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Abstract
     Is there a general model that can predict the perceived phrase structure in language and
music? While it is usually assumed that humans have separate faculties for language and
music, this work focuses on the commonalities rather than on the differences between these
modalities, aiming at finding a deeper "faculty". Our key idea is that the perceptual system
strives for the simplest structure (the "simplicity principle"), but in doing so it is biased by the
likelihood of previous structures (the "likelihood principle"). We present a series of data-
oriented parsing (DOP) models that combine these two principles and that are tested on the
Penn Treebank and the Essen Folksong Collection. Our experiments show that (1) a
combination of the two principles outperforms the use of either of them, and (2) exactly the
same model with the same parameter setting achieves maximum accuracy for both language
and music. We argue that our results suggest an interesting parallel between linguistic and
musical structuring.

1.  Introduction: The Problem of Structural Organization

It is widely accepted that the human cognitive system tends to organize perceptual information
into hierarchical descriptions that can be conveniently represented by tree structures. Tree
structures have been used to describe linguistic perception (e.g. Wundt, 1901; Chomsky,
1965), musical perception (e.g. Longuet-Higgins, 1976; Lerdahl & Jackendoff, 1983) and
visual perception (e.g. Palmer, 1977; Marr, 1982). Yet, little attention has been paid to the
commonalities between these different forms of perception and to the question whether there
exists a general, underlying mechanism that governs all perceptual organization. This paper
studies exactly that question: acknowledging the differences between the perceptual
modalities, is there a general model that can predict the perceived tree structure for sensory
input? In studying this question, we will use an empirical methodology: any model that we
might hypothesize will be tested against manually analyzed benchmarks such as the
linguistically annotated Penn Treebank (Marcus et al. 1993) and the musically annotated
Essen Folksong Collection (Schaffrath, 1995). While we will argue for a general model of
structural organization in language, music and vision, we will carry out experiments only with
linguistic and musical benchmarks, since no benchmark of visual tree structures is currently
available, to the best of our knowledge.
     Figure 1 gives three simple examples of linguistic, musical and visual information with their
corresponding tree structures printed below (these examples are resp. taken from Martin et al.
1987, Lerdahl & Jackendoff, 1983, and Dastani, 1998).
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List  the  sales  of  products  in  1973

V DT N P N P N

NP PP PP

NP

NP

S

List the sales of products in  1973

                 

Figure 1: Examples of linguistic, musical and visual input with their tree structures

Thus, a tree structure describes how parts of the input combine into constituents and how
these constituents combine into a representation for the whole input. Note that the linguistic
tree structure is labeled with syntactic categories, whereas the musical and visual tree
structures are unlabeled. This is because in language there are syntactic constraints on how
words can be combined into larger constituents (e.g. in English a determiner can be combined
with a noun only if it precedes that noun, which is expressed by the rule NP → DT N), while
in music (and to a lesser extent in vision) there are no such restrictions: in principle any note
may be combined with any other note.
     Apart from these differences, there is also a fundamental commonality: the perceptual input
undergoes a process of hierarchical structuring which is not found in the input itself. The main
problem is thus: how can we derive the perceived tree structure for a given input? That this
problem is not trivial may be illustrated by the fact that the inputs above can also be assigned
the following, alternative tree structures:

List   the   sales   of   products   in   1973

V DT N P N P N

NP PP PP

NP

S

           

Figure 2: Alternative tree structures for the inputs in Figure 1

These alternative structures are possible in that they can be perceived. The linguistic tree
structure in Figure 1 corresponds to a meaning which is different from the tree in Figure 2.
The two musical tree structures correspond to different groupings into motifs. And the two
visual structures correspond to different visual Gestalts. But while the alternative tree
structures are all possible, they are not plausible: they do not correspond to the structures that
are actually perceived by the human cognitive system.
     The phenomenon that the same input may be assigned different structural organizations is
known as the ambiguity problem. This problem is one of the hardest problems in modeling
human perception. Even in language, where a phrase-structure grammar may specify which
words can be combined into constituents, the ambiguity problem is notoriously hard (cf.
Manning & Schütze, 1999). Charniak (1997: 37) argues that many sentences from the Wall
Street Journal have more than one million different parse trees. The ambiguity problem for
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musical input is even harder, since there are virtually no constraints on how notes may be
combined into constituents. Talking about rhythm perception in music, Longuet-Higgins and
Lee (1987) note that "Any given sequence of note values is in principle infinitely ambiguous,
but this ambiguity is seldom apparent to the listener.".
     In the following Section, we will discuss two principles that have traditionally been proposed
to solve ambiguity: the likelihood principle and the simplicity principle. In Section 3, we will
argue for a new integration of the two principles within the data-oriented parsing framework.
Our hypothesis is that the human cognitive system strives for the simplest structure generated
by the shortest derivation, but that in doing so it is biased by the frequency of previously
perceived structures. In Section 4, we go into the computational aspects of our model. In
Section 5, we discuss the linguistic and musical test domains. Section 6 presents an empirical
investigation and comparison of our model. Finally, in Section 7, we give a discussion of our
approach and go into other combinations of simplicity and likelihood that have been proposed
in the literature.

2.   Two principles: Likelihood and Simplicity

How can we predict from the set of all possible tree structures the tree that is actually
perceived by the human cognitive system? In the field of visual perception, two competing
principles have traditionally been proposed to govern structural organization. The first, initiated
by Helmholtz (1910), advocates the likelihood principle: perceptual input will be organized
into the most probable structure. The second, initiated by Wertheimer (1923) and developed by
other Gestalt psychologists, advocates the simplicity principle: the perceptual system is
viewed as finding the simplest rather than the most probable structure (see Chater, 1999, for
an overview). These two principles have also been used in linguistic and musical structuring.
In the following, we briefly review these principles for each modality.

2.1  Likelihood
The likelihood principle has been particularly influential in the field of natural language
processing (see Manning and Schütze, 1999, for a review). In this field, the most appropriate
tree structure of a sentence is assumed to be its most likely structure. The likelihood of a tree
is computed from the probabilities of its parts (e.g. phrase-structure rules) which are in turn
estimated from a large manually analyzed language corpus, i.e. a treebank . State-of-the-art
probabilistic parsers such as Collins (2000), Charniak (2000) and Bod (2001a) obtain around
90% precision and recall on the Penn Wall Street Journal treebank (Marcus et al. 1993).
     The likelihood principle has also been applied to musical perception, e.g. by Raphael (1999)
and Bod (2001b/c). As in probabilistic natural language processing, the most probable musical
tree structure can be computed from the probabilities of rules or fragments taken from a large
annotated musical corpus. A musical benchmark which has been used by some models is the
Essen Folksong Collection (Schaffrath, 1995).
     Also in vision science, there is a huge interest in probabilistic models (e.g. Hoffman, 1998;
Kersten, 1999). Mumford (1999) has even seen fit to declare the Dawning of Stochasticity.
Unfortunately, no visual treebanks are currently available.

2.2  Simplicity
The simplicity principle has a long tradition in the field of visual perception psychology (e.g.
Restle, 1970; Leeuwenberg, 1971; Simon, 1972; Buffart et al. 1983; van der Helm, 2000). In
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this field, a visual pattern is formalized as a constituent structure by means of a visual coding
language based on primitive elements such as line segments and angles. Perception is
described as the process of selecting the simplest structure corresponding to the "shortest
encoding" of a visual pattern.
     The notion of simplicity has also been applied to music perception. Collard et al. (1981) use
the coding language of Leeuwenberg (1971) to predict the metrical structure for four preludes
from Bach's Well-Tempered Clavier. More well-known in music perception is the theory
proposed by Lerdahl and Jackendoff (1983). Their theory contains two kinds of rules: "well-
formedness rules" and "preference rules". The role of well-formedness rules is to define the
kinds of formal objects (grouping structures) the theory employs. What grouping structures a
listener actually hears, is then described by the preference rules which describe Gestalt-
preferences of the kind identified by Wertheimer (1923), and which can therefore also be seen
as an embodiment of the simplicity principle.
     Notions of simplicity also exist in language processing. For example, Frazier (1978) can be
viewed as arguing that the parser prefers the simplest structure containing minimal
attachments. Bod (2000a) defines the simplest tree structure of a sentence as the structure
generated by the smallest number of subtrees from a given treebank.

3.  Combining Likelihood and Simplicity

The key idea of the current paper is that both principles play a role in perceptual organization,
albeit rather different ones: the simplicity principle as a general cognitive preference for
economy, and the likelihood principle as a probabilistic bias due to previous perceptual
experiences. Informally stated, our working hypothesis is that the human cognitive system
strives for the simplest structure generated by the shortest derivation, but that in doing so it is
biased by the frequency of previously perceived structures (some other combinations of
simplicity and likelihood will be discussed in Section 7). To formally instantiate our working
hypothesis, we first need a model that defines the set of possible structures of an input. In this
paper, we have chosen for a model that defines the set of phrase-structures for an input on
the basis of a treebank of previously analyzed input, and which is known as the Data-Oriented
Parsing or DOP model (see Bod, 1998; Collins & Duffy, 2002). DOP learns a grammar by
extracting subtrees from a given treebank and combines these subtrees to analyze fresh input.
We have chosen DOP because (1) it uses subtrees of arbitrary size, thereby capturing non-
local dependencies, and (2) it has obtained very competitive results on various benchmarks
(Bod, 2001a/b; Collins & Duffy, 2002). In the following, we first review the DOP model and
discuss the use of the likelihood and simplicity principles by this approach. Next, we show how
these two principles can be combined to instantiate our working hypothesis.

3.1 Data-Oriented Parsing

In this Section, we illustrate the DOP model with a linguistic example (for a rigorous definition
of DOP, the reader is referred to Bod, 1998). We will come back to some musical examples
in Section 5. Suppose we are given the following extremely small linguistic treebank of two
trees for resp. she wanted the dress on the rack  and she saw the dog with the telescope
(actual treebanks contain tens of thousands of trees, cf. Marcus et al. 1993):
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 S

NP

she

VP

VP

 V NP

PP

 P NP

 S

NP VP

 V

wanted

NP

NP PP

NP P

she

the dress

the rackon

the dog thesaw with telescope

Figure 3: An example treebank

The DOP model can parse a new sentence, e.g. She saw the dress with the telescope, by
combining subtrees from this treebank by means of a substitution operation (indicated as ¡):

 S

NP

she

VP

VP

 V NP

PP

saw

PP

 P NP

thewith telescope

NP

the dress

° °  S

NP

she

VP

VP

 V NP

PP

 P NP

the thesaw with telescope

=

dress

Figure 4: Parsing a sentence by combining subtrees from Figure 3

Thus the substitution operation combines two subtrees by substituting the second subtree on
the leftmost nonlexical leaf node of the first subtree (the result of which may be combined
with a third subtree, etc.). A combination of subtrees that results in a tree structure for the
whole sentence is called a derivation. Since there are many different subtrees, of various
sizes, there are typically also many different derivations that produce, however, the same tree;
for instance:

 S

NP

she

VP

VP PP

 P NP

thewith telescope

NP

the dress

° =  S

NP

she

VP

VP

 V NP

PP

 P NP

the thesaw with telescopedress

 V NP

saw

Figure 5: A different derivation which produces the same parse tree
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The more interesting case occurs when there are different derivations that produce different
parse trees. This happens when a sentence is ambiguous; for example, DOP also produces
the following alternative parse tree for She saw the dress with the telescope:

 S

NP VP

 V NP

NP PP

she

the dress

 V

saw

PP

 P NP

thewith telescope

=  S

NP VP

 V NP

NP PP

she

the dress

saw

 P NP

thewith telescope

° °

Figure 6: A different derivation which produces a different parse tree

3.2 Likelihood-DOP

In Bod (1993), DOP is enriched with the likelihood principle to predict the perceived tree
structure from the set of possible structures. This model, which we will call Likelihood-DOP,
computes the most probable tree of an input from the occurrence-frequencies of the subtrees.
The probability of a subtree t, P(t), is computed as the number of occurrences of t, | t |, divided
by the total number of occurrences of treebank-subtrees that have the same root label as t.
Let r(t) return the root label of t. Then we may write:

P(t)  = | t |

Σ t': r(t')= r( t)  | t' |

The probability of a derivation t1¡...¡tn is computed by the product of the probabilities of its
subtrees ti:

P(t1¡...¡tn)  =  Π i P(ti)

As we have seen, there may be different derivations that generate the same parse tree. The
probability of a parse tree T is thus the sum of the probabilities of its distinct derivations. Let
tid be the i-th subtree in the derivation d that produces tree T, then the probability of T is given
by

P(T)  =  ΣdΠ i P(tid)
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In parsing a sentence s, we are only interested in the trees that can be assigned to s, which we
denote by Ts. The best parse tree, Tbest, according to Likelihood-DOP is then the tree which
maximizes the probability of Ts:

Tbest  =  arg    max P(Ts)
              Ts

Thus Likelihood-DOP computes the probability of a tree as a sum of products, where each
product corresponds to the probability of a certain derivation generating the tree. This
distinguishes Likelihood-DOP from most other statistical parsing models that identify exactly
one derivation for each parse tree and thus compute the probability of a tree by only one
product of probabilities (e.g. Charniak, 1997; Collins, 1999; Eisner, 1997). Likelihood-DOP's
probability model allows for including counts of subtrees of a wide range of sizes: everything
from counts of single-level rules to counts of entire trees.
      Note that the subtree probabilities in Likelihood-DOP are directly estimated from their
relative frequencies in the treebank-trees. While the relative-frequency estimator obtains
competitive results on several domains (Bonnema et al. 1997; Bod, 2001a; De Pauw, 2000), it
does not maximize the likelihood of the training data (Johnson, 2002). This is because there
may be hidden derivations which the relative-frequency estimator cannot deal with.1 There
are estimation procedures that do take into account hidden derivations and that maximize the
likelihood of the training data. For example, Bod (2000b) presents a Likelihood-DOP model
which estimates the subtree probabilities by a maximum likelihood re-estimation procedure
based on the expectation-maximization algorithm (Dempster et al. 1977). However, since the
relative frequency estimator has so far not been outperformed by any other estimator (see
Bod et al. 2002b), we will stick to the relative frequency estimator for the current paper.

3.3 Simplicity-DOP

Likelihood-DOP does not do justice to the preference humans display for the simplest
structure generated by the shortest derivation of an input. In Bod (2000a), the simplest tree
structure of an input is defined as the tree that can be constructed by the smallest number of
subtrees from a treebank. We will refer to this model as Simplicity-DOP. Instead of
producing the most probable parse tree for an input, Simplicity-DOP thus produces the parse
tree generated by the shortest derivation consisting of the fewest treebank-subtrees,
independent of the probabilities of these subtrees. We define the length of a derivation d,
L(d), as the number of subtrees in d; thus if d = t1¡...¡tn then L(d) = n. Let dT be a derivation
which results in parse tree T, then the best parse tree, Tbest, according to Simplicity-DOP is
the tree which is produced by a derivation of minimal length:

Tbest  =  arg    min L(dTs)
             Ts

As in Section 3.2, Ts is a parse tree of a sentence s. For example, given the treebank in Figure
3, the simplest parse tree for She saw the dress with the telescope is given in Figure 5, since
                                                
1 Only if the subtrees are restricted to depth 1 does the relative frequency estimator coincide with the
maximum likelihood estimator. Such a depth-1 DOP model corresponds to a stochastic context-free
grammar. It is well-known that DOP models which allow subtrees of greater depth outperform depth-1
DOP models (Bod, 1998; Collins & Duffy, 2002).
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that parse tree can be generated by a derivation of only two treebank-subtrees, while the
parse tree in Figure 6 (and any other parse tree) needs at least three treebank-subtrees to be
generated.2

     The shortest derivation may not be unique: it can happen that different parse trees of a
sentence are generated by the same minimal number of treebank-subtrees (also the most
probable parse tree may not be unique, but this never happens in practice). In that case we
will back off to a frequency ordering of the subtrees. That is, all subtrees of each root label
are assigned a rank according to their frequency in the treebank: the most frequent subtree (or
subtrees) of each root label gets rank 1, the second most frequent subtree gets rank 2, etc.
Next, the rank of each (shortest) derivation is computed as the sum of the ranks of the
subtrees involved. The derivation with the smallest sum, or highest rank, is taken as the final
best derivation producing the final best parse tree in Simplicity-DOP (see Bod, 2000a).
     We performed one little adjustment to the rank of a subtree. This adjustment averages the
rank of a subtree by the ranks of its own sub-subtrees. That is, instead of simply taking the
rank of a subtree, we compute the rank of a subtree as the (arithmetic) mean of the ranks of
all its sub-subtrees (including the subtree itself). The effect of this technique is that it
redresses a very low-ranked subtree if it contains high-ranked sub-subtrees.
     While Simplicity-DOP and Likelihood-DOP obtain rather similar parse accuracy on the
Wall Street Journal and the Essen Folksong Collection (in terms of precision/recall -- see
Section 6), the best trees predicted by the two models do not quite match. This suggests that a
combined model, which does justice to both simplicity and likelihood, may boost the accuracy.

3.4 Combining Likelihood-DOP and Simplicity-DOP: SL-DOP and LS-DOP

The underlying idea of combining likelihood and simplicity is that the human perceptual system
searches for the simplest tree structure (generated by the shortest derivation) but in doing so it
is biased by the likelihood of the tree structure. That is, instead of selecting the simplest tree
per se, our combined model selects the simplest tree from among the n likeliest trees, where n
is our free parameter. There are of course other ways to combine simplicity and likelihood
within the DOP framework. A straightforward alternative would be to select the most
probable tree from among the n simplest trees, suggesting that the perceptual system is
searching for the most probable structure only from among the simplest ones. We will refer to
the first combination of simplicity and likelihood (which selects the simplest among the n
likeliest trees) as Simplicity-Likelihood-DOP or SL-DOP, and to the second combination
(which selects the likeliest among the n simplest trees) as Likelihood-Simplicity-DOP or LS-
DOP. Note that for n=1, Simplicity-Likelihood-DOP is equal to Likelihood-DOP, since there is
only one most probable tree to select from, and Likelihood-Simplicity-DOP is equal to
Simplicity-DOP, since there is only one simplest tree to select from. Moreover, if n gets large,
SL-DOP converges to Simplicity-DOP while LS-DOP converges to Likelihood-DOP. By
varying the parameter n, we will be able to compare Likelihood-DOP, Simplicity-DOP and
several instantiations of SL-DOP and LS-DOP.

                                                
2 One might argue that a more straightforward metric of simplicity would return the parse tree with the
smallest number of nodes (rather than the smallest number of treebank-subtrees). But such a metric is
known to perform quite badly (see Manning & Schütze, 1999; Bod, 2000a).
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4.  Computational Issues

Bod (1993) showed how standard chart parsing techniques can be applied to Likelihood-DOP.
Each treebank-subtree t is converted into a context-free rule r where the lefthand side of r
corresponds to the root label of t and the righthand side of r corresponds to the frontier labels
of t. Indices link the rules to the original subtrees so as to maintain the subtree's internal
structure and probability. These rules are used to create a derivation forest for a sentence
(using a chart parser -- see Charniak, 1993), and the most probable parse is computed by
sampling a sufficiently large number of random derivations from the forest ("Monte Carlo
disambiguation", see Bod, 1998). While this technique has been successfully applied to parsing
the ATIS portion in the Penn Treebank (Marcus et al. 1993), it is extremely time consuming.
This is mainly because the number of random derivations that should be sampled to reliably
estimate the most probable parse increases exponentially with the sentence length (see
Goodman, 2002). It is therefore questionable whether Bod's sampling technique can be scaled
to larger domains such as the Wall Street Journal (WSJ) portion in the Penn Treebank.
     Goodman (1996) showed how Likelihood-DOP can be reduced to a compact stochastic
context-free grammar (SCFG) which contains exactly eight SCFG rules for each node in the
training set trees. Although Goodman's method does still not allow for an efficient computation
of the most probable parse (in fact, the problem of computing the most probable parse in
Likelihood-DOP is NP-hard -- see Sima'an, 1996), his method does allow for an efficient
computation of the "maximum constituents parse", i.e. the parse tree that is most likely to have
the largest number of correct constituents. Unfortunately, Goodman's SCFG reduction method
is only beneficial if indeed all subtrees are used, while maximum parse accuracy is usually
obtained by restricting the subtrees. For example, Bod (2001a) shows that the "optimal"
subtree set achieving highest parse accuracy on the WSJ is obtained by restricting the
maximum number of words in each subtree to 12 and by restricting the maximum depth of
unlexicalized subtrees to 6. Goodman (2002) shows that some subtree restrictions, such as
subtree depth, may be incorporated by his reduction method, but we have found no reduction
method for our optimal subtree set.
     In this paper we will therefore use Bod's subtree-to-rule conversion method for Likelihood-
DOP, but we will not use Bod's Monte Carlo sampling technique from derivation forests, as
this turned out to be computationally prohibitive. Instead, we will use the well-known Viterbi
optimization algorithm for chart parsing (cf. Charniak, 1993; Manning & Schütze, 1999) which
allows for computing the k  most probable derivations of an input in cubic time. Using this
algorithm, we will estimate the most probable parse tree of an input from the 10,000 most
probable derivations, summing up the probabilities of derivations that generate the same tree.
Although this approach does not guarantee that the most probable parse tree is actually found,
it is shown in Bod (2000a) to perform at least as well as the estimation of the most probable
parse by Monte Carlo techniques on the ATIS corpus. Moreover, this approach is known to
obtain significantly higher accuracy than selecting the parse tree generated by the single most
probable derivation (Bod, 1998; Goodman, 2002), which we will therefore not consider in this
paper.
     For Simplicity-DOP, we also first convert the treebank-subtrees into rewrite rules just as
with Likelihood-DOP. Next, the simplest tree, i.e. the shortest derivation, can be efficiently
computed by Viterbi optimization in the same way as the most probable derivation, provided
that we assign all rules equal probabilities, in which case the shortest derivation is equal to the
most probable derivation. This can be seen as follows: if each rule has a probability p then the
probability of a derivation involving n rules is equal to pn, and since 0<p<1 the derivation with
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the fewest rules has the greatest probability. In our experiments in Section 6, we give each
rule a probability mass equal to 1/R, where R is the number of distinct rules derived by Bod's
method. As mentioned in 3.3, the shortest derivation may not be unique. In that case we
compute all shortest derivations of an input and then apply our ranking scheme to these
derivations. The ranks of the shortest derivations are computed by summing up the ranks of
the subtrees they involve. The shortest derivation with the smallest sum of subtree ranks is
taken to produce the best parse tree.
     For SL-DOP and LS-DOP, we compute either n likeliest or n simplest trees by means of
Viterbi optimization. Next, we either select the simplest tree among the n likeliest ones (for
SL-DOP) or the likeliest tree among the n simplest ones (for LS-DOP). In our experiments, n
will never be larger than 1,000.

5.   The Test Domains

As our linguistic test domain we used the Wall Street Journal (WSJ) portion in the Penn
Treebank (Marcus et al. 1993). This portion contains approx. 50,000 sentences that have been
manually annotated with the perceived linguistic tree structures using a predefined set of
lexico-syntactic labels. Since the WSJ has been extensively used and described in the
literature (cf. Manning & Schütze, 1999; Charniak, 2000; Collins, 2000; Bod, 2001a), we will
not go into it any further here.
     As our musical test domain we used the European folksongs in the Essen Folksong
Collection (Schaffrath, 1995; Huron, 1996), which correspond to approx. 6,200 folksongs that
have been manually enriched with their perceived musical grouping structures. The Essen
Folksong Collection has been previously used by Bod (2001b) and Temperley (2001) to test
their musical parsers. The current paper presents the first experiments with Likelihood-DOP,
Simplicity-DOP, SL-DOP and LS-DOP on this collection. The Essen folksongs are not
represented by staff notation but are encoded by the Essen Associative Code (ESAC). The
pitch encodings in ESAC resemble "solfege": scale degree numbers are used to replace the
movable syllables "do", "re", "mi", etc. Thus 1 corresponds to "do", 2 corresponds to "re", etc.
Chromatic alterations are represented by adding either a "#" or a "b" after the number. The
plus ("+") and minus ("-") signs are added before the number if a note falls resp. above or
below the principle octave (thus -1, 1 and +1 refer al to "do", but on different octaves).
Duration is represented by adding a period or an underscore after the number. A period (".")
increases duration by 50% and an underscore ("_") increases duration by 100%; more than
one underscore may be added after each number. If a number has no duration indicator, its
duration corresponds to the smallest value. Thus pitches in ESAC are encoded by integers
from 1 to 7 possibly preceded or followed by symbols for octave, chromatic alteration and
duration. Each pitch encoding is treated as an atomic symbol, which may be as simple as "1"
or as complex as "+2#_.". A pause is represented by 0, possibly followed by duration
indicators, and is also treated as an atomic symbol. No loudness or timbre indicators are used
in ESAC.
     Phrase boundaries are indicated by hard returns in ESAC. The phrases are unlabeled (cf.
Section 1 of this paper). Yet to make the ESAC annotations readable for our DOP models,
we added three basic labels to the phrase structures: the label "S" to each whole song, the
label "P" to each phrase, and the label "N" to each atomic symbol. In this way, we obtained
conventional tree structures that could directly be employed by our DOP models to parse new
input. The use of the label "N" distinguishes our annotations from those in previous work (Bod,
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2001b/c) where we only used labels for song and phrase ("S" and "P"). The addition of "N"
enhances the productivity and robustness of the musical parsing model, although it also leads
to a much larger number of subtrees.
     As an example, assume a very simple melody consisting of two phrases, (1 2) (2 3), then its
tree structure is given in Figure 7.

S

P P

N N N N

1 2 2 3

Figure 7: Example of a musical tree structure consisting of two phrases

Subtrees that can be extracted from this tree structure include the following:

S

P P

N N

1

P

N N

2 3

N

3

Figure 8: Some subtrees that can be extracted from the tree in figure 7

Thus the first subtree indicates a phrase starting with a note 1, followed by exactly one other
(unspecified) note, with the phrase itself followed by exactly one other (unspecified) phrase.
Such subtrees can be used to parse new musical input in the same way as has been explained
for linguistic parsing in Section 3.

6.  Experimental Evaluation and Comparison

To evaluate our DOP models, we used the blind testing method which randomly divides a
treebank into a training set and a test set, where the strings from the test set are parsed by
means of the subtrees from the training set. We applied the standard PARSEVAL metrics of
precision and recall to compare a proposed parse tree P with the corresponding correct test
set parse tree T as follows (cf. Black et al. 1991):

Precision =
# correct constituents in P

# constituents in P   

# correct constituents in P

# constituents in T
Recall =

A constituent in P is "correct" if there exists a constituent in T of the same label that spans the
same atomic symbols (i.e. words or notes).3 Since precision and recall can obtain rather
                                                
3 The precision and recall scores were computed by using the "evalb" program (available via
http://www.cs.nyu.edu/cs/projects/proteus/evalb/)
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different results (see Bod, 2001b), they are often balanced by a single measure of
performance, known as the F-score (see Manning & Schütze, 1999):

F-score =
2 × Precision × Recall

Precision + Recall

For our experiments, we divided both treebanks (i.e. the WSJ and the Essen Folksong
Collection) into 10 training/test set splits: 10% of the WSJ was used as test material each time
(sentences ≤ 40 words), while for the Essen Folksong Collection test sets of 1,000 folksongs
were used each time. For words in the test set that were unknown in the training set, we
guessed their categories by using statistics on word-endings, hyphenation and capitalization
(cf. Bod, 2001a); there were no unknown notes. As in previous work (Bod, 2001a), we limited
the maximum size of the subtrees to depth 14, and used random samples of 400,000 subtrees
for each depth > 1 and ≤ 14.4 Next, we restricted the maximum number of atomic symbols in
each subtree to 12 and the maximum depth of unlexicalized subtrees to 6. All subtrees were
smoothed by the technique described in Bod (1998: 85-94) based on simple Good-Turing
estimation (Good, 1953).
     Table 1 shows the mean F-scores obtained by SL-DOP and LS-DOP for language and
music and for various values of n. Recall that for n=1, SL-DOP is equal to Likelihood-DOP
while LS-DOP is equal to Simplicity-DOP.

n

SL-DOP LS-DOP
(simplest among n likeliest) (likeliest among n  simplest)

Language Music Language Music

1 87.9% 86.0% 85.6% 84.3%
5 89.3% 86.8% 86.1% 85.5%
10 90.2% 87.2% 87.0% 85.7%
11 90.2% 87.3% 87.0% 85.7%
12 90.2% 87.3% 87.0% 85.7%
13 90.2% 87.3% 87.0% 85.7%
14 90.2% 87.2% 87.0% 85.7%
15 90.2% 87.2% 87.0% 85.7%
20 90.0% 86.9% 87.1% 85.7%
50 88.7% 85.6% 87.4% 86.0%
100 86.8% 84.3% 87.9% 86.0%
1,000 85.6% 84.3% 87.9% 86.0%

Table 1: F-scores obtained by SL-DOP and LS-DOP for language and music

                                                
4 These random subtree samples were not selected by first exhaustively computing the complete set of
subtrees (this was computationally prohibitive). Instead, for each particular depth > 1 we sampled
subtrees by randomly selecting a node in a random tree from the training set, after which we selected
random expansions from that node until a subtree of the particular depth was obtained. We repeated
this procedure 400,000 times for each depth > 1 and ≤ 14.
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The Table shows that there is an increase in accuracy for both SL-DOP and LS-DOP if the
value of n increases from 1 to 11. But while the accuracy of SL-DOP decreases after n=13
and converges to Simplicity-DOP (i.e. LS-DOP at n=1), the accuracy of LS-DOP continues
to increase and converges to Likelihood-DOP (i.e. SL-DOP at n=1). The highest accuracy is
obtained by SL-DOP at 11 ≤ n ≤ 13, for both language and music. Thus SL-DOP outperforms
both Likelihood-DOP and Simplicity-DOP, and the selection of the simplest structure out of
the top likeliest ones turns out to be a more promising model than the selection of the likeliest
structure out of the top simplest ones. According to paired t-testing, the accuracy
improvement of SL-DOP at n=11 over SL-DOP at n=1 (when it is equal Likelihood-DOP) is
statistically significant for both language (p<.0001) and music (p<.006).
     It is surprising that SL-DOP reaches highest accuracy at such a small value for n. But it is
even more surprising that exactly the same model (with the same parameter setting) obtains
maximum accuracy for both language and music. This model embodies the idea that the
perceptual system strives for the simplest structure but in doing so it only searches among a
few most probable structures.
     To compare our results for language with others, we also tested SL-DOP at n=11 on the
now standard division of the WSJ, which uses sections 2 to 21 for training (approx. 40,000
sentences) and section 23 for testing (2416 sentences ≤ 100 words) (see e.g. Manning &
Schütze, 1999; Charniak, 2000; Collins, 2000). On this division, SL-DOP achieved an F-score
of 90.7% while the best previous models obtained an F-score of 89.7% (Collins, 2000; Bod,
2001a). In terms of error reduction, SL-DOP improves with 9.6% over these other models. It
is common to also report the accuracy for sentences ≤ 40 words on the WSJ, for which SL-
DOP obtained an F-score of 91.8%.
     Our musical results can be compared to Bod (2001b/c), who tested three probabilistic
parsing models of increasing complexity on the same training/test set splits from the Essen
Folksong Collection. The best results were obtained with a hybrid DOP-Markov parser:
80.7% F-score. This is significantly worse than our best result of 87.3% obtained by SL-DOP
on the same splits from the Essen folksongs. This difference may be explained by the fact that
the hybrid DOP-Markov parser in Bod (2001b/c) only takes into account context from higher
nodes in the tree and not from any sister nodes, while the DOP models presented in the
current paper take any subtree into account of (almost) arbitrary width and depth, thereby
covering a larger amount of musical context. Moreover, as mentioned in Section 5, the models
in Bod (2001b/c) did not use the label "N" for notes; instead, a Markov approach was used to
parse new sequences of notes.
     It would also be interesting to compare our musical results to the melodic parser of
Temperley (2001), who uses a system of preference rules similar to Lerdahl and Jackendoff
(1983), and which is also evaluated on the Essen Folksong Collection. But while we have
tested on several test sets of 1,000 randomly selected folksongs, Temperley used only one test
set of 65 folksongs that was moreover cleaned up by eliminating folksongs with irregular
meter (Temperley, 2001: 74). It is therefore difficult to compare our results with Temperley's;
yet, it is noteworthy that Temperley's parser correctly identified 75.5% of the phrase
boundaries. Although this is lower than the 87.3% obtained by SL-DOP, Temperley's parser is
not "trained" on previously analyzed examples like our model (though we note that
Temperley's results were obtained by tuning the optimal phrase length of his parser on the
average phrase length of the Essen Folksong Collection).
     It should perhaps be mentioned that while parsing models trained on treebanks are widely
used in natural language processing, they are still rather uncommon in musical processing.
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Most musical parsing models, including Temperley's, employ a rule-based approach where the
parsing is based on a combination of low-level rules -- such as "prefer phrase boundaries at
large intervals" -- and higher-level rules -- such as "prefer phrase boundaries at changes of
harmony". The low-level rules are usually based on the well-known Gestalt principles of
proximity and similarity (Wertheimer, 1923), which prefer phrase boundaries at larger
intervallic distances. However, in Bod (2001c) we have shown that the Gestalt principles
predict incorrect phrase boundaries for a number of folksongs, and that higher-level
phenomena cannot alleviate these incorrect predictions. These folksongs contain a phrase
boundary which falls just before or after a large pitch or time interval (which we have called
jump-phrases) rather than at such intervals -- as would be predicted by the Gestalt principles.
Moreover, other musical factors, such as melodic parallelism, meter and harmony, predict
exactly the same incorrect phrase boundaries for these cases (see Bod, 2001b/c for details).
We have conjectured that such jump-phrases are inherently memory-based, reflecting idiom-
dependent pitch contours (cf. Huron, 1996; Snyder, 2000), and that they can be best captured
by a memory-based model that tries to mimic the musical experience of a listener from a
certain culture (Bod, 2001c).

7.  Discussion and Conclusion

We have seen that our combination of simplicity and likelihood is quite rewarding for linguistic
and musical structuring, suggesting an interesting parallel between the two modalities. Yet, one
may question whether a model which massively memorizes and re-uses previously perceived
structures has any cognitive plausibility. Although this question is only important if we want to
claim cognitive relevance for our model, there appears to be some evidence that people store
various kinds of previously heard fragments, both in language (Jurafsky, 2002) and music
(Saffran et al. 2000). But do people store fragments of arbitrary size, as proposed by DOP?
In his overview article, Jurafsky (2002) reports on a large body of psycholinguistic evidence
showing that people not only store lexical items and bigrams, but also frequent phrases and
even whole sentences. For the case of sentences, people not only store idiomatic sentences,
but also "regular" high-frequency sentences.5 Thus, at least for language there is some
evidence that humans store fragments of arbitrary size provided that these fragments have a
certain minimal frequency. And this suggests that humans need not always parse new input by
the rules of a grammar, but that they can productively re-use previously analyzed fragments.
Yet, there is no evidence that people store all fragments they hear, as suggested by DOP.
Only high-frequency fragments seem to be memorized. However, if the human perceptual
faculty needs to learn which fragments will be stored, it will initially need to keep track of all
fragments (with the possibility of forgetting them) otherwise frequencies can never
accumulate. This results in a model which continuously and incrementally updates its fragment
memory given new input -- which is in correspondence with the DOP approach, and also with
some other approaches (cf. Daelemans, 1999; Scha et al. 1999; Spiro, 2002). While we
acknowledge the importance of a rule-based system in acquiring a fragment memory, once a
substantial memory is available it may be more efficient to construct a tree by means of
already parsed fragments than constructing it entirely by means of rules. For many cognitive

                                                
5 These results are derived from differences in reaction times in sentence recognition where only the
frequency of the (whole) test sentences is varied, while all other variables, such as lexical frequency,
bigram frequency, plausibility, syntactic/semantic complexity, etc., are kept constant.
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activities it is advantageous to store results, so that they can immediately be retrieved from
memory, rather than computing them each time from scratch. This has been shown, for
example, for manual reaches (Rosenbaum et al. 1992), arithmetic operations (Rickard et al.
1994), word formation (Baayen et al. 1997), to mention a few. And linguistic and musical
parsing may be no exception to this.
     It should be stressed that the experiments reported in this paper are limited in at least two
respects. First, our musical test domain is rather restricted. While a wide variety of linguistic
treebanks is currently available (see Manning & Schütze, 1999), the number of musical
treebanks is extremely limited. There is thus a need for larger and richer annotated musical
corpora covering broader domains. The development of such annotated corpora may be time-
consuming, but experience from natural language processing has shown that it is worth the
effort, since corpus-based parsing systems dramatically outperform grammar-based parsing
systems. A second limitation of our experiments is that we have only evaluated the parse
results rather than the parse process. That is, we have only assessed how accurately our
models can mimic the input-output behavior of a human annotator, without investigating the
process by which an annotator arrived at the perceived structures. It is unlikely that humans
process perceptual input by computing 10,000 most likely derivations using random samples of
400,000 subtrees – as we did in the current paper. Yet, for many applications it suffices to
know the perceived structure rather than the process that led to that structure. And we have
seen that our combination of simplicity and likelihood predicts the perceived structure with a
high degree of accuracy.
     There have been other proposals for integrating the principles of simplicity and likelihood in
human perception (see Chater, 1999 for a review). Chater notes that in the context of
Information Theory (Shannon, 1948), the principles of simplicity and likelihood are identical. In
this context, the simplicity principle is interpreted as minimizing the expected length to encode
a message i, which is −log2 pi bits, and which leads to the same result as maximizing the
probability of i. If we used this information-theoretical definition of simplest structure in
Simplicity-DOP, it would return the same structure as Likelihood-DOP, and no improved
results would be obtained by a combination of the two. On the other hand, by defining the
simplest structure as the one generated by the smallest number of subtrees, independent of
their probabilities, we created a notion of simplicity which is provably different from the notion
of most likely structure, and which, combined with Likelihood-DOP, obtained improved results.
     Another integration of the two principles may be provided by the notion of Minimum
Description Length or MDL (cf. Rissanen, 1978). The MDL principle can be viewed as
preferring the statistical model that allows for the shortest encoding of the training data. The
relevant encoding consists of two parts: the first part encodes the model of the data, and the
second part encodes the data in terms of the model (in bit length). MDL is closely related to
stochastic complexity (Rissanen, 1989) and Kolmogorov complexity (Li and Vitanyi, 1997),
and has been used in natural language processing for estimating the parameters of a stochastic
grammar (e.g. Osborne, 1999). We will leave it as an open research question as to whether
MDL can be successfully used for estimating the parameters of DOP's subtrees. However,
since MDL is known to give asymptotically the same results as maximum likelihood estimation
(MLE) (Rissanen, 1989), its application to DOP may lead to an unproductive model. This is
because the maximum likelihood estimator will assign the training set trees their empirical
frequencies, and assign 0 weight to all other trees (see Bonnema, 2002 for a proof). This
would result in a model which can only generate the training data and no other strings.
Johnson (2002) argues that this may be an overlearning problem rather than a problem with
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MLE per se, and that standard methods, such as cross-validation or regularization, would seem
in principle to be ways to avoid such overlearning. We will leave this issue to future
investigation.
     The idea of a general underlying model for language and music is not uncontroversial. In
linguistics it is usually assumed that humans have a separate language faculty, and Lerdahl and
Jackendoff (1983) have argued for a separate music faculty. This work does not propose that
these separate faculties do not exist, but wants to focus on the commonalities rather than on
the differences between these faculties, aiming at finding a deeper "faculty" which may hold
for perception in general. Our hypothesis is that the perceptual system strives for the simplest
structure but in doing so it only searches among the likeliest structures.
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