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0.1 Veridicality

The aim of this paper is to inquire into the possibility of a logic of (visual) per-
ception, and to relate this logic to the semantics of perception reports. There are
two main reasons why this endeavour goes against the trend in current seman-
tics: it is ordinarily held, following Lewis [12], that considerations of psychology
and pragmatics should be kept separate from semantics, and furthermore that
in any case, due to the special nature of perception, psychological mechanisms
governing perception cannot influence the logic of perception reports. This view
is clearly stated in the following quotation from Barwise and Perry [1]

Seeing is clearly a causal relation, but also, and more impor-
tantly, an information preserving one. The other attitudes we study
are sensitive to how the information or misinformation actually in-
fluences the agent’s thought and action. By contrast, epistemically
neutral reports are concerned only with the nature of the situation
about which information can be detected by the agent.

To put it succinctly, since ‘seeing’ is information preserving, the semantics of
perception reports should be formulated in terms of parts of the objective world.
Barwise captures the resulting logic of perception reports in a number of prin-
ciples, the most important of which is, for our present purposes, the principle
of veridicality:

For simple naked infinitive sentences ¢, if a sees , then ¢.

Although Barwise admits that nonveridical readings are possible, it is the in-
tended veridical reading which has to be unravelled; ‘having done so, we can
then back up and see what modifications would be necessary to accomodate
nonveridical readings’. This tenet at least of situation semantics is uncontrover-
sial in the linguistics literature. However, if we now turn to the psychological
literature, we see a very different picture. Here is a representative quotation
from Miller and Johnson-Laird’s Language and Perception

‘See’ is one of the more complex verbs in English. Its complex-
ity arises partly from the complicated logic of perception [...] No
claim about veridical visual perception can be visually verified. The
individual himself is the only person to know what it is that he
perceives; other persons cannot verify this component of a veridical
claim. But the individual himself can have no grounds for moving
from an opague and potentially nonveridical report to a transparant
and veridical report. It seems that SEE is a concept that has truth
conditions that are easy to state yet impossible to execute. Yet it
is possible to determine that an empirical claim is false. [...] Per-
ceptual statements have empirical content, but, like scientific con-
jectures, they may only be falsified. The output of the perceptual
system is a hypothesis about the world; there are no facts except in
the light of hypotheses. (Miller and Johnson-Laird [14])



Even limited knowledge of the intricacies of visual information processing would
suffice to assent to the truth of Miller and Johnson-Laird’s observation; yet it
goes without saying that Barwise and Perry are competent speakers of English
as well. A possible source for this apparent contradiction is that the two theories
consider different readings of ‘see’ to be the most prominent one. It is clear from
the above quotation that Miller and Johnson-Laird emphasise the use of ‘see’ as
it occurs in first person perception reports. ‘I see ¢’ means that on the basis of
my visual impressions I judge ¢ to be the case. In this case it is for psychology to
decide whether the perception report must necessarily be veridical, and present-
day psychology sides with Miller and Johnson-Laird here. Barwise, however,
appears to emphasise the use of ‘see’ as it occcurs in third person perception
reports. When can I judge truthfully that a sees ¢? If ¢ is true and if a saw it.
Clearly on this reading veridicality is part of the meaning of ’see’. In this case
the perceptual content ¢ is ascribed to a by an outside observer who faithfully
describes the scene that a is looking at. It is not implied that a was aware
of, or believed in . (This is what is called an ‘epistemically neutral’ report.)
The sentence ‘a sees ¢’ differs in meaning from ‘a sees that ¢’, in that the
latter sentence does carry the implication that a was also aware of, or believed
that . Notice that in the case of first person perception reports, the semantic
difference between ‘I see ¢’ and ‘I see that ¢’ is much less marked. Here, both
statements normally carry the implication of awareness, one states one’s beliefs.
If proof would be needed here, one could refer to the phenomenon of ‘blindsight’:
patients with this condition are completely blind, yet can distinguish between a
large variety of visual stimuli when asked to do so. However, these patients are
surprised by their own abilities and they vigorously deny having seen anything.
It is true that one can say, ‘I must have seen it, although I was not aware of it
at the time’, (looking at oneself as an outside observer, as it were) but no one
would use such a sentence in the present tense.

Barwise’s analysis of perception reports rests in part on a theory of Dretske [4],
who argued that beliefs are not necessary for seeing: ‘if perception is understood
as a creature’s experience of his surroundings, then perception itself is cogni-
tively neutral’ (Dretske [4], p. 153). This seems plausible enough, after all even
the housefly perceives although it is not noted for its beliefs. The question is
rather, whether this theoretically motivated use of ‘see’, not involving beliefs,
plays a prominent role in natural language. The usual argument given is that
we must be able to account for the intelligibility of sentences of the following

type

John sees his daughter in the crowd, although he does not recognise
her.

One might analyse these examples differently, however, in terms of cancelled
implicatures. Compare the following example

John sees his daughter in the crowd, and calls his wife.

Everybody would interpret this sentence in such a way that John’s calling his
wife has something to do with recognising his daughter as his daughter. This
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shows that even in this use of ‘see’ it is implied, albeit nonmonotonically, that
awareness of the perceptual content occurs. If this is true, then the first per-
son reading involving beliefs is more prominent than the epistemically neutral
reading. It then follows that veridicality is not in general a valid principle for
‘see’.

This analysis is largely in agreement with Jackendoff’s treatment of ‘see’
in [10], where he argues that the meaning of ‘see’ is described by two nonmono-

tonic rules, at least one of which has to apply: = sees y if

1. x’s gaze goes to y

2. y comes to x’s visual awareness.

Stereotypical, veridical, seeing is characterised by the satisfaction of both the
first and the second, epistemically positive, condition, but one may felicitously
use ‘see’ when only one of the implicatures obtains. Only when both implicatures
are cancelled, as in

*Bill saw a ghost, although he didn’t notice it at the time.

is the use of ‘see’ unacceptable.

Not surprisingly, Jackendoff remarks that his analysis was inspired by Miller
and Johnson-Laird. In their work one finds [14, pp. 583-618] the germs of a log-
ical description of first person perception reports, together with a rudimentary
analysis of logical principles, such as exportation of the existential quantifier.
SEE is characterised in terms of a predicate PERCEIVE(z,y), which holds between
a person z and a percept y; SEE(z,A(y)) is defined as PERCEIVE(z,y) AT (y),
where T indicates the satisfaction of perceptual tests correlated with A. The
use of T" makes SEE irreducibly opaque, but evolution has seen to it that our
perceptual tests are mostly adequate, so that in practice perception reports can
be taken to be transparent, veridical.

It is our intention here to follow Miller and Johnson-Laird’s lead and to
provide a psychologically motivated semantics for ‘see’. This will be done by
paying careful attention to the nature of T', as discussed in modern theories of
vision. In particular, we base ourselves on an abstract account of David Marr’s
theory of vision [13]. Of course, basing one’s semantics on an empirical theory
brings with it the danger that the empirical theory is wrong. This is a danger
only when one looks for definite answers. A more interesting way to describe
this situation is that the psychology of vision and the semantics of perception
reports may mutually influence each other, so that for instance a psychological
theory may be called into doubt because it gives the wrong semantic predictions.

An issue not addressed by Miller and Johnson-Laird is whether the logic of
perception reports is really completely determined by the logic of perception;
or rather, they assume that this is so. Language is also a social phenomenon,
however, so there may be other determinants of the meaning of ‘see’. Those
who are convinced by Wittgenstein’s ‘private language’ argument may even
wish to object to our procedure on the grounds that it is impossible that ‘see’
gets its meaning via psychology. We leave this matter open, as we have nothing
particularly intelligent to say here.



0.2 David Marr on vision

We start by explaining the psychological motivation underlying the model the-
ory, taken from David Marr’s book Vision.

One of Marr’s fundamental ideas is that vision is in many ways approxi-
mate. Filtering takes place at many of the earlier levels of visual processing,
for instance in edge detection, leading up to the so called primal sketch which
contains information about planar geometric relationships. Stereopsis and re-
lated processes provide some depth clues, ultimately resulting in the 2% sketch,
which represents objects from a viewer-centered perspective. So far perception
is bottom-up, with computations on the image proceeding autonomously. How-
ever, in order to obtain a full 3D picture of the world, in which the coordinate
system is object-centered, a top-down process takes over.

Seeing (in the sense of recognising) a 3-D object involves two processes:
constructing an image from visual data as indicated above, and matching the
image to a stored catalogue of 3-D models, where the matching is based on some
salient features derived from the image. For reasons of computational efficiency,
this catalogue is built hierarchically, or in a modular fashion

Modularity [...] allows the representation to be used more flexibly
in response to the needs of the moment. For example, it is easy to
construct a 3-D model description of just the arm of a human shape
that could later be included in a new 3-D model description of the
whole human shape. Conversely, a rough but usable description of
the human shape need not include an elaborate arm description. Fi-
nally, this form of modular organisation allows one to trade off scope
against detail. This simplifies the computational processes that de-
rive and use the representation, because even though a complete 3-D
model may be very elaborate, only one 3-D model has to be dealt
with at any time, and individual 3-D models have a limited and
manageable complexity ( [13, p. 307]).

The important point is that we need many representations of, say, the human
shape, some coarse, some more detailed; and that we must be able to keep track
of where an elaborate description would fit in the rough model (‘indexing’).
This is well-illustrated by the following picture (figure 1 from [13, p. 306])*

An adequate indexing mechanism allows us to capitalise on the interplay
between the clues derived from an image and the matching process (cf. [13, p.
321]): after a 3-D model has been selected (guided by the image), it can be used
to search for additional clues in the image; in turn, these can be used (when
necessary) to match the image to a more detailed 3-D model. However, it may
turn out to be impossible to find a more detailed 3-D model of the kind we
expected. Indeed, like all computationally efficient heuristics, the use of such

IReprinted by permission from D. Marr and H.K. Nishihara, ”Representation and recog-
nition of the spatial organisation of three-dimensional shapes”, Proc. Royal Soc. London B
200, 269-294.
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Figure 1: Refinement of an arm

approximate models brings with it the possibility of error: what is identified as
a real arm with respect to a given approximation may turn out to be something
else (e.g., a wooden arm) when ‘looking closer’, i.e. with respect to a more
refined approximation. A theory such as Marr’s is well-suited to account for
the hypothetical character of perception emphasised in 0.1: due to our finite
perceptual resources, one cannot match the processed image to an arbitrarily
refined 3D model. At some point we have exhausted the information in the
image and from then on it is only a hypothesis that the object is what we
judged it to be. For our purposes it is useful to slightly reformulate the latter
idea, as follows: in principle we should be able to match the image to ever more
refined 3D models of the object. E.g. if we come closer, the resolution of the
image will increase, and hence the possibilities for matching; the expectation
is that these increased possibilities will not alter our judgement. Of course, it
is impossible to obtain complete perceptual knowledge of an object, but since



there is no a priori bound on what is possible, it seems best to grant us infinite
possibilities of refinement, for example an infinitely extendable hierarchy of 3D
models.?

0.3 Inverse systems and inverse limits

We now turn to a formalisation of the above ideas. Consider again Marr’s
suggestive example of 3D models of a human. Viewed abstractly, what we see
here is a series of first order models, composed of objects and relations between
them, together with a mapping specifying how an object occurring at one level
is decomposed at the next. This situation can be represented abstractly by
means of an inverse system of first order models. The basic ingredient is the
following:

Definition 1 Let T be a set directed by a partial order >; i.e., > is reflexive,
transitive, anti-symmetric, and for s,t € T there isr € T such thatr > s,t. An
inverse system (indexed by T') is a structure (Ms, hsi)s e with

1. for each s € T, My is a model for the signature os;

2. for any R in the union of the signatures there is t € T such that R is in
o5 if s > t.

3. for each s,t € T with s > t there is a mapping hg : |[Ms| — | My| with
for each R in os Noy

(p) {{hst(dr), ..., hst(dp))|{dy,... ,dn) € Rs} C Ry,
where Rs(Ry) is the interpretation of R on Ms(My)
4. her is the identity on My, and for s >t > 1, hg = hgt © hyp.

Here | M| denotes the domain of M. The mappings hs: will be called bonding
mappings. An inverse system is total if in addition the bonding mappings are
surjective; we then have the usual concept of homomorphism between models.
Condition (p) captures the idea that if s > ¢, then M, is more refined
than M;. It is mainly for conceptual reasons that we allow the signatures
of the models to vary, since we may wish to say that a predicate is not yet
applicable at a certain stage. For instance, in a rough approximation of ‘human
being’ given by six appropriately positioned cylinders representing torso, arms,
legs and head, the predicate ‘hand’ is not applicable. Yet, once introduced a
predicate should remain applicable. We shall comment on the role of surjectivity
in section 0.3.1.
If the inverse system stands for something like the hierarchy of 3D models,
then each model in the system can be said to approximate reality. If we make
the idealisation that we are in principle able to approximate reality arbitrarily
closely (even though never completely), then it seems reasonable to assume that
reality is the limit of the inverse system, in the following sense

2Cf. the remarks on Husserl’s philosophy of perception in [17].
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Definition 2 Let (Mg, hst)s e be an inverse system. Its inverse limit
M = llth
T
1s defined as follows

1. the domain | M| consist of the threads in the product Ilep|M,|; i.e., func-
tions § : T — U,cp M| satisfying: & € |[My|, and ha (&) = & for
s >t.

2. the interpretation of the predicates is given by: for each R there exists
t € T such that for all threads £1,. .., &"
R(EY, ..., €") <= Vs>t : Ry(€, ..., €M)
The inverse limit M is a submodel of the direct product II;er M; (Chang and
Keisler [3, p. 224]); however, the domain of this submodel might be empty.
Under the additional assumption that the Mg are finite this cannot be so. The

proof rests on the fact that the discrete topology on the M is compact and
makes the bonding mappings continuous. (Engelking [5, p. 141].)

Theorem 1 Suppose (M, hst)s ter 15 an inverse system of finite models. Then
M| is non-empty.

0.3.1 Inverse systems as cognitive structure

The introduction of inverse systems is only the first step toward a psychologically
realistic and empirically adequate semantics of perception reports; a second
ingredient will be introduced in the next section. However, let us step back for a
moment and consider the cognitive significance of the formal notions introduced
so far. The proposed model contains a number of assumptions which may be
thought questionable, so we shall try to be explicit about them.

The first assumption concerns the notion of object. An object in a model
belonging to the inverse system is in some sense a type of a real, individual
object, the token; here, type is taken with respect to structural properties such
as shape. The hierarchy of 3D models provides a collection of such types, with
appropriate indexing relations. In this case refinement often consists in adding
more parts, as when an arm is decomposed in upper arm, forearm and hand.?

Now counsider figure 2 on the following page, also taken from Marr [13, p.
319].

Here, refinement rather consists in adding dimensions. For example, in the
case of ‘biped’ the dimensions of limbs and torso are left unspecified; ‘human’
and ‘ape’ are then differentiated at a next stage by a rough indication of length
and width in both cases. The associated homomorphism can be viewed as the

3See van der Does and van Lambalgen [17] for the definition of a Marr-model, the formal
correlate of this part-of structure.



Figure 2: Stick figures

projection of a vector space onto one of smaller dimension. A number of pos-
sibilities of this type are discussed in section 0.6.1 in the context of spatial
prepositions. One can think of other possibilities as well. For instance, s may
be more refined than ¢ (i.e. s > t) because the signature of the model My is
larger than that of M,; in this case hg can even be the identity. Another inter-
esting possibility arises when we take into account the fact that the dimensions
characterising a shape (e.g. length of limb, angle between limb and torso) may
be known with variable precision, so that the precision itself must be an element
of the representation (cf. Marr [13, p. 309]). One way of doing this is to cut up
a dimension into finitely many pieces, thus defining an equivalence relation on
vectors. If s corresponds to a refinement of the partition at ¢, then the mapping
hs can again be taken to be a homomorphism. Taking all these possibilities
together it seems not unreasonable to assume that a token can be viewed as
a converging sequence of types. For example, assuming for a moment that an
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individual human is completely characterised in terms of a shape description
(which may include detail at the level of fingerprints), then one can view this
individual as also being characterised by a converging sequence of approximate
shape descriptions, each of which is applicable to more than one token. (Note
that, conversely, a type can be viewed as an equivalence class of tokens, namely
the set of those tokens which are indistinguishable from a given token at a
certain level of approximation.)

However, can all these approximate shape descriptions, or approximate types
generally, be said to be part of cognitive structure? Perhaps not in the sense
that they must belong to a stored catalogue. But we are able to construct these
representations when the need arises, so potentially they are part of cognitive
structure. The inverse system then represents cognitive structure in this poten-
tial sense. The fact that we identified reality with the inverse limit embodies the
assumption that, potentially, reality is arbitrarily closely approximable. This
assumption lies at the heart of our treatment of veridicality, as will be seen later.
4

We are now in a position to clarify the role of the surjectivity of the bonding
mappings. It is a theorem that if all bonding mappings are surjective, then so are
the projections from the inverse limit to the approximating models. It follows
that for any approximating model Mg, all objects in M are approximations of
a real object. This means that hallucinations are not accounted for. In order
to do so, one must allow that it may not be possible to further refine a certain
type, i.e. one must drop surjectivity.

The second main assumption concerns the behaviour of the predicates. The
reader will have noted that in the way we have set things up, predicates always
overgeneralise, in the sense that for each stage s, the set of threads £ such that
M, = A(&s) always includes the set of threads & which satisfy A on the inverse
limit. For example, in Marr’s picture of the biped bifurcating in human and ape,
we may wish to interpret the predicates ‘human’ and ‘ape’ already at the level of
the biped-type. The justification for this move will be discussed in fuller detail
in section 0.6.2. In brief, it is a possible model theoretic correlate of the cascade
theory of the relation between structural and semantic representations, which
says that during processing of structural information, simultaneously semantic
representations are activated; in particular, that upon seeing an object (‘ape’),
the semantic representations of structurally similar objects (‘human’) become
activated as well. If object recognition is conceived of along the lines of Marr,
this translates into the following picture: upon (vaguely) seeing an ape, the
structural representation corresponding to ‘biped’ is activated, and this in turn
activates the representations of its possible continuations (‘human’, ‘ape’; ‘straw
man’, ...) and their semantic representations. We formalise this by saying
that ‘biped’ activates the semantic representations of ‘human’, ‘ape’, ... directly.
This construction explains why we may mistakenly identify, on the basis of
incomplete dimensional information, a biped-shape as a human. Some evidence
for the cascade theory is presented in section 0.6.2.

4Without it, what is perceivable would only be a homomorphic image of reality.
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Before we close this section, we add a few words on the role of infinity in
these constructions. Interesting examples of inverse systems and limits arise
only when the index set is infinite; the reader might object that this makes the
enterprise devoid of cognitive meaning. For instance, wouldn’t it imply that we
need an infinite amount of information about an object before we can recognise
it? Yes and no. Yes, because the set up has been chosen in such a way that
at any ‘finite’ stage a perceptual judgement remains hypothetical. No, because
in practice what matters is not to identify an object correctly in every possible
situation, but to be able to distinguish it from other objects for which it could be
mistaken. The latter ability is essentially ‘finite’ however. Here is a simplified
argument to that effect. Suppose that in a given context we already know
that an object & must satisfy A(z) V B(x), where A, B are mutually disjoint
predicates on the inverse limit M. If £ does not satisfy A on M, then there
must exist a ‘finite’ stage s such that for t > s, M; & A(&). Hence for these t,
and by condition (p) in fact for all ¢, My = B(&;), so that £ satisfies B on M.
Since the formalisation of perception reports needs some additional technical
machinery, this argument has to be elaborated, but the result is the same: in
order to visually distinguish objects from each other, when the context provides
the possible alternatives, a ‘finite’ amount of information suffices.

0.3.2 Decomposing models

The mathematically inclined reader may have wondered how ‘special’ models
obtained as inverse limits of finite models are. For example, can every model
be obtained this way? The following theorem goes someway toward a charac-
terisation of the relevant class of models. First we need a definition.

Definition 3 A model M is topological if there exists a compact Hausdorff
topology on the universe of M such that all predicates are closed in the product
topology.

Theorem 2 (W. Taylor [16]) Let M be a topological model, then there exists
a inverse system (M) ser such that each My is a closed subset of some [0, 1]*,
k finite, and M is the inverse limit of (Ms)ser. In addition, if M is totally
disconnected, then the My can be taken to be finite.

The proof of the theorem is fairly simple. The hypothesis implies that the
universe | M| can be embedded homeomorphically into a Hilbert cube [0, 1], or
into a Tychonov cube {0, 1}/ in the totally disconnected case. Now let T be the
set of finite subsets of I.

The usefulness of the theorem is limited however by the existential character
of the hypothesis that M is topological.
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0.4 Conditional quantification

In order to formalise perception we need one more ingredient. Recall our discus-
sion of Miller and Johnson-Laird’s formalisation: SEE is characterised in terms
of a predicate PERCEIVE(z,y), which holds between a person x and a percept
y; SEE(x,A(y)) is defined as PERCEIVE(z,y) AT (y), where T indicates the sat-
isfaction of perceptual tests correlated with A. Miller and Johnson-Laird want
to argue that the referential opacity of perception reports shows itself in the
nonvalidity of quantifier exportation:

[...] the logic of ‘He sees a fish’ thus both referentially and inten-
sionally opaque. This logic is made explicit in [SEE(he, JzFish(z))],
a formulation that is compatible with hallucinations or with misper-
ceptions such as Jy Shoe(y) A [SEE(he,Fish(y))](Miller and Johnson-
Laird [14, P. 586]).

Although we share their intuition, it is clear that the proposed formalisation
cannot be right, since the y inside scope of the SEE operator is supposed to
denote a percept, while the same y outside the scope denotes a real object.
Therefore a SEE statement must somehow involve both the unknown object and
the percept derived from it. In this section we shall introduce the necessary
machinery to do so: we want to view the process leading from an object to a
percept as a form of ‘filtering’ The word ‘filter’ here should not be taken in its
usual logical meaning (as a set of sets closed under intersection and supersets); it
derives rather from physical analogues such as the Gaussian filters of Marr [13,
54 passim]. Their function is to blot out details which occur at some specified
scale (hence at smaller scales). When applied to a picture, this type of filter
introduces a blurring of the picture. Put differently, the effect is that pictures
which differ only at scales smaller than the specified level, are perceived as
identical. Hence, informally at least, there is a connection between filters and
equivalence relations.

Logically speaking, a filter in the sense intended here is a new kind of gener-
alised quantifier, which applied to a formula of n free variables, in general yields
a new formula, also in n free variables. Hence this notion of generalised quan-
tification differs from the more traditional Mostowski - Lindstrom generalised
quantification, which does bind variables. It will be seen however, that the new
notion of quantification is generalised in the sense that ordinary 3z is a special
case.

To explain the motivating example, we return to the inverse systems and
inverse limits of the last section. Given a model M and an inverse system of
finite models (M)ser such that M is the inverse limit of the My, define an
equivalence relation Rg on assignments on M by

Rs(f,g) iff for all formulas ¢ M = [fs] <= M, E ¢[gs].

Here, f, is the assignments on M, defined by fs(y) := f(y)s. Now define
quantifiers 35 by
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M = 30l f] & Fg(Rs(f, 9) AN M = 0lg]).

One should think of 5¢(x) as the set of objects which can consistently be taken
to satisfy p(x) given the information at stage s (encoded in the model My).
Since Js is defined by an equivalence relation, it satisfies the S5 properties. The
interpretation of the following theorem is that the 3, can act as filters which
reproduce the M, from M. The full details can be found in van der Does and
van Lambalgen [17], for our present purposes a loose formulation suffices.

Theorem 3 Under a mild assumption, for predicates A, M |= I;A[f] iff Ms =
JA[fs]. °

Let us now consider the meaning of 35¢ in the general case, without the ‘mild
assumption’. Again we refer to Miller and Johnson-Laird’s idea that in order
for seE(he, A(z)) to be true, x should satisfy perceptual tests for A-hood; we
may add: tests at a certain level of accuracy s. The set A, := {f| M, = A[fs]}
is one such test, satisfying A C A,, but actually any formula 1 such that
A C{f|IM, = [fs]} defines a test for A. Now consider

Lemma 1 3, is the unique quantifier satisfying, for all sets { fIMs = ¥[fs]},

¢ C{fIMs E YIS} = 3 C {fIMs = 9If:]}S

Since by the preceding lemma the quantifier 354 represents the set of objects,
or rather assignments, which satisfy all perceptual tests for ¢ at accuracy s, we
may as well turn Lemma 1 into a definition. This leads us to the notion of a
conditional quantifier.

Definition 4 Let M be a model, F the set of assignments on M, G an algebra
of subsets of F. By a quantifier conditional on G—notation: 3(e|G)—we mean
a mapping which applied to a set p :={f € F|M |E o[f]} yields an element of
G such that

(x) VC € Glp CC <= F(¢|G) C O]

It will be useful to think of the conditioning algebra G as a bounded resource,
so that conditional quantification is a form of resource-bounded quantification.
Concrete examples of such resources G are given by the algebras G5, the Boolean
algebras over the sets {f € FIM, = ¢[fs]} contained in F. Another example is
furnished by the ordinary existential quantifier. Let G, be the Boolean algebra

5The result holds for predicates only, for arbitrary formulas no neat relation between truth
on Mg and filtered truth on M can be expected.

6Strictly speaking, this result holds only on wi-saturated models or on inverse limits of an
inverse system of finite models.
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of sets of assignments definable by formulas which do not involve x free; then
we have Jxp = J(¢|G.). In general, think of G as the collection of available
tests; then 3(p|G) represents the collection of assignments that pass all tests
contained in G for ¢. In probabilistic terms, 3(¢|G) is the best estimate of ¢ on
the basis of the information available in G; hence we require 3(¢|G) € G.7 Note
that a quantifier satisfying (*), when it exists, is unique. Indeed, the Galois
correspondence (*) implies that 3(p|G) must be defined as A{C € G|¢ C C}.
For this reason, Definition 4 is not yet quite what we want, because there may
be G and ¢ for which 3(p|G) & G; but it suffices for the following discussion.
A detailed technical treatment will be found in van Lambalgen and van der
Does [18] and van der Does and van Lambalgen [17] .

It can be shown that if the conditioning algebra G is of the form G, the condi-
tional quantifiers 3(e|G) have the following properties

1. 3(0jg) = 0, 3(1/6) = 1;

2. o C ¢ implies I(¢|G) C F(¥|G) (monotonicity);

3. ¢ C3(¢|G) (coarsening);

4. e VY|G) =3elG) vV I(¥|G) (additivity);

5. (@ AY|G) = 3(p|G) Ay where ¢ € G (‘taking out what is known’).
Note that (2) and (5) imply that 3(e|G) is the identity on G

plG) =31 A@lG) =FA|G) A =1Ap =0
for ¢ € G. Thus, (5) is the analogue of the Frobenius property in logic
3 A3WIG)IG) = I(¢I9) A AWID).

Interlude: seeing as filtering formalised With this machinery at our
disposal, we now give a preliminary treatment of the logic of perception reports.
The heart of the present approach is that a statement of the form ‘I see a ¢’ is
decomposed into two components.

1. The object that I see [z] satisfies all perceptual tests for being a ¢ at the
present approximation [s].

2. Texpect that this will continue to be the case when I move to more refined
approximations [t > s].

By what has been said before, condition 1 can be rendered formally as

M = 3(e(2)]9s)[1]-

Here, M represents the world, and f assigns an object in M to z. Since one has
only ¢ C I(p(2)|Gs), it does not follow that also M = ¢[f], which is as it should

"The connection between conditional quantification and conditional expectation in proba-
bility theory is spelled out in slightly greater detail invan Lambalgen and van der Does [18].
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be given the hypothetical nature of perception. To take Miller and Johnson-
Laird’s example, it is perfectly well possible that Jz3(Fish(x)|Gs) A Shoe(z)),
even though Fish and Shoe are disjoint. Only when Fish is perceived completely
accurately, i.e. when Fish € G, do we obtain referential transparancy, by ‘taking
out what is known’ (property reftakingout above). Likewise with inferences of
the form

I see a girl walk; therefore there is a girl whom I see walk.

Formally, this is the inference from
M= 3AG(x) AW (2)|Gs) [ f]

to

M = (G(z) AW (2)|Gs)[f];

Again, referential transparancy with respect to G is obtained only when G € G,
with the help of ‘taking out what is known’. (Condition 2 will be formalised as
a default rule in section 0.5.1.).

That the conditioning algebra G is of the form G, represents the situation in
which the perceptual tests include all the tests for object recognition available
at level s. What is interesting about conditional quantifiers is that we may
play with the resource G to represent situations where there are fewer, or less
accurate, perceptual tests available. This allows for the modelling of various
forms of partiality relevant for perception. We shall discuss two examples. The
first example concerns the influence of knowledge on perception. If I know that
something is impossible, is it impossible for me to see it? No, and hallucina-
tions such as Macbeth’s dagger provide a case in point.® Formally we have the
following situation. For a certain stage of approximation s: VZ(¢¥ — —¢), where
Y € Gs (e.g. ‘daggers don’t float in front of one’s face’).

Does it follow that VZ(¢) — —=3(p|Gs)), i.e. that, even when given accurate infor-
mation about daggers, I can’t see a dagger float in front of my face? Intuitively
not, but it does follow formally from the Galois condition in conjunction with
the fact that the resource G; is a Boolean algebra, so closed under negation. It
would no longer follow if the resource would be generated by positive formulas
only. The lattice of sets of assignments definable by positive formulas can be
viewed as an example of a so-called co-Heyting lattice:

Definition 5 A co-Heyting lattice (Lawvere [11]) is a lattice with V and N\ such

that
a\//\bl :/\(a\/bl) 9

8For a striking nonvisual example, compare phantom limbs.
9Note that the presence of infinite /\ guarantees that the conditional quantifier is always
defined.
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The second example of the use of conditional quantifiers is concerned with
perspective. Recall that when defining inverse systems we allowed that pred-
icates need not be defined on all models of the system. A concrete example
where this is useful, is given by perspective: in a model which develops only
the hind parts of a human, the predicate ‘mouth’ should not be applicable. In
terms of perception reports, this means that a phrase like ‘I can’t see his mouth’
should be construed as denial; this sentence is true when ‘seeing his mouth’ is
‘undefined’ because it is evaluated in the wrong perspective. Now it seems that
our set up cannot model this, because I(A|Gs) is always defined, even when
the predicate A is not interpreted on M. Note, however, that in such a case,
3(A|Gs) will typically equal 1. Since clearly one cannot consider the situation
where A # 1 and 3(A|Gs) = 1 a situation of seeing A, it seems best to leave
3(A|Gs) undefined in such cases.

To achieve this, the frames which determine the conditional quantifiers must
be redefined so that they may lack a top element.

Definition 6 A pseudolattice L is a partially ordered set in which meets and
joins of finite non-empty sets exist. A pseudolattice L is an evidential V, A-
frame if it is closed under arbitrary non-empty meets, such that the following

distributive law holds:
a\//\bi = /\(a\/bi).
I I

Note that in lattices in which arbitrary finite meets and joins exists, top and
bottom can be defined by T = A and L = \/®; but a pseudolatice may lack
top and/or bottom.

A typical example of an evidential frame can be obtained from a model M
by taking the collection of sets of assignments definable by a positive formula,
this time however not including top or bottom.!? If there exist disjoint pred-
icates on My, then 0 will be in the evidential frame, otherwise not. If the
universe of the model is not covered by a formula, in the sense that for some
o, {fIMs E ¢[f]} equals the full set of assignments, then 1 will not be in the
frame.

This construction allows us to represent the form of partiality which makes
the following argument invalid:

Whitehead saw Russell. Russell winked. Therefore Whitehead saw
Russell wink.

This argument would be formalised by
M= J(z =7]|Gs) AVz(x =r — W(x))[flimpliesM |= I(W(x)|Gs)[f]-

Here, r is a constant denoting a thread representing the individual ‘Russell’ in
the inverse limit. In our original set up this would be a valid argument due to the
monotonicity of the conditional quantifier. However, if we change the resource

10Als0, we do not allow = in the formulas occurring in the frame
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Gs so that it is an evidential frame only without top, the argument becomes
invalid in the sense that the premisses may be true while the conclusion lacks a
truth value.!!

0.5 Veridical perception

Recall that we took the expression ‘I see a ¢’ to mean the conjunction of 1 and
2, where the stages s, t refer to some inverse system:

1. The object that I see [z] satisfies all perceptual tests for being a ¢ at the
present approximation [s].

2. T expect that this will continue to be the case when I move to more refined
approximations [t > s].

This separation is dictated by the logic of perception, since all perception is
approximate. The second condition is evidently non-monotonic: more precise
information may contradict the expectation expressed in 2. As it stands, 2
does not yet express that our perception will be veridical, because veridicality
is a claim about the world, not about our perceptual apparatus. To make the
connection, we need a result which says that if ¢ is true in every approximation,
then ¢ is true (‘in reality’, i.e., on the inverse limit). This can indeed be shown,
so that combined with this result, 2 yields veridicality.

The purpose of this section is to give a precise formulation to veridicality
conceived of as a defeasible rule. We first discuss the standard format for de-
faults, and then present a slightly deviant form, more suitable for applications
to perception. This is then applied to study veridicality inferences.'? For a
detailed discussion for inferences involving logical constants we refer the reader
to van der Does and van Lambalgen [17].

0.5.1 Pragmatic inference from default rules

In Reiter’s version of default logic (Reiter [15]), a default is a rule of the form

a: By, Bn/w

where « is the prerequisite of the rule, §1,..., 03, are its justifications, and w
is its consequent. The customary interpretation of the rule is: ‘if a has been
derived from the background knowledge and (31, ..., 3, are consistent with what
has been derived, conclude w’.

A normal default is one in which there is a single justification which is
identical to the consequent; this is the kind of default of interest to us. Normally,

Tn this case the set {f|f(z)s =} need not be in Gs, so that 3(z = r||Gs) may be coarser
than that. This is as it should be, if we think of rs as a full 3D model.
12The interpretation of default rules owes much to conversations with Frans Voorbraak.
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defaults are used to express rules with exceptions, such as ‘Birds fly’, formalised
as
B(a) : F(a)/F(a),

for every constant a. A default theory consists of a set of facts and a set of
default rules. The facts (‘T'weety is a bird’) are taken to be specific and reli-
able information, and the defaults represent general information. In our case
the situation is slightly different: the specific information consists of percep-
tual judgments, which are approximate, hence defeasible. The default rules
should express the expectation that the judgment will continue to be true in
more refined approximations. In this slightly different situation, the intended
interpretation of defaults also undergoes a subtle change.

For the following discussion an inverse system (Mg, hg)s e With inverse
limit M and a corresponding system of quantifiers 3(e|Gs) is assumed to be
given. If ‘s’ stands for the present approximation, the statement 1

with the present approximation, x, the object that I focus on, is
identified as a ¢

is formalised as J(p(x)|Gs). In Reiter’s format, statement 2 would then be
expressed by the default rule

A(A(2)|G5) : A(A(2)]G:) /3(A(2)|G:) (for t > s),

which says that if evidence at stage s derives 3(A(z)|Gs), and if I(A(z)|G:) is
consistent with the evidence (where ¢ > s), then assume 3(A(z)|G;)

However, a different, ‘evidential’, interpretation better fits the perceptual
situation. The discussion of Marr’s theory of object recognition in 3.5 strongly
suggests that the stage s, given by 1, should represent the maximal available
information: we move downward in the hierarchy of 3-D models until the finite
resolution of the image leads to a branching, hence to uncertainty. Suppose the
visual evidence at stage s is summarised by 3(¢|Gs) where 3(¢|Gs) # 0. One
may think of 3(¢|Gs) as the description of a perceived scene at level s. We
now make an additional observation 3(¢|Gs). We may assume that 3(¢|Gs) N
A(p|Gs) # 0. By monotonicity 33(|G:)|Gs) > I(¢|Gs). Now suppose that
A(Y|Gs)N3(p]G:) = 0. Then also I(3(¥|Gs)NI(¢|G:)|Gs) = 0, and by Frobenius,
A(|Gs)NI(F(p|Gt)|Gs) = 0; whence I(¢|Gs)NI(¢|Gs) = 0, a contradiction. It is
crucially important for this argument that the perception 3(p|Gs) is performed
at level s. If the perception were less accurate, say (|G, ) for r < s, then the
assumption 3(1|Gs) N I(p|G,) # 0 does not contradict I(|Gs) N I(p|Gs) = 0.
In this sense the perception has to be maximally informative relative to the
background knowledge.

Motivated by these considerations we shall take a default to be a rule of the
form

(plGs)/3(0|Gr)

with ¢ a positive formula.'® The reason for the restriction to positive formulas
will become apparent in a moment. This rule should be interpreted as: ‘if I

13 A formula is positive if it is built from predicates using only V, 3, A, V.
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have observed ¢ at stage s, and s represents the maximum available accuracy,
then I may assume that I will observe ¢ at stage t.14

Having introduced the expectation inherent in every perceptual experience
in the form of a default rule, we return to the principle of veridicality, which
would sanction inferences of the form

(From ‘I see a ¢’ infer ‘There is a ¢’.
or formally
(From M = 3(A(2)|Gs)[f] infer M = Iz A(x).

To see the connection between the default rules and veridicality, assume that
we have an assignment f such that for all ¢, f € 3(A(x)|G); does it then follow

that M = A(x)[f]? For positive formulas, the answer is ‘yes’.!®

Theorem 4 Assume the bonding mappings are surjective. For positive ¢,

) 3elGs) =

seT

This result fails already for negations of atomic formulas! O

A related result, with ‘positive’ replaced by ‘positive primitive’, holds if the
bonding mappings are not necessarily surjective. Thus we have established that
veridicality is a defeasible consequence of the expectation inherent in all visual
perception.

0.6 Evidence for structural partiality

In chapter 7 of his book Vision [13, p. 357 passim]), Marr argues that his
hierarchy of 3-D models may serve as a paradigm for semantics generally. He
asks himself

What do you feel are the most promising approaches to semantics?
and answers

Probably what I call the problem of multiple descriptions of ob-
jects and the resolution of the problems of reference that multiple
descriptions introduce. [...] I expect that at the heart of our un-
derstanding of intelligence will lie at least one and probably several
important principles about organizing and representing knowledge
that in some sense capture what is important about our intellectual
capabilities. [...]

14The difference between Reiter’s interpretation and ours is that we take the consistency of
the justification to be relative to a stage s, whereas in Reiter’s case it refers to an extension
of the default theory. Here, we shall forego a discussion of the possible notions of extensions
applicable in this context; see [19].

15The first theorems of this kind were given by [20].
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1. The perception of an event or object must include the simulta-
neous computation of several different descriptions of it, that
capture diverse aspects of the use, purpose, or circumstances
of the event or object.

2. That the various descriptions referred to in 1. include coarse
versions as well as fine ones. These coarse descriptions are
a vital link in choosing the appropriate overall scenarios |...]
and in establishing correctly the roles played by the objects and
actions that caused those scenarios to be chosen.

To give a simple example, if I am in the jungle and I observe a large writhing
shape in front of me, I need relatively little detailed shape information to decide
whether the object is a snake or a human, and to adjust my behaviour accord-
ingly. On the other hand, to choose an appropriate course of behaviour during a
faculty meeting may require close scrutiny of the facial expressions of the other
participants.

Examples such as this suggest that there exist two forms of partiality in
cognitive structure, which may be called ‘truth conditional’ and ‘structural’
partiality. The first form of partiality is familiar from situation semantics. From

John saw Mary swim.
it does not follow that
John saw Mary swim and Bill surf or not surf.

because the scene supporting ‘John saw Mary swim’ may not contain the pred-
icate ‘surf’; even though it contains Bill. In this case, although we may have a
multitude of scenes, objects are still taken to be pointlike, they have no internal
structure.

This is different for the case of structural partiality. Here, we want to think of
objects as coming with a specified granularity'®, so that we have the possibility
to consider the same object simultaneously at different scales.

An obvious question is whether there really is such a big difference between
the two forms of partiality: can’t one always represent structure by means of
suitable additional objects and relations, perhaps even numerical? Probably,
but that is not quite the point.

We are interested in cognitive structure, and how it relates to semantics.
In the context of a semantics of ‘see’, it is important how we are able to talk
about what we see. This ability involves object recognition, attaching a name
to the object, and pronouncing the name. The standard view of object recog-
nition is that it requires matching with a stored 3D template.!'” Accordingly,
we must distinguish between three stored representations: structural represen-
tation (describing the visual form of the object) semantic representation and

160ne of the first papers emphasising the importance of this notion is Hobbs [8].
17There do exist alternative approaches, for example the work of Biilthoff and his colleagues
in Tiibingen; cf. Bilthoff [2]
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phonological representation. We shall have more to say on the precise nature of
this trichotomy below, but for now we wish to stress the importance of keeping
the information in the structural description separate from the information in
the semantic description, also for a model theoretic semantics. For instance, it
is often said, following Talmy, that spatial prepositions require very little ge-
ometric structure both for the figure and the ground. This statement will be
qualified below, using recent work of Herskovits, but it should be clear that it
can only be discussed formally in a framework where objects can be represented
in varying amounts of detail, with mappings that serve to keep track of the same
object specified in different granularities. We shall now discuss these issues in
more detail.

0.6.1 Locative prepositions

In several ways spatial prepositions are relevant to our concerns. In so far as
they provide a window on spatial cognition, their semantics seems to indicate
that space is not mentally represented as simply a collection of partial veridi-
cal 3D maps. Furthermore, closer examination of this semantics shows that a
fundamental role is played by structure-erasing functions, much like the pro-
jections from an inverse limit to one of its approximating models, and that in
general inverse systems and limits provide a useful language in which to discuss
semantics of prepositions.

As regards the first point, let us briefly consider some subjective ways in
which space is represented. Cognitive maps structure space in such a way, that
navigating is facilitated: they encode landmarks and the connecting routes. I
once read in an English hiking guide: ‘This map is not drawn to scale. The
easy parts have been reduced in size.” This is funny precisely because one
man’s cognitive map is another man’s perdition, but it emphasises the fact that
cognitive maps are distorted images of the world, presenting one part in greater
detail than others. For another example, consider the spatial relation ‘near’.
Viewed purely spatially, ‘near’ is symmetric; however, it does not appear to be
so represented since one cannot say

The house is near the bicycle.
although one can say
The bicycle is near the house.

The only way one can felicitously use ‘near’ is apparently in sentences of the
form

Object near landmark.

Together, these examples show that spatial representation is not a partial
submodel of three dimensional space with the usual geometric relations, but
rather a homomorphic image of the world containing predicates underdeter-
mined by geometry.



0.6. EVIDENCE FOR STRUCTURAL PARTIALITY 21

Let us now turn to a more detailed investigation of the semantics of prepo-
sitions. The general scheme that Herskovits proposes is the following: first a
number of structure-erasing functions are applied to figure and ground, and
then a predicate is computed on the results. For example, in order to verify the
truth of the sentence

Jane walked across the streaming crowd.

the structure of the Ground (‘crowd’)is reduced by first enclosing the crowd in a
single volume, then projecting the volume on the ground plane to obtain an area,
and finally assigning an average direction of motion to this area. Likewise, the
structure present in the phrase ‘Jane walked’ is reduced by considering only the
path traced by the point Jane. The relation ‘across’ now applies if the direction
of the path is orthogonal to the direction of motion of the area. There are
several noteworthy features of this example. First, the preposition ‘across’ takes
as arguments rather impoverished structures, namely a path and a plane surface
with intrinsic directionality. Secondly, these impoverished structures differ in
the amount of information that has been deleted. Thirdly, the impoverished
structures were obtained by applying functions to Figure and Ground with clear
geometric interpretation.

Herskovits [7] provides an interesting catalogue of such functions, called
object geometry selection functions

1. Idealisations to point, line, plane, surface, ribbon ...

2. Gestalt processes such as 3D grouping (enclosure in a volume), completed
enclosure, normalised shape, ...

3. Selection of axes and directions, for example model axis, principal refer-
ence axis, ...

4. Projections, for example on the ground plane, ...
5. Part selection, for example 3D part, free top surface, ...

We have seen instances of the first four types of functions at work in our example;
the last function is illustrated by the sentences

The tablecloth lay over the table.
The cat lay under the table.

Here, the table is identified with the tabletop.

The point of all this is to show that the semantics of natural language ac-
tually requires the simultaneous representation of an object at different degrees
of granularity. This schematisation is described by Herskovits [7, p. 169] as ‘a
process that reduces a physical scene, with all its richness of detail, to a sparse
and sketchy semantic content’, and by Talmy as follows ‘a process that involves
the systematic selection of certain aspects of a referent scene to represent the
whole, disregarding the remaining aspects’. (Quoted in Herskovits [7, p. 169]
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Formally, schematisation can clearly be modelled by a set of homomorpisms,
since if f is an object geometry selection function, then for any object a, f(a)
should go proxy for a (cf. the quotation from Talmy), hence should have the
same properties as a. In this context it is useful to allow partial homomor-
phisms as well, as will be seen in a moment. The set of schematising (partial)
homomorphisms should be closed under certain operations. For instance given
partial homomorphisms f, g defined on a model M, with disjoint domains, one

would like to be able to form the disjoint sum (f + g), such that (roughly

speaking) (f + g) yields a two-sorted model, one sort corresponding to the
decrease in structure given by f, the other corresponding to the decrease in
structure given by ¢. In this way one can take account of the fact that a prepo-
sition takes arguments of different granularities. If we furthermore make the
reasonable assumption that the product of two such schematising functions is
again schematising, then the collection of schematic images of a given model
(the ‘real world’) actually forms an inverse system. A preposition is a relation
that lives on models My for s larger than some given ¢, but it differs from pred-
icates representing nouns in that the latter, in principle depending upon very
precise shape information, will decrease as s gets larger, whereas this is not so
for prepositions. Once a preposition P is is interpreted on a model My by P;s
its interpretation P, on the model M, where t > s, is given by h;,lps. This
reflects the fact that more refined information about the crowd will never lead
to a falsification of the sentence ‘Jane walked across the streaming crowd’.

Of course, the description just given provides only an abstract framework;
a detailed formal investigation of prepositions would have to specify exactly
the nature of the models M, and the homomorphisms between them. For
example, in the case of a Gestalt function such as 3D grouping, one would need
a high dimensional vector space, and an estimation function which encloses a
set of vectors in the space in the smallest volume specifiable by a fixed small
number of parameters. The point of this excursion into prepositions was rather
to emphasise that the notion of structural partiality, apparently necessary for a
semantics of perception reports, occurs naturally in this branch of semantics as
well.

0.6.2 Visual agnosia and cascade models

Visual agnosia, more precisely associative visual agnosia, is a disorder of the
higher visual functions characterised by three conditions

1. difficulty in recognising a variety of visually presented objects, for instance
in naming tasks

2. normal recognition of objects through other sense modalities such as touch

3. apparently intact visual perception in so far as relevant for object recog-
nition.!'®

18 Associative agnosia is opposed to apperceptive agnosia, where also lower visual functions
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Visual agnosia, although rare, provides a glimpse of our cognitive architecture
and it can be used as a guide to set up controlled experiments.

Recall that picture naming requires access to three different types of repre-
sentation: structural knowledge about objects, semantic knowledge and phono-
logical descriptions. Humphreys, Riddoch and Quinlan [9] studied the process
of picture naming, first with a subject suffering from agnosia and then with
normal subjects, with the aim of obtaining more detailed information about the
interaction of these levels. If a subject is impaired at naming visually presented
objects, the problem may reside either in one of the representations, or in access-
ing the representations. Their subject, JB, though severely impaired at picture
naming, apparently had roughly normal structural, semantic and phonological
representations. '° If the representations are intact, the problem must reside
in accessing representations. One may entertain two different theories on the
exact nature of accessing these representations:

1. The process is discrete in the sense that information is only transmitted
to the next stage after the construction of the representation has been
finished; for example, the structural description of a picture or an object
must be finished to the extent that no other description remains activated,
before it is passed on to the semantic level.

2. On the other hand, the process could be a cascade in the sense that seman-
tic information about a picture can be activated prior to the completion
of the structural description of the object.

For us it is of interest that there exists a clear model theoretic distinction be-
tween the two views: on the first view, a semantic system is best represented
as an ordinary first order model, with predicates applicable to objects whose
structural description is completed, so, one might as well say, to unstructured
objects; whereas on the second view, predicates should also be applicable when
the structural description is not yet completed, so that it becomes important
to keep track of the stages of structural description of an object. The latter
option is more like an inverse system of first order models. Hence we view the
experiment to be described as a rough indication of which type of semantic
organisation is to be preferred.

Now suppose that, as in JB’s case, the access of the phonological represen-
tation from the semantic representation is intact. In order to decide between
the two theories, one may observe that in the discrete case, if accees from struc-
tural to semantic representation were disrupted, one would expect a uniform
impairment, in the sense that there would not be significant differences across
categories. JB’s impairment, however, was more pronounced for categories with

are impaired. It is hard to draw exact boundaries here. On this topic, see Farah [6] from
which the above discussion was taken.

19We refer to Humphreys et al. [9] for a discussion of the tests used in ascertaining this. It
should be added though that Farah [6] argues that associative agnostics do not have intact
perception after all. If true, that would cast some doubt on the following case description,
though not on the experiment with normal subjects.
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structurally similar exemplars (such as BIRD), than for categories with struc-
turally dissimilar exemplars (e.g. FURNITURE). The cascade model can explain
why this should be so. Essential to this model is that before the structural
descriptions have settled down the corresponding semantic descriptions are ac-
tivated. In the case of structural similarity, many structural descriptions will be
activated simultaneously, hence also many semantic descriptions. This however
greatly increases the possibility of error.

Humphreys et al. [9] devised the following experiment on normal subjects
to decide between the discrete and the cascade theories. As we have seen,
the discrete theory predicts that structural similarity or dissimilarity between
pictures will have no influence on the probability that the subject will come
up with the correct name, since name giving starts only after the structural
description has been completed, even when this takes a relatively long time (as
in the case of structurally similar pictures). The cascade theory, on the other
hand, predicts that structural similarity between pictures must have an influence
on the probability of a correct answer: before the structural description has
stabilised, there is ample time for interaction between semantic and structural
description.

More precisely, Humphreys et al. studied the interaction between picture
name frequency and structural similarity of pictures. Name frequency (the fre-
quency with which a name occurs in print) is thought to affect the access to
a picture’s phonological representation, hence should be conditionally indepen-
dent of structural similarity (given the semantic representation). The experi-
mental results showed that there is little effect of name frequency in the case of
structurally similar pictures (whose descriptions take a fairly long time period to
access), but a large effect in the case of structurally dissimilar pictures (which are
relatively easy to access). This result is what the cascade theory would predict:
since name information is made available during the completion of the structural
description, name frequency, which pertains to the phonological representation,
has no effect. A further interesting result was, that in the case of structurally
similar pictures, the reaction times for naming correlated strongly with the de-
gree of structural similarity, and not so for the case of structurally dissimilar
pictures. This seems to show that there must be a relatively high degree of
structural similarity before it starts affecting naming performance. One expla-
nation for this phenomenon is that in the case of structurally similar pictures
a superordinate, ‘generic’ structural description is activated, corresponding to
a category name (say ‘bird’; here the authors refer to Marr’s hierarchy of 3-D
models), which in turn activates descriptions of many exemplars belonging to
the category, thus further slowing down the process of name-giving.

0.7 The picture that says it all

We have been concerned with the question how the logic of perception influ-
ences the logic of perception reports. Though this question is interesting in
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itself, it also points to an underlying theoretical issue: what is the proper way
to approach natural language semantics? In particular, what do semantic rep-
resentation stand for? Traditionally, one distinguishes between model theoretic
semantics, where semantic representations stand for aspects of the world (or
possible worlds) and conceptual or cognitive semantics, where semantic repre-
sentations are mental objects. The latter view tends to belittle the importance
of logic and model theory, apparently on the supposition that model theory
entails a realist commitment.

Clearly the logic of perception reports is relevant to this issue. Suppose
we have come to a consensus on what this logic is. If it is best explained by
assuming that perception is direct pick-up in the Gibsonian tradition, then at
least for the purpose of modelling perception reports, model theoretic semantics
(in the form of situation semantics) is fine. On the other hand, if it is best
explained by assuming that perception involves inference and construction, then
cognitive semantics seems more appropriate. We have adopted the latter view,
but we clearly see no obstacles to using model theory in this context. Rather,
model theoretic semantics should elaborated to the point where it takes into
account not only the real world, but also the set of representations of this
world that humans construct. Since perception provides a systematic relation
between the two, in principle the relation between world and representation
is susceptible to mathematical treatment. The way we like to think of this is
that semantic interpretation is factored through conceptual structure, as in the
following commutative diagram.

expression

/

real world «<— conc. struct.

Figure 3: Ezpression & meaning

That is, expressions are interpreted directly only on the representations in
conceptual structure, but indirectly on the world, due to the nature of the
(perceptual) link. The way we have set up things, with homomorphisms, or more
generally filters mediating between world and representations, is undoubtedly
too simple. Hopefully, others will come with more realistic proposals, covering
a wider range of phenomena.
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