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Abstract. We make the notion of scope in the λ-calculus explicit. To
that end, the syntax of the λ-calculus is extended with an end-of-scope
operator λ, matching the usual opening of a scope due to λ. Accordingly,
β-reduction is extended to the set of scoped λ-terms by performing min-

imal scope extrusion before performing replication as usual. We show
confluence of the resulting scoped β-reduction. Confluence of β-reduction
for the ordinary λ-calculus is obtained as a corollary, by extruding scopes
maximally before forgetting them altogether. Only in this final forgetful
step, α-equivalence is needed. All our proofs have been verified in Coq.

1 Introduction

Performing a substitution M [x:=N ] in the λ-calculus can be decomposed into
two subtasks: replicating N an appropriate number of times, and renaming in
M in order to prevent unintended capture of variables of N . Indeed, the defin-
ing clauses of Curry’s definition of substitution ([?, C.1 Definition]) can be
neatly partitioned into those dealing with replication (the variable and appli-
cation clauses) and those dealing with renaming (the abstraction clauses). In
this paper we will focus on trying to understand the latter subtask. We do so,
by extending λ-calculus with an explicit operator representing the (end of the)
scope of a name, while leaving replication implicit.

In the λ-calculus the scope of the binder λx in λx.M is (implicitly) assumed
to extend to the whole of M . Hence to make the notion of scope explicit, it suffices
to introduce an operator expressing the end of the scope of λx. This operator is
denoted by λ(adbmal). λx.M expresses that the scope of x is ended ‘above’ M .
For instance, in the λ-term λx. λx.x the underlined occurrence of the variable x
is free, since the binding effect of the λx is undone by the subsequent λx. For
another example, only the underlined occurrence of x is free in λx.x( λx.x)x; the
first and third occurrences of x are in scope of the λx (see Figure 1).

Definition 1. The set (M, N, P ∈) Λof λ-terms is defined by:

Λ::= V | λx. Λ| λx. Λ| ΛΛ

where (x, y, z ∈)V is a collection of variable( name)s with decidable equality:

Axiom 1 (Names with decidable equality) x = y ∨ x 6= y, for all x, y : V



We adopt the usual notational conventions for the λ-calculus [?], treating λ
analogously to λ. λ-terms are embedded as λ-terms without occurrences of λ.

In order to extend the notions of α-equivalence and β-reduction, we should
first try to make some semantic sense of λs. Thinking of λx and λx as (named)
opening ‘[x’ and closing ‘]x’ brackets,1 it is clear that λ-terms may come in dif-
ferent degrees of balancedness. For instance, scopes could seemingly be crossing
one another as indicated by the boxes in:

P = λx. λy. λx. λy. Q

This would obviously cause semantical problems (try to define substitution). To
overcome this problem we assume a simple minded jump semantics: an occur-
rence of λx.M implicitly ends the scopes of all (non-matching) λs inbetween
that occurrence and its matching λx, just as the occurrence of the variable x
in λx.λy.x can be thought of as implicitly ending the scope of the λy. Hence P
is semantically equivalent to λx.λy. λy. λx. λy.Q. Our definitions of α-equivalence
and β-reduction and hence our definition of substitution, as will be presented
below, are meant to reflect this intuitive (operational) semantics.

Apart from such jump terms we identify the useful subclasses of scope-
balanced and balanced terms, both of which are closed under α-equivalence
and β-reduction. Balanced terms can be used to represent nameless λ-terms us-
ing de Bruijn-indices, by using only a single name. Ordinary λ-terms are not
(necessarily) balanced, however they always are scope-balanced.

Definition 2. A term M is scope-balanced if 〈2〉M , where 〈X〉M is defined

by:

〈X〉x

〈Xx〉M

〈X〉λx.M

〈X〉M

〈Xx〉 λx.M

〈X〉M 〈X〉N

〈X〉MN

Balancedness is defined as scope-balancedness restricting the first clause to

〈Xx〉x

Here 2 is the empty stack and Xx is the result of pushing x on the stack X.

For instance, λx.x is not scope-balanced (no λ to match λ), λx.y is scope bal-
anced but not balanced (x not closed before y), and λx.x is balanced. Scopes
in balanced λ-terms can be neatly visualized as boxes in their abstract syntax
tree, as shown in Figure 1.2 Vice versa, in the term representation of a box, only
its ‘doors’ are kept. That is, λs and λs are used to demarcate all places where
the boundary of the box is crossed by the abstract syntax tree. In fact, there is
a strong similarity (see Figure 1) between balanced terms and the context-free
string language of matching brackets as presented by the grammar:

P ::= ε | [P ] | PP

1 But note that brackets (parentheses) usually apply ‘horizontally’ to the textual rep-
resentation of terms, whereas λ and λapply ‘vertically’ to their abstract syntax trees
(where brackets do not even occur).

2 Scopes in non-balanced terms can be drawn as floorless boxes (λx.λy.x in Figure 1).
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Fig. 1. λx. λx.x, λx.x( λx.x)x, λx.λx.x, λx.λx. λx.x, λx. λx.λx. λx.x, and λx.λy.x

– Scopes can be nested (similar to [P ]). In the λ-term λx.λx.x, the occurrence
of x is implicitly assumed to be bound by the rightmost λx. Similarly, the
scope of the rightmost λx is ended by the λx in λx.λx. λx.x.

– Scopes can be concatenated (similar to PP ). In the λ-term λx. λx.λx. λx.x,
the scopes of the two λxs do not have overlap/are not nested, in spite of the
latter being ‘to the right’ of the former.

Indeed, the set of balanced λ-terms can be generated by a so-called context-free
term grammar, where context-free term grammars are the natural generalization
of context-free string grammars (see e.g. [?, Section 2.5]). A difference between
matching bracket strings and balanced λ-terms is that, due to the branching
structure of terms, several λ’s may match the same λ as in λx.( λx.x)( λx.x),
with both underlined occurrences of x free.

The outline of the rest of this paper is as follows. We provide several defi-
nitions of α-equivalence for λ-terms in Section 2, extending classical definitions
as found in the literature on the λ-calculus, prove them to be decidable con-
gruence relations, and show them to be equivalent. Then we present a defi-
nition of β-reduction for λ-terms in Section 3, extending the usual definition
for the λ-calculus, and prove this notion of reduction to be confluent without α-
equivalence. In both (α and β) cases it is shown how the results on the λ-calculus
entail the corresponding results for the ordinary λ-calculus, e.g. confluence of β-
reduction modulo α-equivalence. Applications are presented in Section 4.

The results in this paper pertain to scope-balanced and, hence,
balanced terms. Coq proofs are available at http://preprints.phil.uu.nl/lgpr/.
Although the definition of substitution pertains to the jump calculus as well,
proving confluence seems to require a more general form of the substitution
lemmata (which do however hold in their present form), based on ‘subtracting’
stacks, but at the moment of writing proofs were not finished yet.

Related work When application of λx is restricted to variables (and end-of-
scopes), it corresponds to Berkling’s lambda-bar ([?]), which is in turn seen to
be a named version of the successor operator in De Bruijn’s nameless (more pre-
cisely: single name) calculus ([?]). Their calculi do not allow successions of boxes,
only nestings of boxes. This corresponds to the sublanguage of the language of
matching brackets (see above) generated by the grammar: B ::= ε | [B].



Restricting to a single name, i.e. to De Bruijn-indices, λx corresponds to the
shift substitution [↑] in the λ-calculus with explicit substitutions λσ of [?], or
the shift operation Shi of [?], and Bird and Paterson show in [?] that in the
balanced (single name) case the term language of the λ-calculus is context-free
by presenting it by means of the following context-free term grammar:

Term a ::= Var a | App(Term a,Term a) | Abs(Term(Incr(Term a)))

Incr a ::= Zero | Succ a

the idea being that Terms are balanced by generating Incrs, i.e. variables (Zeros)
or end-of-scopes (Succs), at the same time as their matching Abs (abstraction).3

When restricting to the balanced case, our boxes correspond closely to boxes
in MELL proof nets for linear logic (see e.g. [?]). In fact, in our optimal imple-
mentation (see Section 4) λx disintegrates into a λ (a par in MELL) and (part
of the boundary of) an x-box ((Asperti’s version of) a box in MELL), upon
encountering an application. One can think of these two phases of abstraction
as turning a free variable x into a bound one by closing it off from the outside
world inside an x-box, but providing a handle to x to the outside world again in
the form of the λ. Many proposals for decomposing abstraction into more ele-
mentary notions can be found in the literature, a recent one being [?]. Similarly,
notions of enclosure abound. Analogous to the conflation of the enclosure with
the enclosed as found in (the etymology of) words such as town, garden, park
and paradise, these formalisations may or may not make the boundary explicit
(see e.g. [?,?,?]).

In the area of dynamic semantics for natural language, a stack-based se-
mantics for a variant of predicate logic is presented in [?]. Although, the exact
relationship is not clear to us yet, a difference seems to be that in their semantics
every variable has its own stack, whereas we have a single stack. However, also
in [?] variables have their own stack.
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both at CWI, Amsterdam, ZIC at the Technische Universiteit Eindhoven, the
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Universiteit Utrecht, for feedback. Eduardo Bonelli, Marko van Eekelen, Joost
Engelfriet, Stefan Kahrs, Kees Vermeulen, Albert Visser, and the CADE referees
provided useful comments and pointers to the literature.

2 α

We present three distinct definitions of α-equivalence for the λ-calculus known
from the literature, in historical order. We then compare these notions, present
our adaptations of each of them to the λ-calculus, and prove them to be equiv-
alent. For this the existence of fresh variables is required.

Axiom 2 (Fresh name) ∀X : list(V).∃x :V .x 6∈ X.

3 This does not work (directly) for non-balanced terms in the many-variable case.



2.1 λα

Church Our first notion of α-equivalence is the usual one based on Church’s
Postulate I for the λ-calculus [?], which reads (page 355):

If J is true, if L is well-formed, if all the occurrences of the variable x in L are

occurrences as a bound variable, and if the variable y does not occur in L, then

K, the result of substituting Sx
y L| for a particular occurrence of L in J, is also

true.

where SX
Y U| represents the formula which results when we operate on the formula

U by replacing X by Y throughout, where Y may be any symbol or formula but X

must be a single symbol, not a combination of symbols [?, page 350].
Due to Curry, Postulate I is nowadays known as the α-conversion rule. An α-

conversion step is obtained from the α-conversion rule by allowing its application
to any subterm of a term. An α-conversion consists of a sequence of α-conversion
steps. Finally, a term is said to be α-equivalent to another one, if there exists an
α-conversion from the former to the latter.

An advantage of this definition is that it is operational and fine-grained; each
α-conversion step itself is easy to understand since it does only little work. A
disadvantage of this fine-grainedness is that it is at first sight not clear whether
structural properties such as symmetry and decidability of α-conversion hold.
Moreover, it needs the Fresh name axiom due to the Extra-hand principle: if
both your hands are full, you need a third hand in order to swap their contents.4

Example 1. The terms λx.λy.xy and λy.λx.yx are α-equivalent. However, both
α-conversion steps replacing x by y and vice versa are forbidden. Hence, an
α-conversion needs to introduce a third, fresh, variable, say z, first:

λx.λy.xy →α λz.λy.zy →α λz.λx.zx→α λy.λx.yx

Schroer In order to prove symmetry and decidability of α-equivalence as defined
in the previous paragraph, one may try to find a strategy for α-conversion such
that the number of α-conversion steps needed in a conversion from s to t is
bounded by, say, the sum of the sizes of s and t. An obvious way to bound this
number is by restricting α-conversion by:

Never rename twice.

However, from Example 1 we immediately see that this is too strict a restriction;
the leftmost λ-abstraction needs to be renamed twice. Hence renaming once is
not enough, but, as the example suggests our assumption may be replaced by:

Never rename thrice.

4 There’s the well-known way to swap the contents of two registers in situ by per-
forming three exclusive-or’s (xor); in Java: r1 ^= r2; r2 ^= r1; r1 ^= r2 where
op1 ^= op2 is equivalent to op1 = op1 ^ op2 and ^ is bitwise xor. Here, we will not

assume the structure needed for this, e.g. a Boolean ring on the variables.



Such an idea appears at least as early as Schoer’s PhD thesis [?, page 384]:

Scholium 3.44. The proof of Theorem 3.44 below

has as its germ the following procedure to determine of

A,B ε Wocc whether or not A adj B: Let Z1, Z2,... be

singleton expressions of the alphabetically earliest

variables not occurring at all in either of A,B ,

enumerated without repetitions. In each of A,B , change

quantifiers from left to right, replacing the given variables

by the Z’s in order. There will result A’,B’ such that

A adj A’ . B adj B’ , and such that A adj B . ≡ . A’ = B’ .

where adj is his notion of α-equivalence and Theorem 3.44 states decidability.

Example 2. Applied to Example 1 Schroer’s procedure yields:

λx.λy.xy →α λz1.λy.z1y →α λz1.λz2.z1z2 ←α λz1.λx.z1x←α λy.λx.yx

Of course, to prove that this is an α-conversion one needs to prove that the last
two backward α-steps are forward α-steps as well; they are.

Symmetry of a definition based on Schroer’s procedure is trivial, decidability and
reflexivity are also not too difficult, but now transitivity is not so simple because
of the choosing of the alphabetically earliest variables not occurring

at all in either of A,B which may differ for A,B and B,C, when proving A

adj C.5 Also note that the procedure is not very parsimonious; it allocates as
many fresh variables as there are λ-abstractions (quantifiers) in a term, where
a single one (one extra hand) would suffice. This latter fact may be seen by
proceeding in a top-down fashion, the only interesting case being abstraction.

Kahrs Both the problem of showing transitivity and the need for the Fresh
name axiom can be overcome by making renaming implicit. That is, instead of
explicitly relating terms by explicitly renaming variables, one may set up an
(implicit) correspondence between their respective variables. For instance, the
two terms in Example 1 are shown α-equivalent by letting x and y in the first
correspond to y and x in the second. However, the correspondence needs more
structure than just a bijection between the sets of variables in both terms.

Example 3. The terms λx.xλy.y and λx.xλx.x are α-equivalent, but this cannot
be shown by means of a bijection between variables.

To define α-equivalence inductively, one has to set up a correspondence between
stacks of variables. Such an idea appears in Kahrs’ paper [?]; to quote from it:

We also define a notion of α-congruence for our terms. It is the usual one, but
we shall use it in a slightly more general setting, based on proof rules.

5 Compared to Church’s α-conversion Schroer’s procedure needs variables to be al-
phabetically sorted. Here, we will not assume the structure needed for this (e.g. a
well-order) on the collection of variables.



ε ` x = x Γ, x = y ` x = y

v 6= x y 6= z Γ ` v = z

Γ, x = y ` v = z

x, y ∈ Var Γ ` x = y

Γ ` x ≡ y

F ∈ Sym

Γ ` F ≡ F

Γ, x = y ` t ≡ u

Γ ` [x]t ≡ [y]u

Γ ` A ≡ C Γ ` B ≡ D

Γ ` AB ≡ CD

Fig. 2. Proof rules for α-congruence (Kahrs [?])

Definition 11. Sentences are of the form Γ ` t ≡ u or Γ ` x = y, where x

and y are variables, t and u are terms of the same type and arity, and Γ is
an environment. An environment is a list x1 = y1, · · · , xn = yn of equations
between variables. We write ε for the empty environment (n = 0). A sentence
holds, if it can be derived by the proof rules in figure 2. (see Figure 2)

One easily proves by induction that α-congruence defined in this way, has all the
desired structural properties, e.g. transitivity and decidability. But, of course, it
is less clear how to decompose α-equivalence into ‘atomic’ renaming steps.

2.2 λα

We show that each of the three definitions of α-equivalence can be straightfor-
wardly extended from λ-terms to λ-terms. In each case, we highlight the key
aspect of our formalisation in Coq.

Church We have defined α-conversion church as:

Definition church := (Rhat alpha_conv).

where Rhat yields the reflexive, symmetric, and transitive closure of its argument
alpha conv, which is (inductively defined) single-step α-renaming. All the work
in it is performed by the clause for abstraction, which reads:

| alpha_conv_rule : (M:Adbmal;x,y:name)

~(In y (names M))->(alpha_conv (abs x M)(abs y (rename M x y)))

which should be self-explanatory. The clause dealing with λis just a compati-
bility clause ([?, 3.1.1. Definition]), since at the time one comes across an λ,
all the work has already been performed by its matching abstraction.

Schroer Our definition of α-equivalence à la Schoer (schroer):

Definition schroer := [M,N:Adbmal](EX Z:(list name)|(schroer’ M N Z)).

makes use of an auxiliary stack Z which records the variables chosen thusfar for
renaming. schroer’ is inductively defined, and again all the work is performed in
the clause for abstraction. Compared to α-conversion above, the variable chosen
for renaming is now much fresher: not only must it be fresh for M, but also for N
and for the variables Z chosen thusfar:



ε ` t ≡ u

ε ` λx.t ≡ λx.u

Γ ` t ≡ u

Γ, x = y ` λx.t ≡ λy.u

v 6= x y 6= z Γ ` λv.t ≡ λz.u

Γ, x = y ` λv.t ≡ λz.u

Fig. 3. Proof rules for α-congruence of λin Kahrs’ notation

| schroer_rule : (M,N:Adbmal;x,y,z:name;Z:(list name))

~(In z (names M)) ->~(In z (names N)) ->~(In z Z)

->(schroer’ (rename M x z)(rename N y z) Z)

->(schroer’ (abs x M)(abs y N)(cons z Z))

The clause dealing with λis just a compatibility clause, as above.

Kahrs Our definition of α-equivalence à la Kahrs (kahrs) reads:

Definition kahrs := [M,N:Adbmal](kahrs’ M Nil N Nil).

and makes use of two auxiliary stacks (both initially empty (Nil)), to set up
the correspondence between the variables in M and N mentioned above. kahrs’
just implements the clauses of Figure 2, extended with clauses for λ, which are
analogous to the clauses for variables, and are displayed in Figure 3.

Results on α-equivalences

Theorem 1. All three notions of α-equivalence are equivalent.

Note that to prove that λ-terms which are α-equivalent à la Kahrs are α-
equivalent according to the other two definitions, one essentially uses the Fresh
name axiom. (It is not needed in the other direction.)

Theorem 2. α-equivalence is a congruent equivalence relation.

Proof. Taking the inductive definition of Kahrs, the results are all proven by
straightforward inductions on the definition, loading them appropriately with
stacks. For instance, to prove that the relation is a congruence, one needs to
show that inserting the same variable on the bottom of both stacks is irrelevant:
Γ ` A ≡ B iff z = z, Γ ` A ≡ B.

Lemma 1. α-equivalence preserves λ-terms, scope-balancedness, balancedness,

and λ-terms.

Preservation of λ-terms implies that also for the ordinary λ-calculus, the three
notions of α-equivalence are equivalent (in the way we have formalised them),
yielding as far as we know the first formal such results, e.g. of transitivity and
decidability (only assuming decidability of equality of names).

During proof development, (the generalization of) Kahrs’ definition was by
far the easiest to work with, because of it being defined inductively. Note that
his definition ‘works’ directly for the infinitary λ-calculus as well (defined, say,
analogously to [?, Chapter 12]).



3 β

We extend β-reduction to λ-terms, and show it to be confluent without renaming.
Confluence of β-reduction modulo α-equivalence is obtained as a corollary, by
defining suitable projections and liftings of their respective reductions.

3.1 λβ

In [?, Chapter 3], the binary relation →β on Λ is defined as the compatible
closure of the notion of reduction β = {((λx.M)N, M [x:=N ])|M, N ∈ Λ}. The
substitution M [x:=N ] in the rhs of β is the naive one, i.e. up to α-congruence
which is denoted by ≡α. The naive approach is in turn justified by showing
α-congruence to be a congruence for Curry’s definition of substitution:

Let M , N ∈ Λ. Then M [x:=N ] is defined inductively as follows (even if the
variable convention is not observed).

M M [x:=N ]

x N

y 6≡ x y

M1M2 M1[x:=N ]M2[x:=N ]
λx.M1 λx.M1

λy.M1, y 6≡ x λz.M1[y:=z][x:=N ]
where z ≡ y if x 6∈ FV(M1) or y 6∈ FV(N),
else z is the first variable in the sequence
v0, v1, v2, . . . not in M1 or N .

Our notion of substitution on Λ differs from Curry’s in several ways.6

The first difference is ‘under the hood’. Curry’s definition is not an inductive
one (to Coq) because of its final clause. Instead, we base our inductive definition
on the skeleton skl(M), which is obtained from the term by forgetting names.

The second difference is more important and serves to ‘make α-congruence
explicit’. The point is that the last clause in Curry’s definition of substitution
is neither perspicuous nor technically convenient. On the one hand, it encodes
several cases at once relying on the ‘coding trick’ that M [y:=y] equals M , in case
x 6∈ FV(M1) or y 6∈ FV(N). On the other hand, renaming of bound variables
is not incorporated in a modular way. Our definition addresses both issues by
performing renaming first on λy.M1 in case there’s the threat of confusion of
variables. The definition is inductive (to Coq) if one decrees ‘threat of confusion
of variables’ larger than ‘no confusion’.

Definition 3. Substitution on λ-terms is defined as above, except for the clauses

of λ-abstraction, which are to be replaced by:

λy.M1 λy.M1[x:=N ]
if x 6= y and y 6∈ FV(N)

λy.M1 (λz.M1[y:=z])[x:=N ]
otherwise, with z obtained via an α-step from λy.M1

such that x 6= z and z 6∈ FV(N)

6 Apart from that we do not assume variables to be ordered, as mentioned above.



Despite the apparent differences, this definition is seen (proven) to be more
liberal than Curry’s (it does not need the variables to be linearly ordered).

3.2 λβ

We present the definition of β-reduction and the salient points of its proof of
confluence. Compared to the ordinary λ-calculus, the β-rule must now take care
of an arbitrary number of λs which are ‘inbetween’ the application and the
abstraction. In such cases, the scopes of the λs are extruded in a minimal way
so as to contain the scope of the abstraction, after which β-reduction proceeds
as usual (see Figure 4, where it is irrelevant where scopes are in N). In order to
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Fig. 4. β-reduction: scope extrusion, rewiring and x-box removal, and replication

perform all these operations in one go, our notion of substitution as employed
by β-reduction has three arguments, of which the second one is as usual.

Definition 4. The β-rule is ( λX.λx.M)N →M [X, x:=N, 2]. The relation →β

is the compatible closure of the β-rule.

The third argument of substitution, which initially is the empty stack, serves
to determine whether an occurrence of x in M matches with the x to be sub-
stituted for. In particular, during substitution, this stack is pushed upon when
encountering an abstraction, and popped from when meeting an end-of-scope:

Definition 5. Substitution M [X, x:=N, Y ] is defined by:

y[X, x:=N, Y ] = y, if y ∈ Y
y[X, x:=N, Y ] = λY.N , if y 6∈ Y , x = y
y[X, x:=N, Y ] = λY. λX.y, if y 6∈ Y , x 6= y

(λy.M)[X, x:=N, Y ] = λy.M [X, x:=N, yY ]
( λy.M)[X, x:=N, Y yY ′] = λy.M [X, x:=N, Y ′], if y 6∈ Y

( λy.M)[X, x:=N, Y ] = λY. λX.M , if y 6∈ Y , x = y (6)
( λy.M)[X, x:=N, Y ] = λY. λX. λy.M , if y 6∈ Y , x 6= y (7)

(M1M2)[X, x:=N, Y ] = M1[X, x:=N, Y ]M2[X, x:=N, Y ]



The important clauses are the sixth and seventh, which explain the end-of-scope.
Basically they say that if we have reached an end-of-scope, which matches (6)
or jumps (7) the variable (x) to be subtituted for, then we can just throw the
argument (N) away; this is safe since we know that x does not occur free in M .

Theorem 3. →β is confluent on Λ.

Proof. Our proof strategy is the usual Tait and Martin-Löf proof ([?]), hence is
essentially based on the so-called substitution lemma on page 27 of [?]:

2.1.16. Substitution Lemma. If x 6≡ y and x 6∈ FV(L), then

M [ x:=N ][ y:=L] ≡ M [ y:=L]
h

x:=N [ y:=L]
i

which arises when computing the critical pair for the λ-term (λy.(λx.M)N)L.
Interestingly, the substitution lemma now splits into two lemmata, depending on
whether the scope of y is ended by some λy just in front of the λx, or not. We will
comment on this below. Otherwise, the proof is entirely standard, (inductively)
introducing multi-steps and proving that multi-steps have the diamond property.

What is interesting to note is that no α-conversion is needed. One might say
that this is no surprise, since explicitly dealing with end-of-scopes constitutes
a renaming mechanism in itself. Still, it is in our opinion surprising that the
minimal scope-extrusion mechanism works nicely on non-balanced terms.

Let us now present our two versions of the substitution lemma. The closed

substitution lemma arises when the scope of y is ended by some end-of-scope in
front of the λx, e.g. in (λy.( λy.λx.M)N)L,

Lemma 2 (Closed SL).

M [Y ′yZ ′, x:=N, X ′][Y, y:=P, X ′Y ′] = M [Y ′Y Z ′, x:=N [Y, y:=P, Y ′], X ′]

Note that the substitution for y in M has disappeared from the rhs, correspond-
ing to the erasing effect of the λy in front of it.

The open substitution lemma arises when the scope of y is not ended by some
end-of-scope in front of the λx. Then we obtain the usual substitution lemma,
appropriately enriched with scoping information.

Lemma 3 (Open SL).

M [X, x:=N, X ′][Y, y:=P, X ′XY ′] = M [Y, y:=P, X ′xY ′][X, x:=N [Y, y:=P, XY ′], X ′]

As a corollary we obtain confluence of the ordinary λ-calculus (see Figure 5).

Theorem 4. →β / =α is confluent on Λ.

Proof. Consider two diverging λβ-reductions M → · · · → N and M → · · · → P .
Lift these stepwise to diverging λβ-reductions M → · · · → N ′ and M →

· · · → P ′. (Note that M being a λ-term, it is a (scope-balanced) λ-term .)
By confluence of λβ-reduction, we can find some λ-term Q′ such that N ′ →

· · · → Q′, P ′ → · · · → Q′.
Projecting N ′ → · · · → Q′ and P ′ → · · · → Q′ back to λβ-reduction yields

N → · · · → Q1 and P → · · · → Q2, for some α-equivalent λ-terms Q1 and Q2,
establishing the desired confluence of λβ modulo α-equivalence.
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Fig. 5. Confluence of λ-calculus implies confluence of λ-calculus

Let us comment on the proof steps. Both projection and lifting of reductions are
performed stepwise. That is, a single λβ-step lifts to a single λβ-step and vice
versa (not to reduction sequences, as in calculi with explicit substitutions). The
forgetful mapping (projection) from λ-terms to λ-terms is the composition of first
performing an α-equivalence step followed by a so-called ω-step removing all λ’s
in one go.7 For instance, no ω-step is possible from λx. λx.x since removing λx
would turn the free variable x into a bound variable in λx.x. Obviously, uniquely
renaming all variables would guarantee that an ω-step can be performed.

Remark 1. In λβ-reduction renamings are performed, as soon as there’s a con-
fusion threat. However, such a threat may turn out to be innocuous, as in:

(λy.λx.(λz.I)yx)x→ λx′.(λz.I)xx′ → λx′.Ix′

The renaming is caused by the substitution for the variable x which is erased
later anyway. On the other hand, no renaming takes place during λβ-reduction:

(λy.λx.(λz.I)yx)x → λx.(λz.I)( λx.x)x→ λx.Ix

Observe that despite the final term of this λ-reduction being an ordinary λ-term,
α-conversion is needed to project it.

As far as we know the only formalised proof of confluence of β-reduction modulo
α, in our setting, i.e. with a single variable space is [?]. However, their proof
technique is entirely different, uniquely renaming all variables, before performing
β-steps, whereas our schema, which works via the λ-calculus, only performs the
necessary updates (in the sense of [?]).

7 ω could be decomposed itself by first pushing λs to the variables, i.e. performing
maximal scope extrusion as mentioned in the abstract, before forgetting.



4 Applications

We think that the λ-calculus provides an intuitive understanding of scoping in
the λ-calculus. We claim it can provide solutions to problems which are known
to be hard for the λ-calculus. We present some (conjectured) points in case.

Expressing free variable conditions In the λ-calculus one often has use for free
variable conditions. Not only are these necessary to express e.g. the η-rule:

λx.Mx→M , if x 6∈ FV(M),

but knowing that x does not occur in the free variables of M would also speed

up reduction of the β-redex (λx.M)N ; in that case one may simply erase N .
Rather than reifying the negative concept of a variable not occurring free in a

subterm (cf. e.g. [?]), our λ-operator makes the positive concept of the ending of

the scope of a variable explicit. Using it, the free-variable condition of the η-rule
can be expressed in the object language as:

λx.( λx.M)x→M ,

and the β-redex becomes (λx. λx.M)N , which indeed executes more efficiently.

Optimal reductions Lamping provided in [?] the first implementation of the
λ-calculus which was optimal in the sense of Lévy [?]. His implementation was
based on a translation of λ-terms to graphs having nodes (fan-in and fan-out) for
both explicit sharing and unsharing. In order for sharing and unsharing nodes to
match up properly (the ‘oracle’), he had to introduce two further types of nodes,
the control nodes (square bracket and croissant). These control nodes had an
ad hoc justification and their definitive understanding was considered to be the
main open problem of this technique according to [?, Chapter 9].

The oracle, can be understood to arise from making β-reduction in the λ-
calculus local in the sense of [?]. That is scope extrusion and x-box removal as in
Figure 4 are to be made local (replication is dealt with by the sharing nodes). A
way in which this can be implemented is shown on the left in Figure 6. In fact, a
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λ λ
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@

@

@

@
zhehx x x

N N

xxx
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xx
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Fig. 6. Left: β-reduction: local scope extrusion and rewiring. Right: scope fusion



key insight (cf. the second step of Figure 6) is that x-box removal is superfluous
as long as scopes can always be moved out of the way (of a β-redex). We have
a working optimal implementation of the λ-calculus based on rules achieving
just that, such as the zheh-rule in Figure 6 for fusing two adjacent scopes. The
implementation performs well on the examples in [?], without the need for either
their safe nodes or heuristics (we have only one control node). E.g. computing
their most complex example ((f ten) in [?, Figure 9.23]) takes us roughly 5 times
as many interactions (compared to BOHM 1.1).8

Explicit substitution calculi which are PSN This work arose from trying to un-
derstand Chapter 4 of [?] on perpetuality in David and Guillaume’s calculus with
explicit substitutions λws, in a named setting (cf. [?]) and in an atomic way. The
λws calculus was introduced as a calculus having, among other desirable proper-
ties, the preservation of normalisation (PSN) property. From [?] we understand
that λws arose in a seemingly ad hoc way from barring counterexamples to PSN
for existing calculi with explicit substitutions. We think the λ-calculus offers an
easy insight why the calculus works as follows.

The problem with PSN arises when one tries to orient, as a reduction rule,
the critical pair arising from (an explicit version of) the substitution lemma (see
above). The problem with orienting the ensuing critical pair from right to left
is that the resulting rule is non-left-linear (L occurs twice in its left-hand side),
causing non-confluence, which is undesirable. However, orienting the critical pair
from left to right is also problematic since the resulting rule is non-terminating,
just by itself, since the left-hand side can be embedded into the right-hand
side. (Note that this orientation corresponds to transforming from inside-out to
outside-in (standard) order of contraction of the β-redexes.)

The key insight is that in the λ-calculus, we can recognise the fact that we
are already in outside-in order: consider the substitution lemma above oriented
from left to right and enriched with end-of-scope information (but for the mo-
ment forgetting the first component of λ-substitutions which are empty in this
example):

M [x:=N, 2][y:=L, 2]→M [y:=L, x][x:=N [y:=L, 2], 2]

Now we recognise that the two underlined xs in the rhs match with one another,
hence that these substitutions are already in standard order. Forbidding further
applications of the rule in such situations, should break the infinite reduction
and regain PSN.

8 The difference might be explainable by that we do not employ compound nodes.


