
1

Appeared in: Logique et Analyse , 42.167/8, 1999, 447-82.

THE SUCCESS THEORY OF CONFIRMATION

by Theo A.F. Kuipers, University of Groningen (T.A.F.Kuipers@Philos.rug.nl)

PART II QUANTITATIVE CONFIRMATION, AND ITS QUALITATIVE CONSEQUENCES

Introduction

In Part I we have developed, guided by the success perspective, a

qualitative (classificatory and comparative) theory of deductive

confirmation. In this part we will present, in Section 1, the corresponding

quantitative theory of confirmation, more specifically, the corresponding

probabilistic theory of confirmation of a Bayesian nature, with a

decomposition in deductive and non-deductive confirmation. It is again pure

in the sense that all equally successful hypotheses profit from their

success to the same degree. It is inclusive in the sense that it leaves

room for confirmation of hypotheses with zero probability (p-zero

hypotheses). In Section 2 the resulting qualitative theory of (general)

confirmation, encompassing the qualitative theory of deductive

confirmation, will be indicated. In the Appendix 1, it will be argued that

Popper's quantitative theory of corroboration amounts to an inclusive and

impure Bayesian theory of confirmation.

   The quantitative approach to confirmation has a somewhat dubious

character, since the assigned probabilities are, as a rule, largely

artificial. Their main purpose is to lead to adequate qualitative

(classificatory and comparative) judgments of confirmation. As far as

deductive  confirmation is concerned, we have seen in Part I that we do not

need a quantitative approach for that purpose. However, since to date no

independent or direct qualitative theory of general  confirmation, or of

non-deductive  confirmation, has been developed, a quantitative approach is

required for that purpose. Such a dependent or indirect qualitative theory

of general and non-deductive confirmation will be presented in the second

section.

   Accordingly, we do not claim that the quantitative theory reflects

quantitative cognitive structures concerning confirmation. Instead, they

should primarily be conceived as quantitative explications of qualitative

cognitive structures, to be used only for their qualitative consequences.

As will be argued, the justification of these qualitative consequences is

at least as good as the justification of the quantitative explications

'under ideal circumstances', that is, when the probabilities make objective

sense. Moreover, as in the qualitative case, it will also become clear that

there is not one 'language of quantitative confirmation', but several, e.g.
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     . Standard versions of Bayesian philosophy of science, leaving no room1

for confirmation of p-zero hypotheses, can be found in Horwich (1982),
Earman (1992), Howson and Urbach (1989), Schaffner (1993, Ch. 5).  These
non-inclusive versions are pure or impure depending on whether they support
the difference degree or the ratio degree of confirmation (see below),
respectively.

pure and impure ones, inclusive and non-inclusive ones. As long as one uses

the same updating calculus for probabilities, it does not matter which

confirmation language one chooses, the only important point is to always

make clear which one one has chosen. Although speaking of confirmation

languages hence is more appropriate, we will accept the current practice of

speaking of confirmation theories.

1. QUANTITATIVE CONFIRMATION

In this section, a non-standard version will be presented of the so-called

Bayesian theory of confirmation, guided by the success perspective.

Quantitative confirmation will be decomposed into confirmation by a

deductive or a non-deductive success, or simply deductive and non-deductive

confirmation. Both will be localized in the so-called Confirmation Square.

The degree of confirmation of a hypothesis by a piece of evidence will be

equated with the plausible degree of success, which happens to be

equivalent to the ratio of the posterior and prior probability when the

latter is non-zero. The version of Bayesianism is non-standard in two

senses.  First, and foremost, it is inclusive in the sense that it leaves1

room for a substantial degree of confirmation for 'p-zero' hypotheses when

they are confirmed. Second, it is pure in the sense that equally successful

hypotheses get the same degree of confirmation, irrespective of their prior

probability.

1.1 Non-deductive confirmation and the Confirmation Square

The four possible (unconditional) deductive relations between hypothesis

and evidence specified in the Confirmation Matrix in Section 1.1 of Part I

have somewhat weaker probabilistic versions, for which we propose to use

the same 'deductive' names.

HÿÿÿÿE   => p(E/H) =1 Deductive Confirmation: DC( H,E)

Hÿÿÿÿ¬E  => p(E/H) =0 Falsification: F( H,E)

¬HÿÿÿÿE => p(E/¬H) =1 Deductive Disconfirmation: DD( H,E)

¬Hÿÿÿÿ¬E => p(E/¬H) =0 Verification: V( H,E)

Here we assume that there is some defensible probability function p, i.e.,

p may well have subjective features, though then as much as possible in
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     . That is, without assuming, as statisticians do, that H and ¬H are2

simple hypotheses in the sense of generating a certain probability
distribution. Hence, H and ¬H may well be disjunctions of such simple
hypotheses, in which case p is based on a prior distribution over the
latter hypotheses and their corresponding conditional probability
distributions. To be sure, H itself is primarily thought of as a non-
statistical hypothesis. For the extrapolation of the Bayesian approach to
statistical hypotheses, see e.g., (Howson and Urbach 1989) and (Schaffner
1993).

     . Recall that p(H/E) is equal to p(H)p(E/H)/p(E), where p(E) is equal3

to p(H)p(E/H) + p(¬H)p(E/¬H). Note also that p(E/¬H) is equal to
p(E)p(¬H/E)/p(¬H).

agreement with objective information. In line with Bayesian philosophers of

science (Howson and Urbach 1989; Earman 1992), we will call p(E/H)  and

p(E/¬H)  likelihoods.  2

   A probabilistic theory of confirmation will be called Bayesian  as soon

as it assumes, explicitly or implicitly, some prior distribution, that is,

probability values p(H) and p(¬H)=1-p(H). As a rule, this is already the

case when one of the probabilities p(H), p(¬H), p(E) or p(H/E) is used, or

both likelihoods p(E/H) and p(E/¬H). 3

   According to the definition of conditional probablity, p(E/H) =

p(E&H)/p(H) is undefined when p(H)=0. However, this does not exclude that

p(E/H) can be interpreted in this case. For example, in case H entails E,

p(E/H) is 1. Or consider the case that the hypotheses Hv for all possible

values v in [0,1] for the probability of heads of a biased coin. Then 

p(Hv)=0, but p(En/Hv) makes perfectly sense for a sequence En of outcomes

of n throws, viz. the corresponding binomial distribution. In this case, it

is at most controversial for non-Bayesians whether and how p(En/¬Hv) can be

meaningfully interpreted. For, in general, if p(H)=0 then p(E/¬H) = p(E),

and in any Bayesian approach it is assumed that p(E) can be assigned a

value, whether this is done in terms of the decomposition p(H)p(E/H) +

p(¬H)p(E/¬H) induced by H, hence p(E/¬H), or in terms of some other

decomposition. From now on we will assume that both p(E/H) and p(E), and

hence p(E/¬H), are interpreted, even if p(H)=0. Similarly, there are cases

where p(H/E) can be interpreted when p(E)=0. For instance, if E reports the

specific value 0.2 of a quantity X taking values in the [0,1]-interval and

H claims that the value of a similar quantity Y will be below 0.5, it may

well be reasonable to assign, on the basis of the background beliefs,

p(H)=p(Y<0.5)=0.5, p(H/E)=p(Y<0.5/X=0.2)=0.7 and p(E)=p(X=0.2)=0.
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Figure 1: The Confirmation Square (CS)

   Well then, by using the weaker 'likelihood versions', the four deductive

relations between H and E can be depicted as the four sides of the unit

square of likelihood pairs < p(E/H),p(E/¬H) >, henceforth called the

Confirmation Square  (CS), depicted in Figure 1. 

   The core of the 'quantitative success theory of confirmation' of

Bayesian nature is completed by taking the interior of CS also into

account. From the success perspective, the criteria

p(E)   <  p(E/H) Confirmation C(H,E)

p(E/H) <  p(E) Disconfirmation D(H,E)

are the plausible criteria of confirmation and disconfirmation in general.

The first condition, p(E)<p(E/H), will be called the S(uccess)-criterion  of

confirmation. Note that the S-criterion coincides with the success

definition of confirmation in general (SDC) in Part I, viz., H makes E more
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plausible, as soon as we equate plausibility with probability. Note also

that the depicted (/-)diagonal typically represents 'no confirmation' or

neutral evidence:

p(E)=p(E/H) Neutral Evidence: NE( H,E)

   To get a better view on extreme cases, represented by the sides of CS,

and of the non-extreme cases, represented by the interior, we formulate

first equivalent criteria of confirmation, disconfirmation and neutral

evidence.

p(E/¬H) < p(E/H) Confirmation: C( H,E)

p(E/H)  < p(E/¬H) Disconfirmation: D( H,E)

p(E/¬H) = p(E/H) Neutral Evidence: NE(H,E)

In this way, the S-criterion for confirmation leaves clearly room for the

extreme cases of verification, p(E/¬H)=0, and deductive confirmation,

p(E/H)=1. Similarly, the criterion for disconfirmation leaves room for the

extreme cases of falsification, p(E/H)=0, and deductive disconfirmation,

p(E/¬H)=1.

   As a consequence, the region of the interior of CS right/below

(left/above) the diagonal typically represents non-extreme probabilistic

successes of H (¬ H). These non-extreme cases represent the remaining

intuitive cases of confirmation and disconfirmation, respectively. They

will be called non-deductive:

0 < p(E/¬H) < p(E/H)  < 1 Non-deductive Confirmation: NC( H,E)

0 < p(E/H)  < p(E/¬H) < 1 Non-deductive Disconfirmation:ND( H,E)

Note that, as in the deductive case, non-deductive disconfirmation of H

amounts to non-deductive confirmation of ¬ H.

   If one wants to set apart verification and falsification as extreme

cases of confirmation and disconfirmation, respectively, it is plausible to

introduce the notions of non-extreme or proper confirmation and

disconfirmation: 

0 < p(E/¬H) < p(E/H) Proper Confirmation: PC( H,E)

0 < p(E/H)  < p(E/¬H) Proper Disconfirmation: PD( H,E)

with some conceptually plausible consequences, in abbreviated form,

indicating subsets of CS by the relevant condition:

C(H,E) = V( H,E) �� ��  PC( H,E)  and  PC( H,E) = DC( H,E) �� ��  NC( H,E)

D(H,E) = F( H,E) �� ��  PD( H,E)  and  PD( H,E) = DD( H,E) �� ��  ND( H,E)



6

It is also fruitful to define conditional versions of non-deductive

confirmation, proper confirmation and confirmation in general:

0< p(E/¬H&C) < p(E/H&C) <  1 cond. Non-ded. Confirmation: NC( H,E;C )

0< p(E/¬H&C) < p(E/H&C)      cond. Proper Confirmation: PC( H,E;C )

   p(E/¬H&C) < p(E/H&C)  cond. Confirmation: C( H,E;C )

When supplemented with plausible definitions of conditional (deductive and

non-deductive) disconfirmation, each specific condition gives rise to its

own confirmation square, the conditional  CS.

   In sum, CS not only depicts falsification, verification and neutral

evidence but also suggests how to split proper confirmation and

disconfirmation into both a (basically qualitative) deductive subtype and a

(fundamentally quantitative, at least so it seems) non-deductive subtype.

This interpretation of the unit square of likelihood pairs provides, as we

will further illustrate, a quantitative explication of the general idea of

(qualitative) confirmation, that is, the basic 'cognitive structure'

regarding confirmation that is implicitly used by empirical scientists.

However, since the required specific probabilities usually do not

correspond to anything in reality, neither in the object of study, nor in

the head of the scientist, consciously or unconsciously, they do not seem

to directly reflect a quantitative cognitive structure. However, one may

argue that there is something between a purely qualitative and a purely

quantitative cognitive structure, viz., by certain elicitation procedures

one obtains interval assignments of probabilities which may be interpreted

as reflecting unconscious attitudes. These interval assignments might obey

a cognitive structure in terms of intervals, but we will not pursue this

possibility further.

   Several aspects of CS will be treated in some detail. The following

terminology will be very useful:

H is a p-zero  hypothesis p(H)=0

H is a p-one  hypothesis p(H)=1

H is a p-normal  hypothesies 0<p(H)<1

H is a p-uncertain  hypothesis p(H)<1

The analysis provides in fact a decomposition of the standard Bayesian

theory of confirmation for p-normal hypotheses. Its criteria of

confirmation and neutrality read, respectively:

p(H) < p(H/E) p(H)=p(H/E)

(see e.g., Carnap 1963 , the new foreword, Horwich 1982, Howson and Urbach2

1989). The confirmation criterion, stating that the posterior probability

is larger than the prior probability, called the PP-criterion, is in
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perfect agreement with the common sense idea, expressed in the updating

principle of plausibility (UPP) of Part I, that confirmation, normally,

increases, or leads to the increase of, the probability of the hypothesis.

Assuming that H is p-normal, the PP-criterion is equivalent to the S-

criterion, C( H,E), as is easy to check. In view of the "p(E/¬H)<p(E/H)"-

version of the S-criterion, its decomposition of Bayesian confirmation

amounts to the following claim: assuming p-normality of H, the PP-criterion

expressing Bayesian confirmation can be naturally decomposed into three

mutually exclusive and together exhaustive possibilities in which the

(equivalent) S-criterion can be satisfied: two extreme possibilities, viz.,

verification (0=p(E/¬H)<p(E/H)) and deductive confirmation

(p(E/¬H)<p(E/H)=1), and the non-extreme possibility, viz. non-deductive

confirmation (0<p(E/¬H)<p(E/H)<1).

   The important difference is that the S-criterion is also non-trivially

applicable to p-zero hypotheses. Whereas the PP-criterion makes all

evidence neutral with respect to p-zero hypotheses (for p(H)=0 implies

p(H/E)=0), the S-criterion leaves perfectly room for confirmation of such

hypotheses. However, since p(H/E) remains 0, the confirmation is, as it

were, not rewarded in this case. Note that the situation is different for

p-one hypotheses. If p(H)=1 then, assuming that E and H are compatible,

p(H/E)=p(H) and p(E/H)=p(E). Hence, according to both criteria, p-one

hypotheses cannot be confirmed. Note in this connection also that, in

contrast to the fact that the confirmation of a p-normal hypothesis amounts

to the disconfirmation of its negation, the confirmation of a p-zero

hypothesis, according to the S-criterion, of course, does not amount to the

disconfirmation of its negation according to any of the two criteria, which

is easy to check. In view of the deviating behavior of the S-criterion

regarding p-zero hypotheses, the S-criterion will be called inclusive  and

the PP-criterion non-inclusive . Hence, although the inclusive and the non-

inclusive criteria are equivalent for the non-zero cases, they are

incompatible for the zero cases. As we will see in Appendix 1, Popper's

approach (Popper 1959, 1963, 1983) also presupposes the S-criterion, and

hence is inclusive. Inclusive behavior is very important in our opinion.

Although there may be good reasons (contra Popper, see Appendix 1) to

assign sometimes non-zero probabilities to genuine hypotheses, it also

occurs that scientists would sometimes assign in advance zero probability

to them and would nevertheless concede that certain new evidence is in

favor of them.

   Whereas deductive confirmation has only one 'cause', the evidence is

entailed by the hypothesis, non-deductive confirmation may have different

causes. In the folllowing we will restrict the attention to p-normal

hypotheses and evidence. As Salmon (1969) already pointed out in the

context of the possibilities of an inductive logic, a probability function

may be such that E confirms H when H partially  entails E. Here 'partial

entailment' essentially amounts to the claim that the relative number of
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     . This formulation applies, strictly speaking, only to a language with4

a finite domain. However, in many cases it can be extended to infinite
domains, provided E deals with a finite number of individuals.

     .A problem with this principle is that the notion of extrapolation or5

'going beyond the evidence' is not easy to define in a general way such
that it is satisfactory from an inductive point of view, as Popper and
Miller (1983) have pointed out. See Mura (1990) and Gemes (manuscript) for
different proposals. 

models in which E is true on the condition that H is true is larger than

the relative number of models in which E is true without any condition. For 4

instance, in a 'color language' with at least four colors, p will be such

that the evidence that a raven is black or white confirms the hypothesis

that it is black or red. In general, one may require that a probability

function satisfies the principle of partial entailment: if H partially

entails E (¬E) then E confirms (disconfirms) H. Fortunately, it seems that

a probability function usually satisfies this principle. However, and this

was Salmon's main message, it is not at all guaranteed that such a function

is such that E confirms H when H essentially is an (inductive)

extrapolation  of E, notably from past to future instances of a certain

kind. For instance, one might like to have that the evidence that the first

raven is black confirms the hypothesis that the second raven is black as

well. In general, one may require that a probability function satisfies the

principle of extrapolation (or induction): if H extrapolates upon E (¬E)

then E confirms (disconfirms) H.  In (Kuipers, 1997, 1998) we study5

probability functions which satisfy both principles, e.g. Carnap's

continuum of inductive methods. Of course, such functions are such that a

hypothesis H which partially entails E and  extrapolates upon E is confirmed

by E. In sum, we may distinguish at least three causes or types of non-

deductive confirmation: due to partial entailment, which might be called

'partial (deductive) confirmation', due to extrapolation, to be called

'inductive confirmation', and due to both factors.

1.2 The ratio-degree of confirmation

Although the quantitative theory of confirmation presented thus far already

allows qualitative judgments of deductive and non-deductive confirmation,

for comparative purposes we also need a degree of confirmation. In Part I

we have explicated 'confirmation' qualitatively as increase of plausibility

of, in the first place, the evidence (SDC), and, in the second place, of

the hypothesis (UPP). In the present probabilistic context, it is plausible

to identify plausibility with probability, and hence, confirmation with

increase of probability of the evidence, as we have noted, with the

consequence, as far as p-normal hypotheses are concerned, that confirmation

is rewarded by an increase of the probability of the hypothesis.
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     . See Festa (1998) for a lucid survey.6

     .Popper's arguments (Popper 1959) against p(H/E)  as degree of7

confirmation convinced even Carnap (1963 , the new foreword) that the2

'genuine' degree of confirmation should be identified with, or at least be
proportional to p(H/E)-p(H)  or p(H/E)/p(H) .

   There are many possibilities for defining a degree of confirmation,

several having some prima facie plausibility.  In the introduction we have6

already remarked that, as long as one uses the same updating calculus for

probabilities, it does not matter very much which confirmation theory one

chooses, and hence which degree of confirmation, the only important point

is to always make clear which one one has chosen. In this section, we will

restrict our attention to mainly one degree of confirmation, viz. the ratio

degree of confirmation, with some reference to the standard and non-

standard difference degree of confirmation.  Let us begin by the latter,7

d(H,E) =  p(H/E) - p(H), that is, the difference between the posterior anddef

the prior probability of the the hypothesis. From the success perspective,

d'(H,E) =  p(E/H)-p(E) is an at least as plausible difference measure fordef

it expresses in a way to what extent E is a success of H. Since they

usually give different values one has to choose between them.

   The ratio degree of confirmation is usually presented as the ratio of

the posterior and the prior probability, p(H/E)/p(H). However, from the

success perspective, the ratio p(E/H)/p(E) is at least as plausible as

indicator of the extent to which E is a success of H. The latter ratio may

well be called the amount or degree of success of H on the basis of E.

Fortunately, now we do not have to choose, for the two ratio measures are

trivially equivalent, when they are defined, hence we define: 

r(H,E) =  p(H/E)/p(H)) = p(E/H)/p(E) = p(H&E)/(p(H)p(E))def

to be called the r-degree or r-measure of success and confirmation. Note

that the first and the third ratio are not defined, when p(H)=0, and that

the same holds for the second and the third ratio when p(E)=0. Since p is,

as a rule, not just an objective probability, both possibilities should not

be excluded beforehand. Recall that we have assumed that p(E/H) can be

interpreted when p(H)=0, and that p(H/E) can be interpreted when p(E)=0.

Hence, r(H,E) is almost always defined, that is, it is always defined,

except when both p(E) and p(H) are zero, or when one of them is 0 such that

the corresponding conditional probability cannot be interpreted,

possibilities that will further be disregarded.

   In the following, we will evaluate the r-degree of confirmation in some

detail, partly in comparison with the d-degree and the d'-degree. To begin

with, being almost always defined need not be a positive feature, that

depends on the values that are assigned. For a first major advantage of r

over d and d' we study their extreme behavior. Note first that r has the

neutral value 1 and that d and d' both have the neutral value 0. Higher
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     .This ratio of likelihoods of H and ¬H might be called the 'likelihood8

ratio', but we will not do so because this expression has a different
meaning in statistics. There it means the ratio of the likelihoods of two
alternative (but usually non-exhaustive) hypotheses assuming one underlying
statistical model. However, the ratio p(E/H)/p(E/¬H) is also
(unconditionally) equivalent to the ratio of the posterior odds,
p(H/E)/p(¬H/E), and the prior odds, p(H)/p(¬H). For this reason, this ratio
could also be conceived as an inclusive (and impure) degree of
confirmation.

     . The term is due to Festa (1998). 9

     .Since p(H/E) itself is a function of p(H), viz. p(H).p(E/H)/p(E),10

this does not exclude that some P-incremental degrees of confirmation, e.g.
the d-measure, increase under certain conditions with increasing p(H). E.g.
for deductive confirmation of H and H* by E, d(H,E)=p(H)(1/p(E) - 1) >

values indicate, of course, confirmation and lower values disconfirmation.

Let us see what happens under the extreme conditions that p(H) or p(E) is

zero. When p(H)=0 d gets the neutral value. Hence d reflects the PP-

criterion of confirmation, according to which a p-zero hypothesis is always

neutrally confirmed. That is, an hypothesis that is excluded by p cannot be

confirmed or disconfirmed by evidence; all evidence is, by definition,

neutral for such hypotheses, a very strange situation indeed. Similarly, d'

gets the neutral value whenever p(E)=0. So, according to d' evidence that

is impossible according to p cannot confirm nor disconfirm an hypothesis,

but is always neutral. Note that in both cases, it would be less

objectionable when the degree of confirmation would not be defined. It is

the assignment of the neutral value which is conceptually unattractive.

   It is easy to check that r may well assign a non-neutral value when

either p(H) or p(E) is zero (assuming that p(E/H), respectively p(H/E), can

be interpreted), and, as already remarked, it is undefined when

p(H)=p(E)=0. When p(H) and p(E) are both non-zero, r(H,E) reflects both the

S- and the PP-criterion of confirmation, it reflects the S-criterion when

p(H)=0 and the PP-criterion when p(E)=0. Hence, we may say that the ratio-

degree r shows refined extreme behavior , whereas d and d' show conceptually

implausible extreme behavior.

   To be sure, when p(H)=0 and r(H,E)>1, r(H,E) expresses confirmation

which is not rewarded, since p(H/E) remains 0. Note that r(H,E) equals

p(E/H)/p(E/¬H)  when p(H)=0, since P(E) then equals p(E/¬H). Similarly, when8

p(E)=0 and r(H,E)>1, E is not recognized as confirming evidence, since

p(E/H) remains 0. In the case that r(H,E)>1 and p(H) and p(E) are both

positive, E is recognized as confirming evidence of H, in the sense that

p(E/H) has increased with respect to p(E) by the factor r(H,E), whereas H

is rewarded for that success, in the sense that p(H/E) has increased with

respect to p(H) by the same factor.

   A second feature of the r-measure is its being a P-incremental  measure 9

in the sense that it is (or can be written as) a function of the

probabilities p(H/E) and p(H) which increases with increasing p(H/E) and

decreases with increasing p(H) . It may also be called an L-incremental10



11

d(H*,E) iff p(H) > p(H*). 

     .Note that this ratio may be defined for two p-zero hypotheses and11

that values for p(E/¬H1) and p(E/¬H2) are not needed.

     .This definition has some complications. Strictly speaking, it12

provides only a necessary condition for independence. It is nevertheless
plausible to call, in general, the probabilistic expression
p(A&B)/(p(A).p(B)) the degree of mutual or inter-dependence of A and B.
Carnap (1950/63, par. 66) has called it the (mutual) relevance quotient. 

measure in the sense that it is (or can be written as) a function of the

likelihoods p(E/H) and p(E) which increases with increasing p(E/H) and

decreases with increasing p(E). Note that d is also P-incremental, but not

L-incremental, whereas d' is L-incremental, but not P-incremental.

   Next, the ratio of the r-degrees of confirmation of two hypotheses on

the basis of the same evidence, r(H1,E)/r(H2/E), just equals the ratio of

the likelihoods, p(E/H1)/p(E/H2).  This nicely fits the so-called11

likelihood ratio approach in statistics to comparing two statistical

hypotheses with each other, assuming an underlying statistical model (see

note 8??). Although d' is L-incremental, it is not easily connectable to

this statistical practice.

   An important further difference between r and both d and d' is that r is

symmetric, that is, r(H,E)=r(E,H), whereas d and d' are asymmetric: d(H,E)

is unequal to d(E,H), in fact it is equal to d'(E,H), and similarly for d'.

Symmetry is particularly appealing in cases where the hypothesis is of the

same nature as the evidence. Consider, for example, the hypothesis (H) that

the outcome of a fair die will be even in relation to the evidence (E) that

the outcome is larger than 1 and the reverse situation that the evidence

reports an even die (E'=H), and the hypothesis (H'=E) states that the

outcome will be larger than 1. An asymmetric degree of confirmation may

imply that E confirms H more (or less) than E'(=H) confirms H'(=E), and d

and d' do so. The symmetry of r is, of course, directly related to the fact

that r(H,E) can be seen as a degree of mutual dependence between H and E,

since independence is usually defined by the criterion p(H&E) = p(H)p(E) . 12

   Some special values of r(H,E) are relatively simple. For instance,

r(H,E)  increases from 0, for falsification, via p(E/H)/[1-p(H)p(¬E/H)]  for

deductive disconfirmation, to 1, for neutral (including tautological)

evidence, from which it increases further, via 1/ p(E)  for deductive

confirmation, to 1/p(H), for verification. The last value is, moreover, the

maximum degree of confirmation a hypothesis can get, viz. 1/p(H) for

verification, e.g. when E=H. Note that this maximum is hypothesis specific ,

and that we have the plausible extreme consequence that verification of a

p-zero hypothesis amounts to obtaining an infinite degree of confirmation.

Similarly, 1/p(E) is the maximum degree of confirmation certain E can

provide for an hypothesis, viz. by deductive confirmation, with the

plausible extreme consequence that the degree of confirmation in the case

of deductive confirmation by p-zero evidence is infinite.
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     .The term 'neutral' is already used within the presented theory of13

confirmation, viz., in the phrase 'neutral evidence', which makes that term
less attractive for our present purposes.

1.3 Comparing and composing degrees of confirmation

Let us now turn to the comparative and composite behavior of r(H,E) by

presenting some trivial but crucial theorems, always assuming that H is p-

uncertain (p(H)<1).

   We start by considering two pieces of evidence with respect to which a

fixed hypothesis is equally successful in the sense that they provide the

hypothesis with the same likelihood (e.g., 1 in the case of deductive

confirmation):

Th.1: if p(E/H)=p(E*/H)>0  then 

r(H,E) > r(H,E*)  iff p(E*) > p(E)

(iff  p(H/E) > p(H/E*), if p(H)>0)

 

Th.1 states that, when H obtains the same likelihood from two pieces of

evidence, the degree of confirmation increases with decreasing prior

probability of the evidence or, if p(H)>0, equivalently, with increasing

posterior probability of the hypothesis. Hence, under the mentioned

condition, according to r(H,E), H gets 'richer' from less probable (more

surprising) evidence, which agrees with scientific common sense; we will

call this the surprise bonus . Note that, when p(H)=0, this surprise bonus

is not payed out in an increase of the posterior probability, for that

remains zero.

   Let us now turn to fixed evidence and two hypotheses, which are equally

successful in the sense that they obtain the same likelihood from that

evidence (again, e.g., 1 in the case of deductive confirmation):

Th.2: if p(E/H)=p(E/H*)>0  then 

r(H,E)=r(H*,E)

and 

p(H/E) > p(H*/E) iff p(H) > p(H*)  

Th.2 shows in the first place that r(H,E) is a (hypothesis-) neutral  or 13

pure  degree of confirmation, in the sense that two hypotheses which are

equally successful in the sense that they make the evidence equally

plausible, obtain a degree of confirmation which is independent of their

prior probability. Th.2 states, moreover, that, assuming equal

successfulness, the posterior probability increases with increasing prior

probability. Note that the first feature is in sharp contrast to the

'impure' behavior of d(H,E). Since d(H,E) is equal to p(H)(r(H,E)-1), it

favors plausible hypotheses, that is, it increases in the case of equal
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successfulness with the prior probability. On the other hand, d' is easily

seen to be pure.

   Restricting attention to deductive confirmation and identifying

plausibility with probability, it follows directly from Th.1 and Th.2 that

quantitative deductive confirmation, as measured by r(H,E), satisfies the

qualitative principles of deductive confirmation P.1 and P.2, respectively: 

P.1 if E and E*  d-confirm H then E d-confirms H more than E*  iff E*

is more plausible than E in the light of the background beliefs

P.2 if E d-confirms H and H* then E d-confirms H* as much as H

   Let us also look at some specific cases that have been put forward in

favor of r(H,E) or d(H,E). Roberto Festa (1998, p. 66) has suggested a

version of the following counter-intuitive case against d(H,E) , and in

favor of r(H,E), when p(H)>0. Compare p(H/E) =0.1 and p(H) =0.0001 with

p(H*/E) =0.9 and p(H*) =0.8. Although the respective differences are almost

the same ( �� �� 0.1 and 0.1, respectively) the first case of confirmation is

intuitively much more impressive than the second. It is easy to check that

r(H,E)  is in agreement with this intuition (1000 and 9/8, respectively),

which makes r(H,E)  superior to d(H,E) . For a real-life (aircraft) example

of a formally similar nature, see (Schlesinger 1995, Section 4).

   However, such specific intuitions may easily be countered by similar

ones, pointing in the opposite direction. Consider the following case

against r(H,E)  and in favor of d(H,E), stemming from Eells and reported by

Sober (1994). In a slightly modified form, consider p(H/E) =0.9 and p(H) =0.1

versus p(H*/E) =0.001 and p(H*) =0.00001. Though H may seem intuitively and

according to d(H,E) much more confirmed by E than H* (d(H,E)=0.8 versus

d(H*,E) �� �� 0.001), the r(H,E) -definition leads to the reverse conclusion (9

versus 100).

   Accordingly, such examples make clear that our intuitions are confused

and that we can decide to reconsider our intuitions in the light of the

fact that there is something to choose, viz., principles we may or may not

want to subscribe to.

   So let us return to general properties of the r-measure. First we will

consider disjunctions of evidence and hypotheses. For the disjunction of

two incompatible pieces of evidence, the r-degree of confirmation is the

weighted sum of the separate degrees of confirmation:

Th.3.1: if p(E&E')=0 then 

    p(E) p(E')

r(H,EvE')=  ____________ r(H,E) + ____________ r(H,E')

p(E) + p(E')     p(E) + p(E')
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     .See Jeffrey (1975) for a comparison of a couple of measures,14

including r, d, and d'. His emphasis is on r and d, and on second thoughts,
that is, in his "Replies" he favors d over r, mainly because of its
'impure' character. In our opinion (see also the next section), the impact
of different prior probabilities is perfectly accounted for in the
resulting different posterior probabilities.

Similarly, due to the symmetry of the r-degree with respect to E and H, the

r-degree of confirmation of a disjunction of two incompatible hypotheses is

the weigthed sum of the degrees of the disjuncts:

Th.3.2: if p(H&H')=0 then

    p(H) p(H')

r(HvH',E)=  ____________ r(H,E) + ____________ r(H',E)

p(H) + p(H')     p(H) + p(H')

Let us now turn to conjunctions. Let E and E' be mutually independent

pieces of evidence in general and with respect to H. Then the degree of

confirmation provided by the conjunction is the product of the separate

degrees:

Th.4.1: if p(E&E')=p(E).p(E') and p(E&E'/H)=p(E/H).p(E'/H) 

then r(H,E&E') = r(H,E).r(H,E')

Similarly, again due to the symmetry of the r-degree with respect to E and

H, for prior and posterior mutually independent hypotheses:

Th.4.2: if p(H&H')=p(H).p(H') and p(H&H'/E)=p(H/E).p(H'/E) 

then r(H&H',E) = r(H,E).r(H',E)

Finally, let us consider the 'addition' of an irrelevant piece of evidence

E', defined by p(H/E&E') = p(H/E), or an irrelevant hypothesis, defined by

p(E/H&H') = p(E/H). 

Th.5.1: if p(H/E&E')=p(H/E) then r(H,E&E')=r(H,E)

Th.5.2: if p(E/H&H')=p(E/H) then r(H&H',E)=r(H,E)

In our opinion, the composite behavior of the r-measure, as expressed by

Theorems 3-5, is very plausible.

   In sum, we conclude that r(H,E) is an attractive degree of confirmation.

It shows refined extreme behavior, it is incremental with respect to the

probability of the hypothesis as well as the evidence, it has hypothesis

and evidence specific maxima, it realizes the surprise bonus, it is pure in

the sense of being neutral with respect to equally successful hypotheses,

independently from their prior probabilities, and it has plausible

composite behavior.  Since it implies the qualitative principles of14
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deductive confirmation, we may conclude from Part I, that it can deal with

the standard objections to deductive confirmation, with the raven

paradoxes, and the grue problem. In the next section, we will further

evaluate r(H,E) with respect to qualitative consequences, again partly in

comparison with other candidates.

   We conclude this section with three technical points. First, accepting r

as degree of confirmation, implies, of course, as explication of "E

confirms H more than E* confirms H*": r(H,E)>r(H*,E*). Second, as Milne

(1995, 1996) has rightly argued, a near relative to r, viz., log r(H,E),

has some advantages over r(H,E). E.g. its neutral value is 0. Third, for

completeness and later use, we write down the conditional  degree of

confirmation corresponding to the unconditional one:

   

r(H,E;C) =  p(H/E&C)/p(H/C) = p(E/H&C)/p(E/C) =def

 p(H&E/C)/(p(H/C)p(E/C))

It is easy to check that this conditional degree has similar properties to

the unconditional one.

   The quantitative theory of confirmation based on r will be called the r-

theory of confirmation. Similarly for the d- and the d'-theory.

2. QUALITATIVE CONSEQUENCES

In this section it will first be argued in some more detail than in

Sections 1.3 and 1.4 that the 'r-theory' restricted to deductive

confirmation implies the whole qualitative theory of deductive confirmation

presented in Part I. In this connection it will be particularly

illuminating to write out the quantitative variant of the qualitative

solution of the raven paradoxes in Part I. This example illustrates, among

other things, that the r-degree of confirmation can also be interpreted as

a degree of severity of tests, in particular of HD-tests, with attractive

qualitative consequences. Finally, we will investigate to what extent a

corresponding qualitative theory of general and non-deductive confirmation

can be derived and defended.

2.1 Derivation of the qualitative theory of deductive confirmation

The claim that the qualitative theory of deductive confirmation can be

derived from the quantitative theory amounts, of course, to the claim that

deductive confirmation is a subkind of quantitative confirmation that

satisfies the comparative principles of deductive confirmation when

plausibility is identified with probability. We have already seen that

deductive confirmation amounts to an extreme kind of quantitative
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confirmation, due to the fact that HÿÿÿÿE implies that p(E/H)=1. The

corresponding r-degree of confirmation is 1/p(E), which exceeds 1, hence

indicates confirmation, as soon as E is probabilistically uncertain. We

have also concluded already, on the basis of Th.1 and Th.2, that

quantitative confirmation respects the comparative principles P.1 and P.2,

when we identify plausibility with probability. Hence, quantitative

confirmation entails all principles of the qualitative theory of deductive

confirmation. In Section 2.4 we will review the extent to which it implies

the general principles of qualitative confirmation presented in Part I,

viz., SDC, UPP, PS, and PCS.

   In Part I we have also alluded to the reverse perspective on P.1 and

P.2, that is, that they are made plausible by Bayesian considerations. For

this purpose, it is important to note first that r(H,E) and d(H,E) are both

popular among Bayesians. Hence, since both measures support P.1, this

comparative postulate seems unproblematic for Bayesians. Moreover, since

r(H,E) is frequently suggested and used as an alternative to d(H,E), and

since r(H,E) supports P.2, the latter comparative postulate is frequently

implicitly assumed by Bayesians. However, it should be conceded that d(H,E)

is used at least as frequently as r(H,E). Hence, for supporters of d, P.2

will only become acceptable as far as our general arguments in favor of r

(above and below), and those of others, such as Festa (1998), Schlesinger

(1995), and Milne (1995, 1996), are convincing for them.

   In this respect, it is interesting to study the way the r- and the d-

measure deal with an irrelevant additional hypothesis H' in the case of

deductive confirmation of H by E, that is, when p(E/H)=1. Whereas d(H&H',E)

becomes smaller than d(H,E), by the factor p(H&H')/p(H), r(H&H',E) remains

equal to r(H,E). In general, if p(E/H&H')=p(E/H), the plausible condition

for a, relative to E in the face of H, irrelevant additional hypothesis H',

d(H&H',E) = (p(H&H')/p(H)).d(H,E), whereas r(H&H',E)=r(H,E) (Th.5.2).

Hence, whereas r accounts for the irrelevance of H' in a straightforward

way, d does so in a more complicated way, which may or may not be conceived

as more sophisticated.

   In order to question the latter suggestion we will conceive an

'objective case', assuming that the degree of confirmation should give

satisfactory answers in cases where only objective probabilities are in the

game, since our intuitions may then be assumed to be as sharp as possible.

Consider the following urn-model of a two-step random experiment. A B-urn

is an urn with precisely one black ball, a BB-urn an urn with precisely two

black balls and a BW-urn an urn with one black and one white ball. First we

randomly select an urn out of a collection of 1 B-urn, 4 BB-urns and 5 BW-

urns, hence with objective probability 1/10, 2/5, 1/2, respectively. Next,

in the selected urn, we randomly select balls with replacement. Suppose

that the first n selections of the second type lead to a black ball. It is

easy to check that this type of evidence deductively follows from, hence d-

confirms, the hypothesis that the first selected urn is a B-urn, H-B, as
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well as the hypothesis that it is a BB-urn, H-BB. Now the question is

whether this evidence (d-)confirms H-B more than H-BB. Since the evidence

differentiates in no way between the two hypotheses, the 'r-answer' ('as

much as') seems the most plausible one, and not the 'd-answer' ('less

than'). Similarly, consider the disjunctive hypothesis 'H-B or H-BB', being

weaker than its disjuncts, but nevertheless d-confirmed by the evidence.

Again, the r-claim that it is as much confirmed as its disjuncts, seems

more plausible than the d-claim that it is more confirmed. To be sure, the

prior and hence the posterior probability of H-B is smaller than that of H-

BB, and the latter, and hence the former, is smaller than that of the

disjunctive hypothesis 'H-B or H-BB'.

   Let us now consider the way the r- and the d-measure deal with

irrelevant disjunctive evidence E' in the case of deductive confirmation of

H by E. To avoid inessential complications, let us restrict attention to

the case that E' is incompatible with E. Then r(H,EvE') becomes smaller

than r(H,E) by the factor p(E)/p(EvE') = p(E)/(p(E)+p(E')), hence decreases

with increasing p(E'). Since d(H,E) = p(H)(r(H,E)-1), d(H,EvE') decreases

in a related way. In general, if p(E'/H)=p(E'), the plausible condition for

irrelevant, for neutral, disjunctive evidence E', r(H,EvE') and d(H,EvE')

both decrease with increasing p(E'); in view of Th. 3.1, the former does so

in a more transparent way than the latter. In sum, as was to be expected, r

and d behave rather similar with respect to irrelevant disjunctive

evidence.

   Combining the results for an irrelevant conjunctive hypothesis and an

irrelevant disjunctive piece of evidence, we may conclude that the r-

measure deals with both in a plausible way.

   Let us now turn to the special qualitative applications or principles of

Part I, Section 2. It will be useful to list first the relevant corollaries

of Th.1 and Th.2 with respect to conditional deductive confirmation:

Th.1c:if p(E/H&C)=p(E*/H&C*)>0  then 

r(H,E;C) > r(H,E*;C*)  iff p(E*/C*) > p(E/C)

(iff  p(H/E&C) > p(H/E*&C*), if p(H)>0)

 

Th.2c: if p(E/H&C)=p(E/H*&C)>0  then 

r(H,E;C)=r(H*,E;C)=p(E/H&C)/p(E/C)=p(E/H*&C)/p(E/C)

and 

p(H/E&C) > p(H*/E&C) iff p(H/C) > p(H*/C)

(iff p(H) > p(H*)  if p(C/H)=p(C/H*)> 0) 

The condition " p(C/H)=p(C/H*)>0 " amounts, of course, to the claim that the

probability that C is, or will be, realized is independent of the

hypothesis under consideration. Note that the unconditional versions of

Th.1c and Th.2c arise by skipping C and C* in the formulas.
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     .Note in particular that assigning the probability value 0 to "for15

all E: M iff G" amounts to adding the strong irrelevance assumption (SIA)
as described in Part I. In that case, the posterior probability and the
posterior odds of the grue hypothesis are and remain 0.

   In the next subsection we will show that the special principle S.1c, #

dealing with a fixed hypothesis, e.g. the raven hypothesis, is realized by

r(H,E) as a special case of Th.1c if we are willing to express some

relevant background beliefs by the probabilistic assumption:

A -ravens p is based on random sampling in the relevant universep

   Finally, it is easy to check that S .2c (an EMG EM-confirms "all E are Q"Q

as much as "all E are G"), dealing with fixed evidence, e.g. in the emerald

case, is trivially realized as a special case of (the first part of) Th.2c:

r("all E are Q",G;EM)=r("all E are G",G;EM)=1/p(G/EM)

If we are, moreover, willing to express the green/grue-case of the weak

irrelevance assumption (WIA-emeralds) by the probabilistic assumption:

WIA (-emeralds) p("all E are G")  >  p("all E are Q")p

it is easy to derive the probabilistic version of the refined intuition

(4&5). Of course, if p("all E are G")=0, the refined intuition cannot be

realized, but the degree of confirmation of both hypotheses will remain

1/p(G/EM).

   Since, assuming A -ravens, S .1c-ravens is realized by r(H,E), the ravenp
#

paradoxes are qualitatively solved in the same way as before, because all

desired results already followed qualitatively, assuming S.1c-ravens and A- #

ravens (see below). Similarly, in the light of the fact that S.2c-emeralds Q

is realized by r(H,E), and assuming WIA -emeralds, the grue problem isp

qualitatively solved in the same way as before, since all desired results

already followed qualitatively, assuming S .2c-emeralds and WIA-emeralds.Q   15

As a matter of fact, Sober (1994) inspired us to our proposal for the

refinement of Goodman's basic intuition, viz., (4&5) of Part I, Section

2.2. In fact, he derived from WIA -emeralds the quantitative counterpart ofp

that refinement. 

   In sum, the 'r-theory' of confirmation can generate the qualitative

theory of deductive confirmation in the most encompassing way.

2.2 The raven paradoxes reconsidered

Whereas it is not interesting to write down the quantitative analysis of

the grue problem, it is instructive, also for later purposes, to spell out

the quantitative solution of the raven paradoxes. Recall RH, the hypothesis
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     .Note that, since d(H,E)=p(H)(r(H,E)- 1) , r(H,E)  is also the crucial16

expression in calculating the relevant d-values.

     .The assumption that c is some positive number when RH is false is of17

course a simplification. However, it is easy to check that the proofs can
be refined by conditionalization on the hypotheses that c=1,2,3,...., with
the result that the claims remain valid, independent of the prior

that all ravens are black. Table 1 introduces a matrix of numbers for the

sizes of the four cells constituting the relevant conceptual possibilities.

#R #R̄ total

#B a b a+b

#B̄ c d c+d

total a+c b+d a+b+c+d

Table 1: Numbers of 'raven possibilities'

Of course, these numbers are assumed to be finite but further unknown.

There are only some comparative background beliefs. In particular, the

assumption A-ravens stating that the number of ravens is much smaller than

that of non-black objects, which amounts to a+c<<c+d , and this is

equivalent to a<<d (and hence to a+b<<b+d) . We assume, moreover, that a and

b are positive and, of course, that c is 0 if RH is true and positive if RH

is false. All results to be presented basically presuppose and use A- p

ravens, according to which testing is random sampling in the relevant

universe. In the following, 'sampling' is to be read as 'random sampling'

and the explicit occurrence of ' c ' means that it 'resulted from' the

condition that RH is false. Hence, from now on c>0.

   Recall that r(H,E)=p(E/H)/p(E)(=p(H/E)/p(H)) .  Writing ' Q' for p(RH),16

which may or may not be assumed to be positive, and using the appropriate

conditional versions whenever relevant (in which case C is, of course,

supposed to be neutral 'evidence' for RH, that is, p(RH/C)=p(RH)=Q), the

crucial expression becomes:

r(RH,E;C) =           p(E/RH&C)                   

  p(RH/C)p(E/RH&C)+p(¬RH/C)p(E/¬RH&C)

=             1               

  Q+(1-Q)p(E/¬RH&C)/p(E/RH&C)

The results are as follows : 17



20

distribution for the hypotheses.

(1p) a black raven, a non-black non-raven and a black non-raven,

resulting from sampling in the universe of objects (hence C

tautologous), non-deductively confirm RH, all with the same r -

value: (a+b+c+d)/(a+b+Qc+d)  (e.g., for a black raven, via

p(BR/RH) = a/(a+b+d) and p(BR/¬RH) = a/(a+b+c+d))

(2p) a black raven resulting from sampling ravens cd-confirms RH

with r -value r(RH,BR;R) = (a+c)/(a+Qc) , via p(BR/RH&R)=1 and

p(BR/¬RH&R)=a/(a+c), and a non-black non-raven resulting from

sampling non-black objects cd-confirms RH with r -value

r(RH,B¯R̄;B̄ ) = (c+d)/(Qc+d)  (similar calculation)

(3p) sampling black objects or non-ravens always leads to neutral

evidence, i.e., r -value 1, for black objects, via p(BR/RH&B) =

p(BR/¬RH&B)=a/(a+b)

(4p) ad (2p): a black raven resulting from sampling ravens cd-

confirms RH much more than a non-black non-raven resulting from

sampling non-black objects, for (a+c)/(a+Qc) >> (c+d)/(Qc+d)

iff a<<d, where the latter condition follows from A-ravens.

Note that all r-values, except those in (3p), exceed 1, and that this

remains the case when p(RH)=Q=0. It is easy to check that (4p) essentially

amounts to a special case of Th.1c, realizing S .1c-ravens: an RB R-confirms#

"all R are B" more than an R ¯B̄ B̄ -confirms it iff the background beliefs

imply that #R < #B ¯.

   It should be noted that this analysis deviates somewhat from the more or

less standard Bayesian solutions of the paradoxes. In the light of the many

references to Horwich (1982), he may be conceived to have given the best

version. In Appendix 2 we argue that our solution, though highly similar,

has some advantages compared to that of Horwich.

2.3 The severity of tests

The raven example provides a nice illustration of the fact that, at least

in the case of a HD-test, the degree of confirmation can also be conceived

as the 'degree of severity' of the test. When H entails E, r(H,E) expresses

the degree of success or the degree of confirmation H has obtained or can

obtain  from an experiment that results in E or non-E. In the latter

reading, it expresses a potential  degree of success. The smaller p(E), the

more success H can obtain, but the less probable it will obtain this

success. Both aspects are crucial for the intuition of the severity of

tests. The more severe a test is for a hypothesis, the less probable that

the hypothesis will pass the test, but the more success is obtained when it

passes the test. More specifically, the degree of severity  of a HD-test is

according to Popper (1959, Appendix *ix, 1963, Addendum 2, 1983, Section
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     .Popper calls the r-value in general the 'explanatory power' of H18

with respect to E. Although Popper does not do so, it would have been
plausible for him to call it the 'explanatory success' as soon as E has
turned out to be the result of the test. We simply call it the degree of
success.

32) (a measure increasing with) the probability that the test leads to

falsification or a counter-example, or, to quote Popper (1983, p.247), "the

improbability of the prediction measures the severity of the test". This

specification amounts to taking p(¬E) as the degree of severity, or some

function increasing with p(¬E),  as do Popper's proposals in Addendum 2 of

(Popper, 1963). One of Popper's proposals for the degree of severity of an

HD-test is the r-value 1/p(E), where it is again important that p(E) is

calculated before the experiment is performed, or at least before its

result is known. Like Popper, we see no reason not to generalize this

definition to p(E/H)/p(E)  for non-(conditionally) deductive tests.18

However, it is primarily HD-tests where we seem to have specific

qualitative severity intuitions, some of which will be studied now.

   First, rephrasing the results (1p)-(4p) concerning the raven paradoxes

in the previous section in severity terms, the analysis explains and

justifies, essentially in a deductive way, why scientists prefer, if

possible, random testing of ravens, that is, randomly looking among ravens

to see whether they are black, and, in general, choose that way of

conditional random testing among the ones that are possible, which is the

most severe.

   Second, a standard objection to Bayesian theories of confirmation in

general is the so-called 'problem of old evidence'. If we know already that

E is true, and then find out that H entails E, the question arises whether

E still confirms H. The problem is, of course, that our up to date

probability function will be such that p(E)=1, and hence p(E/H)=p(E)=1 and

p(H/E)=p(H). Hence, the r-degree then leads to the neutral value 1. This

reflects the intuition that there is no severe test involved any longer.

Despite this severity diagnosis, E does nevertheless represent a success or

confirming evidence of the degree 1/p'(E), where p' refers to the

probability function before E became known or, similarly, the probability

function based on the background knowledge minus E. The latter,

counterfactual, defence is more or less standard among Bayesians (Howson &

Urbach, 1989; Earman, 1992), but the additional severity diagnosis is not.

   Third, there are two other intuitions associated with severity. The

first one is the famous 'diminishing returns' intuition of Popper: "There

is something like a law of diminishing returns from repeated tests" (Popper

1963, p. 240). It expresses the idea that the returns and hence the

severity of repeated tests decreases in one way or another. Let us look at

the raven example. Let Rn represent n random drawings (with replacement) of

ravens and let Bn indicate that these n ravens are black. Of course we have

that p(Bn/RH&Rn)=1. Moreover, replacing p(RH) again by Q, p(Bn/Rn) =
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p(RH).p(Bn/RH&Rn) + p(¬RH).p(Bn/¬RH&Rn)=Q + (1-Q)p(Bn/¬RH&Rn). Suppose

first that Q>0. Assuming that ¬RH implies that there is a positive

probability (1-q) of drawing a non-black raven, p(Bn/¬RH&Rn) = q goes to 0, n

for increasing n, and hence r(RH,Bn;Rn) will increase to 1/Q. Hence,

r(RH,Bn+1;Rn+1)-r(RH,Bn;Rn) has to go to 0, that is, the additional returns

or degree of confirmation obtained by an extra (successful) test goes to 0.

In terms of severity, the additional degree of severity by an extra test

goes to 0. A similar diminishing effect arises, of course, when we consider

the ratio r(RH,Bn+1;Rn+1)/r(RH,Bn;Rn), which will go to 1. However, if Q=0

the situation is different: r(RH,Bn;Rn) = 1/p(Bn/¬RH&Rn)= 1/q. Hence, r n

increases without limit, so does the extra returns/ confirmation/ severity

1/q -1/q = (1/q )(1-q), whereas the ratio r(RH,Bn+1;Rn+1) / r(RH,Bn;Rn)n+1 n  n+1

remains constant (1/q). In sum, the r-measure perfectly reflects the

intuition of diminishing returns, assuming that Q=p(RH) is positive.  

   The last severity intuition to be considered, may be called the

'superiority of new tests', that is, the idea that a new test is more

severe than a mere repetition. It is a specific instance of the more

general 'variety of evidence' intuition. However, it appears to be not easy

to give a rigorous explication and proof of the general intuition (Earman

1992, p. 77-79). But for the special case, it is plausible to build an

objective probabilistic model which realizes the intuition under fairly

general conditions. The set-up is a direct adaptation of an old proposal

for the severity of test (Kuipers, 1983). Let us start by making the

intuition as precise as possible. Suppose that we can distinguish types of

(HD-)test-conditions and their tokens by means other than severity

considerations. E.g. ravens from different regions, and individual drawings

from a region. Any sequence of tokens can then be represented as a sequence

of N and M, where N indicates a token of a new type, i.e. a new test-

condition , and M a token of the foregoing type, i.e. a mere repetition .

Each test can result in a success B or failure non-B. Any test sequence

starts, of course, with N. Suppose further that any such sequence Xn, of

length n, is probabilistic with respect to the outcome sequence it

generates. Note that RH is still supposed to imply that all n-sequences

result in Bn, and hence that one non-B in the outcome sequence pertains to

a falsification of RH. A plausible interpretation of the intuition now is

that the severity of a XnN-sequence is higher than that of a XnM-sequence,

that is: 

             1              >             1             

Q + (1-Q)p(Bn+1/¬RH&XnN)         Q + (1-Q)p(Bn+1/¬RH&XnM)

which is equivalent to:

p(Bn+1/¬RH&XnN)  <  p(Bn+1/¬RH&XnM)
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     .In view of the nature of our analysis and the relation19

d(H,E)=p(H)(r(H,E)-1), it is clear that d(H,E) also realizes the severity
intuitions dealt with, though in a somewhat less transparant way.

     .Note that the principle of partial entailment, suggested at the end20

of Section 1.1, may be seen as a special case of SDC or UPP as soon as we
assume that "H partially entails E" implies that H makes E more plausible
or that E makes H more plausible, respectively. Similarly, the principle of
inductive extrapolation, also suggested there, is realized by UPP as soon
as we asume that "H inductively extrapolates upon E" implies that E makes H

to be called the superiority condition.

   The remaining question is whether this condition holds under general

assumptions. For this purpose, we will construct an urn-model which

reflects the ideas of new tests and mere repetitions. Suppose there is a

reservoir with an unknown finite number of urns, each containing an unknown

finite number of balls, which number may or may not differ from urn to urn.

Our hypothesis to be tested states that all balls in the reservoir, and

hence in each urn, are black. Restricting our attention to random

selections of urns and balls with  replacement, the possibilities for

probabilistic test sequences are as follows: start with a random selection

of an urn, draw randomly and successively a number of balls out of that urn

with replacement, replace the urn and start over again, with the same or a

different number of ball selections out of the next urn. It turns out to be

non-trivial (see Kuipers 1983, 219-220) to prove the superiority condition

assuming one very plausible condition, viz. if RH is false, the ratio of

black balls may not be the same in all urns.

   In sum, in the case of deductive confirmation, the ratio degree of

confirmation may well be conceived as the degree of severity of the HD-test

giving rise to the confirmation, for it satisfies the main qualitative

features associated to current severity intuitions. 19

2.4 Qualitative non-deductive confirmation

The plausible question now arises whether it is possible to give a

qualitative explication of non-deductive confirmation, that is, an

explication of non-deductive confirmation in terms of 'plausibility'. It

will be easier to concentrate first on confirmation in general, or general

confirmation, after which non-deductive  confirmation can be identified with

general confirmation of non-deductive nature.

   But first we will check whether and to what extent the r-theory realizes

the success definition of general confirmation and the further general

principles that were presented Section 1.2 of Part I. For this purpose, we

have to replace 'E confirms H' by r(H,E)>1 and 'plausibility' by

'probability'. According to the success definition of confirmation  (SDC),

we should have that r(H,E)>1 iff p(E/H)>p(E). This holds, by definition,

whenever p(E)>0. According to the updating principle of plausibility  (UPP)

we should have that p(H/E)>p(H) iff r(H,E)>1, which holds whenever p(H)>0.  20
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more plausible. In this case, the implication that H makes E more plausible
does not seem as natural as the reverse implication, hence, the principle
is not as easy to see as a special case of SDC. 

The joint consequence, that is, the principle of symmetry  (PS), p(H/E)>p(H)

iff p(E/H)>p(E), holds whenever both p(H) and p(E) are positive. Finally,

r(H,E) realizes the principle of comparative symmetry  (PCS), now pertaining

to some trivial equivalences of the conditions r(H*,E) > (or >>, or =)

r(H,E), straightforwardly by its two-sided definition, where the

inequalities only hold as far as the relevant prior probabilities are non-

zero and the relevant conditional probabilities can be interpreted under

'p-zero conditions'.

   For the remaining comparative principles we first state trivial

generalizations of Th.1 and Th.2:

Th.1G If 0<p(H)<1 and p(E*/H) = �� ��  > p(E/H) > 0 then

r(H,E*)  = p(E*/H)  p(E)   =  p(H/E*)   = �� ��  > p(E)

 r(H,E)    p(E/H)  p(E*)    p(H/E)         p(E*)

Th.1G suggests 

P.1G a) If H makes E* as plausible as  E then E* confirms H as much

as  E if (and only if) E* is as plausible as  E 

b) If H makes E* at least as plausible as  E then E* confirms H

at least as much as  E if E* is at most as plausible as  E 

c) If H makes E* more plausible than  E then E* confirms H more

than  E if E* is less plausible than  E 

Th.2 can be generalized to:

Th.2G If 0<p(H)<1 and p(E/H*) = �� ��  > p(E/H) > 0 then

r(H*,E)  = p(E/H*)  = �� ��  > 1   and

 r(H,E)    p(E/H)     

p(H*/E)  = p(E/H*)  p(H*)  = �� ��  > p(H*)

p(H/E)    p(E/H)  p(H)        p(H)

Th.2G suggests

P.2G a) If H* makes E as plausible as  H then E confirms H* as much

as  H (with the consequence that the relative plausibility of H*

with respect to H remains the same )
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     .And hence their respective deductive applications, i.e., the special21

principles S.1 (if HÿEÿE*  then E d-confirms H more than E* ) and S.2 (if
H*ÿHÿE then E d-confirms H* as much as H). Since the special conditional
principles dealing with ravens and emeralds concerned specific types of
(conditional) deductive confirmation, we do not need to generalize them.

b) If H* makes E at least as plausible as  H then E confirms H*

at least as much as  H (with the consequence that the relative

plausibility of H* with respect to H remains at least the same )

c) If H* makes E more plausible than  H then E confirms H* more

than  H (with the consequence that the relative plausibility of

H* with respect to H increases )

It is not difficult to check that P.1 and P.2 are subcases of P.1G and

P.2G, respectively. 21

   In sum, the qualitative explication of general confirmation can be given

by SDC, UPP, PCS, P.1G and P.2G. As announced, it is now plausible to

present general confirmation of a non-deductive nature as the resulting

qualitative explication of non-deductive confirmation.

   Although it is apparently possible to give qualitative explications of

general and non-deductive confirmation, we do not claim that these

explications are independent of the corresponding quantitative

explications. In particular, we would certainly not have arrived at P.1G

and P.2G without the quantitative detour. To be sure, this is a claim about

the discovery of these principles; we do not want to exclude that they can

be justified by purely non-quantitative considerations. 

   Similarly, although it is possible to suggest that the two (qualitative)

proper connotations formulated for deductive confirmation can be

extrapolated to general and non-deductive confirmation, we would only

subscribe to them, at least for the time being, to the extent that their

quantitative analogues hold. However, in this respect the quantitative

situation turns out to be rather complicated, hence, its re-translation in

qualitative terms becomes even more so. Fortunately, the proper

connotations looked for do not belong to the core of a qualitative theory

of general confirmation.

   Accordingly, although there is no intuitively appealing qualitative

explication of general and non-deductive confirmation, there is a plausible

qualitative explication of their core features in the sense that it can be

derived via the quantitative explication. In other words, we have an

indirectly, more specifically, quantitatively justified qualitative

explication of general and non-deductive confirmation.

   It is important to argue that its justification is at least as strong as

the justification of the quantitative explication 'under ideal

circumstances', that is, when the probabilities make objective sense. At

first sight, it may seem that we have to take into account our

relativization of the quantitative explication by emphasizing and
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     .Think of a context in which not only the evidence results from some22

kind of random sampling, but also the population resulted from some earlier
random sampling in a larger universe, and hence the division of true and
false hypotheses. The urn-model argument in favor of the P.2-feature of the
r-degree of confirmation in Section 1.3 and the urn-model illustration of
the superiority of new tests in Section 2.3 were of this kind.

criticizing the artificial character of most of the probabilities. However,

this is not the correct evaluation. As soon as we agree that the

quantitative explication is the right one in cases where these

probabilities make (objective) sense , the qualitative consequences are22

justified in general, since they are not laden with artificial

probabilities. In other words, the justification of the qualitative

explication is at least as strong as the justification of the quantitative

explication in cases were the relevant probabilities make sense.

   An interesting question is to what extent the d-theory, counting

d(H,E)>0 as confirmation, leads to another explication of general and non-

deductive confirmation. It is almost evident that d realizes SDC, UPP, PS,

PCS, and P.1G for p-normal hypotheses, that it does not leave room for

confirmation of p-zero hypothesis, that is, it is non-inclusive, and

finally that it is impure in the sense that it is in conflict with P.2G.

More specifically, the d-theory favors more probable hypotheses among

equally successful ones. In other words, the d-theory gives rise to an

alternative explication of deductive, general and non-deductive

confirmation. We leave the question of whether the two resulting sets of

principles should be considered as expressing the 'robust qualitative

features' of two different concepts of confirmation or simply as two

different ways in which the intuitive concept of confirmation can be

modelled as an open problem to the reader.

3. Acceptance criteria

Finally, we will briefly discuss the acceptance of hypotheses in the light

of quantitative confirmation. The subject of probabilistic rules of

acceptance has received much attention in the last decades. For a lucid

survey of 'cognitive decision theory', see Festa (manuscript). As Festa

documents, there is a strong tendency to take 'cognitive utilities', such

as information content and distance from the truth into consideration.

However, in our set-up, we only need rules of acceptance in the traditional

sense of rules for 'inductive jumps', that is, rules that use conditions

for acceptance that maybe assumed to give good reasons for believing that

the hypothesis is true simpliciter. The story of theory evaluation and

truth approximation, presented in (Kuipers, 1998), only presupposes such

traditional rules of acceptance, in particular, for general observational

hypotheses (first order jumps) and for comparative hypotheses, comparing

success (comparative second order jumps) and truth approximation claims of

theories (comparative referential and theoretical jumps). Hence, let us
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finally consider the role the degree of confirmation may play in the

acceptance of hypotheses as presumably true.

   Let us first note that the acceptance of H (as true) on the basis of E

is a 'non-Bayesian move', that is, assuming that E does not verify H, i.e.,

p(H/E)<1, acceptance of H amounts to the replacement of p(H/E) by the new

prior probability p'(H)=1, at least for the time being. It is also

plausible to think that, if p(H)>0, and if there is something like a

threshold for acceptance, this threshold is independent of p(H). That is,

there is assumed some number ÿÿÿÿ (<1/2), such that H is accepted when p(H/E)

> 1- ÿÿÿÿ. As is well-known, the suggested rule immediately leads to the

lottery-paradox: for a sufficiently large lottery, one may know that there

is just one winning ticket, and at the same time, have to accept for each

of the tickets that it is not the winning one, hence that there is no

winning ticket. However, the paradox is based on a priori reasoning, hence

evidence and posterior probabilities do not play a role in it. So let us

assume that the Bayesian approach to confirmation can formally be combined

with a sophisticated kind of non-Bayesian high probability rule of

acceptance independent of the prior probabilities (see e.g. (Pollock 1990)

for some interesting attempts).

   The question now is, what role does the degree of confirmation play in

such rules? The answer is, of course, none , for the degree of confirmation

amounts to an expression of the increase of the probability of the

hypothesis, in a pure or an impure form, and not to the resulting posterior

probability, which is simply calculated by Bayes' rule. Hence, whether we

construe the degree of confirmation in one way or another, it does not

matter for the acceptance of a hypothesis as 'true simpliciter'.

  To be sure, it may well be that our confirmation intuitions are laden

with a mixture of the suggested two aspects, that is, the increase and the

resulting probability. From the 'pure' point of view, we will say that a

more probable hypothesis is not more confirmed by the same deductive

success than a less probable one, it just gets a higher posterior

probability, and hence will earlier pass the threshold for acceptance. 

Specifically, the conjunction intuition and the refined grue intuition are

done justice by the fact that the corresponding strange hypotheses will

obtain at most a small non-zero posterior probability, never high enough to

pass the threshold, as long as we do not find rock-blocks of cheese on the

moon or color changing emeralds.

   Accordingly, the Bayesian approach to posterior probabilities guarantees

that different definitions of the degree of confirmation will not lead to

differences in acceptance behavior, as long as the resulting posterior

probabilities are crucial for the rules of acceptance.

   However, p-zero hypotheses will not get accepted in this way, since

their posterior probability remains zero. So, let us see what role the r-

degree of confirmation might play in acceptance rules for p-zero

hypotheses. We have already remarked that, although it may make perfect
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     .Of course, r(H,E) may be conceived as depending on p(H), by using23

p(E) = p(H)p(E/H) + p(¬H)p(E/¬H) to calculate p(E). However, nothing forces
us to use this particular 'decomposition' of p(E). The relative
independence of r(H,E) from p(H) may be conceived as an additional,
pragmatic advantage of the r-degree: people may agree about it, without
having to agree about p(H).

sense to assign non-zero probabilities to genuine hypotheses, it

nevertheless occurs that scientists would initially have assigned zero

probability to certain hypotheses, of which they are nevertheless willing

to say that they later have come across confirming evidence for them, and

even that they have later decided to accept them. Now one may argue that

this can be reconstrued in an 'as if' way in standard terms: if the

scientist would have assigned at least such and such a (positive) prior

value, the posterior value would have passed the threshold. To calculate

this minimal prior value, both d(H,E) and r(H,E) would be suitable.

However, only r(H,E) is a degree for which this 'as if' degree would be the

same as the 'original' degree, for r(H,E) does not explicitly depend on

p(H) . In contrast to this feature, the original d-degree of confirmation23

assumes its neutral value 0.

   If one follows this path, it is also plausible to look for a general

acceptance criterion that does justice to the, in most cases, relative

arbitrariness of the prior distribution. Let us, for that purpose, first

assume that for cases of objective probability one decided to take as the

acceptance threshold 1- ÿÿÿÿ, for 0< ÿÿÿÿ<1/2. One plausible criterion now seems to

be the r-degree of confirmation that is required for the transition from

p(H)= ÿÿÿÿ to p(H/E) �� ��  1- ÿÿÿÿ, that is, r(H,E) = (1- ÿÿÿÿ)/ ÿÿÿÿ. The suggested criterion

can be used for p-normal as well as p-zero hypotheses. However, as Jeffrey

(1975) rightly remarks, most genuine scientific hypotheses not only start

with very low initial probability, but will remain to have a low posterior

probability. Hence, if ÿÿÿÿ is very small, they may not pass the threshold.

However, passing the threshold is essentially independently defined from

p(H). For deductive confirmation, it is easily checked to amount to the

condition p(E) < ÿÿÿÿ/(1- ÿÿÿÿ). Hence, for somebody for whom p(H)= ÿÿÿÿ, deductive

success E should be almost as surprising as H itself. Whether the criterion

is useful in other cases has still to be studied.

Concluding remarks

The possibility of a quantitative, i.c. probabilistic, theory of

confirmation is one thing; its status and relevance is another. Although

probabilistic reasoning is certainly practiced by scientists, it is also

clear that specific probabilities usually do not play a role in that

reasoning. Hence, in the best instrumentalist traditions, as remarked

before, the required probabilities in a quantitative account correspond, as

a rule, to nothing in reality, i.e., neither in the world that is studied,
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nor in the head of the scientist. They simply provide a possibility of

deriving the qualitative features of scientific reasoning.

   If our reservations amounted to the claim that the quantitative accounts

are not yet perfect and have still to be improved, it would be plausible to

call them tentative explanations and even justifications of the

corresponding kinds of qualitative reasoning. However, nothing of that kind

seems to be the case. Hence, it remains questionable to what extent these

formal accounts can be said to reveal quantitative cognitive structures

that underlie scientific reasoning. The situation would change in an

interesting way if the r-theory itself, or some alternative quantitative

theory, could be given a justification. In particular, we do not exclude

that such a justification could be given in terms of functionality for

truth approximation. However, although (Kuipers, 1998) deals with truth

approximation, it does not touch the problem of such a justification.

   In the meantime, we may only conclude that the r-theory should primarily

be conceived as a quantitative explication of a qualitative cognitive

structure, to be used only for its qualitative consequences. As has been

argued, the justification of these qualitative consequences is at least as

good as the justification of the quantitative explication 'under ideal

circumstances', that is, when the probabilities make objective sense.

Appendix 1: CORROBORATION AS INCLUSIVE AND IMPURE CONFIRMATION

As is well-known, Popper preferred to talk about '(degree of)

corroboration', instead of '(degree of) confirmation', but the question is

whether his views essentially deviate from the Bayesian approach. Jeffrey

(1975) argued already that this is not the case. In this appendix, we will

more specifically argue that Popper's quantitative theory of corroboration

amounts to an inclusive and impure Bayesian theory.

   Popper's main expositions about corroboration can be found in Popper

(1959, 1963, 1983), where Section 32 of Popper (1983) summarizes his main

ideas. He formulates six conditions of adequacy for a quantitative degree

of corroboration, here denoted by c(H,E) , which he conceives as the best

proposal. We will first list (the core of) these conditions, in which it is

important to realize that p(¬H)  and p(¬E)  may be conceived as measures for

the (amount of) empirical content of H and E, respectively.

(i) -1 �� ��  c(H,E)  �� ��  p(¬H)  �� ��  1

(ii) -1 = c(H&¬H,E)  = c(H,¬H)  �� ��  c(H,E)  �� ��  c(H,H)  �� ��  p(¬H)  �� ��  1

(iii) c(Hv¬H,E)  = 0

(iv) if H entails E  and E*  and if p(E)  < p(E*)  then c(H,E*)  < c(H,E)
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     .In fact Popper formulates (v) in one respect more restricted and in24

another respect somewhat more general, but the present formulation is more
suitable for our purposes. Popper's formulation is more restricted in the
sense that he starts with the condition, between brackets, that H* entails
H. But if this restricted version is plausible, then so is (v) itself, or
so it seems. However this may be, the resulting degree of corroboration,
see below, satisfies (v) in the unrestricted sense. (A similar remark
applies to (vi).) On the other hand, Popper's formulation of (v) is more
general in the sense that, assuming that H* entails H, he requires that
there is a statement H'  such that c(H,H') < c(H*,H') . However, he mentions
as example that H'  may be H*, in which case the requirement amounts to
c(H,H*) < c(H*,H*) . Since c(H,H)  is the maximal value for H, according to
(ii), this implies that c(H,H) < c(H*,H*) , i.e. our requirement. Since
Popper's motivation is entirely in terms of this example, we prefer this
restricted formulation.

     .Moreover, there is the interesting suggestion of Jeffrey (1975, p.25

150) to assign infinitesimal numbers, developed in non-standard analysis,
to p-zero hypotheses in the standard sense.

(v) if (H*  entails H such that) 0 < p(H*)  < p(H)  < 1 then c(H,H)  <

c(H*,H*) 24

(vi) if (H*  entails H such that) 0 �� ��  p(H*)  < p(H)  < 1 and p(E/H*)  �� ��

p(E/H)  then c(H*,E)  < c(H,E)

The following definition is the simplest one fulfilling these six

conditions Popper has found. 

c(H,E) =      p(E/H)-p(E)      

    p(¬H)p(E/H) + p(E)

Note that c(H,H)  = p(¬H)  and that c(H,E)  = p(¬E)/(p(¬H) + p(E))  in the case

of 'deductive corroboration', that is, when H entails E.

   Note first that c(H,E) is inclusive, in the sense that it can assign

substantial values when p(H)=0 and p(E/H) can nevertheless be interpreted.

In that case, c(H,E) amounts to (p(E/H)-p(E/¬H))/(p(E/H)+p(E/¬H)), which

reduces to p(¬E/¬H)/[1+p(E/¬H)] in the deductive case. The inclusiveness of

c(H,E) is important in view of a specific dispute of Popper with the

Bayesian approach as far as it assigns non-zero probabilities to genuine

universal hypotheses. However, several authors have argued that Popper's

arguments against p-normal hypotheses (Popper 1959, Appendix *vii and

*viii) fail, e.g., Earman (1992, section 4.3), Howson and Urbach (1989,

section 11.c) and Kuipers (1978, Ch. 6). 25

   It is easy to check that c(H,E)  satisfies the qualitative principle P.1

of deductive confirmation rephrased in terms of deductive (d-

)corroboration:

 

P.1cor if E and E*  d-corroborate H then E d-corroborates H more

than E*  iff E*  is more plausible than E in the light of

the background beliefs
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     .Note that from the informal expositions of Popper one might26

sometimes get the idea that he is pleading for the opposite of P.2Icor ,
favoring less plausible hypotheses when equally successful, that is, the
stronger hypothesis should be praised more by the corroborating evidence
than the weaker one. However, he is well aware of this consequence of (vi),
for he speaks (Popper 1983, p. 251) of an aspect in which degree of
corroboration resembles probability. Hence, it may be assumed that Popper,
at least on second thoughts, subscribed to P.2Icor.

Surprisingly enough , it satisfies the (rephrased) impure alternative to26

P.2 favoring more probable hypotheses when equally successful:

P.2Icor if E d-corroborates H and H* then E d-corroborates H more

than H* iff H is more plausible than H* in the light of

the background beliefs

To study the qualitative features of 'general' corroboration, we will look

in some detail at the conditions (i)-(vi). The first three conditions deal

with quantitative special values, and are mainly conventional, except that

(i) and (ii) together require that, for each H, c(H,H)  is the maximum

value, by Popper called the degree of corroborability, which should not

exceed p(¬H) . Although Popper restricts (iv) to d-corroboration, giving

rise to P.1cor, his definition of c(H,E) satisfies the generalization of

P.1cor to 

P.1Gcor if H makes E at least as plausible as E*  and if E is less

plausible than E*  in the light of the background beliefs,

then E corroborates H more than E*

which corresponds to P.1G. Condition (v) amounts, in combination with (i)

and (ii), to the idea that a less probable hypothesis should be able to get

a higher maximum degree of corroboration than a more plausible one. The

Bayesian measures d(H,E) and r(H,E) also satisfy this idea, where d(H,E)

has the same maximum value, viz. d(H,H)=p(¬H), while that of r(H,E),

r(H,H), equals 1/p(H). Finally, condition (vi) amounts to the qualitative

idea

P.2IGcor if H makes E at least as plausible as H* and if H is more

plausible than H* in the light of the background beliefs,

then E corroborates H more than H*

Recall that the d-degree of confirmation was impure as well, more

specifically, also favoring plausible hypotheses. Hence, it is no surprise

that it also satisfies the analogues of (vi), P.2Icor and P.2IGcor.

   The foregoing comparison suffices to support the claim that the

resulting qualitative theory of Popper roughly corresponds to the impure
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     .He does not explicitly deal with the second paradox, but implicitly27

the situation is clear.

qualitative Bayesian theory based on d(H,E) for p-normal hypotheses.

However, in contrast to d(H,E), c(H,E) is inclusive.

Appendix 2: COMPARISON WITH STANDARD ANALYSIS OF THE RAVEN PARADOX 

As suggested in Section 2.3, there is a more or less standard Bayesian

solution of the paradoxes of which Horwich (1982) may be assumed to have

given the best version . Hence, we will compare our solution with his.27

After criticising Mackie's account (Mackie 1963) and pointing out that an

unconditional approach will miss conditional connotations of the (first)

raven paradox, he introduces the idea of conditional sampling, and obtains

roughly the same confirmation claims as reported in (2p) and (4p). However,

as we will explain, his precise quantitative versions of (2p) and (4p) are

wrong, and he misses the core of (1p) and (3p). The latter shortcoming is

mainly due to overlooking a plausible relation between the two relevant

matrices. The former shortcoming is due to a systematic mistake in the

intended calculation of r-values.

   There is one difference in Horwich's approach which is not really

important. He does not interpret the matrix as a survey of the sizes of the

cells, but as reporting subjective probabilities of randomly selecting a

member of the cells. It is easy to transform our matrix in this sense by

dividing all numbers by their sum (a+b+c+d), without changing any of the

results.

   The first serious difference is the following. We use the matrix for two

purposes, with c>0 for calculating p(E/¬RH&C)-values, to be called the ¬RH-

matrix, and with c=0 for calculating p(E/RH&C)-values, to be called the RH-

matrix. The latter provides the numerator of r(RH,E;C)=p(E/RH&C)/p(E/C),

whereas its denominator p(E/C) is calculated by 

(*) p(E/C) = p(RH/C)p(E/RH&C)+p(¬RH/C)p(E/¬RH&C)

 = Qp(E/RH&C)+(1-Q)p(E/¬RH&C)

Recall that the simplification derives from the plausible assumption that

p(RH/C)=p(RH)=Q, that is, C is neutral evidence for H.

   Horwich, instead, interprets the a/b/c/d/-matrix as directly prepared

for p(E/C)-values, to be called the HOR-matrix. Hence, he leaves open

whether c is zero or positive. This is problematic, however, for some of

his general conclusions (see below) only hold if one assumes that c in the

HOR-matrix is positive, hence that RH is false, hence that it is in fact

the ¬RH-matrix. As a consequence, though he intends to directly base the

p(E/C)-value occurring in r(RH,E;C) on the HOR-matrix, he bases it in fact
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on the ¬RH-matrix. However, a genuine Bayesian approach requires to

calculate p(E)-values on the basis of (*), and hence on both the RH- and

the ¬HR-matrix, to be called the proper calculation .

   The second main difference is that Horwich introduces an independent RH-

matrix for calculating p(E/HR&C), to be indicated as the HOR-RH-matrix,

with �� �� , �� �� , �� �� =0, �� �� , representing the relevant probabilities under the

assumption that RH is true. Horwich waves away the idea of a relation

between his two matrices. However, in his probability interpretation of the

a/b/c/d-matrix, it seems rather plausible to take �� �� , �� �� , and �� ��  proportional

to a, b, and d, respectively, such that they add to 1. This corresponds to

identifying the non-zero values in our RH-matrix with a, b, and d in the

size interpretation of our ¬RH-matrix, as we in fact did. Why should the

relative probabilities for two cells differ depending on whether a third

cell is empty or non-empty? When two matrices are related in the suggested

way they will be said to be tuned . Hence, our RH- and ¬RH-matrix are tuned

and our results (1p)-(4p) directly follow from the proper calculation

presupposing these tuned matrices.

   Let us call (r-)values tuned when they are based on two tuned matrices,

otherwise they are called untuned. Due to the improper calculation, Horwich

calculates in fact untuned values for the ratio p(E/HR&C)/p(E/¬HR&C), to be

called the r -value (with index 0, for it corresponds to the r-ratio when0

p(RH)=Q=0), instead of the intended untuned r -values, p(E/RH&C)/p(E/C),+

based on some Q>0. Of course, when the calculated values are tuned one gets

tuned r -values instead of tuned r -values.0     +

   Now we can sum up Horwich's deviations from his intended proper Bayesian

treatment of the raven paradoxes. By the improper calculation, Horwich got

the wrong r-values of (2p) and (4p); he got in fact the r-values, 0

r (RH,BR;R) = (a+c)/a and r (RH,B ¯R̄;B̄ ) = (c+d)/d, which he did not intend,0     0

for he apparently assumes throughout that Q is non-zero. Note that the

intended qualitative results of (2p) and (4p), i.e., (2) and (4) of Section

2.1 of Part I, only follow when c is positive, for if c=0, both r-values 0

are 1. Hence, contrary to his suggestion of using the HOR-matrix (in which

c may or may not be 0), Horwich uses in fact the ¬RH-matrix (with c>0) for

the (improper) calculation of p(E/C). 

   Moreover, by not assuming tuned matrices, he missed the results (1p) and

(3p). Regarding (1p), he does not even calculate the values for

unconditional confirmation corresponding to the uniform one we obtained,

viz., (a+b+c+d) / (a+b+Qc+d). The improper calculation would have given,

assuming the size-interpretation of all numbers, �� �� F/a, �� �� F/b, and �� �� F/d, with

F = (a+b+c+d)  / ( �� �� + �� �� + �� �� ), for a black raven, a non-black non-raven and a

black non-raven, respectively. If these values are not tuned they differ

from each other. If they are tuned, they assume a uniform value, but the

wrong one, viz., the corresponding r -value (a+b+c+d)/(a+b+d). Finally,0

regarding (3p), Horwich does calculate the (r -)values for sampling non-0

ravens and black objects corresponding to the uniform one we obtained,
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viz., 1. If these values are not tuned, they differ for all four possible

results, a non-raven that is black or non-black, and a black object that is

a raven or a non-raven. However, if they are tuned, this gives, more or

less by accident, the right uniform value 1, reported in (3p), for the r- 0

and the r -value for neutral confirmation are both equal to 1.+
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Groningen, 9 februari 1998

Aan Jean Paul Vanbendegem

en Erik Weber

Beste Erik en Jean Paul,

Veel dank voor jullie beider constructieve reactie.

Die maakte het plausibel de twee delen reeds zo te bewerken dat alleen nog

enkele reductie vragen resteren mbt bijgesloten versie:

Voor deel I sprak ik over 10.000 woorden (waarbij ik de

literatuurlijst vergeten was). Bijgaande versie telt 11.316 woorden.

Weglating van Par. 3 en van noot 8 (over de Glymour-route) met bijbehorende

literatuur zou neerkomen op 10.345 woorden.

Voor deel II sprak ik over 12.500 woorden (eveneens zonder te denken

aan lit. lijst). Bijgaande versie telt 15.563 woorden. Weglating van Par.

2.3, Par. 3 en Appendix 1 zou neerkomen op 11.844.

Aan jullie de vraag welke aangegeven stukken eventueel weggelaten

moeten worden. Dat is relatief onafhankelijk van elkaar, behalve dat de

beide paragrafen 3 (over acceptance): dat is beide of geen van beide.

Voorts nog wat technische vragen:

- tzt inleveren met of zonder inhoudsopgave per deel?

- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,abstract ,,,,,,,,,,,,?

- sommige formules staan cursief, maar de meeste niet: wat te doen: cursief

weghalen of cursivering formules volledig maken?

Uiteraard hou ik me zeer aanbevolen voor verder commentaar.

Mag ik jullie vragen jullie reactie te coordineren?

Met hartelijke groeten,

Theo Kuipers

PS: tbv Jean Paul: ik heb met veel plezier in Tot in der eindigheid

gelezen.
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Faculteit der Wijsbegeerte

Rijksuniversiteit Groningen
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9718 CW Groningen


