN, and let e be an event not mentioned in SCEN; suppose
furthermore that for some nontrivial set S, we have in M Happens(e, t) ↔ t ∈ S. It
follows by (4) that, in M, Happens(∼ e, t) ↔ t ∈ IR\S. If we now move to a model
N ≤Happens M of EC+(4)+CIRC[SCEN;Happens], then it is no longer possible to
take away t such that Happens(e, t), because that would increase the set of t for
which ¬Happens(∼ e, t). Thus, in the presence of (4) the concept of minimal model
changes (too) drastically. A corollary of the above argument is that there is no
longer a unique minimal model for EC+SCEN; there are now uncountably many,
all differing in their interpretations of irrelevant events. This raises the spectre of
the frame problem again.

The conclusion of this argument is, that (4) is not acceptable in our context; but
without it ∼ e will in general be an antonym of e rather than a true classical
negation of e.

36This is very clear in the case of minimisation as given by the completion of a logic program,
for which see van Lambalgen & Hamm (2001). Readers familiar with both circumscription and
logic programming will see how the intuitive considerations given here can be made precise in the
latter set up.
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The preceding discussion suggests that there does exist a uniform negation on event
types, which however transforms event types into fluents

Definition 21. The fluent negation ≈ e of an event type e is defined by ≈ e :=
¬Happens[e, t̂].

As we have seen above, ≈ may play a role when negations of event types occur in
a wide container, such as in example (52).

The upshot of all this is that there will be no uniform treatment of negation for
event types. With this in mind, let us analyse Cresswell’s example and some of its
relatives:

(68) a. The non–arrival of the train caused consternation.
b. *The non–arrival of the train unexpectedly . . .
c. The unexpected non–arrival of the train caused consternation.
d. The fact that the train did not arrive caused consternation.
e. The train’s not arriving caused consternation.
f. The train’s not arriving quickly/?unexpectedly caused consternation.
g. *The non–arrival of the train occurred at noon.
h. Every non-arrival of a train causes consternation.

Recall that the first argument of cause(x, y, t) is a wide container, whereas the
second is narrow; consternation is therefore an event type, but the/every non-arrival
of the train could be both an event type and a fluent. If Vendler’s observation is
correct that wide containers coerce their argument to be a fluent (an observation
endorsed by Cresswell, who believes (68-d) and (68-e) are good paraphrases of
(68-a)), then we should favour an imperfect reading of the/every non-arrival of the
train; and indeed, as (68-g) shows, a perfect reading seems to be out. Even so, the
offending phrase appears to have the internal structure of a perfect nominal.

Formally, then, the obvious interpretation of non-arrival as the event type
∃t.¬arrive[x, t] appears to be not allowed. This is a pity because it would allow
us to treat the determiners in (68-a) and (68-h) along the following lines:

(68-h) ∀x, s(Happens(∃t.¬arrive[x, t], s) → cause(∃t.¬arrive[x, t], c, s).

The next option is to take the fluent-negation, which would yield
¬Happens[∃t.arrive[x, t], ŝ]. Then the sentence (68-h) can be formalised as

(6) ∀x, s(¬Happens(∃t.arrive[x, t], s) → cause(¬Happens[∃t.arrive[x, t], ŝ], c, s)).

In general such quantification over fluents is not allowed, although there are such
marginal examples as ‘the completing a tract’, but the presence of the Happens
predicate in the restrictor of the determiner seems to make the difference between
this particular fluent and fluents generally. The reason for this could be that by
making the restrictor slightly smaller, and using the property 3, i.e.

Happens(∼ e, t) → ¬Happens(e, t),
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Formula 6 can be brought into the canonical form for the application of determiners,
where the Happens predicate occurs positively in the antecedent. We thus believe
that Cresswell’s examples show the confusing pattern they do because various no-
tions of negation play a role simultaneously.

7. Aktionsart and the progressive

The purpose of this section is to show that the event calculus augmented with
circumscription can be elegantly put to use in providing a formal representation
of the progressive, avoiding the imperfective paradox. As a preparation, we briefly
discuss the definition of the various Aktionsarten in this framework. One interesting
feature of the event calculus is that it does not make a choice between an instant-
based and an interval-based representation of time, in the following sense. One
primitive concept is that of a fluent, which is implicitly a function of time points.
As will be proved in Theorem 10, fluents can generally be represented as the union
of a finite set of halfopen intervals and a finite set of points. If moreover the fluent
corresponds to an activity, the set of points is empty. Thus, we do not need an a
priori discussion on the merits of interval semantics vis à vis point based semantics;
the interpretation is dictated by the mathematical properties of the set up.

The section ends with a discussion of some recent work on the progressive, including
Bonomi’s ‘multiple choice paradox’ (Bonomi (1997)). Our conclusion will be that
this is not a paradox; but it will be seen that the expressive power of the present
proposal is rather helpful in analysing what is at stake.

7.1. Aktionsart. Before we embark on a formal analysis of the progressive and the
accompanying ‘imperfective paradox’, we show how Vendler’s famous classification
of verbs into states, achievements, activities and accomplishments, can be given a
theoretical underpinning in the present framework. Needless to say, we can treat
Aktionsart only insofar as it pertains to inherent properties of a verb; we do not
consider the contribution of the discourse context. The strategy we shall follow
is largely that of distinguishing Aktionsarten by means of the functional role the
corresponding fluents play in the event calculus. In general37, a verb is represented
by a structure of the form (f1, f2, e, f3), where f1 is a fluent which corresponds to
an activity, f2 is a fluent which corresponds to a partial object which changes under
the influence of f1 (thus f2 will in general contain variables), e is the culminating
event of the activity, and f3 is the resulting consequent state38. The fluents in this
structure play different roles in a scenario. f1 is not allowed to occur in Releases and
in the third argument of Trajectory, but may occur in the latter’s first argument.
For f2 it is the other way around; and since f3 will usually be an instantiation of f2

it inherits the latter’s syntactic restrictions. The structure furthermore satisfies the
property that Initiates(e, f3, t) and Terminates(e, f1, t). The fluents f1 and f2 have a
complicated relationship which will be discussed in the section on accomplishments.

37A much more elaborate treatment of this topic can be found in Hamm & van Lambalgen
(2002).

38This is of course strongly related to the ‘event nucleus’ of Steedman (1997).
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Different Aktionsarten emphasise different parts of this structure, as will be seen in
the following sections.

7.1.1. States. Examples are know, be beautiful and love. The distinguishing feature
of states seems to be that there does not necessarily exist a natural culmination
point. A consequence is that states exhibit relatively unconstrained behaviour with
respect to time; in fact one may think of states as an arbitrary combination of a
timeless predicate with the At operator. Bach remarks that ”[p]erhaps it is only
states that can be profitably thought of as properties of moments –that is, instants
of time” (Bach (1986b)). This is true in the sense that in principle it can be de-
cided for each instant independently whether it belongs to the property representing
the state; no such independence can be expected for activities. It is often claimed
that states involve the unchanged continuation of some condition, or better, in-
volve viewing some condition as continuing unchanged. This may be true, but some
constructions involving states seem to emphasise change. One can say

(69) She is more beautiful now than she was in her youth.

or

(70) I’ve come to hate my job.

Therefore, as representations of states we will also allow fluents which contain
a variable for a real, indicating a degree. In the event calculus, fluent(functions)
representing states may occur as the third argument of the Trajectory predicate,
and as argument of the Releases predicate. Thus, the event of falling-in-love at t
Releases the fluent-function be-beautiful(x) at t, which then starts its Trajectory as
long as the fluent being-loved exerts its beneficent influence.

It follows from these stipulations that the time profile of a fluent corresponding
to a state, can be fairly arbitrary (but not too much, if the scenario is finite; see
Theorem 10). For example, for a particular x, be-beautiful(x) may hold at a single
instant only. Thus one cannot expect the construction of fluents in Proposition 1
to be applicable generally.

7.1.2. Activities. Here, examples are run, push a cart and seek. One difference be-
tween states and activities is that even when the latter is conceived of as a set
of instants, determining whether a particular instant belongs to this set cannot
proceed independently of what we know about other instants. A further difference
between states and activities is that, while the latter again do not have explicit
natural culmination points, a culmination point is at least implied. As Kamp and
Reyle (Kamp & Reyle (1993)) put it, an activity verb is incomplete, and demands
that a culmination point is given by the context or by a constituent of the sentence
in which it occurs. For us, this means that the scenario characterising the fluent
representing an activity, should contain statements characterising (initiation and)
termination of that activity. More importantly, we must also forbid that such an
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activity-fluent occurs as an argument of the Releases predicate, since such an oc-
currence may override the effect of the termination condition (see axiom 6). It will
turn out that the previous observations are all related. Thus, supposing we have
a predicate Act which isolates the fluents corresponding to activities, we may add
the following axiom to the event calculus

Axiom 11. Act(f) ↔ ∀e∀t¬Releases(e, f, t).

In a consistent scenario, activity-fluents will then not occur as third argument of
the Trajectory predicate. An interesting consequence of axiom 11 is that the time
profile of activity-fluents conforms to that exhibited in the standard model: a finite
set of half-open intervals. That seems to be as it should: roughly speaking for John
runs to be true at t there should be some interval around t where the sentence is
true.39

The proof of the next theorem is somewhat involved; for a proof see van Lambalgen
& Hamm (2001). The proof of Theorem 11 below will illustrate some of the essential
steps in a concrete case. We believe that both Theorem 10 and Theorem 11 hold
some potential as prerequisites for the use of the event calculus in natural language
processing.

Theorem 10. Suppose we are given a finite scenario scen and a finite dynamics
dyn. In minimal models of scen+dyn+EC, fluents satisfying Act are composed
of finitely many halfopen intervals. All other fluents are composed of finitely many
intervals together with finitely many points.

Corollary 1. Under the same assumptions as above: for activity fluents f and
for all t (except the right endpoints), HoldsAt(f, t) if and only if ∃s, r (s < t <

r ∧ ∀t′ ∈ (r, s)HoldsAt(f, t
′
).

Corollary 2. Under the same assumptions as above: activity fluents are initiated
and terminated solely by events mentioned in the scenario.

Corollary 3. Under the same assumptions as above: {t | Happens(e, t)} is a union
of finitely many intervals and finitely many points. Thus, event tokens may take
place at both points and intervals.

A linguistic test which distinguishes activities from the achievements and accom-
plishments to be discussed next is their behaviour with respect to the adverbial
modifiers for an hour and in an hour (more generally, in y time etc.). One says ‘he
ran for an hour’ but ‘he reached the summit in an hour’. Moreover, ‘he ran for an
hour’ allows brief interruptions such as waiting for a traffic light. In this context,
for an hour is a predicate of (activity-)fluents; since such fluents are composed of
halfopen intervals, the possibility of interruptions is automatically guaranteed, and

39In our opinion, this does not mean that an activity cannot be evaluated at a time point, as
has sometimes been maintained. Thus, the following dialogue seems to make perfect sense:

”I came in to see John at 2:00 pm, but he wasn’t there.” ”Hmm, let me think
. . . at 2:00 pm, John was running in the park.”

Hence there is no objection to using the HoldsAt predicate for activity fluents. The problem is
rather that an activity cannot be an arbitrary set of instants.
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the applicability of the for an hour-predicate depends both on the lengths of the
intervals and those of the interruptions.

Before we move on to the achievements, we will try to answer a query that is
probably on the reader’s mind: ‘Isn’t the traditional view that states do not require
change, whereas activities do? How is that reflected here?’ First of all, as Corollary 2
shows, activities are always initiated and terminated by events, i.e. explicit changes;
states may ‘switch’ on or off without any such explicit change. Secondly, to fluents
representing an activity one may associate another fluent representing the state
that changes as the result of that activity. For example, associated to running
will be distance-traversed(x), where x is a numerical parameter. Activities thus in
general use the first two components of the structure outlined above. This is in
sharp contrast to the achievements to be discussed.

7.1.3. Achievements. Examples are begin, reach and recognise. Achievements seem
strongly connected to a change of state: if we begin playing soccer at t, we didn’t
play immediately before t, and if we recognise someone’s face at s, the face was
not yet recognised before s (cf. Dowty (1979), p. 76ff). This suggests an analysis
analogous to what we did for activities, except that here the achievement is repre-
sented by the changing state; furthermore, this change is typically instantaneous.
Thus, unlike activities (and accomplishments), achievements do not refer to the
first two components of the general verb structure; they refer rather to the last two
components.

Let us take reach the top as an example. Reaching the top may be a result of the
activity climbing, just as height-gained is. Formally, such a result can be represented
as the third argument in the Trajectory–predicate; if climbing = f , and reach the
top = h, then the relation between these fluents can be formalised by a statement
such as

HoldsAt(f, t) ∧HoldsAt(h, t) → Trajectory(f, t, h(t + d), d).

Intuitively, if I am climbing at t, and I haven’t reached the top yet (i.e. h(t) = 0), then
if all goes well, for some d > 0, I will have reached the top at time t+d (i.e. h(t+d) =
1). Formally, the value of h at any time t + d can then be determined from axiom
7, provided that the effect of the law of inertia embodied in axiom 5 is cancelled by
means of the Releases or Terminates predicates. Thus, the scenario must incorporate
an event e (‘setting foot on the top’), which releases (or terminates) h(t) = 0, and
initiates h(t) = 1.

When the temporal adverbial in an hour makes sense, as in he reached the summit
in an hour, it can be formalised thus. Let Happens(e, t) and let e′ be an event type
initiating ¬f such that if Happens(e′, s), where s < t is maximal (such an s exists
in minimal models of scenarios, because there {t | Happens(e, t)} is a union of a
finite set of intervals (a, b] together with finitely many points). Then t − s should
be less than one hour.

7.1.4. Accomplishments. Examples are draw a circle, write a letter or cross the
street. Recall that Dowty (1979) analysed accomplishments such as Mary draws a
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circle by decomposing them into two parts, the first part concerned with an activity
(draw), the second with the result of that activity. The two parts are connected by
a causal relationship, so that we obtain

(71) CAUSE [Mary draws something, a circle comes into existence].

It is clear that the second clause describes a process, so that by the result of the
activity draw we do not mean the finished circle, but the various stages of its con-
struction. It is of course no simple matter to come up with a syntactic analysis
which somehow produces Mary draws a circle from (71). Nevertheless, we believe
this type of semantic analysis makes good sense, but needs to be supplemented
by a theory of CAUSE to be really informative. The event calculus furnishes all
ingredients necessary to formalise (71): draw something is a fluent which depends
only on time (and the tacitly understood subject, Mary), a circle comes into exis-
tence is a fluent which depends on time and, say, a parameter for the length of the
circumference already drawn (supposing the radius to be known), and CAUSE is
represented by the Trajectory–predicate.

The first type of fluent will be referred to as the cause–fluent, the second as the
result–fluent. In principle, the verb draw is a ternary predicate, so its corresponding
cause–fluent would be a function of time depending on two parameters, but in this
context the object variable is quantified existentially. Formally, then, there is a
cause–fluent f1, a result–fluent f2(x), and a function g such that

(72) HoldsAt(f1,now) ∧ ∀t(HoldsAt(f2(g(t)), t) →
∀d > 0Trajectory(f1, t, f2(g(t + d)), d)).

Here, f1 denotes an activity, so that its time profile can be visualised as, in general, a
set of halfopen intervals. However, if the cause f1 exerts its influence uninterruptedly
from t until t + d, the state of the result–fluent will be f2(g(t + d)).

In general, g will be continuous, as in the case of drawing a circle, but sometimes one
wants to allow jumps, for instance to treat Landman’s example (Landman (1992))

(73) God was creating a unicorn, when he changed his mind.

The scenario is that God, after much preparatory work, was just about ready to
create a unicorn in one stroke (no partial unicorns here), when he changed his mind;
in this scenario sentence (73) is true. The problem posed by the sentence is, how to
interpret the quantifier ‘a unicorn’, since it clearly cannot quantify over unicorns
in the real world. This seems to make (73) analogous to ‘Mary tried to find a
unicorn’, so that the progressive brings with it an intensional context. However, the
intensionality uncovered here is not essentially different from the one in example
(71), the only difference being the nature of the function g.
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Another way of explaining the Formula (72) is by way of referring to Dowty’s notion
of an ‘incremental theme’ (cf. Dowty (1991), p. 567). Dowty defines a telic predicate
as a homomorphism (with respect to ‘part-of’ relations) from its structured theme
argument into a structured domain of events (modulo its other arguments). But
Formula (72) generates such a homomorphism: since f1 is an activity, it consists of
a finite number of intervals, and by the meaning of the Trajectory-predicate each
such interval corresponds to an interval on which the result-fluent changes.

The analysis just presented shows that accomplishments need the full four–part
structure associated to verbs. It is now relatively straightforward to compose sce-
narios corresponding to each of the Aktionsarten; we only have to take care that the
relevant components of the four–part structure are correlated with each other. We
shall further comment on the analyses of accomplishments found in the literature
after stating and proving the main result of this section.

7.2. The progressive and the imperfective paradox. We begin this section
with an analysis of the progressive as applied to activities.

Consider

(74) John was pushing a cart.

(74) strictly entails that John pushed a cart, so our semantics must reproduce this
inference. We conceive of the progressive as an operator which transforms a sentence
of natural language into a formula of the event calculus involving HoldsAt. In more
detail, if now is a constant for the time of utterance and f the fluent which results
from nominalising John pushes a cart, then the formalisation of John is pushing a
cart becomes

(75) HoldsAt(f , now)

and that of (74) becomes

(76) ∃t(HoldsAt(f, t) ∧ t < now).

Since push a cart is an activity, the fluent f satisfies axiom 11. Intuitively, (74)
says that there is some interval earlier than now during which John pushed a cart
continuously. This intuition can be reproduced formally by using the fact that
HoldsAt is a truth predicate. Thus John pushed a cart follows from (76), as desired.

The treatment of accomplishments such as

(77) John is crossing the street.
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is considerably more complicated, and involves the machinery developed by Shana-
han to model continuous change (cf. Shanahan (1990), Shanahan (1997)), which
was briefly alluded to in Section 4.2.1. For one thing, accomplishments allow the
interesting subtlety that the direct object need not exist. That is, although ‘the
street’ in example (77) must exist, this need not be true of ‘a circle’ in the sentence
Mary was drawing a circle. We therefore give an analysis of example (77) which
also extends to the general case.

Suppose we want to show that a bucket into which water flows continuously will
ultimately overflow. This can be formalised by assuming a fluent filling, a fluent
function height(x), a fluent spilling and events overflow, tap–on, tap–off which are
connected by axioms such as the following (this list is not exhaustive).

(1) Initially(height(0))
(2) Initiates(tap–on, filling, t)
(3) Initiates(overflow, spilling, t)
(4) Releases(tap–on, height(x), t)
(5) Terminates(overflow, filling, t)
(6) HoldsAt(height(x), t) → Trajectory(filling, t, height(x + d), d)
(7) HoldsAt(height(10), t) ∧ HoldsAt(filling, t) → Happens(overflow, t).

The desired result, overflow at t = 10, is then derived by applying circumscription
to this scenario.

In the description of this scenario, an important role is played by the Trajectory–
predicate, which allows one to state that filling causes increase of height. It is
precisely this possibility to formulate causal relationships that makes the event
calculus relevant for a semantics of accomplishments.

In the case of example (77) we shall proceed by analogy with the above, that is, we
identify a cause–fluent (crossing(x)) and a result–fluent (the distance traversed), as
already indicated in our discussion of accomplishments above. However, there is a
subtlety here which bears emphasising. In the case of ‘Mary is drawing a circle’,
‘a circle’ is not treated by means of existential quantification over circles, to avoid
the inference from ‘Mary is drawing a circle’ to ‘a circle exists’. Thus, the fluent
generated from the verb ‘draw’ does not have a free variable representing the object;
we may think of this variable as being existentially quantified. In the case of ‘cross
the street’ such scruples are unnecessary; in fact in this case one would like to
draw the inference that the street exists. The fluent constructed from ‘cross’ should
therefore have a free variable for which ‘street’ can be substituted, thus allowing
existential generalisation. This being said, in order not to encumber the notation,
we continue to write crossing for this fluent, it being understood that this is a
fluent–function depending on two parameters in which the objects ‘John’ and ‘the
street’ have been substituted for the two free variables.

Thus, John is crossing the street is formalised as

HoldsAt(crossing ,now) ∧ (HoldsAt(distance(x), t) →
∀d > 0Trajectory(crossing , t, distance(x + d), d)
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and the entire street-crossing scenario is described by the following conditions:

(1) HoldsAt(crossing ,now)
(2) t0 <now
(3) ¬HoldsAt(other–side, now)
(4) Initially(one–side)
(5) Initially(distance(0))
(6) Happens(start, t0)
(7) HoldsAt(distance(m), t) ∧ HoldsAt(crossing, t)→ Happens(reach, t)
(8) Initiates(start, crossing, t)
(9) Releases(start, distance(x), t)

(10) Initiates(reach, other–side, t)
(11) Terminates(reach, crossing, t)
(12) HoldsAt(distance(x), t) → Initiates(reach, distance(x), t)
(13) HoldsAt(distance(x), t) → Trajectory(crossing ,t, distance(x + d), d)
(14) HoldsAt(distance(x1), t) ∧ HoldsAt(distance(x2), t) → x1 = x2

(15) UNA: uniqueness-of-names assumptions.

A few comments are in order. The constant m denotes the width of the street, and
t0 is the time point at which John commences his crossing of the street, supposed to
be before now. Also for simplicity we have assumed uniform velocity in 13; nothing
hinges on this, of course40.

Put ∆ = 4–7, Σ = 8–12; let Γ be the conjunction of the remaining statements with
the axioms of the event calculus. We then have that, barring unforeseen circum-
stances, John will safely reach the other side of the street:

Theorem 11. For s ≥ t0:

CIRC[∆;Happens, Initially ] ∧ CIRC[Σ; Initiates,Terminates,Releases] ∧ Γ |=
HoldsAt(other-side, s + m).

Proof We show that the premises determine the model as being of the following
form:

(1) crossing holds in the interval (t0, t0 + m], and is false outside this interval.
(2) distance(0) holds on [0, t0], distance(x) holds at t0 + x, for x ≤ m, and

distance(m) holds after t0 + m.
(3) start happens at t0, reach at t0 + m.
(4) one–side holds before (and including) t0, and is false thereafter.
(5) other–side holds at and after t0 + m, and is false at other times.

The last line is the desired conclusion. We may observe that this model satisfies
∆ ∪ Σ ∪ Γ, as can be easily verified. Thus, by Theorem 5, the premiss

CIRC[∆;Happens, Initially ] ∧ CIRC[Σ; Initiates,Terminates,Releases] ∧ Γ

40But see Section 7.3. The uniform motion assumed in 13 is reasonable for the situation
described, where only a short distance has to be traversed. To describe the proper dynamics of
the sentence ‘Rebecca is swimming across the Atlantic’ one needs a more complicated function
relating time and position.
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is consistent.

Due to the simple form of ∆ and Σ, the relevant circumscriptions can be easily
computed. CIRC[∆;Happens, Initially ] yields

(7) Initially(f) ↔ f = one–side ∨ f = distance(0)

Happens(a, t) ↔ (a = start ∧ t = t0) ∨
(a = reach ∧HoldsAt(crossing , t) ∧HoldsAt(distance(m), t))(8)

Using parallel circumscription we may decompose
CIRC[Σ; Initiates,Terminates,Releases] into CIRC[Σ;Releases] ∧
CIRC[Σ;Terminates] ∧ CIRC[Σ; Initiates] so we get

(9) Releases(a, f, t) ↔ a = start ∧ f = distance(x)

Terminates(a, f, t) ↔ a = reach ∧ f = crossing(10)

Initiates(a, f, t) ↔ (a = start ∧ f = crossing) ∨
(a = reach ∧ f = other–side ∨

(a = reach ∧ f = distance(x) ∧HoldsAt(distance(x), t))(11)

Accordingly, a model M of the premiss has the above interpretations of the distin-
guished predicates; we have to compute the interpretation of HoldsAt on M, both
for crossing and for distance(x).

Thus, in order to determine for which t one has HoldsAt(crossing,t), it suffices (by
axiom 5), to find e, y, t such that

Happens(e, y) ∧ Initiates(e, crossing , y) ∧ y < t ∧ ¬Clipped(y, crossing , t).

¿From the circumscriptions 8 and 11 it is immediate that e = start and
y = t0. It thus remains to compute an upper bound on t from the clause
¬Clipped(t0, crossing , t).

Suppose then, Clipped(t0, crossing , t). This means that for some e, s: t0 <
s < t ∧ Happens(e, s) ∧ Terminates(e, crossing , s). We claim that the pair
e, s is unique. From 10 it follows that e = reach. Furthermore, we have
that ¬Declipped(t0, crossing , t), since the only action initiating crossing can be
start, which however only happens at time t0. By axiom 6, it follows that
¬HoldsAt(crossing , t

′
), for s < t

′ ≤ t. However, if for some r > s, Happens(reach,r),
then by circumscription property 8 HoldsAt(crossing,r), a contradiction. Thus s is
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unique, and we have that ¬Clipped(t0, crossing , s). By axiom 7, it follows that
HoldsAt(distance(s − t0), s). By circumscription property 8, we must have that
HoldsAt(distance(m), s), so that by the definition of the dynamics, 14, m = s− t0.
It follows that crossing is not clipped before t = t0+m, hence Clipped(t0, crossing , t)
implies t ∈ (t0 + m,∞).

We are now in a position to compute the time profile of crossing. By axiom 7,
HoldsAt(distance(m), t0+m). By condition 7 of the scenario, Happens(reach,t0+m),
and thus Terminates(reach,crossing,t0 + m). Since crossing is not resumed there-
after, HoldsAt(crossing,t) is true only for t ∈ (t0, t0 + m].

The time profile of distance(x) is then easily computed from the dynamics, 13,
which yields for t ≤ t0 + m, HoldsAt(distance(x), t) iff x = t − t0, together with
condition 12 of the scenario, which says that for t ≥ t0+m, HoldsAt(distance(m), t).

All in all we have that at time t0 + m, the fluent other–side is initiated, and since
there is no event which can terminate it, for s ≥ t0+m we have that HoldsAt(other–
side,s), as desired. ¤

Before moving on to the ‘imperfective paradox’, we add a few remarks on the proof
just given. First, note the role of the Releases predicate in this proof: if we wouldn’t
have Releases(start,distance(0), t0), then axioms 4 and 7 together with the scenario
would yield a contradiction. Furthermore, it is interesting to see the role that the
various conditions of the scenario play in providing a definite interpretation for the
fluents. For example, the condition 12 was added to make the fluent distance(x)
definite for all values of x and t, in the sense that all minimal models give the same
interpretation to distance(x). It would be equally natural to say nothing about
distance(x) after other–side has been reached, in which case minimal models would
differ in their interpretation of distance(x). Lastly, the condition Terminates(reach,
crossing, t) has the effect of making the event reach occur at one instant only.
Without this condition, the other postulates would force reach to happen at every
instant in (t0 + m,∞).

The ‘imperfective paradox’ is the observation that accomplishments in the progres-
sive tense are not veridical. Under suitable circumstances, (77) entails that John
reaches the other side of the street; we have seen how to provide ‘suitable circum-
stances’ with an exact semantics. But the entailment can be canceled, as in the
following example

(78) John was crossing the street, when the truck hit him.

It is easy to analyse (78) in the present framework. This sentence leads to the
following additions to scenario (77):

15. for some r, t0 < r < t0 + m, Happens(hit,r)
16. Terminates(hit,crossing,t).
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The additional data change the interpretations of the distinguished predicates in
such a way that Clipped(t0, crossing, t0 + m) becomes derivable, and Theorem 11
is no longer true.

A similar analysis applies to statements such as ‘John was building a house’ or ‘Mary
was drawing a circle’. In both cases there are two fluents involved, one describing
a cause, the other describing the result. In the first example, the cause–fluent is
building and the dynamic fluent is some such function as construction-stage-of-
house(x), where x is a summary of the relevant numerical parameters (e.g. height).
We may add an axiom to the scenario for building a house, stating that for x large
enough, the house exists:

(79) HoldsAt(construction-stage-of-house(x),t) ∧ x > x0 →
house(construction-stage-of-house(x)).

Thus, we interpret the predicate house not only on the sort of objects, but also on
the sort of fluents, saying in effect that some fluents can be treated as objects. This
is our analogue of the meaning postulates introduced in Zucchi (Zucchi (1999), p.
189).

7.3. Comments on the literature. A. Bonomi (see Bonomi (1997)) has tried to
isolate another aspect of the intensionality of the progressive in what he calls the
Multiple–Choice Paradox, which he takes to be as central as the imperfective para-
dox. To solve the problem, he develops an intricate semantics for the progressive,
which we shall not go into, since we believe that the paradox can be treated with
the machinery developed here. This being said, we happily acknowledge that the
paradox is quite fruitful, and raises many issues about the progressive. We hope
the analysis below covers the main aspects.

The Multiple–Choice Paradox can be illustrated by the following story:

Leo, who has just left Dijon in his car, has decided to spend the
night in one of the following three cities: Besançon, Metz or Paris.
He drives on the autoroute which runs in the direction of these
cities (before branching into three different roads). In each of the
cities he has reserved a room. However, before he has made up his
mind, his car breaks down. Now suppose that Besançon, Metz and
Paris are the only cities in France where there will be a concert of
Baroque music that night. Then the sentence (80), uttered shortly
before the car breaks down, appears to be true

(80) Leo is going to a French city where today there is a concert of Baroque
music.

Bonomi claims that (80) is ambiguous. On one reading the sentence is true, since
the city that Leo is going to has the relevant characteristics; but the sentences Leo
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is going to Besançon, Leo is going to Metz and Leo is going to Paris appear to
be false, hence so is the disjunction.41This means that the second reading of (80),
where it is claimed that Leo is going to a specific city, is false.

We believe that the breakdown of the car is a red herring, and that the readings
differ even without this flourish to the story. The problem seems to be that is
going creates an intensional context, which blocks exportation of the disjunction
(or existential quantifier). Informally, one may analyse the apparent paradox by
means of the Trajectory predicate of the event calculus. Each of the sentences Leo
is going to Besançon, Leo is going to Metz and Leo is going to Paris specifies a
distinct trajectory. On the other hand, on the reading of (80) which makes that
sentence true, we are concerned with a trajectory which branches out into three
trajectories. The branching point is determined by an event distinct from the one
initiating the journey. The two readings thus appear to be distinguished by the
underlying dynamics.

The situation is actually a little more complicated, since, on the semantics we
have provided, it is not quite clear what a reading is. When proving that ‘John is
crossing the street’ implies nonmonotonically that John will eventually reach the
other side, we used a nontrivial scenario and dynamics to describe the situation.
Do all statements involved belong to the meaning of ‘John is crossing the street’?
The issue is of some relevance to the present example, since there are various ways
to tease the two readings apart, depending on how one answers this question.

A formal analysis might run as follows. Let go(t, x, y) be the predicate expressing
that at time t, x is travelling in the direction of y, distance(t, u, v, y) the predicate
which says that at time t, u has travelled v kilometers in direction y, and finally, let
C(y, z) mean that z is a concert of Baroque music in (city) y. We use the constant
l for Leo, and b,m, p for the cities. We shall freely combine these expressions into
fluents. Since we will refer both to fluents and to the predicates from which they
orginate, we use Feferman’s notation for abstraction. The most important axiom
describing the situation sketched is then

∃t0∀t ≤ t0∀y∀y
′
(go(t, l, y) ↔ go(t, l, y

′
)).

We shall not formalise the full scenario, but we want to draw attention to one point,
involving intensionality. There has to be an axiom saying that at time 0, a start
action initiates the fluent ‘Leo is going somewhere’, formally

Initiates(start ,∃y.go[t̂, l, y], 0).

By the preceding axiom, ∃y.go(0, l, y) is equivalent to each of go(0, l, b), go(0, l, m)
and go(0, l, p). However, by the intensionality of the setup, all these formulas deter-
mine different fluents, so that the axiom does not imply Initiates(start , go[t̂, l, b], 0)
etc. This gives a quick way to dissolve the paradox, since the statement
Initiates(start , go[t̂, l, b], 0) would have to belong to the scenario for ‘Leo is going
to Besançon’; if it is false, so is ‘Leo is going to Besançon’. However, this appears
to be a little too quick, so we shall assume a moderate form of extensionality for

41One might think that this is due to intentionality; on that reading, Leo is going to Metz
entails that Leo has decided to go there. Bonomi constructs a more complicated example where
intentionality plays no role.
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the moment, and hence locate the root of the paradox elsewhere. The extensional-
ity resides in the assumption that go[t̂, l, b], go[t̂, l, m] and go[t̂, l, p] are activated
simultaneously; reaching a branching point then terminates (at least) one of them.
Under this assumption, the root of the paradox seems to lie in the different dynamics
involved.

The second reading of (80) can be formalised by

∃y(∃zC(y, z) ∧HoldsAt(go[t̂, l, y],now) ∧ HoldsAt(distance[t̂, l, g(now , y), y],now)) ∧
∀y∀t∀d(HoldsAt(distance[t̂, l, g(t, y), y], t) →

Trajectory(go[t̂, l, y], t, distance[t̂, l, g(t + d, y), y], d))).

The first conjunct could have been formulated equivalently by pulling the logical
operations inside the HoldsAt, in virtue of the axioms governing T1. We also see
that one may eliminate the quantifiers ∃y and ∀y in favour of a disjunction featuring
the three cities; the resulting formula then describes three different trajectories.

The second conjunct defines the dynamics, and it is this part which is false in the
situation described. Indeed, its negation is

∃y∃t∃d(HoldsAt(distance[t̂, l, g(t, y), y)], t) ∧
¬Trajectory(go[t̂, l, y], t, distance[t̂, l, g(t + d, y), y], d)).

But this is true if we take for t = 0 the time point at which Leo leaves home
(i.e. before the branching point). By the assumption of extensionality for fluents,
start initiates go(0, l, b), go(0, l, m) and go(0, l, p). In order to establish the clause
¬Trajectory, we have to show for some y, start initiates a fluent go(0, l, y) such that
at some time d, Leo cannot be expected to be at distance(d, l, g(t + d, y), y). But
since the three fluents are activated simultaneously, if d is large enough, Leo will
have passed the branching point, so that he would have to be at three different
points at the same time, a contradiction. Thus on the second reading, (80) is false.

It remains to provide a formalisation of the first reading. The first conjunct remains
the same, but this reading differs from the other one in its underlying dynamics,
which is now described by

∀t(HoldsAt(∃y(∃zC(y, z) ∧ go)[t̂, l, y], t) → ∃y(∃zC(y, z) ∧
∀d > 0Trajectory(go[t̂, l, y], t, distance[t̂, l, g(t + d, y), y], d))).

Again, the discourse context allows us to eliminate the quantifier ∃y in favour of the
three cities, but one cannot pull the resulting disjunction outside the quantifier ∀t.
Indeed, the dynamics just says that as long as Leo keeps going in the direction of a
city where there is a concert of Baroque music, there will be some destination such
that if Leo initiates the fluent of going in that direction (by taking the right exit
of the autoroute), then he will get there eventually, if nothing comes in between.
It follows that the disjunction cannot be pulled out, because the disjunct chosen
depends on t.

The paper Naumann & Piñón (1997) contains a number of interesting observations
on the progressive. We will therefore discuss some of their examples here. Whereas
our analysis of the imperfective paradox has been mostly concerned with the ques-
tion, what can be inferred from a sentence in the progressive form, their examples
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focus attention on cases where sentences in the progressive form can or cannot be
inferred.

Consider for example the sentence

(81) The coin is coming up heads,

uttered after flipping a coin and before the coin has landed. In this context, the
utterance of (81) seems to be infelicitous, and likewise when ‘is’ is replaced by
‘isn’t’. The characteristic feature of the situation is of course that for all practical
purposes, coin tossing is indeterministic. If our analysis is right, part of the meaning
of the progressive is a dynamic law, which in this case would deterministically relate
an initiating action (flipping the coin) and an outcome (heads). However, the true
dynamics of the situation is given by

HoldsAt(vertical–speed [x̂, ŝ], t) ∧ HoldsAt(angular–velocity [ŷ, ŝ], t)
→ Trajectory(angular–velocity [ŷ, ŝ], t, outcome(g(x, y, t + d)), d),

which says that the outcome is completely determined by the initial vertical speed
and angular velocity. Since the values of these initial conditions cannot be deter-
mined with any precision, the first conjunct of the formalisation of (81) is essentially
something like

(12) HoldsAt(∃x(vertical–speed [x, ŝ]), t) ∧HoldsAt(∃y(angular–velocity [y, ŝ]), t),

from which one can only derive that there will be some outcome, barring unforeseen
circumstances such as catching the coin in mid-air.

Now consider the sentence

(82) Rebecca is drawing a square,

uttered when Rebecca has just drawn a single straight edge (which could also
from part of, say, a triangle). Naumann and Piñon argue that, unless we make
some assumptions concerning Rebecca’s intentions, the truth value of (82) cannot
be established. Accordingly, in their proposed semantics, intention (modeled as a
primitive accessibility relation) plays an important part. In our setup, the intention
is part of the dynamics: the activity of drawing is supposed to result in a square.
But clearly in the situation indicated, where we only see a single straight edge, we
have just enough information to conclude that Rebecca is drawing (i.e. the first
conjunct of the formalisation of (82)), but we do not have enough information to
infer the dynamics, the second conjunct. Thus we would likewise say that the truth
value of (82) cannot be established.

Lastly, consider

(83) Rebecca is swimming across the North Sea,
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uttered when she is 100 meters off shore at Zandvoort Beach, heading west. This
is an interesting example, because it may be considered true or false, depending
on whether Rebecca’s intention is taken into account. To formalise the difference,
we have to avail ourselves of the intensionality of Feferman’s calculus. The fluent
crossing is derived from the verb ‘x crosses y at time t’ and hence of the form
cross[t̂, x, y]. There are two ways in which the fact that it is Rebecca who is at-
tempting to cross, can be formalised. Firstly, there is a ‘universal’ way which makes
r (= Rebecca) independent of the act of crossing: cross[t̂, r, y]. Secondly, there is
a ‘particular’ way, which ties up Rebecca and the act of crossing, by nominalising
instead ‘Rebecca crosses y at t’, so that we obtain Rebecca cross[t̂, y]. Although the
truth axioms force these fluents to have the same time profile, they still are different
terms.

Suppose first that the sentence is uttered by an observer who has no access to
Rebecca’s intention, only to the objective dynamics. In this case one is likely to say
that (83) is false. Again, the trouble seems to reside in the dynamics, but this time
in a rather subtle way. Recall that, when discussing the example of John crossing
the street, for the sake of simplicity we assumed uniform motion, as embodied in
13. This seemed reasonable, because one can maintain constant speed over a short
distance. This is clearly no longer possible over large distances, so that the true
dynamics should now be formulated as
(13)
HoldsAt(distance(g(t)), t) → Trajectory(crossing [t̂, r, sea], t, distance(g(t+d)), d),

where g is a function such that for some s0, for all s, s′ > s0, g(s) = g(s′). For
suitable values of s0, it is then no longer possible to copy the argument of Theorem
11 in order to obtain the conclusion that Rebecca gets to the other side, eventually.
It seems that, for a statement ‘A is ϕ–ing’ to be true, the statement ‘A has ϕ–
ed’ should at least be possible. This observation sets (83) apart from the sentence
‘Rebecca was running across a minefield’ to be discussed below.

On the other hand, if it really is Rebecca’s intention to swim across the North
Sea, then sentence (83) is generally considered to be true, never mind the objective
dynamics which make it unlikely that she will get to the other side. This suggests
that the dynamics involved should be her personal view, formulated in terms of the
fluent Rebecca cross[t̂, y].

We close with a few remarks comparing our proposal with Asher’s work (Asher
(1992)), which was actually the first to provide a formalised treatment of the pro-
gressive within a nonmonotonic logic. The characteristic feature of Asher’s theory
is that he assimilates the progressive to generic expressions. This means that the
following entailment holds by virtue of the meaning of the progressive

(84) When you are crossing the street, you typically get to the other side even-
tually.
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The conditional in sentence (84) is interpreted formally as a nonmonotonic impli-
cation >42, which satisfies p, p > q ` q, but not p, r, p > q ` q. This allows for
canceling the implied consequent when the antecedent is expanded with, say, ‘and
are hit by a truck’.

While we agree completely with Asher in his insistence on formalisation, we have
some doubts whether the progressive is really analogous to generics. The following
example is from Naumann & Piñón (1997):

(85) Rebecca was running across the minefield.

It now seems that the use of the progressive is not governed by the analogue of (84)

(86) When you are running across a minefield, you typically get to the other
side eventually;

the default assumption is rather

(87) When you are running across a minefield, you typically don’t make it to
the other side.

Asher solves the problem by assigning priorities to defaults, in such a way that
specific defaults such as (87) get priority over general defaults of type (86) (gen-
eral, because based only on the running across, without taking into account the
object of the preposition). Asher’s procedure requires, first, that one is able to as-
sign a typicality-judgment to each use of the progressive and, second, that these
judgments can be ordered according to priority. Not the least problem raised by
these requirements is to say what ‘typically’ means: does it mean ‘usually’, or is
it a conventional expectation? There is a subtle difference between ‘typically’ and
‘in the absence of information to the contrary’, both of which are used by Asher
as intuitive motivations. Formally, ‘typically’ is an expression that belongs to the
object language, and hence can be modeled by a generalised quantifier or condi-
tional, whereas the second expression denotes a concept of the meta-language, for
which circumscription is a more appropriate formalisation. By dispensing with a
genericity interpretation of the progressive, we can do both without the two re-
quirements above and without the need to provide an interpretation for ‘typically’.
In our approach, we must provide scenarios and dynamic laws which, upon apply-
ing circumscription, yield predictions which can then be tested against whatever
typicality-judgments are available. However, the machinery can be put to work even
when these judgments are absent; it is then just a matter of establishing, what, if
anything, is true in certain minimal models. Asher’s approach is thus compatible
with ours, but the claim is that here defaults such as (84) or (87) are derivable,
not introduced as meaning postulates. Furthermore, it seems that the distinction

42Actually, in the context of predicate logic it is a binary generalised quantifier.
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between ‘John is crossing the street’ and ‘Mary is drawing a circle’ is not easily
explained in Asher’s setup.
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