
Abstract

We argue for a memory-based approach to music analysis
which works with concrete musical experiences rather than
with abstract rules or principles. New pieces of music are
analyzed by combining fragments from structures of previ-
ously encountered pieces. The occurrence-frequencies of the
fragments are used to determine the preferred analysis of a
piece. We test some instances of this approach against a set
of 1,000 manually annotated folksongs from the Essen Folk-
song Collection, yielding up to 85.9% phrase accuracy. A
qualitative analysis of our results indicates that there are
grouping phenomena that challenge the commonly accepted
Gestalt principles of proximity, similarity and parallelism.
These grouping phenomena can neither be explained by
other musical factors, such as meter and harmony. We argue
that music perception may be much more memory-based
than previously assumed.

1. Introduction

In listening to a piece of music, the human perceptual system
segments the sequence of notes into groups or phrases that
form a grouping structure for the whole piece (cf. Longuet-
Higgins, 1976; Tenney & Polansky, 1980; Lerdahl & 
Jackendoff, 1983; Stoffer, 1985). One of the main chal-
lenges in modeling musical segmentation is the problem of
ambiguity: several different grouping structures may be com-
patible with a sequence of notes while a listener usually per-
ceives only one particular structure. It is widely assumed 
that the preferred grouping structure of a piece depends 
on a combination of low-level phenomena, such as local 

discontinuities and intervallic distances, and high-level phe-
nomena, such as melodic parallelism and internal harmony.

Most models of musical segmentation use the Gestalt
principles of proximity and similarity (Wertheimer, 1923) to
predict the low-level grouping structure of a piece: grouping
boundaries preferably fall on larger inter-onset-intervals,
larger pitch intervals, etc. (see Tenney & Polansky, 1980;
Lerdahl & Jackendoff, 1983; Cambouropoulos, 1996, 1997).
While most models also incorporate higher-level group-
ing phenomena, such as melodic parallelism and harmony,
these phenomena remain often unformalized. For example,
Lerdahl & Jackendoff (1983) do not provide any system-
atic description of higher-level musical parallelism, and
Narmour’s Implication-Realization model (Narmour, 1990,
1992) relies on factors such as meter, harmony and similar-
ity which are not fully described by the model. As a result,
these models have not been evaluated against large sets 
of musical data, such as the Essen Folksong Collection
(Schaffrath, 1995; Huron, 1996). Only a few, hand-selected
passages are typically used to evaluate these models, which
questions the objectivity of the results.

The current paper investigates a rather different approach
to music analysis. Instead of using a predefined set of rules
or principles, we present a model which works with a corpus
of grouping structures of previously encountered musical
pieces. New pieces are analyzed by combining fragments
from the corpus-structures; the frequencies of the fragments
are used to determine the preferred analysis. We thus propose
a supervised, memory-based approach to music analysis
which works with concrete musical fragments rather than
with abstract formalizations of intervallic distances, paral-
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lelism, meter, harmony or other musical phenomena. In other
fields of cognitive science, such as natural language pro-
cessing and machine learning, memory-based models have
become increasingly influential (cf. Mitchell, 1997; Bod,
1998; Manning & Schütze, 1999). Moreover, recent psycho-
logical investigations suggest that previously heard musical
fragments are stored in memory (e.g., Saffran et al., 2000),
and that fragments that are encountered more frequently are
better represented in memory and consequently more easily
activated than less frequently encountered fragments. The
current availability of large annotated musical databases,
such as the Essen Folksong Collection (Schaffrath, 1995;
Huron, 1996), provides an excellent test domain for memory-
based models of music analysis.

Although a purely memory-based model may not suffice
as a theory of music analysis, it is important to study the
merits of such a model so that its results may be used as 
a baseline against which other approaches can be compared.
In the following we first describe the Essen Folksong Col-
lection, after which we test three different memory-
based parsing models on this collection. We will see that the
best results are obtained by a model which combines two
memory-based techniques: the Markov grammar technique
of Collins (1999) and the Data-Oriented Parsing technique
of Bod (1998). This combined model correctly predicts
85.9% of the phrases for a held-out test set of 1000 folk-
songs. A qualitative evaluation of our results reveals the 
existence of a class of patterns that are problematic for
Gestalt-based/parallelism-based models, while these patterns
are rather trivial for memory-based models. Our evaluation
challenges two widely accepted grouping principles in
music: the Gestalt principles of proximity/similarity
(Wertheimer, 1923; Tenney & Polansky, 1980; Lerdahl &
Jackendoff, 1983; Handel, 1989) and the higher-level princi-
ple of melodic parallelism (Lerdahl & Jackendoff, 1983;
Cambouropoulos, 1998; Höthker et al., 2001). We argue that
music perception may be much more memory-based than
previously assumed.

2. The Essen Folksong Collection

The Essen Folksong Collection contains a large sample of
(mostly) European folksongs that have been collected and
encoded under the supervision of the late Dr. Helmut Schaf-
frath at the University of Essen (Schaffrath, 1993; 1995; 
Selfridge-Field, 1995). The ongoing development of the col-
lection is now under the charge of Dr. Ewa Dahlig at the
Helmut Schaffrath Laboratory of Computer Aided Research
in Musicology, Warsaw. Currently, 6251 folksongs are pub-
licly available at http://www.esac-data.org, although the total
number of folksongs in the collection is reported to be over
20000. Each folksong is annotated with the Essen Associa-
tive Code (ESAC) which includes pitch and duration infor-
mation, meter signatures and explicit phrase markers (the
texts of the folksongs have not been entered; only their 

tonal representations are available). The presence of phrase
markers makes the Essen Folksong Collection a unique test
case for computational models of music segmentation.

The pitch encodings in the Essen Folksong Collection
resemble “solfege”: scale degree numbers are used to replace
the movable syllables “do”, “re”, “mi”, etc. Thus 1 corre-
sponds to “do”, 2 corresponds to “re”, etc. Chromatic alter-
ations are represented by adding either a “<#>” or a “b” after
the number. The plus (“+”) and minus (“-”) signs are added
before the number if a note falls resp. above or below the
principle octave (thus -1, 1 and +1 refer al to “do”, though
on different octaves). Duration is represented by adding a
period or an underscore after the number. A period (“.”)
increases duration by 50% and an underscore (“_”) increases
duration by 100%; more than one underscore may be added
after each number. If a number has no duration indicator, its
duration corresponds to the smallest value (which is found
in the KEY field preceding each folksong). A pause is rep-
resented by 0, possibly followed by duration indicators. No
loudness or timbre indicators are used in the Essen Folksong
Collection. Hard returns are used to indicate a phrase bound-
ary (note that we use the terms “phrase” and “group” inter-
changeably). To make the Essen annotations readable for 
our memory-based parsers, we automatically converted its
phrase boundary indications into bracket representations,
where “(‘indicates the start of a phrase and’)” the end of a
phrase. For more information on the Essen Folksong Collec-
tion and the Essen Associative Code (ESAC), see Selfridge-
Field (1995). The Essen Folksong Collection is also available
in the Humdrum format (Huron, 1996).

Figure 1 gives an example of the encoding of folksong
K0029 (“Schlaf Kindlein Feste”) together with its phrase
annotation (we leave out barlines and meter signature that
will not be used by our parsers, but we will come back to
metrical structure in Section 4):

  

3 221 5 533221 5 13335432 13335432

3 221 5

_ _ _ _

_ _ _

-( ) - -( )( )( )
-( )

Note that the Essen phrase annotations lack hierarchical
structure: they neglect both phrase-internal structure, such as
subphrases and motives, and phrase-external structure, such
as periods and subsections (cf. Lerdahl & Jackendoff, 1983).
Thus the first two phrases in folksong (1) could have been
grouped together into a larger constituent, and the same holds
for the two subsequent phrases. While there may in fact not
be much internal structure in the phrases of folksong (1), the
following annotation for folksong K0885 (“Schneckhaus
Schneckhaus stecke deine Hoerner aus”) shows that the lack
of phrase-internal structure can lead to a rather impoverished
annotation:

  

5 3 5 3 1234553 1234553 12345 3 12345 3

553 553 553 65432 1

_ _ _ _ _ _ _ _ _ _

_ _ _ _ _

( )( )( )( )( )
( )( )

Figure 1

Figure 2
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A more fine-grained analysis of this folksong, we believe,
would consist in subsegmentations of several of its phrases;
for instance, the first phrase could be subsegmented into two
equivalent subphrases (5_3_). Also a considerable amount of
phrase-external structure could be added to this folksong,
such as the addition of a larger group that includes the second
and the third phrase. A more extreme case is provided by
folksong Z0147 (“Besenbinders Tochter und kachelmachers
Sohn”):

A phrase is correct if both the start and the end of the phrase
is correctly predicted. Note that these measures “punish” a
parser which assigns too many phrases to a folksong: for
example, an extremely overgenerating parser which assigns
phrases to any combination of notes would trivially include
all correct phrases, resulting in an excellent recall, but its pre-
cision would be very low. On the other hand, a very conser-
vative parser which predicts extremely few, though correct
phrases, will receive a high precision, but its recall will be
low. A good parser will thus need to obtain both a high pre-
cision and a high recall. (It goes probably without saying that
for computing the precision and recall for all test set strings,
one needs to divide the total number of correctly predicted
phrases in all proposed parses P by the total number of
phrases in respectively all parses P and T.)

The precision and recall scores are often combined into a
single measure of performance, known as the F-score (see
Manning & Schütze, 1999):

We will use these three measures of Precision, Recall and F-
score to quantitatively evaluate our memory-based parsing
models.

As a final pre-processing step, we (automatically) added
to each phrase in the folksong the label “P” and to each whole
song the label “S”, so as to obtain conventional parse trees.
Thus the structure in (1) becomes:
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We believe that every phrase in this folksong can be further
subsegmented into subphrases. Yet, the annotation in Figure
3 is not wrong; it just represents the most basic phrase struc-
ture of the piece only. We want to emphasize that for our
experiments in Section 3 we did not add (or modify) any
structure in the Essen annotations. One might believe that the
Essen Folksong Collection is therefore a relatively easy test
case; yet it turned out to be surprisingly hard to predict the
correct phrases for these folksongs.

This brings us to the problem of evaluation. To evaluate
our memory-based parsing models for music, we employed
the so-called blind testing method which has been widely
used in evaluating natural language parsers (cf. Manning &
Schütze, 1999). This method dictates that a collection of
annotated strings is randomly divided into a training set and
a test set, where the annotations in the training set are used
to “train” the parser, while the unannotated strings in the test
set are used as input to test the parser. The degree to which
the predicted segmentations for the test set strings match with
the correct segmentations in the test set is a measure for the
accuracy of the parser. For our experiments in Section 3, we
randomly divided the 6251 folksongs that are currently avail-
able into a training set of 5251 folksongs and a test set of
1000 folksongs.

There is an important question as to what kind of evalu-
ation measure is most appropriate to compare the segmenta-
tions proposed by the parser with the correct segmentations
in the test set. A widely used evaluation scheme in natural
language parsing is the PARSEVAL scheme, which is based
on the notions of precision and recall (see Black et al., 1991).
PARSEVAL compares a proposed parse P with the corre-
sponding test set parse T as follows:

S P 3_221_ P P P

P

-( ) - -( ) ( ) ( )(
-( ))
5 533221 5 13335432 13335432

3 221 5

_ _

_ _ _

The advantage of this format is that we can now directly
apply existing memory-based parsing models to the Essen
Folksong Collection.

3. Experiments with the Essen 
Folksong Collection

In this section, we give a quantitative evaluation of three
memory-based parsing models on the Essen Folksong 
Collection (we will go into a more qualitative evaluation 
of our results in Section 4). We consider the following
memory-based parsing models from the literature: the 
Treebank grammar technique of Charniak (1996), the
Markov grammar technique of Seneff (1992) and Collins
(1999), and the Data-Oriented Parsing (DOP) technique of
Bod (1993, 1998). Unless stated differently, we used 
the same random split of the Essen Folksong Collection 

Figure 3

Figure 4
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into a training set of 5,251 folksongs and a test set of 1000
folksongs.

3.1 The Treebank grammar technique

The Treebank grammar technique is an extremely simple
learning technique: it reads all context-free rewrite rules
from the training set structures, and assigns each rule a prob-
ability proportional to its frequency in the training set. For
example, the following context-free rules can be extracted
from the structure in Figure 4:

S -> PPPPP
P -> 3_221_-5
P -> -533221_-5
P -> 13335432
P -> 13335432_
P -> 3_221_-5_

Next, each rewrite rule is assigned a probability by dividing
the number of occurrences of a particular rule in the train-
ing set by the total number of occurrences of rules that
expand the same nonterminal as the particular rule. For
instance, if we take folksong (4) as our only training data,
then the probability of the rule P -> 3_221_-5 is equal to
1/5 since this rule occurs once among a total of 5 rules that
expand the nonterminal P.

A Treebank grammar extracted in this way from the train-
ing set corresponds to a so-called Probabilistic Context-Free
Grammar or PCFG (Booth, 1969). A crucial assumption
underlying PCFGs is that the context-free rules are statisti-
cally independent. Thus, given the probabilities of the indi-
vidual rules, we can calculate the probability of a parse tree
by taking the product of the probabilities of each rule used
therein. PCFGs have been extensively studied in the litera-
ture (cf. Wetherell, 1980; Charniak, 1993), and the efficient
parsing algorithms that exist for Context-Free Grammars
carry over to PCFGs (see Charniak, 1993 or Manning &
Schütze, 1999 for the relevant algorithms).

Any probabilistic grammar extracted from a training set
faces the problem of data-sparseness: many of the rules in the
training set are so infrequent that their observed probabilities
are very bad estimates of their true population probabilities.
A widely used method to cope with this problem is the Good-
Turing method (Good, 1953). In general, Good-Turing esti-
mates the expected population frequency f * of a type by
adjusting its observed sample frequency f. In order to esti-
mate f *, Good-Turing uses an additional notion, nf, which is
defined as the number of types which occur f times in an
observed sample. Thus, nf can be understood as the frequency
of frequency f. The Good-Turing estimator uses this extra
information for computing the adjusted frequency f * as

We thus compute the probabilities of our context-free rules
in the Treebank grammar from their adjusted frequencies

f f
n

n
f

f

* = +( ) +
1

1

rather than from their raw observed frequences. Note that
Good-Turing also adjusts the probabilities of unseen rules: if
f = 0, then f * = n1/n0. n0 is the number of rules that have not
been seen, and is usually estimated by 1 - n1/N where N is
the number of observed rules (see Good, 1953). However,
Good-Turing does not differentiate among the rules that have
not been seen: it assigns the same probability to all of them,
which leads to rather inaccurate estimates for unseen rules.
We will therefore introduce a more accurate way of assign-
ing probabilities to unseen rules in Section 3.2. For an
instructive paper on Good-Turing, together with a proof of
the formula, see Church and Gale (1991).

The Treebank grammar that was obtained from the 5251
training folksongs was used to parse the 1000 folksongs 
in the test set. We computed for each test folksong the most
probable parse using a standard best-first parsing algorithm
based on Viterbi optimization (see Charniak, 1993; Manning
& Schütze, 1999).

Using the evaluation measures given in Section 2, our
Treebank grammar obtained a precision of 68.7%, a recall of
3.4%, and an F-score of 6.5%. Although the precision score
may seem reasonable, the recall score is extremely low. This
indicates that the Treebank grammar technique is a very 
conservative learner: it predicts very few phrases from the
total number of phrases in the Essen Folksong Collection,
resulting in a very low F-score. One of the problems with the
Treebank grammar technique is that it learns only those
context-free rules that literally occur in the training set (or
otherwise assigns poor estimates to unseen rules), which is
evidently not a very robust technique for musical parsing –
while it has been shown to perform quite well in natural lan-
guage parsing (cf. Charniak, 1996). We will see, however,
that the results improve significantly if we slightly loosen the
way of extracting rules from the training set.

3.2 The Markov grammar technique

A technique which overcomes the conservativity of Treebank
grammars is the Markov grammar technique (Seneff, 1992;
Collins, 1999). While a Treebank grammar can only accu-
rately assign probabilities to context-free rules that have been
seen in the training set, a Markov grammar can compute
probabilities for any possible context-free rule, thus result-
ing in a more robust model. This is accomplished by decom-
posing a rule and its probability by a Markov process (see
Collins, 1999: 44–48). For example, a third-order Markov
process estimates the probability p of a rule P -> 12345 by:

The conditional probability p(END | 3, 4, 5) encodes the
probability that a rule ends after the notes 3, 4, 5. Thus even
if the rule P -> 12345 does not literally occur in the training
set, we can still estimate its probability by using a Markov
history of three notes. The extension to larger Markov 

p p p p

p p p

P

END

->( ) = ( ) ¥ ( ) ¥ ( )
¥ ( ) ¥ ( ) ¥ ( )

12345 1 2 1 3 1 2

4 1 2 3 5 2 3 4 3 4 5

,
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histories follows from obvious generalization of the above
example.

However, also a Markov grammar suffers from data-
sparseness: we may get low counts, including zero counts,
for some Markov histories. Zero counts are especially prob-
lematic: if one of the decomposed probabilities in the
formula above has a zero occurrence in the training set, then
the whole rule is assigned a zero probability. A widely used
technique to solve the data-sparseness problem in Markov
models is the linear interpolation technique (see Manning &
Schütze, 1999: 218–219). This technique smooths a Markov
history by taking into account its shorter histories. Let n1, n2

and n3 denote three notes, then the conditional probability
p(n1 | n2, n3) is smoothed (“interpolated”) as

where 0 £ li £ 1 and l1 + l2 + l3 = 1. These l-weights may
be set by hand, but in general one wants to find the combi-
nation of weights li which works best. A simple algorithm
that finds the optimal weights is Powell’s algorithm (see Press
et al., 1988), which is also discussed in Manning & Schütze
(1999: 218). We used this algorithm to assign weights to the
lambdas in the linear interpolation technique, which in turn
was used to estimate the conditional probabilities in the
Markov grammar technique. Furthermore, each of the prob-
abilities p(n1), p(n1 | n2) and p(n1 | n2, n3) were not directly
estimated from their observed relative frequencies in the
training set, but were adjusted by the Good-Turing method,
just as with Treebank grammars (Section 3.1). Note that the
extension to any larger Markov history follows from simple
generalization of the formulas above. The probability of a
parse tree of a musical piece is computed by the product of
the probabilities of the rules that partake in the parse tree,
just as with Treebank grammars.

For our experiments, we used a Markov grammar with a
history of four notes. This grammar obtained a precision of
63.1%, a recall of 80.2%, and an F-score of 70.6%. These
results are to some extent complementary to the Treebank
grammar: although the precision is somewhat lower, the
recall is (much) higher than for the Treebank grammar. Thus,
while the Treebank grammar predicts too few phrases, the
Markov grammar predicts (a bit) too many phrases. The
combined F-score of 70.6% shows an immense improvement
over the Treebank grammar technique. Experiments with
higher or lower order Markov models diminished our results.

3.3 Extending the Markov grammar technique with the
DOP technique

Although the Markov grammar technique obtained consid-
erably better scores than the Treebank grammar technique, it
does not take into account any global context in computing
the probability of a parse tree. Knowledge of global context,
such as the number of phrases that appear in a folksong, is
likely to be important for predicting the correct segmenta-
tions for new folksongs. In order to include global context,

p p p pn n n n n n n n n1 2 3 1 1 2 1 2, ,( ) = ( ) + ( ) + ( )l l l1 2 3 3

we conditioned over the S-rule higher in the structure in com-
puting the probability of a P-rule. This approach corresponds
to the Data-Oriented Parsing (DOP) technique (Bod, 1998)
which can condition over any higher or lower rule in a tree.
In the original DOP technique, any fragment seen in the
training set, regardless of size, is used as a productive unit.
But in the Essen Folksong Collection we have only two levels
of constituent structure in each tree, thus resulting in a much
simpler probabilistic model. As an example take again the
rule P -> 12345 and a higher S-rule such as S -> PPPP; then
a DOP-Markov model based on a history of three notes 
computes the (conditional) probability of this rule as:

The extension to larger histories follows from obvious gen-
eralization of the above example. For our experiments, we
used a history of four notes, extended with the same smooth-
ing techniques as in Section 3.2 (i.e., linear interpolation
combined with Good-Turing). The most probable parse of a
folksong is again computed by maximizing the product of
the rule probabilities that generate the folksong.

Using the same training/test set division as before, this
DOP-Markov parser obtained a precision of 76.6%, a recall
of 85.9%, and an F-score of 81.0%. The F-score is an im-
provement of 10.4% over the Markov parser. Note that the
DOP-Markov parser is relatively well-balanced: it is neither
terribly conservative nor does it predict too many redundant
phrases – keeping in mind the idiosyncracy of the Essen
Folksong annotations. While there is no reason to expect a
near to 100% accuracy for the shallowly annotated Essen
Folksong Collection (especially in the absence of harmonic
structure), our results show the importance of including
global context in computing the probability of a parse. We
also checked the statistical significance of our results, by
testing on 9 additional random splits of the Essen Folksong
Collection (into training sets of 5251 folksongs and a test 
sets of 1000 folksongs). On these splits, the DOP-Markov
parser obtained an average F-score of 80.7% with a standard
deviation of 1.9%, while the Markov parser obtained an
average F-score of 70.8% with a standard deviation of 2.2%.
These differences were statistically significant according to
paired t-testing.

Before we go into a more qualitative evaluation of our
results, we were interested in testing the impact of the train-
ing size on the F-score. As mentioned in the introduction,
there is some psychological support for the hypothesis that
previously heard musical fragments are stored in memory,
and that more frequent fragments are more easily activated
than less frequent fragments. Yet, it seems unlikely that
humans store more than, 5,000 folksongs to analyze new
folksongs. It is from this perspective that we were interested
in investigating how our DOP-Markov parser performs with

p p

p p

p p

p

P S PPPP S PPPP

S PPPP,1 S PPPP,1, 2

S PPPP,1, 2, 3 S PPPP, 2, 3, 4

END S PPPP, 3, 4, 5

-> ->( ) = ->( )
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smaller training sets. In the following experiments we started
with an initial training set of only 500 folksongs (randomly
chosen from the full training set of 5251 folksongs). We then
increased the size of this initial training set with 500 folk-
songs each time (randomly chosen from the full training set).
The test set was kept constant at 1000 folksongs. The results
are shown in Table 1.

The table shows that the F-score rapidly increases when
the size of the training set is enlarged from 500 to 2000 folk-
songs. The accuracy continues to increase at a lower rate if
the training set is further enlarged. We note that at around
4000 folksongs, relatively good F-scores are obtained. We
may question the cognitive reality of a memory of 4000 folk-
songs. But we must keep in mind that our parser has no
knowledge of the Gestalt rules of proximity and similarity,
or whatsoever. The inclusion of such knowledge might boost
our results or reduce the size of the training set. On the other
hand, we might also argue that we could just as well elimi-
nate all memory-based knowledge if we have access to the
Gestalt rules. We will discuss this issue in the following
section.

4. Discussion: Challenging the 
Gestalt principles

We have seen that a memory-based parsing model, known as
the DOP-Markov parser, can quite accurately predict the pre-
ferred grouping structures for western folksongs. However,
we have also seen that a large amount of hand-annotated
training data is needed to achieve this result. In fact, to learn
that a grouping boundary tends to occur at a large interval-
lic distance of pitch or time, our memory-based parser must
encounter several specific instances of such intervals before
it can assign a high probability to a boundary occurring at
such an interval. This may seem a serious drawback since
such intervallic boundaries may just as well be predicted by
only a few rules that formalize the Gestalt notions of proxi-
mity and similarity (such as Lerdahl & Jackendoff, 1983: 
39, or Cambouropoulos, 1997). However, there are many 

patterns in the Essen Folksong Collection that are problem-
atic for Gestalt-based parsers, even when such parsers are
extended with a parallelism-detection mechanism (as in
Cambouropoulos, 1998), while they are rather trivial for
memory-based models. These are patterns that contain a
jump (a large pitch interval) at the beginning or end of a
phrase (or both). As an example, consider the first 12 notes
from folksong K0029, which was given in Figure 1, and
which corresponds to the two groups in (5):

Table 1. F-score as a function of training set size.

Training size F-score

500 31.1%
1000 47.4%
1500 56.9%
2000 64.4%
2500 69.0%
3000 73.2%
3500 76.1%
4000 78.3%
4500 79.9%
5000 80.7%
5251 81.0%

  3 221 5 533221 5_ _ _-( ) - -( )

A Gestalt-based parser would probably assign one of the fol-
lowing grouping structures to these notes:

  3 221 5 533221 5_ _ _ . . .( ) - -( ) -(

or:

  3 221 5 5 33221 5_ _ _- -( ) -( )

While these grouping structures are possible, in that they can
be perceived, they do not correspond to the structure that is
actually perceived. The problem arises from the relatively
large intervals of pitch (and time) between the notes 1_ and
-5, and between the notes -5 and 3, from which a Gestalt-
based parser would infer a grouping boundary at one of these
intervals. What phenomenon overrules the perception of a
boundary here? For this particular example, one could argue
that the very strong melodic parallelism between the first five
notes (i.e., 3_221_-5) and the last five notes (i.e., 3_221_
-5_) of this folksong (See Figure 1) overrules the boundary
at the local intervallic distance, thus resulting in the correct
segmentation – provided that we have a mechanism which
can discover these parallel patterns (cf. Cambouropoulos,
1998). However, there are also (many) folksongs where no
such parallelism occurs and yet there is a group boundary
between two equivalent notes that are preceded and followed
by relatively large intervals. For example in folksong K0690
(“Ruru Rinneken”):

  

3 2 1 1 5 5 3 3 2 2 1 1 5

5 1 2 3 1 4 2 1 7 1 2 5 3 1

3 1 5 3 1 1 5 3 1 5

5 1 2 3 1 4 3 223 1 1 0

__ __ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ __ _ _ _ _ _ _ __ _

_ __ _ _ _ _ _ _ __ _

_ _ _ _ _ _ _ _ __ _ _

-( ) - -( )
-( ) - -( )

- - -( )
-( ))

Here we have again two relatively large pitch intervals, or
jumps, between the two notes at the end of the first group (1_
and -5_) and at the beginning of the second group (-5_ and
3_). Since there is no discontinuity in time here, one would
expect a grouping boundary at the largest jump, i.e., between

Figure 5

Figure 6

Figure 7

Figure 8
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-5_ and 3_, which would also be predicted by the Gestalt
rules (see Lerdahl & Jackendoff, 1983: 39). Yet, the bound-
ary occurs between the two equivalent notes -5_ and -5_!
And now there is no higher-level parallelism that could
enforce the correct grouping structure. On the contrary: a
mechanism that would enforce musical parallelism would
assign the same boundary between -5_ and 3_ as predicted
by the Gestalt rules, since it would result in two very similar
or parallel groups:

in Figure 9, since the beats appear exactly on the first notes
of these phrases. Thus, metrical structure would not help
either to explain the anomalous grouping structure in (8).

Finally, we should consider the role of harmony. It is well-
known that the internal harmony of a piece does often influ-
ence its melodic grouping structure. So one might hope that
by taking into account the implied or internal harmony of
folksong K0690, we can explain and predict its grouping 
into jump-phrases. However, the two alternative groupings,
expressed by the first two phrases in Figures 8 and 9, display
the same internal harmony: both are melodic elaborations of
the basic triad 1, 3, 5. Thus, harmonic grouping preferences,
as proposed in e.g., Lerdahl and Jackendoff (1983) or
Narmour (1990, 1992), are not of any help in predicting the
peculiar grouping structure of K0690.

So there seems to be no musical factor that can overrule
the incorrect predictions made by the Gestalt principles 
for this folksong: neither melodic parallelism, nor metrical
structure, and not even internal harmony. One might put
forward that grouping structures with jump-phrases are
highly exceptional and limited to only a few folksongs that
are not representative for the Essen Folksong Collection. Yet,
a detailed analysis of the test data (1000 folksongs) shows
that more than 32% of the folksongs contained at least one
jump-phrase and that the total percentage of phrases that start
or end with a jump (or both – as in the second phrase in (8))
is at least 15%. Thus folksongs with jump-phrases are not
epiphenomenal.

It is noteworthy that our DOP-Markov parser predicted to
a very high degree (98.0%) the correct grouping boundaries
for these 15% jump-phrases (although it often assigned addi-
tional subphrases within these phrases). A Gestalt-based/
parallelism-based parser, on the other hand, would definitely
predict the wrong grouping boundaries for all these jump-
phrases – except if there are parallel phrases in the piece 
that may enforce the correct grouping boundaries, as we dis-
cussed for figure 1, but such parallel phrases occurred less
than 1% in the test set. Other things being equal, our parser
would improve with about 12% over a Gestalt-based/
parallelism-based parser – given the 15% jump-phrases, the
98.0% performance on these phrases by our parser, and the
less than 1% of these phrases for which parallelism may over-
ride the Gestalt principles. Moreover, we could not find any
test folksong for which a Gestalt-based/parallelism-based
parser might possibly improve over our memory-based
parser, though we fully admit that this needs to be checked
by an actual experiment with an implementation of such a
parser. The patterns that were problematic for our DOP-
Markov parser seem to be entirely due to the shallowness of
the annotations in the Essen Folksong Collection (i.e., our
parser still predicts too many phrases); this shallowness is
equally problematic for a Gestalt-based/parallelism-based
parser, we trust. (We should perhaps mention that jumps in
the middle of phrases are also problematic for Gestalt-based
models, but such jumps would only lead to additional sub-
phrases which are not annotated in the Essen Folksong 

  3 2 1 1 5 5 3 3 2 2 1 1 5 5__ __ _ _ _ _ _ _ _ _ _ _ _ _ . . .- -( ) - -( )(

What phenomenon overrules these phrase boundaries?
Before trying to answer this question, we should be confident
that the annotation of folksong K0690 is correct, i.e., that its
annotation corresponds to the structure as perceived by a
human listener. While we found the last two groups of the
annotation of K0690 overly shallow, the group boundaries
provided by the Essen Folksong Collection matched with our
perception of group boundaries, to the best of our intuitions.
Although we admit that the correctness of an annotation
should preferably be established by an independent psycho-
logical experiment with more than one subject (which falls
beyond the scope of this paper), we feel confident that the
anomalous grouping boundaries of K0690 do not depend on
some kind of annotation error.

A possible cause for the peculiar grouping structure of
K0690 may be the lyrics, i.e., the text, of the folksong. It
could be that the prosodic structure of the text enforces a
certain melodic grouping structure which might explain the
perceived “jump-phrases” in K0690. However, the texts of
the folksongs have not been entered in the Essen Folksong
Collection, and only very few texts are available at all 
(Dr. Ewa Dahling, personal communication). Moreover, we
already established that our grouping intuitions for folksong
K0690, without having access to its text, agreed with the
segmentations in the Essen Folksong Collection. Thus we can
rule out the influence of the text as a cause for the peculiar
grouping of folksong K0690. (Note also that it is rather
uncontroversial to study the melodies of vocal music without
considering the texts – see for instance the many examples
of songs, chorales and arias in Lerdahl & Jackendoff (1983)
or Narmour (1990).)

So far, we have not considered the metrical structures of
the Essen Folksongs. One might wonder whether meter can
enforce the perceived grouping structure of K0690. It is
widely acknowledged, however, that grouping structure is
independent of metrical structure, which leads virtually all
theories of music cognition to formulate separate models for
grouping and meter. Lerdahl and Jackendoff convincingly
show that “groups do not receive metrical accent, and beats
do not possess any inherent grouping” (Lerdahl & Jackend-
off, 1983: 26). But even if the metrical structure of K0690
did enforce and thus matched the grouping structure of this
folksong, it would assign the same incorrect phrases as given

Figure 9
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Collection and can therefore not be tested here. Only jumps
at the beginning or at the end of phrases lead to wrong pre-
dictions by Gestalt-based/parallelism-based models.)

We may thus conclude that jump-phrases provide serious
evidence against the Gestalt principles of proximity and sim-
ilarity, and that a model which is solely based on musical
factors, such as intervallic distances, parallelism, meter and
harmony, can never learn jump-phrases like in Figure 8. The
following figure gives some other folksongs from the Essen
Folksong Collection that involve jumps from or to note -5
(there are also jumps from other notes, such as -4 and -6,
which are not present in this example).

Huron’s observation is correct, arch-like patterns may either
express a universal tendency in music, in which case they
ought to be formalized by a rule or principle (but there is no
evidence for this universality), or arch-like patterns may be
strictly idiom-dependent, in which case they can be best 
captured by a memory-based model that tries to mimic the
musical experience of a listener from a certain culture. Thus,
music perception may be much more memory-based as 
previously assumed.

If we wish to propose a memory-based approach to music
as a serious alternative to a Gestalt-based approach, we
should address the question of how any structure can be
acquired if we do not have any structured pieces in our
corpus to start with. With an already analyzed corpus, we can
at best simulate adult music perception – analogous to a
corpus of analyzed natural language (see Bod, 1998). We
conjecture that the acquisition of a structured corpus may be
the result of a bootstrapping process where the discovery of
similar recurrent patterns and distributional regularities plays
an important role. As soon as a pattern appears more than
once, it may be hypothesized as a group, and may be used as
a productive unit to analyze new pieces. The frequency with
which a pattern occurs is used to decide between conflicting
groups. Much research in unsupervised language learning is
concerned with bootstrapping syntactic structure on the basis
of pattern similarity and statistics from large language
corpora (e.g., Finch & Chater, 1994; Brent & Cartwright,
1996; van Zaanen, 2000). One of our future goals is to inves-
tigate whether such unsupervised learning techniques carry
over to bootstrapping musical structure, and whether the
learned structure corresponds to the structure as perceived by
human listeners. On the other hand, there is already a con-
siderable amount of work on unsupervised musical pattern
induction (e.g., Cope, 1990; Mattusch, 1997; Crawford et al.,
1998; Rolland & Ganascia, 2000). We hope to assess these
models, along with unsupervised models of natural language
learning, for the task of bootstrapping structure in a large
musical corpus. Once an initial corpus of musical patterns
has been learned, these patterns can be used by our super-
vised model to efficiently segment new pieces. Only for com-
pletely new sequences of notes that have never appeared
before, unsupervised methods need still to be invoked. The
exact interplay between unsupervised and supervised aspects
of music perception needs to await further investigation.

But also if we limit ourselves to supervised music seg-
mentation, this work triggers much new research. One of 
our projects is to convert the absolute pitch encodings in the
Essen annotations into relative pitch encodings, such that our
memory-based parser can more easily generalize over inter-
vals that occur between different notes but that involve the
same pitch or time distances; this may also reduce the size
of the training set, which would increase the cognitive plau-
sibility of our model. Another project is to manually enrich
the Essen annotations with more fine-grained constituents,
such as subphrases and subsections, and assign these con-
stituents with labels that summarize regularities of the under-

  

Folksong K0641

Folksong A0214

b_ b_ b_.3b4_3b_2__1_

b_ b_ 5_

11 7 511 5 511 721 50 11 7 5222 11 721 5

511 5 511 5 11 7 5222 211 721 50

1 1 1 1 1 7 7 5 5 3

1 1 1 1 1 7 7

5

- - -( ) - - -( ) - -( ) - -( )
- - - -( ) - -( ) - -( )

- - -( ) -( )
- - -( )

-

_ _ _

_ _

_ _ _ _ _ _ _

_ _ _ _ _

_ 33 2 1 1 3 3

4 43 7 3 3

1 5 5 5 4 3 5 4 3 2 1

5 4 3 2 3 3 5 4 3 2

1 5 5 5 4 3 5 4 3 2 1

5 4 3 2

b_.3b4_3b_ b_.45_ b_4__1__

b_21 b_.12_ b_4_1_ b_2_1__.

Folksong B0752

( )( )
-( )( )

( )
-( )

( )
-

__ _ _

_.

_ __ _ _ _ _ _ _ _ _ _

_ _ _ _ __ _ _ _ _ __

_ __ _ _ _ _ _ _ _ _ _

_ _ _ _ 33 3 5 4 3 2

2 2 2 3 3 4 3 4 5

5 1 7 6 5 6543 2 1

5 5 43 2 1 6 5 5 2 0 5 3 0

3 6 54 3 2 1 7 3 2 0

__ _ _ _ _ __

_ __ _ __ _ _ _ _ __

_ _ _ _ _. __ _ __

_ _. _ _ _ _ _ __ _ _ __ _

_ _. # _ _ _ _ _ _ __ _

( )
( )

+( )

- - -( ) - -( )
-( )

Folksong B0179

11 7

234 432 234 3 2 45654 4321 7 712

5 3 32 5 1 0 5 3 32 5 1 0

_

_ _ _ _ _ _ _ _

_ _. _ _ __ _ _ _. _ _ __ _

-( )
( ) - -( )

-( ) -( )

b__0_

One can of course argue that there may still be a more 
fundamental principle or rule, which we do not (yet) know
of, and which does predict the correct grouping boundaries
for jump-phrases. The search for such a principle or rule,
which seems to go beyond the harmonic, metric, and melodic
nature of music, will be part of future research. But we
should neither rule out the possibility that this particular
grouping phenomenon is inherently memory-based. This
possibility may be supported by Huron (1996) who observed
that phrases in western folksongs tend to exhibit an “arch”
shape, where the pitch contour rises and then falls over the
course of a phrase. Thus the group (-5_3_3_2_2_1_1_-5_)
in folksong K0690 displays such an arch contour, while 
the group (3_3_2_2_1_1_-5_-5_) does not. Assuming that

Figure 10
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lying patterns, as proposed by musical coding languages such
as Collard et al. (1981) and Deutsch and Feroe (1981). We
surmise that a listener’s melodic structuring depends partly
on regularities in the input patterns (as described by musical
coding languages) and partly on previous musical experi-
ences (as described by our memory-based approach). An ade-
quate model for music perception should do justice to both
aspects of music.

5. Conclusion

We have presented a memory-based approach to music which
analyzes new pieces by combining fragments from structures
of previously encountered pieces. In case of ambiguity, 
this approach computes the analysis that can be considered
the most probable one on the basis of the occurrence-
frequencies of the fragments. We successfully tested some
instances of this approach on a set of 1000 folksongs from
the Essen Folksong Collection, obtaining an F-score of up to
81.0%. To the best of our knowledge, this paper contains 
the first parsing experiment with the Essen Folksong Col-
lection, which we hope may serve as a baseline for other
computational models of music analysis.

A qualitative analysis of our results showed that there is
a class of musical patterns, so-called jump-phrases, that chal-
lenge both the Gestalt principles of proximity and similarity
and the principle of melodic parallelism. Jump-phrases
provide evidence that grouping boundaries can appear after
or before large pitch intervals, rather than at such intervals,
and that grouping boundaries can even appear between iden-
tical notes (that are preceded and followed by relatively large
intervals). We have seen that Gestalt-based, parallelism-
based and/or harmony-based models are inadequate to deal
with these patterns. Probabilistic, memory-based models
seem more apt to deal with these gradient phenomena of
music analysis since they can capture the entire continuum
between jump-phrases and non-jump-phrases.
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