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Abstract

This paper presents Game Theoretical Semantics (GTS) and Inde-
pendence Friendly logic (IF-logic), as introduced by Jaakko Hintikka
in [Hin96], on a basic level. We describe some aspects of IF-logic with
GTS: the expressive power coincides with �1

1, the law of the excluded
middle does not hold, there are at least two candidates for the notion
of equivalence.

We aim to stay as close to Hintikka's de�nitions as possible. Based
on these de�nitions, we show that the syntax of IF-logic should be
extended to ensure negation normal form, we discuss an attempt to
de�ne implication in IF-logic, and we argue that the real basis for the
notion of truth in IF-logic seems to be Skolemization rather than the
game theoretical concepts of GTS.

1 Introduction

In his book The Principles of Mathematics Revisited ([Hin96]), Hintikka
aims to do what Russell did almost a century ago in The Principles of

Mathematics (1903), which Hintikka paraphrases as follows: \to examine
the conceptual problems that arise in the foundations of logic and mathe-
matics, expose the di�culties in the earlier views, and by so doing try to
�nd guidelines for the right approach." ([Hin96], p. vii)
The book can be criticized for its strong claims, which are not always sup-
ported by su�cient evidence, and for its misprints and errors. In fact, this
is what happens in most of the reviews that have appeared.1 But still, the
basic ideas deserve further investigation.

Hintikka proposes a new logic to be used for the Foundations of Mathemat-
ics: (Information) Independence Friendly logic, IF-logic for short. In the
book, he claims the following properties for IF-logic:

� it is not compositional (see, for example, pp. 106-112);

1The most critical example is probably [Ten98].
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� the law of the excluded middle does not hold (e.g. p. 132);

� every IF-�rst order formula can be translated into a (classical) �1
1-

formula and vice versa (pp. 61-63);

� (therefore) a truth predicate can be de�ned on �rst order level (p.
116);

� the compactness theorem, separation theorem (in a strengthened form),
downward L�owenheim-Skolem theorem, and Beth's de�nability theo-
rem all hold (pp. 59-61);

� the class of valid formulas of the new logic is not axiomatizable, al-
though the class of inconsistent formulas is (pp. 66-68).

Hintikka distinguishes three functions for logic: logic as a means of ex-
pressing (mathematical) propositions (`the descriptive function'), logic as
the study of relations of logical consequence (`the deductive function'), and
logic as a medium for axiomatic set theory. Hintikka considers the descrip-
tive function to be the most important for the foundations of mathematics.
Because the expressive power of IF-logic exceeds the expressive power of
classical �rst order logic, Hintikka believes that IF-logic could open new di-
rections in the foundations of mathematics.

This report aims to investigate Hintikka's proposal on a basic level. Before
we discuss some of the claims mentioned above, we will �rst introduce the
two main building blocks of Hintikka's proposal: Game Theoretical Seman-
tics and Independence Friendly logic.

1.1 Preliminary remarks

In this paper `�rst order logical language' means: a �rst order logical lan-
guage containing the connectives `^;_', the quanti�ers `8;9', and a negation
sign `�'. The connective `!' is assumed not to be a primitive connective in
the language; implication should be de�ned in terms of the other connectives
and the negation sign.

The following notational conventions are used. The Greek letters ' and  
are used to indicate �rst order formulas; their capitals � and 	 to indicate
second order formulas. In the examples, P , Q and R are used as predicate
symbols (with no �xed arity), the binary relation symbol `=' is used with the
standard interpretation; c and k are used as individual constants, x; y; z; u; v
as individual variables and f and g as function variables.

Where in this paper the symbol `!' occurs in a second order formula, it is
to be read in the usual de�nition of material implication. Furthermore, in
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second order formulas (which will always be interpreted by `classical' seman-
tics), we will write `x 6= y' rather than `�(x = y)', and use : as negation
symbol rather than `�'.

Recall that a closed formula is called a sentence.

In this paper, we aim to stay close to the ideas as presented in [Hin96]. Some
of the sections in this paper are concluded by one or more comments and
questions concerning these ideas, indicating possible directions for future
research.

2 Game Theoretical Semantics

The game theoretical approach to semantics can be used for a wide range of
logical systems. It has been used since the early 1960's for the semantics of
in�nitary languages, and for the analysis of natural language and dialogue
structures ([HS97], p. 51-52). On a less formal level, the interpretation of
logical formulas as a question-answer game has a long history. A familiar
example from mathematics is the explanation of the notion of continuity of
a function f in x (\if you tell me how close you want f(y) to be to f(x),
then I tell you how close y has to be to x").

Hintikka argues that the combination of game theory and logic is very nat-
ural and even unavoidable.2

2.1 Semantical games

When describing the concepts of Game Theoretical Semantics (GTS), we
will use the following notation: if ' is a (classical) �rst order formula, and
M a model suitable for the language of ', then

� FV (') denotes the set of variables occurring free in ';

� v is a valuation inM if v is a partial function from the set of variables
to Dom(M). For every valuation v in M and a 2 Dom(M), we de�ne
a valuation in M

v[x=a]
d
=

�
v [ fhx; aig if x 62 Dom(v)
(v n fhx; v(x)ig) [ fhx; aig if x 2 Dom(v)

If v is a valuation in M and FV (') � Dom(v), we say that v is a
valuation for ' in M . We use the notation vM' to denote a valuation
for ' inM . However, if it is clear from the context in which model the
values for the free variables are chosen, we write v' rather than vM' .

2See, for example [Hin96], p. 29.
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De�nition 1: semantical games
Given a �rst order formula ', a suitable model M , a valuation v' for � in
M , and k 2 f0; 1g, we associate a 2-player semantical game, with players
P0 and P1:3

GM ('; v'; k):

The game is played by the following rules:

rule if ' of the form move is choice of by player next stage

(8) 8x[ ] a 2 Dom(M) P1�k GM ( ; v'[x=a]; k)
(9) 9x[ ] a 2 Dom(M) Pk GM ( ; v'[x=a]; k)
(^)  1 ^  2 i 2 f1; 2g P1�k GM ( i; v'; k)
(_)  1 _  2 i 2 f1; 2g Pk GM ( i; v'; k)
(�) � (no move) � GM ( ; v'; 1� k)
(At) atomic formula (no move) � (game over)

Pk wins if (M; v') j= ';
P1�k wins otherwise

If ' is a sentence (and hence: FV (') = ;), we abbreviate GM('; ;; 1) to

GM (')

and call this: the semantical game for ' in M . /

We will use the rest of this section to give an informal explanation of this
de�nition.

In GM('; v'; k), the parameter k determines the roles of the players (with
respect to '): Pk has the role of `Veri�er' with respect to ', which means
he plays to show that

(M;v') j= ';

while P1�k has the role of `Falsi�er' with respect to ', and plays to show
that

(M;v') 6j= ';

The player in the role of Veri�er makes the moves associated with 9 or _,
the player in the role of Falsi�er makes the moves associated with 8 or ^.

3In his appendix to [Hin96] (p. 255), Gabriel Sandu calls the two players Nature and
Myself. We choose the more neutral names P0 and P1, in order to make it easier to indicate
the respective roles of the players during the game.
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We will usually discuss the semantical game GM (') = GM ('; ;; 1) for some
speci�c �rst order sentence ' and appropriate model M . In this situation,
P1 is called the Veri�er (with respect to '), and player P0 the Falsi�er.
After each stage of a game GM(') for a given sentence ' and an appropriate
model M , this game continues as a game GM ( ; v ; k) for some subformula
 of ', and valuation v for  in M .
If  is atomic, the game ends and the winner is determined on the basis of
the truth value of  in M with the valuation v .

4

If during the game a negation sign (`�') is encountered, none of the players
makes a move. Instead, the roles of the players are exchanged with respect
to the subformula of ' behind the negation sign.5

Note that two successive changes of roles do not a�ect the course of the
game: a game of the form GM (��'; v'; k) continues as GM (�'; v'; 1� k),
which in turn continues as GM('; v'; 1� (1� k)) = GM('; v'; k). We con-
clude that in GTS like in classical logic, but unlike in intuitionistic logic,
double negation cancels out.

In [Hin98], a di�erent treatment for negation in GTS is proposed:

\Negation can be dealt with by pushing the negation signs as
deep into the formulas as they can go". ([Hin98], p. 309, item
(3.9))

In other words, before the start of the semantical game for a formula ', we
should rewrite the formula into negation normal form, i.e. with the negation
signs pre�xed to atomic formulas only. This leads us to the question whether
(with our de�nition of the negation rule) the games for ' and for its negation
normal form correspond in some sense.
In the standard semantics of �rst order logic, De Morgan's laws enable us to
translate an arbitrary formula into an equivalent formula in negation normal
form:6

�8x[ ] � 9x[� ]

�9x[ ] � 8x[� ]

�( 1 ^  2) � � 1_ � 2

�( 1 _  2) � � 1^ � 2

4Note that a semantical game for a traditional �rst order formula is always won by
one of the players: after �nitely many moves an atomic formula is reached, and given the
valuation determined by the moves of the players, the truth value of this atomic formula
in the model is �xed.

5The role each player has with respect to ' itself remains the same, although the role
may be changed with respect to a subformula of ' during the game.

6Note that the �rst rule is intuitionistically invalid. In intuitionistic logic not every
formula has an equivalent in negation normal form.
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It turns out that these laws also hold in GTS, because the changes of the
quanti�ers and the connectives correspond precisely to the changes of the
roles of the players.7 To see this, compare for instance GM(�8x[ ]; v; k)
and GM(9x[� ]; v; k), where v is some �xed valuation in M with domain
containing FV ( ) n fxg, and k 2 f0; 1g:

GM (�8x[ ]; v; k) GM (9x[� ]; v; k) :
+ Pk chooses a 2 Dom(M)
GM (8x[ ]; v; 1� k) : +
P1�(1�k) = Pk chooses a 2 Dom(M) GM (� ; v[x=a]; k)
+ +
GM ( ; v[x=a]; 1� k) GM ( ; v[x=a]; 1� k)

The �rst two stages of both games are similar: a domain element is chosen
by player Pk and the roles of the players are exchanged. After that, the
games continue in exactly the same way.

This example illustrates how writing a �rst order formula into negation nor-
mal form complies with the de�nition of the negation rule as the change of
roles of the players. Hence, the alternative treatment of negation as pre-
scribed in [Hin98] does not lead to di�erent semantical games.

Remarks and further investigation:

� We are aware of the fact that our `de�nition' of semantical games, does not thor-
oughly de�ne the concept of semantical game as a mathematical object. It is rather
a description and it heavily depends on intuitions on what constitutes a game in
general: players, rules, moves, winning conditions etc.

A prerequisite for use of GTS in the foundations of mathematics is to choose a
formalization of the concept of `game', in which framework the concept of `seman-
tical game' can be formulated. The lack of a formal framework shows itself to be
a particularly big handicap when we attempt to `de�ne' the concept of strategy in
section 2.3.

� As demonstrated, the semantical games for di�erent formulas like � 8x[ ] and
9x[� ] are very similar. We tend to talk about these games as being `the same
game'. We could try to formalize this intuitive notion by de�ning an equivalence
relation on the class of semantical games.

2.2 Tree representation

When discussing the semantical game for a formula in a given model, it
can be useful to have an overview of the di�erent possible courses of the
game. For this purpose, we associate with a semantical game GM('; v'; k)
a labeled tree

TM ['; v'; k];

7See also [Hin96], p. 133-134.
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which we de�ne inductively below.

De�nition 2: tree representation
Let ', M , v' and k be as in de�nition 1. We distinguish the following cases:

(At) ' is an atomic formula: then TM ['; v'; k] is de�ned by

8>>>>>>>>>><
>>>>>>>>>>:

� if P1 wins, i.e.
k = 1 and (M;v') j= '
or
k = 0 and (M;v') 6j= '

� if P0 wins, i.e.
k = 1 and (M;v') 6j= '
or
k = 0 and (M;v') j= '

(�) ' =� for some formula  : then TM ['; v'; k] is de�ned by

�

TM [ ; v'; 1� k]

(_) ' =  1 _  2 for formulas  1 and  2: then, if k = 1, TM ['; v'; k] is
de�ned by

�

L R

TM [ 1; v'; k] TM [ 2; v'; k]

If k = 0, the tree TM ['; v'; k] is de�ned similarly, except that the top
node is a circle (�) instead of a bullet.

(^) ' =  1 ^  2 for formulas  1 and  2: then, if k = 1, TM ['; v'; k] is
de�ned by

�

L R

TM [ 1; v'; k] TM [ 2; v'; k]

If k = 0, the tree TM ['; v'; k] is de�ned similarly, except that the top
node is a bullet (�) instead of a circle.
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(9) ' = 9x[ ] for some formula  : then, if k = 1, TM ['; v'; k] is de�ned
by

�

a

TM [ ;v'[x=a]; k]

b

TM [ ; v'[x=b]; k]

c
: : :

: : :

with one branch for every a 2 Dom(M).8

If k = 0, the tree TM ['; v'; k] is de�ned similarly, except that the top
node is a circle (�) instead of a bullet.

(8) ' = 8x[ ] for some formula  : then, if k = 1, TM ['; v'; k] is de�ned
by

�

a

TM [ ;v'[x=a]; k]

b

TM [ ; v'[x=b]; k]

c
: : :

: : :

with one branch for every a 2 Dom(M).

If k = 0, the tree TM ['; v'; k] is de�ned similarly, except that the top
node is a bullet (�) instead of a circle.

If ' is a sentence and M a suitable model for ', we will write TM ['] for
TM ['; ;; 1]. /

If we call the �-nodes 1-nodes, and the �-nodes 0-nodes, we can formulate
the following claim for our tree representation of semantical games: the k-
nodes correspond to the stages in GM(') where Pk makes a move, and the
k-leafs to the winning end positions for Pk in GM(').9

As an example, in �gure 1 the tree diagram is drawn corresponding to
the semantical game for ' = 8x[P (x)]_ � 8x[P (x)] in the model M =
hf0; 1; 2g; P 7! \even"i.

8Hence, if Dom(M) is uncountable, TM ['; v'; k] has uncountably many branches.
9It does not seem hard to prove this property, but it does require a more formal

approach to game theoretical concepts like `move', or `run of a game' than we provide in
this paper.
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�

L R

�

�

� � �
0 1 2

�

�

� � �
0 1 2

Figure 1: game-tree for GM (8x[P (x)]_�8x[P (x)])

2.3 Truth in GTS

As intended, the tree representation de�ned in the previous section is an
extensive one: it shows all the possible courses of a semantical game in a
given model. But not all courses will be of interest for the players, assuming
each player plays to win. This is where the notion of strategy appears on
the scene.

Intuitively, a strategy is a method prescribing what to do in order to reach
a goal. A standard game theoretical de�nition does not exist. Hintikka
says the following about his interpretation ([Hin96], p. 27): \In my sense, a
strategy for a player is a rule that determines which move that player should
make in any possible situation that can come up in the course of the play".
For the time being, to stay close to this statement, we de�ne the notion of
strategy as follows:10

De�nition 3: strategies
Let ' be a �rst order sentence, and M a model suitable for the language of
'. A strategy-function for a move of player Pk in the game GM(') is
a function f , whose arguments are the values for variables of ', that were
previously chosen by P1�k. If the move is induced by a connective (_ or
^), f ranges over f1; 2g; otherwise, if the move is induced by a quanti�er, f
ranges over Dom(M).
A strategy for player Pk in GM (') is a �nite set of strategy-functions
for Pk, with a �xed bijective correspondence to the moves Pk possibly has
to make in GM (').11

A strategy for player Pk in GM(') is called winning if Pk wins every run of
GM(') by making the occurring moves as prescribed by the corresponding
strategy-function in the strategy. /

10In his examples, Hintikka only treats strategies for the player in the role of Veri�er.
We don't see any objection however to treat strategies for the player in the role of Falsi�er
uniformly.

11In other words: for each move Pk possibly has to make in GM ('), a strategy-function
is available, and Pk knows which function should be applied in which move. Note that,
as there are only �nitely many quanti�ers and connectives in a �rst order formula, the
number of moves for both players is �nite as well.
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In section 5.3, we come back to Hintikka's concept of strategy and argue that
it seems to be more closely related to the logical notion of Skolemization12

than to our intuitions about playing games.

The notion of winning strategy is the basis for the de�nition of truth in
game theoretical semantics:

De�nition 4: truth and falsity in GTS
If ' is a �rst order sentence and M a model suitable for the language of ',
then13

(t) ' is true in M if and only if there exists a winning strategy for the
Veri�er in GM(');

(f) ' is false in M if and only if there exists a winning strategy for the
Falsi�er in GM(').

/

Combining this de�nition with the de�nition of strategy, we see that the
truth (and falsity) condition for a sentence is a statement containing
existential quanti�cations over functions. This will be discussed in more
detail in sections 4.1 and 5.3.
It is important to notice that, in general, the non-existence of a winning
strategy for one player in a 2-player game, does not automatically imply
the existence of a winning strategy for the other player. We will return to
this interesting aspect of the game-theoretical truth de�nition in section 4.3.

Remarks and further investigation:

� We would like to give a formal de�nition of strategy, making the number of strategy-
functions for each player explicit in terms of the syntax of ', as well as the argu-
ments for each strategy-function.

� This is needed to be able to give a direct formal proof that game-theoretical truth
and truth in the classical sense coincide for standard �rst order formulas.

� Should a previous choice by the opponent concerning a connective (^ or _) be an
argument in a strategy-function? One could say that a connective-move determines
which strategy-functions will be used in the rest of the game, rather than being an
argument for them. Hintikka is not explicit about this (and avoids the problem by
mainly considering sentences in prenex normal form).

12See section 4.1.
13Throughout this paper, we use this typography to distinguish the truth value of a

formula in the game theoretical sense from the truth value in the traditional (Tarskian)
sense.
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2.4 Example: 8x9y[x 6= y]

To illustrate the notions introduced above, we consider the semantical game
for a simple classical �rst order sentence on two di�erent models. Let '
be the formula 8x9y[�(x = y)]. We draw the game tree TM ['] for M1 =
hf0; 1g;=i and M2 = hf0g;=i:

�

0 1

�

0 1

� �

� �

�

0 1

� �

� �

M1 = hf0; 1g;=i

�

0

�

0

�

�

M2 = hf0g;=i

Figure 2: TM [8x9y[�(x = y)]] for two di�erent models M .

In the latter case, a one element model, the formula is false: the only pos-
sible course of the game ends in a win for the Falsi�er, P0. In the �rst case
the formula is true: in the second and last move of the game the Veri�er,
P1, can choose a value for y di�erent from the value for x previously chosen
by the Falsi�er, and thereby win the game.

For arbitrary models, using the notions of the previous section, the truth
condition for this formula can be formulated as the classical second order
formula:

9f8x[x 6= f(x)]:

On the model hf0; 1g;=i, the (only14) winning strategy for the Veri�er can
be expressed as the function f : f0; 1g ! f0; 1g, de�ned by f(0) = 1 and
f(1) = 0.
It is crucial that the Veri�er is allowed to use the value assigned to x,
otherwise the function f is unusable as a method prescribing a choice. In
other words: the game has to be one of perfect information. Games for
classical �rst order formulas are games of perfect information, contrary to
games for Hintikka's (Information) Independence Friendly formulas. These
will be introduced in the following chapter.

3 IF-logic

3.1 \Frege's fallacy"

In classical logic (as introduced in Frege's Begri�sschrift), the scope of a
quanti�er is de�ned as follows: if 8x[ ] appears as a (sub)formula, then  

14In a three-element model we would have several winning strategies for the Veri�er.
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is called the scope of 8x, and similarly for 9. (See, for instance: [Ham88], p.
54.)

In classical logic, scopes are always either nested or non-overlapping, as for
example the scopes of 8x and 8z in the following two formulas respectively:

8x9y[ 1(x; y) ^ 8z9u[ 2(z; u)]];

8x9y[ 1(x; y)] ^ 8z9u[ 2(z; u)]:

This results in a restriction of the expressive power of the traditional �rst
order language, as will be shown in the next paragraph. It is exactly this
restriction, referred to by Hintikka as Frege's fallacy, that IF-logic aims to
withdraw.

Consider the �rst-order sentence

8x9y8z9u[Q(x; y; z; u)];

where Q is a 4-place predicate symbol of the logical language. We can
use the process of Skolemization (which will be described in more detail in
section 4.1) to translate this �rst order sentence into a second order formula
(introducing the function symbols f and g for the Skolem-functions):

9f9g8x8z[Q(x; f(x); z; g(x; z))]:

We will call this second order translation the Skolemization of the �rst
order formula.15

In the latter formula, the scopes of the two universal quanti�ers become
explicit: for instance, the function symbol f , representing the choice of y,
does not have z as an argument, corresponding to the fact that 9y was no
part of the scope of 8z.

Conversely, considering the similar second order formula

9f9g8x8z[Q(x; f(x); z; g(z))]; (1)

the question arises whether this formula is the Skolemization of some �rst
order formula. In classical logic, the answer is negative, because writing

15Note that to speak of a second order equivalent of the �rst order formula, we need the
axiom of choice (to assert that the truth of the �rst order formula implies the truth of its
Skolemization). Without AC, we can prove that a �rst order formula is contradictory if
and only if its Skolemization is (see [Ham88], p. 71). In other words: without AC we can
prove that a �rst order formula and its Skolemization are equisatis�able, with AC we can
prove them to be equivalent.
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down the two universal quanti�ers linearly, their scopes cannot be otherwise
than nested. To solve this, we could allow a two-dimensional notation:16

8x9y
8z9u

�
[Q(x; y; z; u)]

This 2 � 2-array of quanti�ers has been introduced by Henkin in [Hen61],
and is usually referred to as the Henkin-quanti�er.17

Hintikka generalizes this idea by introducing a notation, that not only allows
to liberate quanti�ers from the scope of other quanti�ers, but does the same
for the connectives.
In a game theoretical perspective, we could describe the �rst order version
we have in mind for formula (1) as an imperfect information game: the value
for the second position in Q can be based on the value for x, but has to be
independent of the value of z, and vice versa for the fourth position. Our
classical �rst order logic however is equipped for perfect information games
only. The slash notation, that will be introduced in the following section,
frees us from this restriction.

The resulting logic is called: (Information) Independence Friendly logic, or
IF-logic for short.

3.2 Syntax for IF-logic

In [Hin96], the syntax for IF-�rst order formulas is given (p. 52) as a proce-
dure to build them from classical �rst order sentences. We will adopt Wilfrid
Hodges's notation and write (: : : =x) instead of (: : : =8x) ([Hod97], p. 551).

De�nition 5: IF-formulas
Let ' be a formula of ordinary �rst order logic in negation normal form. A
formula of IF-�rst order logic is obtained from ' by any �nite number of
the following steps:

� If 9y[ ] occurs in ' within the scope of a number of universal quanti-
�ers which include 8x1;8x2; ::: then it may be replaced by:

(9y=x1; x2; :::)[']

16In the prenex form of the usual linear notation, the quanti�ers are linearly ordered.
In a two dimensional notation, we can express every partial ordering of quanti�ers. It is
usually referred to as branching quanti�cation.

17By a result from Ehrenfeucht quoted in the same paper ([Hen61], pp. 182), we know
that the Henkin-quanti�er is not expressible in classical �rst order logic, and that a logic
enriched with the Henkin-quanti�er is not axiomatizable.
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� If  1 _ 2 occurs in ' within the scope of a number of universal quan-
ti�ers which include 8x1;8x2; ::: then it may be replaced by:

 1(_=x1; x2; :::) 2

/

The objective of this notation is to be able to free existential quanti�ers and
disjunctions from the scope of universal quanti�ers. If 8x[ ] occurs as a
(sub)formula in IF-logic, the scope of 8x is no longer simply  : the scope of
8x contains only the existential quanti�ers and disjunctions in  for which
the variable x is not `slashed out'.

In terms of game theoretical semantics, the slash must be read as follows:
the player who makes the move associated with the 9-quanti�er or the _-
connective, is not allowed to use the chosen values for the variables under
the slash. In other words: a strategy function for that move does not have
the values of the variables under the slash as arguments. Semantical games
on IF-formulas are, in contrast to semantical games for classical �rst order
formulas, games of imperfect information.
To illustrate that this is a signi�cant di�erence, consider the IF-formula  :

8x9y=x[�(x = y)]:

We can build  from the classical �rst order formula ' in section 2.4. The
strategy f that was winning for the Veri�er in the game GM(') on the
two-element model is no longer allowed in the semantical game for the IF-
formula  : the Veri�er's strategy-function for y can't have x as an argument.
In fact, a strategy for the Veri�er in the game for  must be a function with
no arguments, i.e. a constant. The truth condition for  in GTS is the
(classical) formula

9c8x[x 6= c];

which does not hold (in the classical sense) in any model. Hence,  is not
true in any model.18

Hintikka de�nes the slash notation for formulas in negation normal form19

only and claims that this is no restriction because \rules for transforming
formulas into negation normal form and out are the same in IF �rst order
logic as in its traditional variant" ([Hin96], p. 52). In section 5.1, we show

18In fact, in models containing more than one element,  is not false either; see
section 4.3.

19Cf. section 2.1, page 6.
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that this claim conicts with his de�nition of the slash-notation for 9 an _
only, and that this problem is solved by extending the slash-notation to 8
and ^ as well.
For the time being, we work with the de�nition of IF-formulas given above.
The negation normal form of the IF-sentences secures that 9- and _-moves
are always made by the (initial) Veri�er, P1. The negation normal form is
also needed for the Skolemization procedure in section 4.1.

Remarks and further investigation:

� A de�nition for the syntax of IF-formulas that does not use classical �rst order
formulas, seems preferable: it would be more direct, and could possibly facilitate
a formal de�nition of scope in IF-logic. Note also that a new kind of free variables
emerges in subformulas of the IF-formulas as de�ned by Hintikka: the unbound
variables occurring under a slash of an existential quanti�er, that do not occur in
the scope of the existential quanti�er, as for example the variable y in 9x=y[P (x)].
(Similarly: the unbound variables occurring under the slash of a disjunction, but
not in the subformulas connected by the disjunction.)

3.3 An example of the expressive power of IF-logic: in�nity

In classical logic there is a number of properties of a model that we cannot
express on a �rst order level (provided we use nothing more than the logical
constants, variables and equality). For example: the equicardinality of two
predicates, the non well-foundedness of an ordering, the countability or the
in�nity of the domain of a model.
These properties can be expressed by a second order formula, using equality
and existential quanti�cation over functions. This is exactly what Hintikka
claims to have incorporated on a �rst order level with IF-logic, as we will
see in section 4.2.

As an example we give an IF-formula that expresses the in�nity of a model
M , i.e. the Veri�er has a winning strategy for the game on M if and only if
the domain is in�nite. The domain of a model is in�nite exactly if there is
an injective, non-surjective function from the domain to itself:

9f9y8x18x2[f(x1) 6= y ^ (f(x1) = f(x2)! x1 = x2)]:

This is expressed by the following IF-�rst order formula:

9y8x18x2(9y1=x2)(9y2=x1)[(x1 = x2 ! y1 = y2) ^ (y1 6= y)^
(y1 = y2 ! x1 = x2)]:

(2)

This formula should be understood as follows: by the use of the slash, the
choice by the Veri�er for the value of yi is only allowed to depend on the
value chosen by the Falsi�er for xi. Hence, the strategy functions fi for these
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two moves will both be unary functions, just like the injective, non-surjective
function whose existence we aim to assert with formula (2).
Indeed, if we skolemize this formula {as will be explained in section 4.1{ we
get its truth condition:

9f19f29c8x18x2[(x1 = x2 ! f1(x1) = f2(x2)) ^ (f1(x1) 6= c)

^(f1(x1) = f2(x2)! x1 = x2)]:

The �rst conjunct forces f1 and f2 to denote the same function f ; we need
the two function symbols fi because one Skolemfunction cannot occur with
di�erent sequences of arguments (x1 and x2 in this example).
The last conjunct expresses the injectivity of f . Formula (2) is an improved
(the intended?) version of the incorrect formulas Hintikka gives on pages 64
and 187 of [Hin96].

In sections 4.1 and 4.2 we will describe the procedures that we applied here
to translate IF-�rst order formulas into (classical) existential second order
formulas (�1

1), and vice versa.

Remarks and further investigation:

� This was an example using the representation of a Henkin-quanti�er in IF-logic.20

It seems harder to �nd a useful example in which a slashed _-sign is used.

4 Properties of the combination GTS-IF logic

4.1 Skolemization

Recall that a \�1
1-sentence has the form of a sequence of second order exis-

tential quanti�ers followed by a �rst order formula". ([Hin96], p. 61)

Every IF-�rst order formula can be translated into a �1
1-formula that ex-

presses its truth condition. For this, we will generalize the procedure of
Skolemization21 in order to make it applicable for IF-logic. We write it out
informally but in some detail, because of its central position in Hintikka's
arguments.

Skolemization for classical �rst order formulas formalizes the following idea:
if for all x1; : : : ; xk at least one y exists such that some relation holds on
(x1; : : : ; xk; y), then there exists a function that assigns to each k-tuple

20In fact, the capacity of the Henkin-quanti�er to express in�nity proves that the
Henkin-quanti�er is not �rst order expressible; cf. footnote on page 13.

21See for example [Ham88](pp. 70-72).
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(x1; : : : ; xk) one such y. As remarked in the footnote on page 12, this is
justi�ed by the axiom of choice.
Following this idea, we rewrite a �rst order sentence in negation normal
form into a �1

1-sentence as follows: if 9y[ ] is a subformula of a sentence
', that occurs within the scope of the universal quanti�ers 8x1; : : : ;8xk, we
choose a new (k-ary) function symbol f , delete the existential quanti�er 9y,
replace all occurrences of y in  by f(x1; : : : ; xk), and add the second order
quanti�cation 9f as �rst quanti�er to '. By iteration, we can eliminate
all the original �rst order 9-quanti�ers, and obtain a �1

1-formula � of the
following form:

9f1 : : : 9fl';

where ' is a �rst order formula without existential quanti�cation, and
in which the function symbols f1; : : : ; fl occur with the appropriate argu-
ments.22

This procedure can be applied to IF-�rst order sentences as well. An exis-
tential quanti�cation of the form (9y=xi) is excluded from the scope of 8xi,
and hence xi will not be an argument of the Skolem function we introduce.
For example:

8x18x29y[ (x1; x2; y)]
Skolem
9 9 K 9f8x18x2[ (x1; x2; f(x1; x2))]

and:

8x18x2(9y=x2)[ (x1; x2; y)]
Skolem
9 9 K 9f8x18x2[ (x1; x2; f(x1))]:

In IF-logic the scope of universal quanti�ers over disjunctions is also relevant.
Hence, the procedure has to be generalized to handle the disjunctions.
If in a sentence ' an _-connective occurs under the scope of 8x1; : : : ;8xk,
then a choice for the left- or right hand side is made (by the Veri�er) de-
pending on the chosen values (by the Falsi�er) for x1; : : : ; xk.
We will translate this decision with a new k-ary function symbol fi, having
x1; : : : ; xk as arguments and, let's say, f0; 1g as range. Then \fi(x1; : : : ; xk) =

22It is fairly possible that an existential quanti�er occurs outside the scope of any uni-
versal quanti�er. In this case, the corresponding Skolem-function will have no arguments
and hence rather be a constant. For notational convenience, we will allow function symbols
to denote constants as 0-ary functions.
Another remark to be made is that the order of elimination of the �rst order existential

quanti�cations in ', determines the order of the corresponding second order existential
quanti�cations in �. A di�erent order of these second order quanti�cations results in an
equivalent second order formula. To make the procedure deterministic, we could introduce
a convention, e.g. to eliminate the �rst order existential quanti�ers from left to right.
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0" will indicate a choice for the left-hand side, and \fi(x1; : : : ; xk) = 1" a
choice for the right-hand side.23

As with the existential quanti�ers, the use of the slash notation for _ in IF-
logic will not change the translation procedure. Variables occurring under
the slash will not occur as arguments of the (generalized) Skolem-function.
The following example of a simple (IF-)sentence should indicate how the
Skolem-procedure for disjunction works:

8x18x2[ 1(x1; x2)(_=x1) 2(x1; x2)]

becomes

9f8x18x2[(f(x2) = 0!  1(x1; x2)) ^ (f(x2) = 1!  2(x1; x2))]:

With the generalized Skolemization procedure, we can work through an IF-
�rst order sentence ' until all existential quanti�cations and all disjunctions
are translated in terms of Skolem-functions. The result will be a �1

1-sentence
� with one function symbol for every existential quanti�er or disjunction of
the original formula, i.e. with one function symbol for each move of the
Veri�er. The arguments of those functions reect the moves of the Falsi�er
on which he can base his choice.
This observation shows how Skolem functions correspond with Hintikka's
notion of strategy24: � can be read as the truth condition for the original
�rst order formula. This implies that in IF-logic the second order translation
is equivalent to the �rst order original. In other words: the axiom of choice
is incorporated in IF-logic.25

4.2 �1
1 translated to IF-�rst order

We have just seen how we can treat IF-�rst order logic as part of �1
1. In

this section we demonstrate Hintikka's procedure to translate a �1
1-sentence

into IF-�rst order logic. This leads to the claim that IF-�rst order logic has
precisely the expressive power of �1

1.

The translation procedure can be found in [Hin96], p. 62-63 (with an easily
reparable mistake in (3.44): the double arrow should be a single one). An
example has already been given in section 3.3, with formula (2).

23Note that for a successful application of this method, we need (di�erent) interpreta-
tions for the constants 0 and 1 in a model. In other words, the model under consideration
should contain at least 2 elements. Hintikka leaves this implicit, but secures these inter-
pretations by assuming that the models contain elementary arithmetic.

24Cf. section 2.3.
25Cf. footnote on page 12 and [Hin96], p. 40.
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Any �1
1-sentence � can, according to Hintikka, be written in the following

form:

9f19f2 : : : 9fl8x18x2 : : : 8xn[ ] (3)

where  is a quanti�er-free ordinary �rst order formula, in which function
symbols f1; : : : ; fl and variable names x1; : : : ; xn occur, and such that the
following conditions are satis�ed:

� the function symbols do not occur nested;

� each function symbol occurs with only one sequence of arguments.
(For example: if fi is a unary function symbol and fi(xj) occurs in ',
then fi(xk) with k 6= j does not occur; cf. section 3.3.)

We can bring � to this form by applying the necessary number of the fol-
lowing transformations:

1. In the case that � contains an existential quanti�cation over predi-
cates, we can rewrite this into a quanti�cation over functions by sub-
stituting the predicate by its characteristic function. For example:
9P8x[P (x)] becomes 9f8x[f(x) = 1]. (Here again, for successful ap-
plication of this method, models are assumed to contain equality and
interpretations for 0 and 1.)

2. If in � two function symbols occur nested, as for example in:

9f19f28x['(f2(f1(x)))];

we can bypass this by introducing an extra individual variable:

9f19f28x18x2[x2 = f1(x1)! '(f2(x2))]:

(For this, models are assumed to contain equality.)

3. If in � one function symbol occurs with di�erent sequences of variables,
for example:

9f18x18x2['(f1(x1); f1(x2))];

we can bypass this by introducing an extra function symbol:26

9f19f28x18x2[(x1 = x2 ! f1(x1) = f2(x2)) ^ '(f1(x1); f2(x2))]:

(For this again, models are assumed to contain equality.)

26Cf. the example of section 3.3.
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Once we have transformed � into a �1
1-formula of the form (3), we can trans-

late it into an IF-�rst order formula by repeating the following procedure
for i = 1; : : : ; l: let xi1 ; : : : ; xim be the variables from x1; : : : ; xn that do not
occur in the sequence of arguments of fi. Remove the second order quan-
ti�cation 9fi, and insert the IF-�rst order quanti�cation (9yi=xi1 ; : : : ; xim)
directly left from the quanti�er-free part of the formula,  .27 In  , we re-
place every occurrence of fi (with its sequence of arguments) by yi.

Thus, Hintikka claims: every �1
1-sentence can be translated into an IF-�rst

order sentence. We end this section with some observations regarding this
claim.
Tacitly, prenex normal form for �1

1-sentences is presupposed (and hence,
negation is pre�xed to quanti�er-free subformulas only). Moreover, an ar-
bitrary �1

1-sentence could contain existential quanti�cations over individual
variables: no attention is paid to this in Hintikka's procedure. We assume
that he intends the procedure to leave these quanti�cations unchanged.
We observe that it is no coincidence that the translation from a �1

1-sentence
to IF-�rst order logic works particularly well if the sentence is of the form (3):
this is exactly the kind of �1

1-sentence that emerges from the Skolemization-
procedure in section 4.1.
Now the question arises whether the composition of the Skolemization pro-
cedure and the �1

1-to-IF translation procedure, applied on an IF-formula ',
results in ' itself, or else at least in an IF-formula equivalent to '.
We easily see that even for simple (IF-)�rst order sentences with only one
existential quanti�cation (where in both directions the translation consists
of only one step), the composition is not the identity. Consider

9y8x[x = y] :

Skolemization translates it into 9f8x[x = f ] (where f is a Skolem-constant
rather than a Skolem-function), which �1

1-formula is translated by the pro-
cedure of this section to the IF-�rst order formula

8x9y=x[x = y]:

In section 4.5, we will show that these two formulas can only be called
equivalent in a weak sense.

Remarks and further investigation:

� We should carefully investigate the semantical consequences of all manipulations
with formulas, IF-�rst order as well as classical second order, in the last two sections:
in what sense and under which conditions is an emerging sentence equivalent to its
original? What semantics for �1

1 do we assume?

27In Hintikka's approach, the order in a block of moves for the same player is irrelevant
(see also section 5.3). We could have chosen any location in-between the block of universal
quanti�ers and the quanti�er-free part of the formula. By the choice made here, the
variables yi occur in the same order as the function variables fi in the original �1

1-formula.
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� Suppose we make the procedures of the last two sections deterministic by prescrib-
ing some order in which to apply the steps. On which class of IF-�rst order formulas
is the composition of both procedures the identity?

4.3 The law of the excluded middle

A crucial property of GTS and IF-logic, is the failure of the law of the
excluded middle: it is not the case that, in all models M and for all IF-
sentences ', '_�' is true in M .

Before we demonstrate this, note that the following is an immediate conse-
quence of the de�nitions in GTS: for every sentence ' and every suitable
model M

' is false in M
m

P0 has a winning strategy in GM(') = GM('; ;; 1)
m

P1 has a winning strategy in GM('; ;; 0)
m

P1 has a winning strategy in GM(�'; ;; 1) = GM (�')
m

�' is true in M .

To analyze the law of the excluded middle in GTS, consider the game
GM('_�') for some IF-sentence '. The Veri�er (P1) has a winning strategy
for this game if and only if he has a winning strategy for either GM(') or for
GM(�'): he can use the �rst move to choose this subgame of GM ('_�').
Hence, for every IF-sentence ' and every suitable model M :

'_�' is true in M
m

' is true in M or �' is true in M
m

' is either true in M or false in M .

Now recall the simple IF-sentence  in section 3.2:

8x9y=x[�(x = y)]:

We showed that this sentence is not true in any modelM . But this does not
imply that  is therefore false in every model M : the existence of a win-
ning strategy for the Falsi�er in GM( ) can be expressed by the (classical)
formula28

9k8y[k = y];

28We will study falsity conditions in more detail in section 5.3.
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which only holds in one-element models.
Hence, in models M containing more than one-element:  is neither true
nor false in M , and as a consequence,  _� is not true in M .29

If ' is an IF-sentence that is neither true nor false in a given model M ,
we call ' undecided in M .

4.4 Contradictory and game theoretical negation

The contradictory negation of an IF-sentence ' is an IF-formula ' such that
for every model M : ' is true in M if and only if ' is not true in M .

Ernst Zermelo (1913) proved that every �nite depth, strictly competitive30

two-player game of perfect information is determined: either P0 or P1 has
a winning strategy. In particular, semantical games for classical �rst order
formulas are determined.

From this fact, it follows that the principle of the excluded middle does hold
in GTS on classical �rst order formulas ': for every suitable model M , the
game GM ('_�') is determined, so the Veri�er has a winning strategy for
either GM(') or for GM(�'). But the latter is the case if and only if the
Falsi�er has a winning strategy for GM ('). So, in the case that ' is a clas-
sical �rst order sentence: ' is false in M if and only if it is not true in
M . In other words: for classical �rst order formulas game theoretical and
contradictory negation coincide.

This argument does not hold for the non-classical IF-�rst order formulas:
these give rise to �nite, two-person zero-sum games of imperfect information.
So in general, in IF-logic with GTS the contradictory negation `' is not true
inM ' does not coincide with the game theoretical negation `' is false inM '.

Contradictory negation is not expressible in IF-�rst order logic, that is: in
terms of game theoretical negation and the other logical symbols of the
language.31 One could, as Hintikka proposes ([Hin96], p. 147), extend IF-
�rst order logic with the symbol `:' to indicate contradictory negation, and
to add the following rule to the semantics: for every IF-sentence ' and
suitable model M

(:) :' is true in M exactly if ' is not true inM ; otherwise :' is false
in M .

29Similarly,  _� is not false in M either.
30I.e. for k 2 f0; 1g: Pk wins i� P1�k loses, and Pk either wins or loses (no tie).
31See [Hin96], p. 133 for Hintikka's argument, using the separation theorem.
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Note that this negation is only de�ned in front of an entire sentence, and
not as a game rule (like the game theoretical negation `�'). The resulting
logic is called Extended Independence Friendly �rst order logic.

Remarks and further investigation:

� The contradictory negation expresses the non-existence of a winning strategy for
the Veri�er, hence can be expressed as a second order formula of the form

:9f1 : : : 9fk8x1 : : : 8xm[ (f1; : : : ; xm)];

with  quanti�er-free. Since �1
1 is not closed under negation, this is not necessarily

a �1
1-formula: it is a �1

1-formula. If the expressive power of IF-�rst order logic
coincides with the expressive power of �1

1, what would the expressive power of
Extended IF-�rst order logic be?

4.5 Equivalence

As in classical �rst order logic, Hintikka de�nes two IF-sentences '1 and '2

to be equivalent if and only if they are true in the same models, i.e. for
every model M (in which both '1 and '2 can be interpreted): '1 is true
in M i� '2 is true in M . We denote this by: '1 �t '2.
But other than in classical �rst order logic, as a consequence of the failure
of the law of the excluded middle, being true in the same models does not
automatically imply being false in the same models.32

For example33, the IF-�rst order sentence

8x(9y=x)[x = y]

is in Hintikka's view logically equivalent to the ordinary �rst order sentence

9y8x[x = y]:

Both formulas are true in one-element models only. In models with at least
two elements however, the �rst is undecidedwhile the latter is simply false.

We use the notation '1 �f '2 to express that for every model M : '1 is
false in M i� '2 is false in M . Furthermore, we de�ne:

'1 � '2
d
, '1 �t '2 and '1 �f '2:

Now we can conclude:

8x(9y=x)[x = y] �t 9y8x[x = y]

32Cf. [Hin96], p. 65.
33See [Hin96] p. 51, and the last paragraph of section 4.2.
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but:

8x(9y=x)[x = y] 6�f 9y8x[x = y];

so:

8x(9y=x)[x = y] 6� 9y8x[x = y]:

This shows that the notion `�' of logical equivalence is stronger than the
notion `�t' that Hintikka uses. The etymology of equivalence (`having equal
values') seems to plead in favor of `�', because this notion of equivalence
takes both the truth- and the falsity-values of formulas into account.

Note that the weak notions of equivalence have the following property: for
all IF-sentences '1; '2 it follows from the de�nitions (see also page 21) that

'1 �t '2 , �'1 �f�'2

and

'1 �f '2 , �'1 �t�'2:

Remarks and further investigation:

� As announced in the last paragraph of section 4.2, this section demonstrates that the
composition of the Skolemization and �1

1-IF-translation procedures of sections 4.1
and 4.2 does not preserve strong equivalence. We should be aware of this fact when
relying on these procedures to prove properties of IF-logic.

4.6 Compositionality

One of the claims Hintikka makes in [Hin96], is that IF-logic does not admit
of compositional semantics. Note that GTS is indeed not de�ned in a compo-
sitional way: it treats a sentence from outside in, whereas one would expect
an inductive, `inside-out' procedure for compositional semantics. To provide
an argument for his claim, Hintikka introduces an alternative notation for
IF-logic. Instead of writing

8x(9y=x)['(x; y)]

one could write

(8x==y)9y['(x; y)]
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with the same interpretation: the choice of a value y is not allowed to depend
on the (chosen) value for x. In the new notation the independency is an-
nounced in advance, and the formation rules become context independent.34

In compositional semantics for IF logic, we would have to give one meaning
to the subformula 9y['(x; y)] independent of the context in which it appears.
But, in the new notation, we want to give di�erent interpretations to this
subformula as part of 8x9y['(x; y)] and as part of (8x==y)9y['(x; y)] (or
9x9y['(x; y)]: in the case of more existential quanti�ers information inde-
pendence is assumed by convention! See section 5.3).

This is not a strict impossibility proof, as Hintikka points out himself ([Hin96],
p. 112). Actually, Wilfrid Hodges has developed compositional semantics for
IF-logic, under the name of `trump semantics'. The current status of this
discussion can be found in [Hod01] and [SH01].

5 Negation normal form, implication and Skolem-

ization

5.1 De Morgan's laws in IF-logic

Hintikka works with IF-formulas in negation normal form, and claims that
arbitrary IF-formulas can be rewritten in negation normal form using the
traditional rules, i.e. De Morgan's laws.35

In section 2.1 we saw how these laws hold in GTS for classical �rst order
formulas: if a classical �rst order formula ' is transformed into a formula
'0 by application of De Morgan's laws, GM(') and GM ('0) are essentially
the same.36 A winning strategy in GM(') is at the same time a winning
strategy in GM ('0), and vice versa, for both players. From this, it follows
that if ' is a classical �rst order formula, ' and its negation normal form
are equivalent in GTS in the strong sense (`�') of section 4.5.

34Hintikka claims that the double slash notation has some advantages over the single
slash notation that has become the standard. It would, for instance, allow us to de�ne a
distribution law like:

(8x==_)[P (x) _Q(x)]) 8x[P (x)]_ 8x[Q(x)]:

For Hintikka these two formulas are equivalent, which justi�es this law. In the strong
sense of section 4.5, they are not: in M := hf0; 1g; P 7! \even"; Q 7! \odd"i, the �rst one
is undecided, while the latter is false (see also the table on page 31).
A disadvantage of the double slash notation is that it causes ambiguities when there are

several _-connectives falling under the scope of 8x.
35See section 3.2.
36The same moves are made by the same players, in the same order. As remarked in

section 2.1, it would be useful to formalize the notion of being `the same game'.
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Does the same hold for arbitrary IF-formulas? Our answer is `yes', but only
provided we extend the slash notation given in section 3.2 in such way that
also 8 and ^ may be `slashed'.
To illustrate this, consider the following formulas:

' : 8x(9y=x)[x = y];

�' : �8x(9y=x)[x = y];

 1 : 9x8y[�(x = y)];

 2 : 9x(8y=x)[�(x = y)]:

Following Hintikka in his claim that the traditional rules apply to IF-formu-
las, and given his de�nition of IF-formulas (only applying the slash to 9 and
_),  1 is the only candidate for the IF-negation normal form (NNF) of the
IF-formula �'. Indeed, �' and  1 are equivalent, but only in the weak
sense `�t'.37

Now, how do we rewrite ��' in NNF? One way is, of course, to let the
two initial negations cancel out38: ' is in NNF. On the other hand, we
should be able to push \the negation signs as deep into the formulas as they
can go": see the quote from [Hin98] on page 5 of this paper. Pushing the
innermost negation sign `into' ', we get � 1 out of �(�') by the previous
paragraph. Pushing the remaining negation sign into  1, we get the formula
'0 := 8x9y[x = y] as NNF of ��'.
But now we have both ' and '0 as NNF's for ��', and we can easily see:
' 6�t '0. What we observe here, is the failure of the substitution property
for weakly equivalent subformulas: in ��', we replaced the subformula �'
by the �t-equivalent formula  1, but the resulting formula is no longer �t-
equivalent to �� '.39 In fact, �  1 is �f-equivalent to �� '. We can
summarize the situation in the following diagram:

' � ��' =�(�') �f � 1

= �
8x(9y=x)[x = y] 6�t 8x9y[x = y]:

Making IF-logic `symmetric', in the sense that both 9- and 8-moves, and
both _- and ^-moves, can be informationally independent of moves of the
opponent, enables us to work with strong equivalence. The formula  2 is a

37To see this, note that for every suitable modelM , P1 does not have a winning strategy
in either GM (�') or GM( 1); on the other hand, P0 has a winning strategy in GM ( 1)
and not in GM (�).

38See section 2.1.
39We use the remark made at the end of section 4.5. By the fact that �' 6�f  1, we

also know that ��' 6�t� 1.
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strongly equivalent negation normal form of �'. We leave it to the reader
to verify the equivalences in the following diagram:

' � ��' =�(�') � � 2

= �
8x(9y=x)[x = y] = 8x(9y=x)[x = y]:

In the symmetric de�nition of IF-logic, we can formulate De Morgan-like
laws, exactly reecting the changes of roles of the players, including their
informational restrictions:

�(8x=y)' � (9x=y) �'

�(9x=y)' � (8x=y) �'

�( 1(^=y) 2) � � 1(_=y) � 2

�( 1(_=y) 2) � � 1(^=y) � 2

where y denotes a {possibly empty{ sequence of variables associated with
moves of the opponent.

5.2 Implication

In GTS, no rule is provided for implication (`!'). We are tempted to de�ne
it in the usual manner, i.e. for all IF-formulas ' and  

'!  
d
= �' _  : (4)

What does this mean in Game Theoretical Semantics? Given a model M ,
the �rst move in the game GM (' !  ) is the choice by the Veri�er to
continue by one of the games GM (�') or GM ( ). The strategy-function
prescribing this choice, combined with strategies for GM(�') and GM( ),
make a strategy for the entire game GM ('!  ).
A winning strategy for the Veri�er in either GM(�') or GM ( ), combined
with the appropriate choice in the �rst move, is a winning strategy for the
Veri�er in the game GM(' !  ). Hence, ' !  is true in M if either
�' or  is true in M .40 If the Veri�er has no winning strategy for either
GM(�') or GM ( ), the optimal choice is to choose, if possible, a game for
which the Falsi�er has no winning strategy either: ' !  is undecided in
M if neither �' nor  is true in M , and at least one of both is not false
in M either.

Following this line of thought, we draw a truth table, using `1' for true, `0'
for false, and `?' for undecided:41

40Or, in other words: '!  is true in M if either ' is false in M or  is true in M .
41This truth value of an IF-sentence indicates the index of the player with a winning

strategy, or a question mark in the case neither player has one.
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'  �' '!  
1 1 0 1
1 ? 0 ?
1 0 0 0
? 1 ? 1
? ? ? ?
? 0 ? ?
0 1 1 1
0 ? 1 1
0 0 1 1

Under this de�nition for implication, the IF-�rst order subformula

9y8x[x = y]! 8x(9y=x)[x = y]

is logically true in the following sense: the Veri�er has a winning strategy
in every model.42 On the other hand, the converse implication

8x(9y=x)[x = y]! 9y8x[x = y]

is not logically true: it is true in one-element models, but undecided in
all other models. This seems to support our conclusion of section 4.5: the
formulas 9y8x[x = y] and 8x(9y=x)[x = y] should not be called equivalent.

A serious objection to this de�nition of implication however, is the fact that
`' ! '' is not logically true for all IF-formulas ': �' _ ' is undecided
in every model in which ' is undecided. Hence, under the de�nition of
`!' as given in formula (4), the following property does not hold: for all
IF-formulas '; and every suitable model M , ' !  is true in M if `' is
true in M ' implies that ` is true in M '.43

Aiming for a de�nition of implication that does have this property, we look
for an IF-formula with the following truth condition: `the existence of a
winning strategy for the Veri�er in GM (') implies the existence of a winning
strategy for the Veri�er in GM( )'. This can be written out as a formula
� ! 	, with �;	 2 �1

1, which is generally not a �1
1-formula. Hence, in

general, we cannot hope for a translation of this implication into an IF-�rst
order formula.
We can only de�ne such notion of implication as a `truth functional condi-
tional', i.e. on the level of the strategies and not on the level of the game
rules (see [Hin96], p. 138).

42To see this, note that in one-element models � is false, and in all other models  is
true.

43Note that the converse of this property, Modus Ponens, does hold: if ' !  and '
are both true in a given model M , then  is true in M as well.
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5.3 Skolemization as concept of strategy

Hintikka often appeals to our intuitions about games and strategies. That
these are not always precise enough to avoid ambiguities, can be concluded
from the following example, due to Wilfrid Hodges ([Hod97], p. 548).
As we have seen in section 4.5, the IF-formula

8x(9y=x)[x = y]

is undecided in all models containing more than one element. Now consider:

8x9z(9y=x)[x = y]:

According to the de�nitions we have given so far, the Veri�er could use the
following strategy in a semantical game for this formula: choose z equal to
x, and then y equal to z.44 This strategy is winning in every model, so the
addition of the empty quanti�cation 9z would change the truth value of the
�rst formula from undecided to true in all models containing more than
one element.
One might object by arguing that, if y depends on z, and z depends on x,
then y (indirectly) depends on x, and that this shouldn't be allowed by the
the `slashed-out' x under 9y. This objection is reasonable, but in the bare
de�nitions of IF-logic, there is nothing to prevent it.
According to Hintikka, some extra speci�cation is needed to prevent that
\otherwise \forbidden" dependencies of existential quanti�ers could be cre-
ated through the mediation of intervening existential quanti�ers" ([Hin96],
p. 63).
Hintikka's suggested speci�cation is quite counterintuitive: he introduces
the provision that \moves connected with existential quanti�ers are always
independent of earlier moves with existential quanti�ers". But in that case:
how can a classical �rst order sentence like 9x9y[x = y] still be true?

The answer to this last question lies in the interpretation of information
(in)dependency and strategies strictly in terms of Skolem functions and their
arguments. This is present in Hintikka's more or less formal argumentation,
but also seems to determine what he considers intuitively clear and what
not. Consistently applying this interpretation, the (confusing) extra speci-
�cation is not needed.

We illustrate this by working through some very simple examples, following
what we consider to be Hintikka's line of thought. As proposed in section 5.1,
we also allow the slash notation for 8 and ^ to bring the game theoretical

44This phenomenon of using other parts of the formula to reconstruct information in a
situation of imperfect information, has been called `signaling'.
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negations of the formulas into negation normal form.

Recall that the truth condition of a sentence ' (section 2.3) emerges as a
�1

1-formula from the process of Skolemization, as described in section 4.1.
It will be of the following appearance:

9f1 : : : 9fk9c1 : : : 9cn8x1 : : : 8xm['
0(f1; : : : ; xm)];

where the existential quanti�cations correspond to all the (possible) moves
of the Veri�er (0-ary Skolem-`functions' are from now on represented as
Skolem-constants ci), and the universal quanti�cations to all the (possible)
moves of his opponent. The part between the square brackets, '0, is a
quanti�er-free (classical) �rst order formula.
This truth condition expresses the existence of a winning strategy for the
Veri�er in the following sense: for each move that can occur during the
game, a choice based on the available (quanti�er-)moves of the opponent
is prescribed by the choice-functions and constants. These functions and
constants are to be chosen before the start of the game, i.e. their choice
cannot depend on moves of the opponent. A strategy cannot be adapted
during the game.
Although Hintikka's speci�cation seems to suggest that a player should make
his moves independently of his own previous moves, a player is allowed to
choose the functions or constants equal to, or correlated with (in other words:
dependent of), other functions and constants in his strategy.

We can determine the falsity condition exactly in the same way as the truth
condition, because the falsity condition of a sentence ' is the truth condition
of its game theoretical negation �' (see page 21). Hence, a procedure to
�nd the falsity condition of ' is to subsequently rewrite �' into negation
normal form (using the rules from section 5.1) and apply the Skolemization
procedure of section 4.1.

We have worked these procedures out for some very simple IF-�rst order
formulas. First, some formulas containing no connectives:

' �' truth condition for ' falsity condition for '

1 8x9y[R(x; y)] 9x8y[�R(x; y)] 9f8x[R(x; f(x))] 9k8y[:R(k; y)]
2 8x9y=x[R(x; y)] 9x8y=x[�R(x; y)] 9c8x[R(x; c)] 9k8y[:R(k; y)]
3 9y8x[R(x; y)] 8y9x[�R(x; y)] 9c8x[R(x; c)] 9g8y[:R(g(y); y)]
4 9y8x=y[R(x; y)] 8y9x=y[�R(x; y)] 9c8x[R(x; c)] 9k8y[:R(k; y)]
5 9x9y[R(x; y)] 8x8y[�R(x; y)] 9c19c2[R(c1; c2)] 8x8y[:R(x; y)]
6 8x8y[R(x; y)] 9x9y[�R(x; y)] 8x8y[R(x; y)] 9k19k2[:R(k1; k2)]
7 8x9z9y=x[R(x; y)] 9x8z8y=x[�R(x; y)] 9f9c8x[R(x; c)] 9k8z8y[:R(k; y)]

The table shows that formulas ' on lines (2), (3) and (4) share the same
truth condition (and are hence equivalent in Hintikka's sense: `�t'). The
formulas on lines (1), (2) and (4) share the same falsity condition (and are
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hence `falsity-equivalent': `�f'). Hence, formulas (2) and (4) are equivalent
in the strong sense `�'.45

Hodges's example from the beginning of this section arises from the formula
' on line (7) when interpreting the symbol R by standard equality. The
empty quanti�cations 9f in the truth condition, and 8z in the falsity condi-
tion are irrelevant in these (classically interpreted) �1

1-formulas, and can be
left out. We then see that this formula is equivalent (`�') to the formulas '
on lines (2) and (4).

In answer to the question we asked on page 29: the formula 9x9y[x = y] (a
special case of line 5) is true in every model, because the Veri�er is allowed
to choose the same value for both constants c1 and c2.

In the following table the same has been done for some simple IF-formulas
containing the connectives _ and ^:

' �' truth condition for ' falsity condition for '

A _B �A^ �B 9c[(c = 0 ! A) :A ^ :B
^(c 6= 0 ! B)]

8x[P (x) _Q(x)] 9x[�P (x)^ �Q(x)] 9f8x[(f(x) = 0 ! P (x)) 9k[:P (k) ^ :Q(k)]
^(f(x) 6= 0 ! Q(x))]

8x[P (x)(_=x)Q(x)] 9x[�P (x)(^=x) �Q(x)] 9c8x[(c = 0 ! P (x)) 9k[:P (k) ^ :Q(k)]
^(c 6= 0 ! Q(x))]

8x[P (x)] _ 8x[Q(x)] 9x[�P (x)]^ 9x[�Q(x)] 9c8x18x2[(c = 0 ! P (x1)) 9g8y[(y = 0 ! :P (g(y)))
^(c 6= 0 ! Q(x2))] ^(y 6= 0 ! :Q(g(y)))]

9x[P (x) _Q(x)] 8x[�P (x)^ �Q(x)] 9c19c2[c2 = 0 ! P (c1)) 8x[:P (x) ^ :Q(x)]
^(c2 6= 0 ! Q(c1))]

A ^B �A_ �B A ^ B 9k[(k = 0 ! :A)^
(k 6= 0 ! :B)]

9x[P (x) ^Q(x)] 8x[�P (x)_ �Q(x)] 9c[P (c) ^Q(c)] 9g8x[(g(x) = 0 ! :P (x))
^(g(x) 6= 0 ! :Q(x))]

9x[P (x)(^=x)Q(x)] 8x[�P (x)_ �Q(x)] 9c[P (c) ^Q(c)] 9k8x[(k = 0 ! :P (x))
^(k 6= 0 ! :Q(x))]

9x[P (x)] ^ 9x[Q(x)] 8x[�P (x)]_ 8x[�Q(x)] 9f8y[(y = 0 ! P (f(y))) 9k8x18x2[(k = 0 ! [:P (x1)])
^(y 6= 0 ! Q(f(y))] ^(k 6= 0 ! [:Q(x2)])]

8x[P (x) ^Q(x)] 9x[�P (x)_ �Q(x)] 8x[P (x) ^Q(x)] 9k19k2[k2 = 0 ! :P (k1))
^(k2 6= 0 ! :Q(k1))]

The examples and (sketched) proofs in [Hin96], demonstrate that the Skolem-
ization procedure as applied in the tables above, and not intuition, de�nes
how Hintikka interprets the notions of strategy and truth for IF-formulas.
It seems therefore necessary to investigate this procedure closely, and to
formally prove that the emerging �1

1-formulas have those properties that we
would expect from truth- and falsity-conditions.

6 Concluding remarks and further investigation

Hintikka's project seems to be inspired by his earlier work in natural lan-
guage semantics (see, for example [HS97]). It is not directly clear how a
successful approach in this area can be a guarantee for success in the foun-
dations of mathematics. I agree that logic can be used for di�erent purposes,

45Cf. section 4.5.
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and both the descriptive and the deductive function have their merits. But I
don't think the one should be preferred over the other in an absolute sense:
it will depend on the nature of the �eld of application which function of
logic serves best. In my opinion, the Foundations of Mathematics are best
served by a logic with great deductive power.46 This seems problematic in
IF-logic, because it lacks a notion of implication being able to express logical
consequence (section 5.2).

Despite its di�erences with classical �rst order logic, Hintikka claims some
classical properties for IF-logic (a.o. compactness, the separation theorem,
and the downward L�owenheim-Skolem theorem). The arguments given in
support of these claims ([Hin96], pp. 59-61) use the translation procedures
from IF-�rst order logic to �1

1 and back, as described here in sections 4.1
and 4.2. The same goes for his claim that a truth predicate for IF-logic can
be de�ned at �rst order level.
It is, however, left to our intuitions to trust that these translation proce-
dures are `sound'. In what sense do the original formula and its translation
correspond? Does it matter which semantics is used for �1

1? Does the fact
that the composition of the procedures in sections 4.1 and 4.2 preserves only
weak equivalence,47 have consequences for the classical properties mentioned
above?
Once we have ascertained that we can trust the arguments based on the
translation procedures of IF-logic to �1

1 and back, haven't we then con-
cluded that IF-�rst order logic is nothing more or less than �1

1 (and hence
not the revolutionary new logic it was promised to be)?

We followed Hintikka in de�ning the semantics prior to the syntax of IF-
logic. Only by the examples given in terms of Skolem-functions (like in
section 3.1) we get to understand how the slash-notation and the notion of
strategy should be interpreted for IF-logic.
The way in which Hintikka's proposal is set up, highly resembles the theory
of Henkin-quanti�ers, especially in its focus on skolemization. Skolemization
requires a negation normal form, which, as we have seen in section 5.1, can
only be obtained in general provided we extend the slash notation to 8 and
^.
If IF-logic really is to serve as \a new and better basic logic" ([Hin96], p.ix),
both syntax and semantics need to be de�ned in a more rigorous way. The
notions of scope and of strategy should get formal descriptions. How do we
think of the choice of a strategy by the players? Are all strategies available
to them? And if we conceive them as functions, do they have to be in some
sense constructive to be realistically usable as a decision method?

46Hintikka will consider this a dogma \ripe for rejection", [Hin96], p. viii.
47Cf. the end of section 4.2 and section 4.5.
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Theo Janssen's critical approach, [Jan01], distinguishing information in-
dependence from imperfect information, shows that one should be careful
about the interpretation of the aspect of information as well.

Game theory nicely incorporates the notion of `information' into logic, and
the idea of breaking open the traditional restrictions of quanti�er-scopes is
simple but eye-opening.
On the other hand, rereading the `mission statement' at the start of [Hin96]
(see the quotation at page 1 of this paper), one is inclined to say that
the conceptual problems that arise in IF-logic still outweigh the conceptual
problems of `earlier views'.
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