Huiswerk 7 - Intensionaliteit

Please submit no later than Friday 30 March.

Exercise I: Recall the tutorial exercise on noodzakelijkerwijs'. Similarly to the defi-
nition of the necessity operator nec’ as a function of type (st)(st) (from propositions to
propositions), write down a definition for the possibility operator pos’ of the same
type. Show that under the definitions given in class, specifically the revised truth-
conditionality criterion, the following (non-)entailments are explained:

(1) The morning star is the evening star

= Possibly, the morning star is the evening star
(2) Possibly, the morning star is the evening star

= The morning star is the evening star

For (1) show that for every intended model: is’(es”)(ms’) C pos’(is’(es’)(ms’)).
For (2) show an intended model where: pos’(is’(es’)(ms’)) — is’(es’)(ms’) # 0
The types that you should use are:

es’ and ms’: se — individual concepts
is’: (se)((se)(st)) — function from pairs of individual concepts to propositions
pos’: (st)(st) — function from propositions to propositions

Exercise I1:

Suppose that D, = {j’,m’, b’} and D, = {1,2,3} and that we have the following func-

tions:
rigide(se) =Ax,.dis.X,
FaNse(sp) =Acge.Aiy. c(i) € {j', b’}
N—— ———

t
kissed(se)(se)stzﬂxse-AyseJlis- (y(l), x(l» € {<jla m/>’ <m” .]’>}

t

1. Write rigid(j’) explicitly as a function. (give its value for each element of the

1. In the definition of the denotation of necessarily, the notation V is the function that quantifies over all
the worlds in the frame, which is defined by:

V(sn¢ 18 a function that takes an st function f and returns 1 if f characterizes D;, and 0 otherwise.

Or equivalently in other words:

V(se takes a (st) function f and checks if f(w) is true for all w € D;.

domain)

Explain in you own words what rigid does.

How many individual concepts are there in this frame? How many of them refer
to the same entity in every model?

Not all individual concepts refer to the same entity in every world. Give an
example of an individual concept that refers to differents entities in different
worlds.

You can write it explicitly as a function.

Reduce ran(rigid(j’)) and give the set of indices/worlds it characterizes.

Now do the same, but use the individual concept you gave in 2. instead of
rigid(j’)

Reduce (kissed(rigid(j’)))(rigid(m’)) and give the set of indices it character-
izes.

Exercise III: Consider the sentences below:

R LD =

Some woman hugged every cat.
Every woman hugged some cat.
Most women hugged some cat.
Most women hugged every cat.
Every women hugged most cats.
some woman hugged most cats.

Write down the ons and ows operators we defined as A-terms. For each of the sentences
above: (a) reduce the A-terms corresponding to the ons-based and ows-based analyses
as far as possible; (b) tell which one entails which one, if any. (c) can you find a
regularity regarding which reading entail the other one? Find a generalization when
one of the determiners is some or every and the other quantifier is upward monotone,
and prove it formally (hint: assume that E is finite).

Example: For the first sentence some woman hugged every cat:

o We assumed the determiner functions:

- SOME = AA.;.AB¢;.Ax,..A(x) A B(x), or equivalently:
SOME = AA.AB;s ANB # 0

- EVERY = AA.AB. . Vx,.A(x) — B(x), or equivalently:
EVERY = AA,;.AB,.A C B

e The ons-based and ows-based terms that we derive are:

- soME(woman)(ons(hug)(EVERY(cat)))
- ows(ons(hug))(EVERY(cat))(SOME(woman))

e Reduce those terms to:

- dx,.woman(x) A [Vy,.cat(y) — hug(y)(x)], or equivalently:
woman N [Ax.[cat C Ay.hug(y)(x)]] # 0

- Vy..cat(y) — [dx..woman(x) A hug(y)(x)], or equivalently:
cat C dy.[woman N [Ax.hug(y)(x)] # 0]
Important: in your answer, please show every step in the reduction, for
this example as well! (i.e. complete the reduction steps that are missing
above).

— Point out that the first term entails the second term.

- After you answer (a) and (b) in this way for all sentences, answer (c).

Exercise IV: Consider the following de dicto/de re analyses in the handout of the
sentence Donald looked for a cat:

(1) Donald [[looked for] a cat].
I, ((look for)(some'(cat’)))

= {w € Dy : look_for’(some’(cat’))(d’)(w)} — de dicto reading
(2) Donald [eows[looked for] a cat].

ows!(look_for’)(some’(cat’))(I%,)

= {w € Dy : Ax[cat'(x)(w) A look for’(I')(d’)(w)]} — de re reading

Let us add to our lexicon the following entry:
existed’ = Ax, Aw,. T

Thus, when ‘T is standardly interpreted as 1 in every model, the function existed’
sends every entity to the set of all possible worlds.

Using the intensional version of the TCC show that our analyses above correctly ex-
pects the following (lack of) entailments:

e Donald looked for some cat (de dicto) =» Some cat existed (show an intensional
model that does not satisfy containment between the propositions)

e Donald looked for some cat (de re) = Some cat existed (prove why every inten-
sional model satisfies containment between the propositions)

