
Plurality: Back to Generalized Quantifiers and Boolean Semantics

Yoad Winter

30 March 2012

1 Aim

Given: A sentence S = D-N’-VP.

D – a singular/plural determiner: every, all, no, exactly one, exactly five.

N’ – a singular/plural atom/set nominal: student(s), friend(s), students who met each other at school.

VP – a singular/plural atom/set verb phrase: is/are tall/similar, drink a whole glass of beer together.

Question: What is the formal semantics of S?

Van Benthem’s warning: Suppose we want to analyze less than five students met as entailing the existential sentence
there was a meeting set of students of less than five members. We have to be careful that the sentence less than five
students sang would not be predicted to entail there was a singing set of students of less than five members.
Conclusion: Determiners count; if they make an existence claim (e.g. by modification), this process must be restricted.

2 Principles

1. Barwise and Cooper: All determiners are of type (et)((et)t).

2. Bennett: Plural predicates (N’s and VPs) can be of type (et)t.

3. Partee and Rooth: Type shifting applies only in cases of type mismatch.

4. Only one type shifting operator per semantic category (predicate, quantifier, determiner).

5. ⇒ No Van Benthem problem: determiners both count and modify at the same time.

3 Predicates

A. Lexical Predicates:

1. Atom predicates: student, sing, tall.

2. Set predicates: friend, meet, similar.

Atom/Set distinction: Atom predicates are lexically of type et. Set predicates are lexically of type ett.

B. Complex (number inflected) Predicates:

1. Singular predicates: student, sings, is tall, friend, meets, is similar.

2. Plural predicates: students, (we/they) sing, are tall, friends, (we/they) meet, are similar.

1



Singular/Plural distinction: Singular predicates are obligatorily of type et. Plural predicates are (optionally) of
type ett.

C. Deriving these results:

1. Denotations of number features:

[[+SG]] = sg(ett)(et)
def
= λPett.λxe.P({x})

[[+PL]] = id (ett)(ett)
def
= λPett.P

2. Consequently: atom predicates do not match the type of the number features.

3. Type mismatch resolution: using a type fitting operator for predicates (=Link’s distributivity operator):

pfit (et)(ett)
def
= λPet.λAet.∅ 6= A ⊆ P

4. Fact: sg ◦ pfit = id (et)(et).

D. Examples:

(1) a. [[student]] = [[student+SG]] = student′et sg(ett)(et) (mismatch)

sg(pfit(student′)) = student′ (resolution)

b. [[students]] = [[student+PL]] = student′et id (ett)(ett) (mismatch)

id(pfit(student′)) = λAet.∅ 6=A ⊆ student′ (resolution)

(2) a. [[meets]] = [[meet+SG]] = sg(ett)(et)(meet′ett) = λxe.meet′({x})
b. [[meet]] = [[meet+PL]] = id (ett)(ett)(meet′ett) = meet′

4 Determiners

Singular determiners: a standard story.

(3) No student slept.

no′(et)(ett)(student
′
et)(sleep

′
et)

⇔ student′ ∩ sleep′ = ∅

(4) No committee met.

no′(et)(ett)(committee′et)(sg(meet′ett))

⇔ committee′et ∩ {xe : meet′ett({x})} = ∅.

Plural determiners: Type mismatch between determiner denotation D(et)(ett) and noun denotation Aett. For in-
stance:

(5) Exactly five students met.

Resolution of the mismatch using two independent processes:

1. Counting: count(D)(A)(B) iff D(∪A)(∪(A ∩ B)).
(generates Scha’s “neutral” reading)
For instance:

(6) count(exactly 5′)(students′ett)(meet′ett)
⇔ count(exactly 5′)(id(pfit(student′et)))(meet′ett)
⇔ exactly 5′(∪pfit(student′))(∪(meet′ ∩ pfit(student′)))
⇔ |{x ∈ student′ : ∃A ⊆ student′[x ∈ A ∧meet′(A)]}| = 5

2



In words: the total number of students who participated in student meetings is exactly five.

2. Witnessing: Given a standard (et)((et)t) determiner, we say that W ⊆ E is a witness of D and a set A ⊆ E iff
W ⊆ A and D(A)(W ).
Examples: For the set S ⊆ E of students, a set A ⊆ E is a witness of the determiner SOME and the set S iff
A ⊆ S and A 6= emptyset. A set A ⊆ E is a witness of the determiner EVERY and the set S iff A = S.
Question: what are the witnesses of NO, LESS THAN 5, MOST and the set S?

The witness condition:
wit(D)(A)(B) iff either A ∩ B = ∅ or ∃W ∈ A ∩ B such that D(∪A)(W ).

In other words: D witnesses Aett and Bett iff whenever A∩B is not empty it includes a witness of D and ∪A.
(generates Scha’s “existential” reading)
For instance:

(7) wit(exactly 5′)(students′ett)(meet′ett)
⇔ wit(exactly 5′)(id(pfit(student′et)))(meet′ett)
⇔ wit(exactly 5′(et)(ett))(pfit(student′et))(meet′ett)

⇔ [∃A ⊆ student′[A 6= ∅ ∧meet′(A)]]→ ∃A ⊆ student′[|A| = 5 ∧meet′(A)]

In words: if any student(s) met then there was a meeting of exactly five students.

The resulting determiner fitting operator:

dfit ((et)(ett))((ett)(ettt))
def
= λD.λA.λB.count(D)(A)(B) ∧wit(D)(A)(B)

Consequences:

1. No essential witnessing, hence no Van Benthem problem, with atom predicates:
For all conservative determiners D(et)(ett)andsetsAet, Bet:
dfit(D)(pfit(A))(pfit(B))⇔ D(A)(A ∩B).

2. No essential witnessing, hence no Van Benthem problem, with downward monotone determiners: For all
D(et)(ett) ∈ MON↓,Aett,Bett: dfit(D)(A)(B)⇔ count(A)(B).

3. Conservativity is preserved with collective quantification: D Ns V is equivalent to D Ns are Ns that V also when
N is a noun like friend or V is a verb like meet. For instance:

(8) All the/exactly five/no friends met each other
⇔ All the/exactly five/no friends are friends who met each other

(9) All the/exactly five/no students who met in the bar shook hands with each other
⇔ All the/exactly five/no students who met in the bar are students who met in the bar and shook hands
with each other

This is captured by count.

4. Lexical monotonicity of determiners is not always preserved when they combine with ett predicates. For in-
stance:

(10) All the students drank together a whole glass of beer
6⇒ All the rich students drank together a whole glass of beer

This is captured by wit.

3



5 Quantifiers

(11) All the students and every teacher smiled.

Type mismatch between an ett quantifier and an ettt quantifier. Resolution by:

qfit (ett)(ettt)
def
= λQett.λAett.Q(sg(A))

In words: a quantifier qfit(Q) holds of the sets of sets whose singleton members’ union is in Q.
Using the qfit operator, sentence (11) is analyzed as follows.

(12) ((dfit(all′(et)(ett))(pfit(student′et))) ∩ (qfit(every′
(et)(ett)(teacher

′
et))))(smile′et)

⇔ student′ ⊆ smile′ ∧ teacher′ ⊆ smile′

Note that every and all are treated as synonyms, both of which denoting the subset relation between et predicates.

Fact: The qfit operator preserves distributivity: For all Qett,Bett: qfit(Q)(B)⇔ Q(sg(B)).
In particular: For all Qett, Bet: qfit(Q)(pfit(B))⇔ Q(B).

6 How about Boolean and?

Again, having covert type flexibility operators allow us to preserve the boolean structures of our semantics.

(13) Mary and John met.

(14) meet′(et)t({m
′, j′})

(15) {A : m′ ∈ A} ∩ {A : j′ ∈ A} = {A : {m′} ∪ {j′} ⊆ A}

Definition 1 (filter) Let A be a boolean algebra and let F be a non-empty subset of A. F is called a filter of A iff the
following hold:

1. For all x, y ∈ F : x ∧ y ∈ F .

2. For all x ∈ F, y ∈ A: if x ≤ y then y ∈ F .

Definition 2 (principal filter) Let A be a boolean algebra and x ∈ A. The principal filter generated by x is the set
{y ∈ A : x ≤ y}, which is denoted by Fx.

Proposition 1 (The Principal Filter Property, PFP) Let A be a boolean algebra and x, y ∈ A. Then Fx ∩ Fy =
Fx∨y.

Lemma 1 x ≤ z and y ≤ z iff x ∨ y ≤ z.

And even:

(16) Mary and [Sue or John] met.

a. F{m′} ∩ [F{s′} ∪ F{j′}]

b. = [F{m′} ∩ F{s′}] ∪ [F{m′} ∩ F{j′}]

c. PFP
= F{m′,s′} ∪ F{m′,j′}

Hypothesis 1 (the PFP hypothesis) ”Union” behaviour of and in NP coordination is a result of the principal filter
property of its standard intersective denotation in the boolean domain of generalized quantifiers.

4



(17) Mary and John met.

a. [M u J](et)t meet′(et)t (type mismatch)

b. [C(M u J)]((et)t)t(meet′)

(18) Minimum Sort:

min(τt)(τt)
def
= λQτt.λAτ .Q(A) ∧ ∀B ∈ Q[B v A→ B = A]

(19) Existential Raising: E(τt)((τt)t)
def
= λAτt.λPτt.∃Xτ [A(X) ∧ P (X)]

(20) Collectivity Raising: C((et)t)(((et)t)t)
def
= λQ(et)t.E(min(Q))

(21) min(M u J) = {{m′, j′}}
E(min(M u J)) = E({{m′, j′}})

= λP(et)t.∃B ∈ {{m′, j′}} [P(B)]
= λP.P({m′, j′})

Therefore, [C(M u J)](meet′)
⇔ [λP.P({m′, j′})](meet′)
⇔meet′({m′, j′})

5


