
The depth of intuitionistic cut free proofs

Samuel R. Buss∗

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
sbuss@math.ucsd.edu

Rosalie Iemhoff†

Institut für Algebra und Computermathematik
Technische Universität Wien
Wiedner Hauptstrasse 8-10

A-1040 Wien, Austria
iemhoff@logic.at

April 3, 2003

Abstract

We prove a quadratic upper bound for the depth of cut free proofs
in propositional intuitionistic logic formalized with Gentzen’s sequent
calculus. We discuss bounds on the necessary number of reuses of left
implication rules. We exhibit an example showing that this quadratic
bound is optimal. As a corollary, this gives a new proof that proposi-
tional validity for intuitionistic logic is in PSPACE.

1 Introduction

This paper studies the depth of propositional intuitionistic cut free proofs;
our main results establish a quadratic upper bound on the optimal depth of
these proofs, along with an example showing that this bound is optimal.

The depth of a proof is defined to equal the maximum number of in-
ferences along any path in the proof. For the purpose of measuring depth,
proofs may be considered to be tree-like without loss of generality, and the
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depth of a proof is the height of the corresponding tree of sequents. We
formalize intuitionistic propositional logic (IPC) with a sequent calculus PJ
which has the usual Gentzen rules and in which sequents are treated as multi-
sets of formulas (PJ is defined formally below). Our main result, Theorem 2,
states that any intuitionistically valid formula containing n connectives has
a PJ-proof of depth at most n2.

For classical propositional logic, it is well-known that the depth of cut
free proofs can be linearly bounded: any classical tautology with n connec-
tives has a cut free proof of depth n. This can be proved from the fact that
the rules of inference for classical logic are invertible, and that, traversing
a proof upward, each inference in a cut free proof reduces the number of
connectives in the sequent(s). For this, see for instance [1].

The situation for intuitionistic logic is more complicated. The intuition-
istic left implication rule has the form

Γ, A → B ⇒ A Γ, B ⇒ C
L→: Γ, A → B ⇒ C

Note that its principal formula appears in one of the upper sequents in
addition to in the lower sequent. Thus, the L→ inference can need to have
its upper sequent be no less complex than its lower sequent; also, it may be
necessary to have paths in the proof tree where the same formula is used
more than once as the principal formula of a L→ inference. (Section 4 will
give examples of sequents where this must happen repeatedly in any cut free
proof.) This makes it more difficult to prove the cut elimination theorem
for intuitionistic logic, and also makes it harder to bound the depth of cut
free PJ-proofs.

There has been some prior work on bounding the depth of cut free proofs
for intuitionistic propositional logic, motivated in part by the desire to find
good search procedures for generating proofs in IPC. The unpublished work
of Franzen [3] and Waaler [10] obtained upper bounds on the necessary reuses
of the L→ rule along a branch of a cut free intuitionistic proof. Heuerding
et al. [4] obtained bounds on proof search that use constructions similar to
what we use for our Lemma 4. Indeed, quadratic upper bounds on the depth
of optimal cut free proofs can be obtained from the methods of any of these
three papers. We discuss the results of Franzen and Waaler at the end of
Section 3 and prove a slightly strengthened version of their bounds.

Other work has focused on variants of the proof system IPC tailored to
aid proof search. Dyckhoff [2] and Hudelmaier [5] independently introduced
a small set of inference rules to replace the usual L→ rules. Their new
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inference rules have the property that there are more cases where the rules
are invertible and, concomitantly, more cases where the upper sequents of a
rule have simpler logical complexity than the lower sequents. Those systems
have linear depth cut free proofs, but unfortunately, sequents in cut free
proofs can be exponentially big compared to the size of the endsequent.
Subsequently, Hudelmaier [6] was able to show that a variation of these rules
gave a formalization of the intuitionistic propositional sequent calculus in
which valid formulas have cut free proofs that (a) have only linear depth,
and (b) have all sequents polynomially bounded in size.

Our result, Theorem 2 below, gives only a quadratic upper bound on the
depth of cut free proofs, but it has the advantage of applying to a standard
formulation PJ of the sequent calculus. The system PJ is a more traditional
proof system, and, unlike the proof systems of Dyckhoff and Hudelmaier,
satisfies useful properties such as the subformula property. The subformula
property immediately implies a quadratic bound on the size of all sequents
in the cut free proof, since the sequents can contain only subformulas of
formulas in the endsequent.

Connections with computational complexity

The complexity of cut free proofs is closely related to the computational
complexity of recognizing valid formulas, c.f. Hudelmaier [6]. A crucial dif-
ference between the complexities of classical and intuitionistic propositional
logics is that, for the former system, cut free proofs can always be gener-
ated with rules which are “invertible”, whereas this is conjectured to not be
possible for intuitionistic propositional logic.

Definition An inference rule I is invertible provided that, for any instance
of the rule, the lower sequent of the inference is valid if and only if all the
upper sequents are valid.

Classical propositional logic is known to have a set of invertible inference
rules which suffice to generate cut free proofs. In fact, the usual Gentzen
rules are invertible for classical logic. In addition, these invertible rules are
complete with respect to cut free provability even when the principal formula
is not repeated in any of the upper sequents.

These two properties of classical propositional sequent calculus can be
used to give a proof that the set of classical tautologies is in coNP. Namely,
any propositional formula is a tautology if and only if it has a linear depth
cut free proof. We think of this linear depth proof as being created from the
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bottom up; and given any sequent in the cut free proof, there is a polyno-
mial time algorithm to decide which inference should be used to prove that
sequent. Thus, the following is an coNP method for test for the existence
of a cut free proof: universally quantify over all the linear depth branches
in the proof and verify the local consistency of each inference along each
branch and that the branch ends with a valid axiom.

This is a somewhat roundabout way to prove that the set of tautologies
is in coNP, but it illustrates the point that whenever there is a deterministic
proof search method which generates proofs of polynomial depth such that
all sequents in the proof have polynomial size, then the decision problem of
recognizing valid formulas is in coNP.

For intuitionistic logic, the validity problem is known to be PSPACE-
hard [7, 8]. Correspondingly, the rules L→ and R∨ are not invertible, and
for this reason, there is (presumably) no polynomial algorithm that can be
used to decide which rules should be used in the bottom up generation of
cut free proofs. Indeed, if there is such an algorithm, then NP would equal
PSPACE.

The polynomial bound for the depth of cut free intuitionistic proofs can
be used to give a proof that intuitionistic validity is in PSPACE.

Theorem 1 [7] The satisfiability problem for intuitionistic propositional
logic is in PSPACE.

Proof By the classic result of Savitch, nondeterministic polynomial space
(NPSPACE) is equal to PSPACE; therefore, it suffices to prove that there
is a nondeterministic PSPACE algorithm that searches for cut free proofs of
n2-depth.

Consider a formula ϕ, where the size of ϕ is n. The NPSPACE algorithm
performs a depth-first search for a proof of depth n2. By the subformula
property, every formula appearing in the proof is a subformula ϕ; therefore
each line in the proof has only O(n2) symbols. During the depth-first search,
the procedure stores the current sequent, the current position in the proof,
and a description of the inferences between the root of the proof and the
current position. Together, all this information can be encoded by a string
of length O(n2 log n). Therefore the nondeterministic depth-first search can
be carred out using only O(n2 log n) space. When the search proceeds higher
into the proof, it nondeterministically (existentially) decides what inference
is used to derive a sequent. For backtracking, it is necessary only to back-
track down the current branch, and this is straightforward to accomplish
from the information about the inferences along the current branch. !
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The above proof method was already used by Hudelmaier [6]: since the
depth of cut free proofs in his system is only O(n), he gets better non-
deterministic space bounds of O(n log n). In contrast, the first proof of
Theorem 1, by Ladner: [7], used a detour through S4, whose satisfiability
problem also belongs to PSPACE and in which IPC is embeddable.

2 Preliminaries

We now explain our conventions for the sequent calculus; the reader can con-
sult [1, 9] for background information on the sequent calculus systems. Our
language is the language of intuitionistic propositional logic, with variables
p, q, r, pi, qi, ri, . . . , and connectives ⊥,∧,∨,→, and ¬A is (A → ⊥). We
omit parentheses when possible, using the convention that negation binds
stronger than ∧ and ∨, which in turn bind stronger than →. A, B, C, . . .
will range over formulas, and Γ,∆ over multisets of formulas. For a sequent
Γ ⇒ C, we call Γ the antecedent of the sequent, and C the succedent. The
size of a formula is defined to equal the number of occurrences of binary
connectives in the formula (occurrences of the atomic connective ⊥ are not
counted). The notation |ϕ| denotes the size of ϕ, and |Γ ⇒ C| denotes the
size of the sequent Γ ⇒ C which is by definition the sum of the sizes of the
formulas in Γ and the formula C.

Given a formula B, a subformula A of B is said to be negatively bound
by an occurrence of an implication in B, if A is a subformula of the first
argument of that implication. We say that A occurs positively (negatively)
in B if it is negatively bound by an even (odd) number of implications in
B. A subformula occurring in a sequent Γ ⇒ D is said to be occurring
positively if it occurs positively in D or negatively in Γ, otherwise it occurs
negatively.

Proofs, or deductions, in a sequent calculus are finite trees with a single
root. Each node in the tree is labeled with a sequent. Leaf nodes are axioms,
or initial sequents, and the sequent at the root is the endsequent. Internal
nodes are also labeled with a full description of the inference rule used to
derive the sequent labeling the node from the sequents of its children. We
use P as well as D to denote proofs. We often use D to denote a deduction
that is part of another proof that we are considering.

The sequent calculus PJ for the intuitionistic propositional logic is for-
mulated without any structural rules; in particular, there are no weakening
inferences, and instead initial sequents are allowed to have arbitrary side
formulas. This latter convention does not affect the depth of proofs, since
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weakenings can just be pushed up to the initial sequents. The axioms and
rules of inference for PJ are as follows. (The cut rule is included in PJ, but
in this paper, we are interested exclusively in cut free proofs.)

axiom : Γ, p ⇒ p p a variable L⊥ : Γ,⊥ ⇒

Γ, A, B ⇒ C
L∧: Γ, A ∧ B ⇒ C

Γ ⇒ A Γ ⇒ BR∧: Γ ⇒ A ∧ B

Γ, A ⇒ C Γ, B ⇒ C
L∨: Γ, A ∨ B ⇒ C

Γ ⇒ AiR∨: i = 0, 1
Γ ⇒ A0 ∨ A1

Γ, A → B ⇒ A Γ, B ⇒ C
L→: Γ, A → B ⇒ C

Γ, A ⇒ B
R→: Γ ⇒ A → B

Γ ⇒ A Γ, A ⇒ C
Cut: Γ ⇒ C

The principal formula of an inference is the formula occurring in the lower
sequent that is not in Γ, and not denoted C. The formula C and the formu-
las that appear in Γ are called side formulas. The auxiliary formulas of an
inference are the formulas A, Ai and B in the upper sequents. We define the
notion of ancestor as the reflexive, transitive closure of the immediate ances-
tor relation that is defined as follows. A side formula in an upper sequent of
an inference is an immediate ancestor of the corresponding occurrence of the
same side formula in the lower sequent. An auxiliary formula in an inference
that is not a cut inference, is an immediate ancestor of the principal formula
of the inference.

A couple comments about the inference rules of PJ are in order. First,
it is easy to check that every inference rule is invertible, except for the R∨
and L→ rules. Second, there is no explicit contraction rule. The lack of
a contraction rule does not increase the depth of cut free proofs however.
Third, there is implicitly a contraction rule included in the L→ rule, since
the principal formula A → B appears also explicitly in the upper sequent,
but only appears once in the lower sequent. The ‘contraction-free’ variant
of the L→ rule,

Γ ⇒ A Γ, B ⇒ C
L→′: Γ, A → B ⇒ C
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is a admissible rule of inference however, since the formula A → B may
be added to the upper right sequent and to the sequents in the subproof
deriving that sequent. However the contraction-free rule, L→′, is not as
strong as the L→ rule, in that the system obtained from PJ by replacing
L→ with L→′ is not as strong as L→ with respect to cut free provability.

The fact that there is an implicit contraction in the L→ rule means
that, in general, one application of this rule to the same implication may
not suffice in cut free proofs. That is, there may be implications (A → B)
for which applications of the rule L→ with (A → B) as a principal formula
occur more than once along one branch in a cut free proof. The following
example shows that this is indeed the case. (Other examples may be found
in [9].) Consider the following sequent:

(
(p → ⊥) ∨ p

)
→ ⊥ ⇒ ⊥. (1)

The shortest cut free proof of this sequent is

p, ((p → ⊥) ∨ p) → ⊥ ⇒ p

p, ((p → ⊥) ∨ p) → ⊥ ⇒ (p → ⊥) ∨ p p,⊥ ⇒ ⊥
L→

p, ((p → ⊥) ∨ p) → ⊥ ⇒ ⊥
((p → ⊥) ∨ p) → ⊥ ⇒ p → ⊥
((p → ⊥) ∨ p) → ⊥ ⇒ (p → ⊥) ∨ p ⊥ ⇒ ⊥

L→ ((p → ⊥) ∨ p) → ⊥ ⇒ ⊥

Note how the L→ inference is used twice along the leftmost branch of the
proof with the same principal formula. In fact, it is not difficult to show
that any cut free proof of the sequent (1) must contain a branch that has
two L→ inferences with the same principal formula. Intuitively, when one
reads the above proof bottom up,1 some information in the succedent of a
sequent can disappear. Namely, first one has to extract (p → ⊥) from the
antecedent ((p → ⊥) ∨ p) of the implication, to obtain p in the antecedent
of the sequent. However, in doing this, one has to apply R∨, and the other
disjunct, p, then disappears. One has to apply L→ again, to get a p in the
succedent of the sequent and thereby reach an axiom.

Section 4 discusses more sophisticated examples were linearly many reuses
of L→ inferences are needed.

Careful examination of the reasoning used in the example suggests that
one does not have to apply the rule L→ more than O(n) times to an im-
plication (A → B), where n is the size of the endsequent. We will see that

1By “bottom up,” we mean starting at the endsequent.
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this is indeed the case. The proof of our main theorem will need to analyze
proofs in still more detail, to better bound both the number of reuses of L→
and the total depth of the cut free proof.

3 Main theorem and proofs

Theorem 2 Every provable sequent of size n has a cut free proof in PJ of
depth at most n2.

In addition to a bound on the depth of cut free proofs, we obtain a bound
on the number of applications of the rule L→ along a branch in a cut free
proof.

Theorem 3 Every provable sequent of size n has a cut free proof in PJ of
depth at most n2, in which there are at most (n + 1) applications of the rule
L→ along a branch.

We will actually prove something stronger than the bounds in the above
theorems. A binary connective occurring in a sequent is said to occur pos-
itively (resp., negatively) if is the principal connective of an positive (resp.,
negative) occurrence of a subformula in the endsequent. We let n+ (respec-
tively, n−) be the number of positive (respectively, negative) occurrences of
binary connectives in the sequent. The proof of Theorem 3 will show that
the sequent has a cut free proof of depth < (1 + n−)(2 + n+) with at most
(1 + n−) many application of L→ along any branch. Theorems 6 and 8 will
further improve the bound n− +1 on the number of applications of the L→
rule.

Proof (of Theorem 3.) To make the proof more transparent, we reformulate
PJ in such a way that both the antecedents of the upper sequents of a rule
contain all the formulas in the antecedent of the lower sequent. Thus the
rules for the succedents (the R-rules) remain the same, and we replace the
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rules L∧, L∨ and L→ by respectively

Γ, A ∧ B, A, B ⇒ C
L∧: Γ, A ∧ B ⇒ C

Γ, A ∨ B, A ⇒ C Γ, A ∨ B, B ⇒ C
L∨: Γ, A ∨ B ⇒ C

Γ, A → B ⇒ A Γ, A → B, B ⇒ C
L→: Γ, A → B ⇒ C

We will use the name PJ∗ for the system obtained from PJ by reformulating
the rules in the way as explained above and by adding the following rule:

Γ ⇒ BRs→: Γ ⇒ A → B

Claim 0. A cut free proof in PJ∗ can be transformed into a cut free proof
in PJ without increasing the depth of the proof, and vice versa.
Proof of Claim 0. It is not difficult to see that a cut free proof in PJ can
be transformed into a cut free proof in PJ∗ without increasing the depth of
the proof. To see that the converse is also true, observe that the following
holds, where PJ d& S means that the sequent S has a cut free derivation of
depth ≤ d.

(a) PJ d& Γ, A ∧ B, A, B,⇒ C implies PJ d& Γ, A, B,⇒ C

(b) PJ d& Γ, A0 ∨ A1, Ai ⇒ C implies PJ d& Γ, Ai ⇒ C (i = 0, 1)
(c) PJ d& Γ, A → B, B ⇒ C implies PJ d& Γ, B ⇒ C

Proofs of (a)-(c) can be found in [9]. We use induction to the depth d to
show that a cut free proof of depth ≤ d in PJ∗ can be transformed into a
cut free proof in PJ of depth ≤ d. We treat the case that d > 0 and the last
inference of the proof is L→. Suppose the endsequent is Γ, A → B ⇒ C,
then the upper sequents are Γ, A → B ⇒ A and Γ, A → B, B ⇒ C. By
assumption they have PJ∗-derivations of depth ≤ d − 1. By the induction
hypothesis both sequents have a proof of depth ≤ d − 1 in PJ. By (c),
Γ, B ⇒ C has a proof of depth ≤ d− 1 in PJ. An application of L→ gives a
proof of depth ≤ d in PJ of Γ, A → B ⇒ C. We leave the rest of the proof
of the claim to the reader.

Examination of the proof of Claim 0 shows that the transformations
between cut free PJ∗- and PJ proofs do not increase the number of L→
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inferences. Therefore, it suffices to prove Theorem 3 for PJ∗. The idea of
the proof is the following. Consider a branch in a proof and two sequents
Γ ⇒ C, Γ′ ⇒ C ′ in the branch, where Γ′ ⇒ C ′ is immediately below
Γ ⇒ C. Thus Γ′ ⇒ C ′ is the result of an application of a rule to Γ ⇒ C and
(possibly) some other sequent. Since we are working in PJ∗, Γ contains Γ′

(as a multiset).
If the rule is one of the rules L∧, L∨ and R→, or it is L→ and Γ ⇒ C

is the right upper sequent, then Γ contains more formulas than Γ′. We call
such a step in the branch a 1-step. If the rule is one of the rules R∧, R∨,
Rs→ or it is L→ and Γ ⇒ C is the left upper sequent, then Γ is equal to
Γ′. We call such a step a 2-step.

We introduce a method of labeling formulas for the purpose of keeping
track of the identities of formulas at different places in a proof. Intuitively,
this is similar to keeping track of whether two different occurrences of the
same formula are ancestors of the same formula in the endsequent; however,
just keeping track of ancestors is not enough. In labeled proofs, each occur-
rence of a formula in the proof will be given a label. Two occurrences of a
formula that get the same label will be viewed as being linked, and being
different copies of the same formula.

To distinguish carefully between “formulas” and “occurrences of formu-
las”, we use the convention that the phrase “occurrence of a formula in a
sequent” means either a formula in the sequent or a subformula of a for-
mula in the sequent. The phrase “occurrence of a formula in a proof” is
defined similarly. We use the phrase “appearance of a formula in a sequent”
to mean that the formula is in the sequent, i.e., is a member of either the
antecedent or succedent. The verbs “occur” and “appear” are used with
the corresponding meanings. Also, a sequent “contains” a formula iff the
formula appears in the sequent.

Definition [Labeling of formulas in a proof] Consider a cut free PJ∗-
proof P of a sequent ∆ ⇒ H. The labels of occurrences of formulas in P
will be sequences of numbers. Let S(∆ ⇒ H) be the set of all occurrences
of formulas in ∆ ⇒ H. A labeling of the sequent ∆ ⇒ H must satisfy
the following properties. First, each member of S(∆ ⇒ H), (i.e., each
occurrence of a formula in the sequent) gets a single label. Second, for
◦ ∈ {∧,∨,→} we have that if (A ◦ B) ∈ S(∆ ⇒ H) has label σ, then A
has label σ0 and B has label σ1. Third, two occurrences of formula may be
assigned the same label only if they are occurrences of the same formula.

The labeling of the endsequent ∆ ⇒ H is then extended to a labeling
of all occurrences of formulas in the proof P . This is done by letting the
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labeling of the endsequent extend in a natural way to all the sequents in the
proof. Suppose all formulas in the lower sequent of the application of a rule
are already labeled, then the following table shows how we extend this labeling
to the upper sequent(s). We only indicate the label for the active formulas
in the rule, all the side formulas in the upper sequents receive the same label
as the corresponding side formulas in the lower sequent.

Γ, (A ∧ B)σ, Aσ0, Bσ1 ⇒ C
L∧: Γ, (A ∧ B)σ ⇒ C

Γ ⇒ Aσ0 Γ ⇒ Bσ1
R∧: Γ ⇒ (A ∧ B)σ

Γ, (A ∨ B)σ, Aσ0 ⇒ C Γ, (A ∨ B)σ, Bσ1 ⇒ C
L∨: Γ, (A ∨ B)σ ⇒ C

Γ ⇒ Aσi
iR∨: Γ ⇒ (A0 ∨ A1)σ

Γ, (A → B)σ ⇒ Aσ0 Γ, (A → B)σ, Bσ1 ⇒ C
L→: Γ, (A → B)σ ⇒ C

Γ, Aσ0 ⇒ Bσ1

R→: Γ ⇒ (A → B)σ
Γ ⇒ Bσ1

Rs→: Γ ⇒ (A → B)σ

A proof that is labeled according to the rules above, is called a loosely labeled
proof. When moreover all the occurrences of formulas in the endsequent have
different labels, the proof is called a strictly labeled proof.

The notion of a loosely labeled proof enables us to view a subproof of
a labeled proof as a labeled proof itself. A subproof of a strictly or loosely
labeled proof is in general not strictly labeled, but it is easy to see that it is
loosely labeled.

Note that when a formula is obtained more than once in the same way, it
will receive the same label again. Furthermore, if in a strictly labeled proof
multiple copies of a formula have the same label, then they are obtained in
the same way in the proof.

In the rest of the proof we will call two labeled formulas the same if
they are literally the same expression, i.e. if the formulas are syntactically
identical, and the formulas have the same label. When we write multiple
occurrences of a formula, these copies are meant to be the same formula
with the same label. From now on, a proof will always mean a strictly
labeled proof. If a proof is only loosely labeled we will explicitly say so.
The assumption that all proofs are labeled in no way affects the generality
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of our theorems, since any unlabeled cut free proof can be strictly labeled,
and since, conversely, any loosely labeled proof can be transformed into an
ordinary proof by just erasing the labels. In order to avoid heavy notation
we will not indicate the labels in the sequents that occur in a proof.

Definition [Contracted proofs, h-constant parts, i-normal proofs]
A labeled sequent is called contracted if its antecedent does not contain two
occurrences of any (labeled) formula. A proof is called contracted if all the
sequents in the proof are contracted.

A part of a branch of a proof which consist only of 2-steps, and which
is maximal as such, is called an h-constant part. The “h” refers to the
hypotheses (antecedents) of the sequents in such a part. An h-constant part
is of the form

Γ ⇒ D

..

.

Γ ⇒ E

where all the sequents between Γ ⇒ D and Γ ⇒ E have the same an-
tecedent Γ, i.e. they are all of the form Γ ⇒ F , for some formula F . The
maximality requirement means that any sequent immediately above Γ ⇒ D
or immediately below Γ ⇒ E has antecedent different from Γ.

Given an h-constant part t, we say that a rule is applied along t if both
the lower sequent and one of the upper sequents of the rule belong to t.
Observe that for an L→ inference, both the lower sequent and the leftmost
upper sequent belong to the same h-constant part.

An i-normal form proof is defined to be a contracted, cut free proof in
which the rule L→ is applied at most once along each h-constant part. The
“i” refers to implication.

Consider a (labeled) proof P in PJ∗ of a sequent ∆ ⇒ H, and suppose the
size of ∆ ⇒ H is n. First we show, Lemma 4, that the proof P can be trans-
formed into a contracted proof. Consider any branch in a contracted proof:
the number of formulas in the antecedents can only increase as the branch
is followed upwards from the endsequent. Since endsequent has size n, there
are at most 2n possible formulas that can occur anywhere in the proof that
do not already appear in the endsequent. (To prove this, note that if m + 1
formulas appear in the endsequent, m of them in the antecedent, then there
are total of 2n+m many occurrences of formulas in the endsequent.) Thus,
there can be at most 2n 1-steps along any branch since each 1-step must
introduce at least one new formula into the endsequent. Consequently, there
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are at most 2n + 1 many h-constant parts along any branch in a contracted
proof.

To see that every h-constant part has length at most 2n + 1 is not
difficult. We can assume that all sequents along an h-constant part are
different. For if they are not, we could collapse equal sequents and still have
a contracted proof of the same endsequent. Now, there are at most 2n + 1
many formulas that occur positively in the endsequent; thus there are at
most 2n+1 possible distinct antecedents. This shows that every contracted
cut free proof can be transformed into a contracted cut free proof in which
every h-constant part has length ≤ 2n + 1. Therefore, Lemma 4, together
with this last observation, proves a weakened version of Theorem 2 with the
bound n2 replaced by (2n + 1)2.

Lemma 5 is about the 2-steps in a branch. It states that along every
h-constant part of a branch, there is at most one L→ inference. It follows
then, the number of L→ inferences along any branch is less than or equal
to the number of h-constant parts in the branch. From this, we get a proof
of a weakened version of Theorem 3 with the bounds n2 and n + 1 replaced
by (2n + 1)2 and 2n + 1, respectively.

Of course, we want to prove Theorems 2 and 3 as stated, not the weak-
ened versions. However, we will first state and prove Lemmas 4 and 5, and
afterward we will sharpen the arguments in the previous three paragraphs
to complete the proofs of the two theorems.

Lemma 4 Every cut free proof of a contracted sequent can be transformed
into a contracted cut free proof of the same sequent without increasing the
depth of the proof.

Proof We prove the lemma by induction on the depth d of proofs. We
need the following claim, the proof of which we leave to the reader.

Claim 1. If Γ, A, A ⇒ C has a loosely labeled cut free proof, then Γ, A ⇒ C
has a loosely labeled cut free proof of the same depth. (Recall that all
formulas are labeled and that multiple copies of a formula, e.g. the A’s,
denote copies of the same formula with the same label.)

Consider a cut free proof of Γ ⇒ D of depth d. If d = 0, the proof consists
of a single axiom, the endsequent. Since we have assigned different labels
to the formulas in the endsequent, that sequent certainly is contracted. For
d > 0, we distinguish by cases according to the last rule that is applied in
the proof.

If the last rule is R∧ then there are A and B such that D = A ∧ B and
the proof looks as follows.
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. . . ... . . .D
Γ ⇒ A

. . . ... . . .D
′

Γ ⇒ B
Γ ⇒ A ∧ B

Since Γ ⇒ A ∧ B is the endsequent, this sequent is certainly contracted,
whence so are the two upper sequents. By the induction hypothesis there
are contracted cut free proofs of depth ≤ d − 1 of the sequents Γ ⇒ A and
Γ ⇒ B. An application of R∧ gives a contracted cut free proof of Γ ⇒ A∧B
of depth ≤ d. The cases that the last rule is R∨ or Rs→ are similar and left
to the reader.

Suppose the last rule is L∧ with principal formula (A ∧ B). Hence the
upper sequent of the last rule is Γ, A, B ⇒ D. Since the endsequent Γ ⇒ D
is contracted, the only multiple copies of a labeled formula that can appear
in the upper sequent are A or B. If Γ contains neither A nor B, the upper
sequent is contracted. By the induction hypothesis it has a contracted cut
free proof of depth ≤ d − 1. Applying L∧ gives the desired result.

Suppose Γ contains A or B. We treat the case that it contains both,
the other cases are similar. Thus Γ = Γ′, A∧B, A, B and the proof looks as
follows.

. . . ... . . .D

Γ′, A ∧ B, A, B, A, B ⇒ D

Γ′, A ∧ B, A, B ⇒ D

The proof of the upper sequent has depth ≤ d − 1. Thus by Claim 1, there
exists a proof of Γ′, A ∧ B, A, B ⇒ D of depth ≤ d − 1. By the induction
hypothesis Γ′, A ∧ B, A, B ⇒ D has a contracted cut free proof of depth
≤ d − 1, thus certainly of depth ≤ d. The case that the last rule is L∨ is
similar and left to the reader.

If the last rule is R→, then D = A → B and the upper sequent is
Γ, A ⇒ B. If A does not appear in Γ, then the upper sequent is contracted,
and whence by the induction hypothesis it has a contracted cut free proof.
By applying R→ to the sequent we obtain a contracted cut free proof of
Γ ⇒ A → B of depth ≤ d. If A does appear in Γ, the upper sequent is of
the form Γ′, A, A ⇒ B, where Γ = Γ′, A. Since the endsequent Γ ⇒ A → B
is contracted, so is the sequent Γ′, A ⇒ B. By Claim 1, there exists a cut
free proof of Γ′, A ⇒ B of depth ≤ d−1. By the induction hypothesis it has
a contracted cut free proof of the same depth. Apply rule Rs→ to obtain a
contracted cut free proof of Γ′, A ⇒ A → B of depth ≤ d.

Finally, suppose the last rule is L→ with principal formula (A → B).
Then the upper sequents of the last rule are Γ ⇒ A and Γ, B ⇒ D. If Γ
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does not contain B, both upper sequents of the rule are contracted. By the
induction hypothesis these sequents have contracted cut free proofs of depth
≤ d − 1. An application of L→ gives a contracted cut free proof of Γ ⇒ D
of depth ≤ d.

If Γ does contain the formula B, say Γ = Γ′, A → B, B, the proof looks
as follows.

. . . ... . . .D

Γ′, A → B ⇒ A

. . . ... . . .D
′

Γ′, A → B, B, B ⇒ D

Γ′, A → B, B ⇒ D

When we apply Claim 1 to the rightmost upper sequent we obtain a proof
of Γ′, A → B, B ⇒ D of depth ≤ d − 1. By the induction hypothesis it has
a contracted cut free proof of depth ≤ d − 1. !

Lemma 5 Every contracted cut free proof of a sequent can be transformed
into an i-normal form proof of the same sequent.

Proof Consider a contracted cut free proof P of a sequent Γ ⇒ F . For a
smooth induction we have to consider not only the sequents that appear in
P , but all sequents that may appear in some proof of Γ ⇒ F . Therefore,
we define the sets Sp and Sn which contain all the formulas that occur
respectively positively and negatively in Γ ⇒ F .

From now on in this proof we consider only sequents Γ ⇒ F for which
Γ ⊆ Sn and F ∈ Sp. Since the proofs we consider are contracted, every
formula of Sn appears at most once in Γ. Let k be the cardinality of Sn,
then Γ can contain no more than k formulas. We prove the lemma by
induction on k − m, where m is the number of formulas in Γ. We use a
subinduction on the depth d of P .

If m = k, then Γ = Sn. Since P is contracted this implies that all
sequents in the proof are of the form Γ ⇒ D, for some D. Therefore, the
rule L→ can never be applied, and thus the proof is in i-normal form.

Suppose m < k. If d = 0, Γ ⇒ F is an axiom, whence P is in i-normal
form. Suppose d > 0. First consider the case when the last rule of P is L∧,
L∨ or R→. In these cases, the antecedents of the upper sequents contain
more formulas than Γ. Therefore, it follows from the induction hypothesis
that the upper sequents have i-normal form proofs. It is easy to see that
this implies that the lower sequent Γ ⇒ F has an i-normal form proof.

Suppose the last rule of P is R∧, R∨ or Rs→. In this case the antecedents
of the upper sequents are the same as the antecedent of the lower sequent,

15



but the depth of their proofs is ≤ d − 1. Therefore, it follows from the
induction hypothesis that the upper sequents have i-normal form proofs.
This implies that the lower sequent Γ ⇒ F has a proof in i-normal form.

Finally, suppose the last rule of P is L→. The proof looks as follows,
where Γ = Γ′, A → B.

. . . ... . . .

Γ′, A → B ⇒ A

. . . ... . . .

Γ′, A → B, B ⇒ E

Γ′, A → B ⇒ E

By the induction hypothesis we may assume that both upper sequents have
i-normal form proofs. The sequents Γ′, A → B ⇒ A and Γ′, A → B ⇒ E
belong to an h-constant part. Let us call this h-constant part t. Let t′

denote the result of removing the last sequent, the endsequent, from t. Note
that t′ is an h-constant part in the i-normal form proof of Γ′, A → B ⇒ A.
Therefore, there is at most one L→ inference along t′. If there is no L→
inference along t′, there is at most one L→ inference along t. In this case
P is in i-normal form. Suppose there is a L→ inference along t′. Then P
looks as follows, where Γ′′, A → B, C → D ⇒ E′ is the highest sequent of t.

. . . ... . . .

Γ′′, A → B, C → D ⇒ E′

..

.

Γ′′, A → B, C → D ⇒ C

. . . ... . . .

Γ′′, A → B, C → D, D ⇒ A′

Γ′′, A → B, C → D ⇒ A′

..

.

Γ′′, A → B, C → D ⇒ A

. . . ... . . .

Γ′′, A → B, B, C → D ⇒ E

Γ′′, A → B, C → D ⇒ E

The only rules that are applied in the two vertical dotted parts, are R∧, R∨
and Rs→. We replace this part of the proof by

. . . ... . . .

Γ′′, A → B, C → D ⇒ E′

..

.

Γ′′, A → B, C → D ⇒ C

. . . ... . . .D

Γ′′, A → B, C → D, D ⇒ E

Γ′′, A → B, C → D ⇒ E
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Clearly, the part of the proof above Γ′′, A → B, C → D ⇒ C remains
unchanged. This implies that the part of the proof outside D is in i-normal
form. Thus if D is in i-normal form, so is the whole proof. To see that there
is a suitable D in i-normal form, we reason as follows. Let S be the sequent
Γ′′, A → B, C → D, D ⇒ E. First note that the sequent S is weaker than
the endsequent of P ; hence it is valid and has a cut free proof. Further,
since Γ′′, A → B, C → D, D ⇒ A′ appears in a contracted proof, it must
be contracted, and thus S is also contracted. Thus by Lemma 4, S has a
contracted proof. Hence, by the induction hypothesis, S has an i-normal
form proof: this is the proof we take for D. This concludes the induction
step. !

We are now ready to finish the proof of Theorems 2 and 3. Let P be a
i-normal proof of Γ ⇒ C. Recall that n is the size of the sequent, i.e., the
number of binary connectives in the sequent. If n = 0, the sequent contains
only atomic formulas, thus it must be an axiom and have a proof of depth 0.
Also, if n = 1, there is a single non-atomic formula in the endsequent; it is
easy to check that in this case the sequent has a cut free proof which contains
a single inference and is of depth 1. Likewise if n = 2, it is straightforward
to check that there is a cut free proof of depth ≤ 2.

So suppose n ≥ 3. Recall the notations n+ and n−. Note n = n+ + n−.
We further let n−

→ be the number of negative occurrences of →’s in the
sequent, and let n−

∧∨ be the total number of negative occurrences of ∧’s
and ∨’s in the sequent. For A a formula, we let n+(A) be the number of
binary connectives that occur positively in A.

Consider any branch π through P . We wish to bound the number of
inferences along π. The left inferences along the path can be counted as
follows:

1. There are p ≤ n−
∧∨ many L∧ and L∨ inferences.

2. There are q ≤ n−
→ many L→ inferences along π such that π contains

the upper right sequent of the inference.

3. There are ≤ n− + 1− q many L→ inferences along π such that π con-
tains the upper left sequent of the inference. This bound follows since
there are most n− + 1 many h-constant parts along π and Lemma 5
states that there is at most one L→ inference in any h-constant part.

Now we need to bound the number of right inferences. First, note that
any right inference that lies below all the L→ inferences of π must have a
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positive subformula of C as its principal formula. However, not all formulas
in the antecedents along π need to be positive subformulas of C. When
π contains the upper left hypothesis of a L→ inference with principal for-
mula A → B, the inference causes the formula A to be transferred to the
antecedent. Once A is transferred to the antecedent, right inferences use
positive subformulas of A as principal formulas. The number of right infer-
ences that act on positive subformulas of a single transferred copy A can be
bounded by n+(A) ≤ n+−n+(C). Thus the total number of right inferences
can be bounded by:

1. ≤ n+(C) many inferences that have a positive subformula of C as
principal formula.

2. ≤ (n−+1−q)(n+−n+(C)) many right inferences that have as principal
formula a subformula of a formula A transferred to the antecedent by
a L→ inference.

Therefore, the total number of inferences along π is at most

n−
∧∨ + q + (n− + 1 − q)(1 + n+ − n+(C)) + n+(C)
≤ n−

∧∨ + (n− + 1)(1 + n+ − n+(C)) + n+(C)
< (n− + 1)(n+ + 2).

Now, since n− + n+ = n ≥ 3, we have (n− + 1)(n+ + 2) ≤ n2, and the proof
of (the strengthened forms of) Theorems 2 and 3 is finished. !

The above arguments established bounds on the total number of L→
inferences along a branch. As mentioned in the introduction, Franzen and
Waaler have earlier and independently obtained better bounds on the num-
ber of times a L→ rule needs to be applied along a single branch for a given
principal formula. Franzen [3] defined the number bc(A) inductively by

1. bc(p) = 0, for p a variable, or p = ⊥.

2. bc(A ∨ B) = bc(A ∧ B) = bc(A) + bc(B), for A, B any formulas.

3. bc( A1 → (A2 → · · · (An → B) · · · ) ) = 1 + bc(B), provided B is not
an implication.

If A contains a subformula D = A1 → (A2 → · · · (An → B) · · · ), where D is
not in the scope of an implication and where B is not an implication, then
we call {A1, . . . , An} a block of components of A. Clearly, bc(A) is equal to
the number of blocks of components of A.
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Theorem 6 [3, 10] Let S be an intuitionistically valid sequent. Then S
has a cut free proof such that, along any branch of the proof, each formula
A → B is used as the principal formula of a L→ inference at most bc(A)+1
times.

Waaler proved a weaker version of this theorem: he defined a function e(A)
just like bc(A) except that the third clause was replaced by e(A → B) =
1 + bc(B) for all A, B.

To prove this theorem, we need a definition and lemma. First, the con-
cept of r-greedy says in effect that reversible rules are applied whenever
possible, with right rules applied first.

Definition A proof P is said to be r-greedy if the following conditions hold
for every sequent in P :

1. If the sequent has the form Π ⇒ A ∧ B, then it is the conclusion of an
R∧ rule.

2. If the sequent has the form Π ⇒ A → B, then it is the conclusion of an
R→ rule if A does not appear in Π, and is the conclusion of an Rs→
rule otherwise.

3. If the two above cases do not apply and the antecedent contains a formula
A∧B or A∨B where neither A nor B appear in the antecedent, then
the sequent is inferred with either an L∧ or an L∨ inference.

Lemma 7 Any valid contracted sequent has an r-greedy, i-normal proof.

Proof Since the rules R∧, R→, L∧ and L∨ are invertible, it is clear that
every valid sequent has a r-greedy proof. The proof of Lemma 4 then shows
that any sequent with a r-greedy proof also has a r-greedy, contracted proof.
Finally, the proof of Lemma 5 shows that any sequent with an r-greedy,
contracted proof has a r-greedy, i-normal proof. This proves the lemma. !

Proof (of Theorem 6) Let P be an r-greedy, i-normal proof. Let π be a
branch through P . Consider a formula A → B which is used as the principal
formula of some L→ inferences along π. Let I denote one of these inferences.

If π includes the upper right sequent of I, then we claim that I is the
uppermost inference along π that has A → B as principal formula. To prove
this, note that the inference I introduces A into the antecedent of its upper
right hypothesis. If there were another inference, I ′, above I that used
A → B as principal formula, then I ′ would introduce another instance of A
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in the antecedent of its upper right hypothesis. But this is not permitted,
because the proof P is contracted.

Now suppose π contains the upper left sequent of I, and consider the
inferences along π starting with this upper sequent and moving up along π.
Let Π be the antecedent of the lower sequent and the upper left sequent of I.
Let πI be the subpath of π which contains the sequents of π above I that
have antecedent Π. That is, πI is the h-constant (sub)part of π starting at
the upper sequent of I. We claim that the topmost sequent of πI is either
(a) an axiom, or (b) the lower sequent of a R→ inference. To prove this,
first note that Lemma 5 implies that πI does not contain any L→ inferences.
Second, Π cannot contain any formulas with principal connective ∧ or ∨,
as otherwise the L→ inference I would not have been permitted in the r-
greedy proof P . Therefore, there are no left inferences in πI . Third, the only
remaining inference rule that can change the antecedent is the R→ rule, so
our claim is proved.

Suppose that πI does not have uppermost sequent an axiom, but instead
ends at a R→ inference. The R→ inference moves a formula A1 which is a
component of A to the antecedent. In fact, since the proof is r-greedy, there
must be a series of R→ inferences that moves an entire block of components
of A to the antecedent. Since the proof is contracted, a block of components
can be transferred at most once to the antecedent.

Thus we can bound the number of L→ inferences along π which have
A → B as principal formula as follows: First, there are at most bc(A)
many such inferences that lie below R→ inferences that transfer a block of
components of A to the antecedent. Second, there can be one additional
L→ inference I such that either (a) the branch contains the upper right
sequent of I, or (b) πI ends with an axiom and π contains only R∧, R∨ and
Rs→ inferences above I. !

The next theorem gives a modest improvement on the Franzen-Waaler
bounds. We recursively define fc(B) by:

1. fc(p) = 1, p a variable or p = ⊥.

2. fc(A ∨ B) = 1.

3. fc(A ∧ B) = max{fc(A), fc(B)}.

4. fc(A → B) = 0.

And then define bc ′(A) recursively by
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1. bc ′(p) = 0, for p a variable or p = ⊥.

2. bc ′(A ∨ B) = bc ′(A ∧ B) = bc ′(A) + bc ′(B), for A, B any formulas.

3. bc ′( A1 → (A2 → · · · (An → B) · · · ) ) = fc(B) + bc ′(B), provided B is
not an implication.

Since fc(A) always equals 0 or 1, we have bc ′(A) ≤ bc(A).

Theorem 8 Let S be an intuitionistically valid sequent. Then S has a cut
free proof such that, along any branch of the proof, each formula A → B is
used as the principal formula of a L→ inference at most bc ′(A) + 1 times.

The proof of this theorem is essentially identical to our proof of Theo-
rem 6. One still considers an r-greedy, i-normal proof P . The only further
observation needed is that when fc(D) equals zero, and if Γ ⇒ D appears
in P , then at least one block of components of D is transferred to the an-
tecedent by the right inferences that lie above the sequent.

4 The optimality of the bounds

We first mention an example due to Franzen [3] that shows that our bounds
on the depths of proofs are tight to within a constant factor. (Compare to
the example in Section 2).

Theorem 9 Let n ≥ 1. Any cut free PJ-proof of the sequent

( n∨

i=1

(pi → ⊥) ∨
n∧

i=1

pi

)
→ ⊥ ⇒ ⊥ (2)

has a branch that contains Ω(n2) inferences and contains at least (n + 1)
uses of the L→ rule applied to the formula in the antecedent of Sn. (The
disjunctions and conjunctions in the sequent (2) are associated to the right.)

We leave the proof of Theorem 9 to the reader. The sequents do have proofs
of depth less than n2 in which there are exactly n + 1 uses of the L→ rule.

For a second example, define sequents Sn to equal

( n∧

i=1

((pi → ⊥) → pi) → pi

)
→ ⊥ ⇒ ⊥,

with the ∧’s associated to the right. The sequents Sn are in the {→,∧}-
fragment of intuitionistic logic. Since the definition of fc(A) and Theorem 8
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suggest that ∧’s may contribute less than ∨’s to the necessary reuses of L→
rules, it is natural to ask whether formulas that involve only the connectives
→ and ∧ have substantially better bounds on the reuses of L→ rules. The
next theorem shows that the answer to this question is “no,” and that even
sequents that have no ∨’s may need Ω(n) reuses of L→ inferences.

The sequents Sn are indeed intuitionistically valid. To prove this, note
that

∧
i(¬pi → pi) → pi) is classically valid, and use Glivenko’s theorem

that if A is classically valid, then ¬¬A is intuitionistically valid.
Let Hn be the formula in the antecedent of Sn.

Theorem 10 Any cut free PJ proof of the sequents Sn requires depth Ω(n2)
and contains a branch with at least n+1 reuses of the L→ rule with principal
formula Hn.

Proof Fix n ≥ 1. We will give a cut free proof P of Sn that contains a
path of length Ω(n2) along which there are (n + 1) applications of the rule
L→ to Hn. It will be easy to see that every proof of Sn will contain such
paths. This will prove the theorem. To shorten our formulas, we introduce
some names for subformulas occurring in Sn; we let Ai be pi → ⊥, Bi be
Ai → pi, Ci be Bi → pi, and D be

∧n
i=1 Ci. Thus, D → ⊥ is Hn.

Let σ range over sequences of numbers 1, . . . , n, in which no number
occurs twice. Let ∗ denote concatenation, 〈〉 denotes the empty sequence.
We write i ∈ σ if i occurs in σ. Let

Γσ = {D → ⊥} ∪ {Bi, pi | i ∈ σ}.

Thus Γ〈〉 = D → ⊥. We inductively define derivations Di
σ as follows. For

i ∈ σ, let Di
σ be

Γσ ⇒ pi
Rs → Γσ ⇒ Ci

Observe that this includes all the cases in which σ has length n. Note that
the upper sequent is indeed an axiom. For σ of length < n, i 1∈ σ, let Di

σ be
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. . . ... . . .D
1
σ∗i

Γσ, Bi, pi ⇒ C1

. . . ... . . .D
2
σ∗i

Γσ, Bi, pi ⇒ C2

. . . ... . . .D
n−1
σ∗i

Γσ, Bi, pi ⇒ Cn−1

. . . ... . . .D
n
σ∗i

Γσ, Bi, pi ⇒ Cn

Γσ, Bi, pi ⇒ Cn−1 ∧ Cn

. . . ... . . .

Γσ, Bi, pi ⇒ C3 ∧ (
∧n

i=4 Ci)
Γσ, Bi, pi ⇒ C2 ∧ (

∧n
i=3 Ci)

Γσ, Bi, pi ⇒ D Γσ, Bi, pi,⊥ ⇒ ⊥
Γσ, Bi, pi ⇒ ⊥

Γσ, Bi ⇒ pi → ⊥ Γσ, Bi, pi ⇒ pi

Γσ, Bi ⇒ pi

Γσ ⇒ Ci

Finally, the proof P is the following proof.

. . . ... . . .D
1
〈〉

Γ〈〉 ⇒ C1

. . . ... . . .D
2
〈〉

Γ〈〉 ⇒ C2

. . . ... . . .D
n−1
〈〉

Γ〈〉 ⇒ Cn−1

. . . ... . . .D
n
〈〉

Γ〈〉 ⇒ Cn

Γ〈〉 ⇒ Cn−1 ∧ Cn

. . . ... . . .

Γ〈〉 ⇒ C3 ∧ (
∧n

i=4 Ci)
Γ〈〉 ⇒ C2 ∧ (

∧n
i=3 Ci)

Γ〈〉 ⇒ D Γ〈〉,⊥ ⇒ ⊥
Γ〈〉 ⇒ ⊥

Consider σ = 〈1, . . . , m〉. Note that if m = n, Dm
σ contains no L→ infer-

ences. Using induction to (n−m), it is easy to show that for m < n, Dm+1
σ

contains a path of length ≥ Σn
k=m+2k along which there are (n − m) reuses

of L→ with principal formula Hn. By taking m = 0, this shows that D1
〈〉

contains a path of length Ω(Σn
k=2k) = Ω(n2) that contains n applications of

the rule L→ to Hn. Whence P has depth Ω(n2) and contains a path along
which there are (n + 1) applications of the rule L→ to Hn.

Apart from redundant inferences, the only significant difference between
P and other proofs of Sn may be caused by deferring an application of L→
to Bi. However, note that this will not shorten the proof or decrease the
number of applications of L→ to Hn along a branch. !
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