
Automated Proof Construction in Type Theory using

Resolution†

Marc Bezem (bezem@ii.uib.no)
University of Bergen, Department of Informatics

Dimitri Hendriks (hendriks@phil.uu.nl)
Utrecht University, Department of Philosophy

Hans de Nivelle (nivelle@mpi-sb.mpg.de)
Max Planck Institut für Informatik, Saarbrücken

Abstract. We provide techniques to integrate resolution logic with equality in type
theory. The results may be rendered as follows.

− A clausification procedure in type theory, equipped with a correctness proof,
all encoded using higher-order primitive recursion.

− A novel representation of clauses in minimal logic such that the λ-representation
of resolution steps is linear in the size of the premisses.

− A translation of resolution proofs into lambda terms, yielding a verification
procedure for those proofs.

− The power of resolution theorem provers becomes available in interactive proof
construction systems based on type theory.

1. Introduction

Type theory (= typed lambda calculus, with dependent products as
most relevant feature) offers a powerful formalism for formalizing math-
ematics. Strong points are: the logical foundation, the fact that proofs
are first-class citizens and the generality which naturally facilitates
extensions, such as inductive types. Type theory captures definitions,
reasoning and computation at various levels in an integrated way. In a
type-theoretical system, formalized mathematical statements are rep-
resented by types, and their proofs are represented by λ-terms. The
problem whether π is a proof of statement A reduces to checking
whether the term π has type A. Computation is based on a simple
notion of rewriting. The level of detail is such that the well-formedness
of definitions and the correctness of derivations can automatically be
verified.

However, there are also weak points. It is exactly the appraised
expressivity and the level of detail that makes automation at the same
† Extended and modified version of [2].

c© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

blinc.tex; 19/09/2002; 16:01; p.1

2

time necessary and difficult. Automated deduction appears to be mostly
successful in weak systems, such as propositional logic and predicate
logic, systems that fall short to formalize a larger body of mathematics.
Apart from the problem of the expressivity of these systems, only a
minor part of the theorems that can be expressed can actually be proved
automatically. Therefore it is necessary to combine automated theorem
proving with interactive theorem proving. Recently a number of propos-
als in this direction have been made. In [4] a two-level approach (called
reflection) is used to develop in Coq a certified decision procedure
for equations in abelian rings. In the same vein, [15] certifies ELAN
traces in Coq. In [13] Otter is combined with the Boyer-Moore theorem
prover. (A verified program rechecks proofs generated by Otter.) In [12]
Gandalf is linked to HOL. (The translation generates scripts to be run
by the HOL-system.) In [20], proofs are translated into Martin-Löf’s
type theory, for the Horn clause fragment of first-order logic. In the
Omega system [10, 16] various theorem provers have been linked to a
natural deduction proof checker. The purpose there is to automatically
generate proofs from so called proof plans. Our approach is different in
that we generate complete proof objects for both the clausification and
the refutation part.

Resolution theorem provers, such as Bliksem [3], are powerful, but
have the drawback that they work with normal forms of formulae, so-
called clausal forms. Clauses are (universally closed) disjunctions of
literals, and a literal is either an atom or a negated atom. The clausal
form of a formula is essentially its Skolem-conjunctive normal form,
which need not be exactly logically equivalent to the original formula.
This makes resolution proofs hard to read and understand, and makes
interactive navigation of the theorem prover through the search space
very difficult. Moreover, optimized implementations of proof procedures
are error-prone. It has occurred that systems that took part in the
yearly theorem prover competition CASC had to withdraw afterwards,
due to the fact that the system turned out unsound. In one year (1999)
the system that otherwise would have won the MIX category was
withdrawn, see [19].

In type theory, the proof generation capabilities suffer from the small
granularity of the inference steps and the corresponding astronomic size
of the search space. Typically, one hyperresolution step requires a few
dozens of inference steps in type theory. In order to make the formali-
sation of a large body of mathematics feasible, the level of automation
of interactive proof construction systems such as Coq [1], based on type
theory, has to be improved.

We propose the following proof procedure. Identify a non-trivial
step in a Coq session that amounts to a first-order tautology. Export

blinc.tex; 19/09/2002; 16:01; p.2

3

this tautology to Bliksem, and delegate the proof search to the Bliksem
inference engine. Convert the resolution proof to type theoretic format
and import the result back in Coq. We stress the fact that the above
procedure is as secure as Coq. Hypothetical errors (e.g. the clausifica-
tion procedure not producing clauses, possible errors in the resolution
theorem prover or the erroneous formulation of the lambda terms cor-
responding to its proofs) are intercepted because the resulting proofs
are type-checked by Coq. The security could be made independent of
Coq by using another type-checker.

Most of the necessary meta-theory is already known. The nega-
tion normal form transformation can be axiomatized by classical logic.
The prenex and conjunctive normal form transformations require that
the domain is non-empty. Skolemization can be axiomatized by so-
called Skolem axioms, which can be viewed as specific instances of
the Axiom of Choice. Higher-order logic is particularly suited for this
axiomatization: we get logical equivalence modulo classical logic plus
the Axiom of Choice, instead of awkward invariants as equiconsistency
or equisatisfiability in the first-order case.

Following the proof of the conservativity of the Axiom of Choice over
first-order logic, see e.g. [18] (elaborated in [6]) and [17], Skolem func-
tions and –axioms could be eliminated from resolution proofs, which
would allow us to obtain directly a proof of the original formula, but
currently we still make use of the Axiom of Choice.

The paper is organized as follows. In Section 2 we set out a two-
level approach and define a deep embedding to represent first-order
logic. Section 3 describes a uniform clausification procedure. We explain
how resolution proofs are translated into λ-terms in Sections 4 and 5.
Finally, the outlined constructions are demonstrated in Section 6.

2. A two-level approach

The basic sorts in Coq are ∗p and ∗s. An object M of type ∗p denotes a
logical proposition and objects of type M denote proofs of M . Objects
of type ∗s are usual sets such as the set of natural numbers, lists etc.
The typing relation is expressed by t : T , to be interpreted as ‘t belongs
to set T ’ when T : ∗s, and as ‘t is a proof of proposition T ’ when
T : ∗p. The primitive type constructor is the product type Πx : T.U
and is called dependent if x occurs in U ; if not, we write T → U . The
product type is used for logical quantification (implication) as well as
for function spaces. Scopes of Π’s, λ’s and other binders extend to the
right as far as brackets allow (→ associates to the right). Furthermore,
well-typed application is denoted by (M N) and associates to the left.

blinc.tex; 19/09/2002; 16:01; p.3

4

We choose for a deep embedding in adopting a two-level approach for
the treatment of arbitrary first-order languages. The idea is to represent
first-order formulae as objects in an inductive set o : ∗s, accompanied
by an interpretation function [[]] that maps these objects into ∗p.1 The
next paragraphs explain why we distinguish a higher (meta-, logical)
level ∗p and a lower (object-, computational) level o.

The universe ∗p includes higher-order propositions; in fact it encom-
passes full impredicative type theory. As such, it is too large for our
purposes. Given a suitable signature, any first-order formula ϕ : ∗p will
have a formal counterpart p : o such that ϕ equals [[p]], the interpre-
tation of p. Thus the first-order fragment of ∗p can be identified as a
collection of interpretations of objects in o.

Secondly, Coq supplies only limited computational power on ∗p,
whereas o, as every inductive set, is equipped with the powerful com-
putational device of higher-order primitive recursion. This enables the
syntactical manipulation of object-level propositions.

Reflection is used for the proof construction of first-order formulae
in ∗p in the following way. Let ϕ : ∗p be a first-order formula. Then
there is some ϕ̇ : o such that [[ϕ̇]] is convertible with ϕ.2 Moreover,
suppose we have proved

Tsound : Πp :o. [[(T p)]]→ [[p]]

for some function T : o → o, typically a transformation to clausal form.
Then, to prove ϕ it suffices to prove [[(T ϕ̇)]]. Matters are presented
schematically in Figure 1. In Section 3 we discuss a concrete function
T , for which we have proved the above. For this T , proofs of [[(T ϕ̇)]]
will be generated automatically, as will be described in Sections 4 and
5.

Object-level propositions and the reflection operation

In Coq, we have constructed a general framework to represent first-
order languages with multiple sorts. Bliksem is one-sorted, so we de-
scribe the setup for one-sorted signatures only.

The set o (formulas) defined in the present section depends on the
signature—constituted by an arbitrary but fixed list of natural num-
bers, representing relation arities. This dependence remains implicit in
the sequel. We start by giving some preliminary definitions.

DEFINITION 2.1. Given a set A, lists of type (list A) are defined by
[] and [a|l], where a : A and l : (list A). Given a list L : (list A), its

1 Both o as well as [[]] depend on a fixed but arbitrary signature.
2 The mapping ˙ is a syntax-based translation outside Coq.

blinc.tex; 19/09/2002; 16:01; p.4

5

Bliksem

��··
··
··
··
··
·

(Tsound ϕ̇ d) : ϕ

˙

��

·············

d :
{{

[[(T ϕ̇)]]

ZZ···········
meta-level ∗p

ϕ̇
T

//

[[]]

XX

(T ϕ̇)

[[]]

OO

object-level o

Coq

Figure 1. Schematic overview of the general procedure. Arrows correspond to ap-
plication in Coq, dotted arrows are not performed by Coq. The term [[(T ϕ̇)]] is
computed by Coq and exported to Bliksem. Bliksem is to return a proof term d,
which is imported back in Coq. Then (Tsound ϕ̇ d) is a proof of [[ϕ̇]], and hence of ϕ.

index set IL is defined by the equations:

I[] = ∅ I[a|L′] = 1+ IL′

where ∅ is the empty set (i.e. without contructors), 1 the unit set (with
one sole inhabitant •) and A+B is the disjoint sum of sets A and B.
We write |L| to denote the length of L. For the sake of readability we
set IL = {0, . . . , |L| − 1}. Furthermore, we write L(i) for the element
indexed by i : IL. The cartesian product of n copies of a set A is defined
by:

A0 = 1 An+1 = A×An

DEFINITION 2.2. Assume a domain of discourse A : ∗s and let lrel

be a list of natural numbers representing arities. The set o of objects
representing propositions is inductively defined as follows, where p, q :
o, p′ : A→ o, t1, . . . , tk : A, i : Ilrel

and lrel (i) = k.

o := Ri(t1, . . . , tk) | ¬̇p | p →̇ q | p ∧̇ q | p ∨̇ q | (∀̇ p′) | (∃̇ p′)

Note that R : Πi : Ilrel
. Alrel (i) → o, we write Ri instead of (R i). We

use the dot-notation ˙ to distinguish the object-level constructors from

blinc.tex; 19/09/2002; 16:01; p.5

6

Coq’s predefined connectives. The constructors ∀̇, ∃̇ are typed (A →
o)→ o; they map propositional functions of typeA→ o to propositions
of type o. This representation has the advantage that binding and
predication are handled by λ-abstraction and λ-application. On the
object-level, existential quantification of x in p (of type o, possibly
containing occurrences of x) is written as (∃̇ (λx : A. p)). Although
this representation suffices for our purposes, it causes some well-known
difficulties. See [14, Sections 8.3, 9.2] for a further discussion.

For our purposes, a shallow embedding of function symbols is suf-
ficient. We have not defined an inductive set term representing the
first-order terms in A like we have defined o representing the first-
order fragment of ∗p. Instead, ‘meta-level’ terms of type A are taken as
arguments of object-level predicates. Due to this shallow embedding,
we cannot check whether variables have occurrences in a given term.
Because of that, e.g., distributing universal quantifiers over conjuncts
can yield dummy abstractions. These problems could be overcome by
using De Bruijn-indices (see [5]) for a deep embedding of terms in Coq,
cf. [8].

DEFINITION 2.3. The interpretation function [[]] is a canonical ho-
momorphism recursively defined as follows. Assume a family of rela-
tions indexed over Ilrel

.

R : Πi :Ilrel
. Alrel (i) → ∗p

We write Ri for (R i).

[[Ri(t1, . . . , tk)]] = Ri(t1, . . . , tk)
[[¬̇p]] = ¬[[p]]

[[p →̇ q]] = [[p]]→ [[q]]
[[p ∧̇ q]] = [[p]] ∧ [[q]]
[[p ∨̇ q]] = [[p]] ∨ [[q]]
[[(∀̇ p′)]] = Πx :A. [[(p′ x)]]
[[(∃̇ p′)]] = ∃x :A. [[(p′ x)]]

We use ∧,∨,∃ for Coq’s predefined logical connectives. Note that ‘→’
(and ‘Π’) is used for both (dependent) function space as well as for log-
ical implication (quantification); this overloading witnesses the Curry-
Howard isomorphism.

We don’t have to worry about name conflicts when introducing a
new x : A for interpretation of formulas whose head constructor is a
quantifier. Coq’s binding mechanisms are internally based on De Bruijn
indices (with a user-friendly tool showing named variables on top of it).

blinc.tex; 19/09/2002; 16:01; p.6

7

In the above definitions of o, its constructors and of [[]], the dependency
on the signature (constituted by A, lrel and R) has been suppressed.

3. Clausification and correctness

We describe the transformation to clausal form (see Section 4), which
is realized on both levels. On the object-level, we define an algorithm
mcf : o → o that converts object-level propositions into their clausal
form. On the meta-level, clausification is realized by a term mcf sound ,
which (given the axiom of excluded middle and the axiom of choice)
transforms a proof of [[(mcf p)]] into a proof of [[p]].

The algorithm mcf consists of the subsequent application of the
following functions: nnf , pnf , cnf , sklm, duqc, impf standing for trans-
formations to negation, prenex and conjunctive normal form, Skolem-
ization, distribution of universal quantifiers over conjuncts and trans-
formation to implicational form, respectively. As an illustration, we
describe the functions nnf and sklm.

3.1. Negation normal form

Concerning negation normal form, a recursive call like

(nnf ¬̇(p ∧̇ q)) = (nnf ¬̇p) ∨̇ (nnf ¬̇q)

is not primitive recursive, since ¬̇p and ¬̇q are not subformulae of
¬̇(p ∧̇ q). Such a call requires general recursion. Coq’s computational
mechanism is higher-order primitive recursion, which is weaker than
general recursion but ensures universal termination.

DEFINITION 3.1. The function nnf : o → pol → o makes use of the
so-called polarity (⊕ or) of an input formula.

(nnf Ri(t1, . . . , tk) ⊕) = Ri(t1, . . . , tk)
(nnf Ri(t1, . . . , tk)) = ¬̇Ri(t1, . . . , tk)

(nnf ¬̇p ⊕) = (nnf p)
(nnf ¬̇p) = (nnf p ⊕)

(nnf p1 →̇ p2 ⊕) = (nnf p1) ∨̇ (nnf p2 ⊕)
(nnf p1 →̇ p2) = (nnf p1 ⊕) ∧̇ (nnf p2)
(nnf p1 ∧̇ p2 ⊕) = (nnf p1 ⊕) ∧̇ (nnf p2 ⊕)
(nnf p1 ∧̇ p2) = (nnf p1) ∨̇ (nnf p2)
(nnf p1 ∨̇ p2 ⊕) = (nnf p1 ⊕) ∨̇ (nnf p2 ⊕)

blinc.tex; 19/09/2002; 16:01; p.7

8

(nnf p1 ∨̇ p2) = (nnf p1) ∧̇ (nnf p2)
(nnf (∀̇ p′) ⊕) = (∀̇ (λx :A. (nnf (p′ x) ⊕)))
(nnf (∀̇ p′)) = (∃̇ (λx :A. (nnf (p′ x))))
(nnf (∃̇ p′) ⊕) = (∃̇ (λx :A. (nnf (p′ x) ⊕)))
(nnf (∃̇ p′)) = (∀̇ (λx :A. (nnf (p′ x))))

In order to prove soundness of nnf we need the principle of excluded
middle EM , which we define in such a way that it affects the first-order
fragment only (like o, EM depends on the signature).

DEFINITION 3.2.

EM := Πp :o. [[p ∨̇ ¬̇p]]

LEMMA 3.1. Assume EM is inhabited, then we have for all p : o:

[[p]]↔ [[(nnf p ⊕)]]
¬[[p]]↔ [[(nnf p)]]

3.2. Skolemization

Skolemization of a formula means the removal of all existential quan-
tifiers and the replacement of the variables that were bound by the
removed existential quantifiers by new terms, that is, Skolem functions
applied to the universally quantified variables whose quantifier had the
existential quantifier in its scope. Instead of quantifying each of the
Skolem functions, we introduce an index type S, which may be viewed
as a type for families of Skolem functions.

S := N→ N→ Πn :N. An → A

A Skolem function, then, is a term (f i j n) : An → A with f : S and
i, j, n : N. Here, i and j are indices that distinguish the family members.
If the output of nnf yields a conjunction, the remaining clausification
steps are performed separately on the conjuncts. (This yields a sig-
nificant speed-up in performance.) Index i denotes the position of the
conjunct, j denotes the number of the replaced existentially quantified
variable in that conjunct.

DEFINITION 3.3. The function sklm is defined as follows.

(sklm f i j n t (∀̇ p′)) = (∀̇ (λx :A. (sklm f i j n+ 1 (t, x) (p′ x))))
(sklm f i j n t (∃̇ p′)) = (sklm f i j + 1 n t (p′ (f i j n t)))

(sklm f i j n t p) = p if p is neither (∀̇ p′) nor (∃̇ p′)

blinc.tex; 19/09/2002; 16:01; p.8

9

Here and below (t, x) denotes the tuple typed An+1 obtained by ap-
pending x to t. If the input formula is of the form (∀̇ p′), then the
quantified variable is added at the end of the so far constructed tuple
t of universally quantified variables. In case the input formula matches
(∃̇ p′) with p′ : A→ o the term (f i j n t) is substituted for the existen-
tially quantified variable (the ‘hole’ in p′) and index j is incremented.
This substitution comes for free and is performed on the meta-level by
β-reducing (p′ (f i j n t)). The third case exhausts the five remaining
cases. As we enforce input formulae of sklm to be in prenex normal
form (via the definition of mcf), nothing remains to be done.

LEMMA 3.2. For all i : N and p : o we have:

A→ AC S → [[p]]→ ∃f :S. [[(sklm f i 0 0 • p)]]

In the above lemma, A → · · · expresses the condition that A is non-
empty, and below a : A denotes a canonical inhabitant. AC S is a
specific formulation of the Axiom of Choice, which allows us to form
Skolem functions. Like EM , AC S implicitly depends on the signature,
that is, on A, lrel and R.

AC S := Πα :A→ S → o.
(Πx :A.∃f :S. [[(α x f)]])
→ ∃F :A→ S.Πx :A. [[(α x (F x))]]

which indeed follows from the more general:

AC := ΠA,B :∗s.
ΠP :A→ B → ∗p.
(Πx :A.∃y :B. (P x y))
→ ∃f :A→ B.Πx :A. (P x (f x))

Let us inspect a crucial step in the proof of this lemma, which proceeds
by induction on p : o. Consider the case that p is of the form (∀̇ p′).
Our induction hypothesis is:

Πx :A. [[(p′ x)]]→ ∃f :S. [[(sklm f i 0 0 • (p′ x))]]

Assume Πx :A. [[(p′ x)]]. Then we have:

Πx :A.∃f :S. [[(sklm f i 0 0 • (p′ x))]]

By application of AC S we get:

Πx :A. [[(sklm (F x) i 0 0 • (p′ x))]]

for some function F : A→ S. Our goal is:

∃g :S.Πx :A. [[(sklm g i 0 1 (x, •) (p′ x))]]

blinc.tex; 19/09/2002; 16:01; p.9

10

(Note that (x, •) : A1 denotes the parameter list with only x, which
is the result of appending x to the empty parameter list, (•, x). In
examples we simply write x.) The witnessing g is given by:

(g i j 0 •) = a

(g i j n+ 1 (x, t)) = (F x i j n t)

Now
[[(sklm g i 0 1 (x, •) (p′ x))]]

follows from
[[(sklm (F x) i 0 0 • (p′ x))]]

via Lemma 3.3, as for any n : N, g behaves like (F x) on any tail t : An.

LEMMA 3.3. For all i, jf , jg, nf , ng : N, tf : Anf , tg : Ang , p : o, we
have: if for all m,n : N, t : An

(f i jf +m nf + n (tf , t)) = (g i jg +m ng + n (tg, t))

then
[[(sklm f i jf nf tf p)]]→ [[(sklm g i jg ng tg p)]]

Here tuples (tf , t) : Anf+n and (tg, t) : Ang+n are the result of appending
t to tf and tg, respectively.

3.3. Composing the modules

Reconsider Figure 1 and substitute mcf for T . Given a suitable signa-
ture, from any first-order formula ϕ : ∗p, we can compute the clausal
form [[(mcf ϕ̇)]].

LEMMA 3.4. There exists a proof term mcf sound which validates clausi-
fication on the meta-level. More precisely:

mcf sound : EM → AC S → A→ Πp :o. [[(mcf p)]]→ [[p]]

The term [[(mcf ϕ̇)]] computes a format C1 → · · · → Cn → ⊥. Here
C1, . . . , Cn : ∗p are universally closed clauses that will be exported to
Bliksem, which constructs the proof term d representing a resolution
refutation of these clauses (see Sections 4 and 5). Finally, d is type-
checked in Coq. Section 6 demonstrates the outlined constructions.

The complete Coq-script generating the correctness proof of the
clausification algorithm comprises ± 65 pages. It is available at [9].

blinc.tex; 19/09/2002; 16:01; p.10

11

4. Minimal resolution logic

There exist many representations of clauses and corresponding formula-
tions of resolution rules. The traditional form of a clause is a disjunction
of literals, that is, of atoms and negated atoms. Another form which is
often used is that of a sequent, that is, the implication of a disjunction
of atoms by a conjunction of atoms.

Here we propose yet another representation of clauses, as far as we
know not used before. There are three main considerations.

- A structural requirement is that the representation of clauses is
closed under the operations involved, such as instantiation and
resolution.

- The Curry-Howard correspondence is most direct between mini-
mal logic (→,∀) and a typed lambda calculus with product types
(with → as a special, non-dependent, case of Π). Conjunction and
disjunction in the logic require either extra type-forming primitives
and extra terms to inhabit these, or impredicative encodings.

- The λ-representation of resolution steps should preferably be linear
in the size of the premisses.

These considerations have led us to represent a clause like:

L1 ∨ · · · ∨ Lp

by the following classically equivalent implication in minimal logic:

L1 → · · · → Lp → ⊥

Here Li is the complement of Li in the classical sense (i.e. double
negations are removed). If C is the disjunctive form of a clause, then
we denote its implicational form by [C]. As usual, these expressions are
implicitly or explicitly universally closed.

A resolution refutation of given clauses C1, . . . , Cn proves their in-
consistency, and can be taken as a proof of the following implication in
minimal logic:

C1 → · · · → Cn → ⊥

Here and below, ‘minimal’ refers to minimal logic, as we use no par-
ticular properties of ⊥. In particular, ‘minimal clause’ refers to the
representation in minimal logic, and not to any other kind of mini-
mality. We are now ready for the definition of the syntax of minimal
resolution logic.

blinc.tex; 19/09/2002; 16:01; p.11

12

DEFINITION 4.1. Let ∀~x. φ denote the universal closure of φ. Let
Atom be the set of atomic propositions. We define the sets Literal ,
Clause and MCF of, respectively, literals, clauses and minimal clausal
forms by the following abstract syntax.

Literal ::= Atom | Atom → ⊥
Clause ::= ⊥ | Literal → Clause

MCF ::= ⊥ | (∀~x.Clause)→ MCF

Next we elaborate the familiar inference rules for factoring, permut-
ing and weakening clauses, as well as the binary resolution rule.

Factoring, Permutation, Weakening

Let C and D be clauses, such that C subsumes D propositionally,
that is, any literal in C also occurs in D. Let A1, . . . , Ap, B1, . . . , Bq be
literals (p, q ≥ 0) and write

[C] = A1 → · · · → Ap → ⊥

and
[D] = B1 → · · · → Bq → ⊥

assuming that for every 1 ≤ i ≤ p there is 1 ≤ j ≤ q such that Ai = Bj .
A proof of [C]→ [D] is the following λ-term:

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp)

with πi = bj , where j is such that Bj = Ai.

Binary Resolution

In the traditional form of the binary resolution rule for disjunctive
clauses we have premisses C1 and C2, containing one or more occur-
rences of a literal L and of L, respectively. The conclusion of the rule,
the resolvent, is then a clause D consisting of all literals of C1 different
from L joined with all literals of C2 different from L. This rule is
completely symmetric with respect to C1 and C2.

For clauses in implicational form there is a slight asymmetry in the
formulation of binary resolution. Let A1, . . . , Ap, B1 . . . , Bq be literals
(p, q ≥ 0) and write

[C1] = A1 → · · · → Ap → ⊥,

with one or more occurrences of the negated atom A → ⊥ among the
Ai and

[C2] = B1 → · · · → Bq → ⊥,

blinc.tex; 19/09/2002; 16:01; p.12

13

with one or more occurrences of the atom A among the Bj . Write the
resolvent D as

[D] = D1 → · · · → Dr → ⊥

consisting of all literals of C1 different from A → ⊥ joined with all
literals of C2 different from A. A proof of [C1] → [C2] → [D] is the
following λ-term:

λc1 : [C1]. λc2 : [C2]. λd1 :D1 . . . λdr :Dr. (c1 π1 . . . πp)

For 1 ≤ i ≤ p, πi is defined as follows. If Ai 6= (A→ ⊥), then πi = dk,
where k is such that Dk = Ai. If Ai = A→ ⊥, then we put

πi = λa :A. (c2 π
′
1 . . . π′q),

with π′j (1 ≤ j ≤ q) defined as follows. If Bj 6= A, then π′j = dk, where
k is such that Dk = Bj . If Bj = A, then π′j = a. It is easily verified
that πi : (A→ ⊥) in this case.

If (A→ ⊥) occurs more than once among the Ai, then (c1 π1 . . . πp)
need not be linear. This can be avoided by factoring timely. Even with-
out factoring, a linear proof term is possible: by taking the following
β-expansion of (c1 π1 . . . πp) (with a′ replacing copies of proofs of
(A→ ⊥)):

(λa′ :A→ ⊥. (c1 π1 . . . a′ . . . a′ . . . πp))(λa :A. (c2 π
′
1 . . . π′q))

This remark applies to the rules in the next subsections as well.

Paramodulation

Paramodulation combines equational reasoning with resolution. For
equational reasoning we use the inductive equality of Coq. In order
to simplify matters, we assume a fixed domain of discourse A, and
denote equality of s1, s2 ∈ A by s1 ≈ s2.

Coq supplies us with the following terms:

eqrefl : ∀s :A. (s ≈ s)
eqsubst : ∀s :A.∀P :A→ ∗p. (P s)→ ∀t :A. (s ≈ t)→ (P t)
eqsym : ∀s1, s2 :A. (s1 ≈ s2)→ (s2 ≈ s1)

As an example we define eqsym from eqsubst , eqrefl :

λs1, s2 :A. λh : (s1 ≈ s2). (eqsubst s1 (λs :A. (s ≈ s1)) (eqrefl s1) s2 h)

Paramodulation for disjunctive clauses is the rule with premiss C1

containing the equality literal t1 ≈ t2 and premiss C2 containing literal

blinc.tex; 19/09/2002; 16:01; p.13

14

L[t1]. The conclusion is then a clause D containing all literals of C1

different from t1 ≈ t2, joined with C2 with L[t2] instead of L[t1].
Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and write

[C1] = A1 → · · · → Ap → ⊥,

with one or more occurrences of the equality atom t1 ≈ t2 → ⊥ among
the Ai, and

[C2] = B1 → · · · → Bq → ⊥,

with one or more occurrences of the literal L[t1] among the Bj . Write
the conclusion D as

[D] = D1 → · · · → Dr → ⊥

and let l be such that Dl = L[t2]. A proof of [C1]→ [C2]→ [D] can be
obtained as follows:

λc1 : [C1]. λc2 : [C2]. λd1 :D1 . . . λdr :Dr. (c1 π1 . . . πp)

If Ai 6= (t1 ≈ t2 → ⊥), then πi = dk, where k is such that Dk = Ai. If
Ai = (t1 ≈ t2 → ⊥), then we want again that πi : Ai and therefore put

πi = λe : (t1 ≈ t2). (c2 π
′
1 . . . π′q).

If Bj 6= L[t1], then π′j = dk, where k is such that Dk = Bj . If Bj = L[t1],
then we also want that π′j : Bj and put (with dl : Dl = L[t2])

π′j = (eqsubst t2 (λs :A.L[s]) dl t1 (eqsym t1 t2 e))

The term π′j has type L[t1] in the context e : (t1 ≈ t2). The term π′j
contains an occurrence of eqsym because of the fact that the equality
t1 ≈ t2 comes in the wrong direction for proving L[t1] from L[t2]. With
this definition of π′j , the term πi has indeed type Ai = (t1 ≈ t2 → ⊥).

As an alternative, it is possible to expand the proof of eqsym in the
proof of the paramodulation step.

Equality Factoring

Equality factoring for disjunctive clauses is the rule with premiss C
containing equality literals t1 ≈ t2 and t1 ≈ t3, and conclusion D
which is identical to C but for the replacement of t1 ≈ t3 by t2 6≈ t3.
The soundness of this rule relies on t2 ≈ t3 ∨ t2 6≈ t3.

Let A1, . . . , Ap, B1 . . . , Bq be literals (p, q ≥ 0) and write

[C] = A1 → · · · → Ap → ⊥,

blinc.tex; 19/09/2002; 16:01; p.14

15

with equality literals t1 ≈ t2 → ⊥ and t1 ≈ t3 → ⊥ among the Ai.
Write the conclusion D as

[D] = B1 → · · · → Bq → ⊥

with Bj′ = (t1 ≈ t2 → ⊥) and Bj′′ = (t2 ≈ t3). We get a proof of
[C]→ [D] from

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp).

If Ai 6= (t1 ≈ t3 → ⊥), then πi = bj , where j is such that Bj = Ai. For
Ai = (t1 ≈ t3 → ⊥), we put

πi = (eqsubst t2 (λs :A. (t1 ≈ s→ ⊥)) bj′ t3 bj′′).

The type of πi is indeed t1 ≈ t3 → ⊥.
Note that the equality factoring rule is constructive in the impli-

cational translation, whereas its disjunctive counterpart relies on the
decidability of ≈. This phenomenon is well-known from the double
negation translation.

Positive and Negative Equality Swapping

The positive equality swapping rule for disjunctive clauses simply swaps
an atom t1 ≈ t2 into t2 ≈ t1, whereas the negative rule swaps the
negated atom. Both versions are obviously sound, given the symmetry
of ≈.

We give the translation for the positive case first and will then sketch
the simpler negative case. Let C be the premiss and D the conclusion
and write

[C] = A1 → · · · → Ap → ⊥,

with some of the Ai equal to t1 ≈ t2 → ⊥, and

[D] = B1 → · · · → Bq → ⊥.

Let j′ be such that Bj′ = (t2 ≈ t1 → ⊥). The following term is a proof
of [C]→ [D].

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp)

If Ai 6= (t1 ≈ t2 → ⊥), then πi = bj , where j is such that Bj = Ai.
Otherwise

πi = λe : (t1 ≈ t2). (bj′ (eqsym t1 t2 e))

such that also πi : (t1 ≈ t2 → ⊥) = Ai.

blinc.tex; 19/09/2002; 16:01; p.15

16

In the negative case the literals t1 ≈ t2 in question are not negated,
and we change the above definition of πi into

πi = (eqsym t2 t1 bj′).

In this case we have bj′ : (t2 ≈ t1) so that πi : (t1 ≈ t2) = Ai also in
the negative case.

Equality Reflexivity Rule

The equality reflexivity rule simply cancels a negative equality literal of
the form t 6≈ t in a disjunctive clause. We write once more the premiss

[C] = A1 → · · · → Ap → ⊥,

with some of the Ai equal to t ≈ t, and the conclusion

[D] = B1 → · · · → Bq → ⊥.

The following term is a proof of [C]→ [D]:

λc : [C]. λb1 :B1 . . . λbq :Bq. (c π1 . . . πp).

If Ai 6= (t ≈ t), then πi = bj , where j is such that Bj = Ai. Otherwise
πi = (eqrefl t).

5. Lifting to Predicate Logic

Until now we have only considered inference rules without quantifi-
cations. In this section we explain how to lift the resolution rule to
predicate logic. Lifting the other rules is very similar.

Recall that we must assume that the domain is not empty. Proof
terms below may contain a variable a : A as free variable. By abstrac-
tion λa :A we will close all proof terms. This extra step is necessary
since ∀a :A.⊥ does not imply ⊥ when the domain A is empty. This is
to be compared to 2⊥ being true in a blind world in modal logic.

Consider the following clauses

C1 = ∀x1, . . . , xp :A. [A1 ∨R1]

and
C2 = ∀y1, . . . , yq :A. [¬A2 ∨R2]

and their resolvent

R = ∀z1, . . . , zr :A. [R1θ1 ∨R2θ2]

blinc.tex; 19/09/2002; 16:01; p.16

17

Here θ1 and θ2 are substitutions such that A1θ1 = A2θ2 and z1, . . . , zr
are all variables that actually occur in the resolvent, that is, in R1θ1 ∨
R2θ2 after application of θ1, θ2. It may be the case that xiθ1 and/or
yjθ2 contain other variables than z1, . . . , zr; these are understood to
be replaced by the variable a : A (see above). It that case θ1, θ2 may
not represent a most general unifier. For soundness this is no problem
at all, but even completeness is not at stake since the resolvent is not
affected. The reason for this subtlety is that the proof terms involved
must not contain undeclared variables.

Using the methods of the previous sections we can produce a proof
π that has the type

[A1 ∨R1]θ1 → [¬A2 ∨R2]θ2 → [R1θ1 ∨R2θ2].

A proof of C1 → C2 → R is obtained as follows:

λc1 :C1. λc2 :C2. λz1 . . . zr :A.
(π (c1 (x1θ1) . . . (xpθ1)) (c2 (y1θ2) . . . (yqθ2)))

We finish this section by showing how to assemble a λ-term for an en-
tire resolution refutation from the proof terms justifying the individual
steps. Consider a Hilbert-style resolution derivation

C1, . . . , Cm, Cm+1, . . . , Cn

with premisses c1 : C1, . . . , cm : Cm. Starting from n and going down-
ward, we will define by recursion for every m ≤ k ≤ n a term πk such
that

πk[cm+1, . . . , ck] : Cn
in the context extended with cm+1 : Cm+1, . . . , ck : Ck. For k = n we
can simply take πn = cn. Now assume πk+1 has been constructed for
some k ≥ m. The proof πk is more difficult than πk+1 since πk cannot
use the assumption ck+1 : Ck+1. However, Ck+1 is a resolvent, say of
Ci and Cj for some i, j ≤ k. Let d be the proof of Ci → Cj → Ck+1.
Now define

πk[cm+1, . . . , ck] = (λx :Ck+1.πk+1[cm+1, . . . , ck, x])(d ci cj) : Cn

The downward recursion yields a proof πm : Cn which is linear in the
size of the original Hilbert-style resolution derivation. Observe that a
forward recursion from m to n would yield the normal form of πm,
which could be exponential.

blinc.tex; 19/09/2002; 16:01; p.17

18

6. Examples

6.1. A small example

Let P be a property of natural numbers such that P holds for n if and
only if P does not hold for any number greater than n. Does this sound
paradoxical? It is contradictory. We have P (n) if and only if ¬P (n +
1),¬P (n+ 2),¬P (n+ 3), . . ., which implies ¬P (n+ 2),¬P (n+ 3), . . .,
so P (n + 1). It follows that ¬P (n) for all n. However, ¬P (0) implies
P (n) for some n, contradiction.

A closer analysis of this argument shows that the essence is not
arithmetical, but relies on the fact that < is transitive and serial. The
argument is also valid in a finite cyclic structure, say 0 < 1 < 2 < 2.
This qualifies for a small refutation problem, which we formalize in
Coq.

Let us adopt N as the domain of discourse. We declare a unary
relation P and a binary relation <.

P : N→ ∗p
< : N×N→ ∗p

Let lrel = [1, 2] be the corresponding list of arities. The relations are
packaged by R of type Πi : [0, 1].Nlrel (i) → ∗p. We write Ri for (R i);
note Ilrel

= [0, 1].
R0 = P R1 = <

We write Ṗ for R0 and infix <̇ for R1 respectively.
Let us construct the formal propositions trans and serial , stating

that <̇ is serial and transitive. ∀̇x. φ is syntactic sugar for (∀̇ (λx :N. φ)),
likewise for ∃̇.

trans = ∀̇x, y, z. (x <̇ y ∧̇ y <̇ z) →̇ x <̇ z

serial = ∀̇x. ∃̇y. x <̇ y

We define foo.

foo = ∀̇x. (Ṗ x) ↔̇ (∀̇y. x <̇ y →̇ ¬̇(Ṗ y))

Furthermore, we define taut on the object-level, representing the
example informally stated at the beginning of this section. (If the latter
is denoted by ϕ, then taut = ϕ̇.)

taut = (trans ∧̇ serial) →̇ ¬̇foo

Interpreting taut , that is βδι-normalizing [[taut]], results in ‘taut with-
out dots’.

blinc.tex; 19/09/2002; 16:01; p.18

19

We declare em : EM , ac : AC S and use 0 to witness the non-
emptiness of N. We reduce the goal [[taut]] using the result of Section 3,
to the goal [[(mcf taut)]]. If we prove this latter goal, say by a term d,
then

(mcf sound em ac 0 taut d) : [[taut]]

We compute the minimal clausal form (Definition 4.1) of taut by βδι-
normalizing the goal [[(mcf taut)]].

[[(mcf taut)]] =βδι

(Πx, y, z :N. x < y → y < z → (x < z → ⊥)→ ⊥)
→ (Πx :N. (x < (f 1 0 1 x)→ ⊥)→ ⊥)
→ (Πx :N. (x < (f 2 0 1 x)→ ⊥)→ ((P x)→ ⊥)→ ⊥)
→ (Πx :N. ((P (f 2 0 1 x))→ ⊥)→ ((P x)→ ⊥)→ ⊥)
→ (Πx, y :N. (P x)→ x < y → (P y)→ ⊥)
→ ⊥

This is the minimal clausal form of the original goal. We refrained from
exhibiting its proof d. All files can be found in [9].

6.2. A medium scale example: Newman’s Lemma

A medium scale example is provided by the automation of Huet’s [11]
proof of Newman’s Lemma (NL), a well known result in rewriting the-
ory stating that a rewriting relation is confluent whenever it is both
locally confluent and terminating. For a precise analysis we have to
introduce some notions from rewriting theory.

DEFINITION 6.1. Let → be a binary relation on a set S and let →→
be the reflexive-transitive closure of →.

1. We say that x is confluent if, for all x1, x2 ∈ S, x →→ x1 and
x→→ x2 implies that x1 →→ y and x2 →→ y for some y ∈ S. In other
words, any two diverging reductions starting from x can always be
brought together. We say that → is confluent if every x ∈ S is
confluent.

2. We say that x is locally confluent if, for all x1, x2, x → x1 and
x → x2 implies that x1 →→ y and x2 →→ y for some y ∈ S. Here
the ‘locality’ lies in the fact that only diverging one-step reductions
can be brought together. We say that → is locally confluent if every
x ∈ S is locally confluent.

3. We say that → is terminating if there is no infinite sequence x0 →
x1 → x2 → · · · in S.

blinc.tex; 19/09/2002; 16:01; p.19

20

NL provides an interesting test case for several reasons. First, it con-
sists of a mix of first-order and higher-order aspects. The higher-order
aspects are the transitive closure and the termination. This makes the
identification of the first-order combinatorial core of the proof non-
trivial. Second, the proof of Newman’s Lemma is not completely trivial,
as experienced by everybody seeing it for the first time. It will turn out
to be a reasoning step that is just on the edge of what can be achieved
by current theorem provers. As such the successful automation is very
sensitive to the exact formalization of the problem, the settings of the
theorem prover and the machine on which one runs the proof. We admit
that this is in some sense a disadvantage for an example. However, the
aim of this example is to explore the borders of what is possible, and
not to show-off how great the method is. It is to be expected that, with
faster machines and better strategies for proof search, the automatic
solution of problems of the size of NL will soon become routine. More-
over, the inductive approach to termination and the speed-up obtained
by removing superfluous symmetries have a generality that goes beyond
NL.

The classical proof of NL is by contradiction. Assume there is an x
which is not confluent, that is, there exist x1, x2 ∈ S such that x→→ x1

and x →→ x2 and no y ∈ S exists such that x1 →→ y and x2 →→ y.
Since → is terminating, we may assume without loss of generality that
x is an →-maximal3 non-confluent element. If not, there would be a
non-confluent x′ with x → x′, and if that x′ is not →-maximal, then
there would be a non-confluent x′′ with x′ → x′′ and so on, leading to
a sequence contradicting the termination of →. This part is difficult to
explain, it actually uses the Axiom of Dependent Choice (DC). From
the fact that x1 and x2 have no common reduct, it follows that we do
not have x = x1 or x = x2, so there must exist intermediate points i1, i2
such that x→ i1 →→ x1 and x→ i2 →→ x2. To x and these intermediate
points we can apply local confluence to obtain a common reduct of the
intermediate points. By the maximality of x we can then complete the
diagram in Figure 2 below. This is a contradiction and hence NL has
been proved.

The formalization of the classical argument requires higher-order
logic (to express transitive closure) and three-sorted first-order logic:
one sort for the set S, one for the natural numbers and one for infinite
sequences of elements of S. An important improvement is obtained by
taking the constructive reformulation of NL as point of departure. In
this formulation the infinite sequences such as used in the definition

3 If the transitive closure of→ is viewed as a greater than ordering, then it would
be natural to speak of →-minimal instead.

blinc.tex; 19/09/2002; 16:01; p.20

21

x //

��

i1 // //

����

x1

����
i2 // //

����

· // //

local confluence

·

����
x2 // // ·

Figure 2. Diagram chase for confluence

of termination and in DC are avoided by using an inductively defined
predicate called accessibility.

DEFINITION 6.2. Let → be a binary relation on a set S. The unary
predicate Acc→ is inductively defined as follows: if Acc→(y) for all
y ∈ S such that x → y, then Acc→(x). By Acc→(S) we express that
Acc→(x) for all x ∈ S.

In other words, all →-maximal elements are accessible, as well as all
elements whose successors are all →-maximal, and so on. An infinite
sequence x0 → x1 → x2 → · · · consists of elements that are not
accessible. The reason is that they can be left out without violating
the defining rule for Acc. In fact one can prove by classical logic and
DC that→ is terminating if and only if all elements of S are accessible,
that is, if Acc→(S).

The advantages of using Acc→(S) instead of the traditional formu-
lation of termination are three-fold.

− DC is not needed anymore in the proof of NL.

− The sorts for the natural numbers and for infinite sequences be-
come obsolete.

− We can reason by induction on Acc→(x), the induction step being
first-order.

These reasons above should motivate the following reformulation of NL:
if Acc→(S), then confluence of → follows from local confluence.

We could have added a fourth advantage to the three advantages
above, namely that the proof of NL in the formulation with the ac-
cessibility predicate can be done constructively. This would require

blinc.tex; 19/09/2002; 16:01; p.21

22

resolution to be used bottom-up, in a forward reasoning style. We have
not been able to generate a proof in this way. Instead, we had to appeal
to classical logic by using resolution as a refutation procedure. The
constructive proof is not more complicated than the classical one, it is
actually shorter, but the relevant point here is that the search space
for finding the proof in a bottom-up way appears to be larger than
that for finding a proof in a more top-down, goal-oriented, way. We
consider the situation in which there is a constructive proof, but for
ill-understood reasons of efficiency only a classical proof can be found,
as unsatisfactory.

We will sketch the constructive argument. By induction one proves
that every accessible x is confluent. By Acc→(S) we then obtain conflu-
ence. The induction step we have to prove is that confluence is preserved
under the inductive definition of Acc→. In other words, we have to
prove that x is confluent if the induction hypothesis (IH) holds, that
is, every y such that x→ y is confluent. Assume IH and let x1, x2 ∈ S
such that x →→ x1 and x →→ x2. If x = x1 or x = x2 then x2 or x1 is a
common reduct of x1, x2. Otherwise, actually appealing to the inductive
definition of the reflexive–transitive closure, there exist intermediate
points as in the classical proof above. Now a common reduct can be
obtained in exactly the same way as in the classical proof, with IH
replacing the →-maximality of x. This proves the induction step.

The above proof of the induction step is completely first-order,
provided that we replace the appeal to the inductive definition of →→
by some first-order sentences that trivially follow from the inductive
definition of →→ and are sufficient for the proof.

= is reflexive and symmetric
→→ includes = and → and is transitive
→→ is included in the union of = and →·→→
→ is locally confluent

⇒
confluence
is Acc→-inductive

Here the conclusion that confluence is Acc→-inductive means that for
all x ∈ S confluence of x follows from confluence of all y such that
x→ y. Note that we do not need transitivity of =. Moreover, →·→→ is
the composition of → and →→.

We have formalized in Coq the proof of NL based on the above first-
order tautology, with the intention to delegate the proof of the latter
to a resolution theorem prover in the style of Section 6. The automatic
clausification in Coq was a matter of seconds and resulted in 14 clauses.
Both Otter and Bliksem were slow to refute the 14 clauses (without any
tuning at least half an hour). The best results have been obtained with
ordered hyperresolution in combination with unit-resulting resolution.
The proof found by Otter is quite close to a ‘human’ proof by contra-

blinc.tex; 19/09/2002; 16:01; p.22

23

diction and the diagram chase in Figure 3. Bliksem managed to refute
the corresponding set of clauses and to generate a proof object in the
form of a lambda term. Although this lambda term has a considerable
size (100 KByte), it could be type checked by Coq without any problem
and included in a complete proof of NL in Coq. All files can be found
in [9].

An obvious difficulty for proof search is the symmetry of the for-
mulation of NL. Inspection of the proof shows that it is possible to
distinguish between ‘horizontal’ and ‘vertical’ steps in the formulation
of both confluence and local confluence. This leads to an asymmetrical
version of Newman’s Lemma (aNL), which can be proved by the same
proof with all the steps properly labelled as either ‘horizontal’ or ‘verti-
cal’. NL can easily be recovered from aNL by removing the distinction.
The advantage of the asymmetrical over the symmetrical formulation
is that the search space for the proof is considerably reduced. For
example, in the symmetrical case any step x → y leads to useless
common reducts of y and y, which are avoided in the asymmetrical
case. The asymmetrical analogues of confluence and local confluence
are known in the literature as commutativity and weak commutativity,
respectively.

DEFINITION 6.3. Let→h and→v be binary relations on a set S, with
reflexive-transitive closures →→h and →→v, respectively.

1. We say that x is commutative if, for all x1, x2 ∈ S, x→→h x1 and
x →→v x2 implies that x1 →→v y and x2 →→h y for some y ∈ S. We
say that →h and →v commute if every x ∈ S is commutative.

2. We say that x is weakly commutative if, for all x1, x2 ∈ S, x→h x1

and x →v x2 implies that x1 →→v y and x2 →→h y for some y ∈ S.
We say that →h and →v are commute weakly if every x ∈ S is
weakly commutative.

The precise statement of aNL is that →h and →v commute if they
commute weakly, provided Acc→hv

(S). Here →hv is the union of →h

and →v. A glance at Figure 3 tells us that we need the induction
hypothesis both for i1 with x→h i1 and for i2 with x→v i2.

The proof of aNL follows the pattern of the proof of NL, but is based
on the following first-order tautology:

= is reflexive and symmetric
→→h includes = and →h and is transitive
→→v includes = and →v and is transitive
→→h is included in the union of = and →h·→→h

→→v is included in the union of = and →v·→→v

→h and →v are weakly commutative


⇒ commutativity is

Acc→hv
-inductive

blinc.tex; 19/09/2002; 16:01; p.23

24

x h //

v

��

i1
h // //

v

����

x1

v

����
i2

h // //

v

����

· h // //

weak commutativity

·

v

����
x2

h // // ·

Figure 3. Diagram chase for commutativity

Here the conclusion means that for all x ∈ S commutativity of x follows
from commutativity of all y such that x→h y or x→v y.

We formalized in Coq the proof of aNL based on the above first-
order tautology. Proof search in the asymmetrical case is about two
orders of magnitude faster than in the symmetrical case. Again all files
can be found in [9].

Summarizing, the method can be put to work on medium scale
examples. However, it is obvious that some human intelligence has
been spent on stylizing the proof before it could be automated. The
techniques for proof search should be improved before the method can
be scaled up any further.

Acknowledgements

The authors are indebted to Freek Wiedijk for acting as a wizard in
Ocaml and to an anonymous referee for detailed technical corrections.

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliâtre, E. Giménez,
H. Herbelin, G. Huet, C. Muñez, C. Murthy, C. Parent, C. Paulin-
Mohring, A. Säıbi, B. Werner. The Coq Proof Assistant Ref-
erence Manual, version 6.2.4. INRIA, 1998. Available at:
ftp.inria.fr/INRIA/coq/V6.2.4/doc/Reference-Manual.ps

2. M. Bezem, D. Hendriks and H. de Nivelle. Automated Proof Construction in
Type Theory using Resolution. In D. McAllester (ed.) Proceedings CADE 17,
Lecture Notes in Computer Science 1831, pages 148–163. Springer-Verlag, 2000.

3. www.mpi-sb.mpg.de/~bliksem
4. S. Boutin. Using Reflection to Build Efficient and Certified Decision Proce-

dures. In M. Abadi and T. Ito (eds.) Theoretical Aspects of Computer Software

blinc.tex; 19/09/2002; 16:01; p.24

25

(TACS), Lecture Notes in Computer Science 1281, pages 515–529. Springer
Verlag, 1997.

5. N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation. Indagationes Mathematicae 34, pages
381–392, 1972.

6. B. Günzel. Logik und das Auswahlaxiom. Diplomarbeit, Fakultät für Mathe-
matik und Informatik der Ludwig-Maximilians-Universität München, 2000.

7. D. Hendriks. Clausification of First-Order Formulae, Representation & Cor-
rectness in Type Theory. Master Thesis, Utrecht University, 1998.

8. D. Hendriks. Proof reflection in Coq. Number 28 in Artificial Intelligence
Preprint Series, Dept. of Philosophy, Utrecht University, 2001.

9. www.phil.uu.nl/~hendriks/coq/blinc
10. X. Huang. Translating machine-generated resolution proofs into ND-proofs at

the assertion level. In Proceedings of PRICAI-96, pages 399–410, 1996.
11. G. Huet. Confluent reductions: Abstract properties and applications to term

rewriting systems. Journal of the ACM 27(4), pages 797–821, 1980.
12. J. Hurd. Integrating Gandalf and HOL. In Proceedings TPHOL’s 99, Lecture

Notes in Computer Science 1690, pages 311–321. Springer-Verlag, 1999.
13. W. McCune and O. Shumsky. IVY: A preprocessor and proof checker for first-

order logic. Preprint ANL/MCS-P775-0899, Argonne National Laboratory,
Argonne IL, 1999.

14. G. Nadathur and D. Miller. Higher-order logic programming. In D. Gabbay
e.a. (eds.) Handbook of Logic in Artificial Intelligence, Vol. 5, pages. 499–590.
Clarendon Press, Oxford, 1998.

15. Q.-H. Nguyen. Certifying term rewriting proofs in ELAN. Electronic Notes in
Theoretical Computer Science, Vol. 59.4, 21 pages. Elsevier, 2001.

16. www.ags.uni-sb.de/~omega/
17. F. Pfenning. Analytic and non-analytic proofs. In Proceedings CADE 7, Lecture

Notes in Computer Science 170, pages 394–413. Springer-Verlag, 1984.
18. H. Schwichtenberg. Logic and the Axiom of Choice. In Logic Colloquium 78,

pages 351-356.
19. G. Sutcliffe. The CADE-16 ATP System Competition. Journal of Automated

Reasoning 24, pages 371–396, 2000.
20. J. Smith and T. Tammet. Optimized encodings of fragments of type theory in

first-order logic. In Proceedings Types 95, Lecture Notes in Computer Science
1158, pages 265–287. Springer-Verlag, 1995.

blinc.tex; 19/09/2002; 16:01; p.25

blinc.tex; 19/09/2002; 16:01; p.26

