On Intensional Semantics

Topics: intensional expressions and their (lack) of entailments, extensional/intensional semantics, extension (reference) vs. intension (sense), possible world semantics, indices, typing with indices, individual concepts, propositions, properties, intensional models, revised truth-conditionality criterion

Reading: L. T. F. Gamut, *Logic, Language and Meaning*, vol. II, chapter 5, The University of Chicago Press, 1991.

Substitution property of compositional model-theoretic semantics: Let S_1 be a structure for a wellformed sentence. Let S_2 be the structure of another well-formed sentence that we obtain when replacing an expression exp_1 in S_1 by another expression exp_2 . Suppose that exp_1 and exp_2 have the same denotation in a model M. It follows that S_1 and S_2 must have the same denotation in M.

IF
$$\llbracket exp_1 \rrbracket = \llbracket exp_2 \rrbracket$$
 THEN $\llbracket S_1 \rrbracket$ = $\llbracket S_2 \rrbracket$
X $\llbracket exp_1 \rrbracket$ Y = X $\llbracket exp_2 \rrbracket$ Y

Substitution problem of extensional semantics: The system we have developed is based on types e for simple entities in the model and t for truth-value denotations of sentences. In many cases, the substitution property leads to undesired results with this system.

Examples:

- (1) Tina smiles, and Mary dances, and John *believes* Tina smiles

 ⇒ John *believes* Mary dances
- (2) Lewis Carroll is C. L. Dodgson, and Mary *believes* that Lewis Carroll wrote *Alice ⇒* Mary *believes* that C. L. Dodgson wrote *Alice*

More examples:

- (3) the evening star is the morning star, and *necessarily*, the evening star is the evening star *⇒ necessarily*, the evening star is the morning star
- (4) every manager is a board member, and every board member is a manager, and Mary met a *former* manager
 ⇒ Mary met a *former* board member

- (5) every maid is a cook, and every cook is a maid, and Mary is *looking for* a maid

 ⇒ Mary is *looking for* a cook
- (6) Every knife is a diamond and every diamond is a knife, and this is a fake diamond

 → This is a fake knife

Intensional expressions: believe, necessarily, former, look for, alleged, fake...

All these expressions are called *intensional*: they create an *intensional context*, where replacing expressions with equal denotations in our system may lead to an (unexpected) change in entailment relations. Non-intensional expressions are called *extensional*.

A system like ours, which only deals with entailments involving extensional expressions, is called an *extensional semantics*.

Extension vs. Intension:

Extension = reference (*Bedeutung*) = the object (entity, set, function) to which an expression refers.

Intension = sense (*Sinn*) = the algorithm/concept leading to identifying this object.

Possible world semantics: In addition to $D_e = E$ (domain of entities) and $D_t = \{0, 1\}$ (domain of truth-values), let us add a primitive domain $D_s = W$ of *indices*, with the corresponding type s. An index can be thought of as a *possible world* or a *world-time* pair.

Expression	Example	E-type	I-type	I-denotation name
proper name	Tina	e	se	individual concept
sentence	Tina smiles	t	st	proposition
1-place predicate	smile	et	(se)(st)	1-place <i>property</i> of i-concepts

In general: in the typing function, we replace any e by se and every t by st. Remark: sometimes more "economical" typings are used, e.g. e(st) or s(et) for 1-place properties.

Intensional model – the former definition, with the additional primitive type s and the corresponding domain.

Definition 1 (types) The set of (intensional) types is defined as the smallest set \mathcal{T} that satisfies: (i) e, s and t are types in \mathcal{T} ; (ii) If τ and σ are types in \mathcal{T} then $(\tau\sigma)$ is also a type in \mathcal{T} .

Definition 2 (domains) $D_e = E$, $D_s = W$ are arbitrary non-empty sets. $D_t = \{0, 1\}$, with the numerical order \leq . If τ and σ are types then $D_{\tau\sigma} = D_{\sigma}^{D_{\tau}}$, the set of functions from D_{τ} to D_{σ} .

Definition 3 (frame) An intensional frame $F^{E,W}$ over non-empty sets of entities E and indices W is the collection $\bigcup_{\tau \in \mathcal{T}} D_{\tau}$.

Definition 4 (model) Let Σ be a non-empty finite set of words, and let TYPE : $\Sigma \to \mathcal{T}$ be a typing function over Σ . A model M over Σ is a pair $\langle F^{E,W}, I \rangle$, where $F^{E,W}$ is an intensional frame and $I: \Sigma \to F^E$ is an interpretation function that satisfies $I(w) \in D_{\text{TYPE}(w)}$ for each word $w \in \Sigma$.

The truth-conditionality criterion (intensional version): Let S_1 and S_2 be sentences of type st. Then S_1 entails S_2 if and only if for every intended model M: $[S_1]^M \leq [S_2]^M$.

Note: The relation \leq is domination relation for type st – subset between sets of indices.

Example:

(7) John believes Tina smiles.

believe:

type: (st)(e(st)) – a two-place property relating propositions and entities denotation: **believe** (arbitrary)

smile:

type: e(st) – a one-place property of entities denotation: smile (arbitrary) and similarly for *dance*.

Prove now: There is an intensional model where:

```
smile(tina) \cap dance(mary) \cap believe(smile(tina))(john) \not\subseteq believe(dance(mary))(john)
```

Proof: we need a world w_1 in which Tina smiles and Mary dances, and where John believes the proposition for *Tina smiles*, but he does not believe the proposition for *Mary dances*. For instance: $\mathbf{smile}(\mathbf{tina}) = \{w_1\}$ $dance(mary) = \{w_1, w_2\}$ $\mathbf{believe}(\{w_1\})(\mathbf{john}) = \{w_1\}$ **believe** $(\{w_1, w_2\})(\mathbf{john}) = \{w_2\}$ In this case: $w_1 \in \mathbf{smile}(\mathbf{tina}) \cap \mathbf{dance}(\mathbf{mary}) \cap \mathbf{believe}(\mathbf{smile}(\mathbf{tina}))(\mathbf{john})$ But $w_1 \notin \mathbf{believe}(\mathbf{dance}(\mathbf{mary}))(\mathbf{john})$.

More examples:

(8) Necessarily, the morning star is the evening star.

necessarily:

type: (st)(st) – function from propositions to propositions

denotation – modal necessity operator: $\mathbf{nec}'_{(st)(st)}(f_{st})(i_s) = \begin{cases} 1 & f \text{ characterizes } D_s \\ 0 & \text{otherwise} \end{cases}$

the evening star:

type: se - individual concept denotation: es'_{se} (arbitrary)

the morning star:

type: se - individual concept denotation: \mathbf{ms}'_{se} (arbitrary)

is:

type: (se)((se)(st)) – a two-place property

denotation – extensional identity: $is'_{(se)((se)(st))}(x_{se})(y_{se})(i_s) = 1$ iff x(i) = y(i).

Prove now:

 $\mathbf{nec'}(\mathbf{is'(es')(ms')}) \subseteq \mathbf{is'(es')(ms')}$

but there are models where $is'(es')(ms') \not\subseteq nec'(is'(es')(ms'))$

and in addition nec'(is'(es')(es')) is a tautology, just like is'(es')(es').

(9) This is a fake diamond.

this:

type: se – individual concept denotation: t'_{se} (arbitrary)

is a:

type: ((se)(st))((se)(st)) – modifier of 1-place properties denotation: is_a'_((se)(st))((se)(st))(P) = P

is not a:

type: ((se)(st))((se)(st)) - modifier of 1-place propertiesdenotation: **is_not_a'** $_{((se)(st))((se)(st))}(P) = \overline{P}$

fake:

type: ((se)(st))((se)(st)) – modifier of 1-place properties denotation – a *co-restrictive* modifier: $\mathbf{fake}'_{((se)(st))((se)(st))}(P) \subseteq \overline{P}$

every:

type: ((se)(st))(((se)(st))(st)) – intensional determiners denotation: $\mathbf{every}'_{((se)(st))(((se)(st))(st))}(A_{(se)(st)})(B_{(se)(st)})(i_s) = 1$ iff for every x_{se} , if A(x)(i) = 1 then B(x)(i) = 1

Prove now:

This is a fake knife/diamond \Rightarrow This is not a knife/diamond

What's the problem here with a standard extensional semantics? Prove now:

Every knife is a diamond and every diamond is a knife and this is a fake diamond \Rightarrow This is a fake knife

(10) John believes that a witch arrived.

de dicto reading: John has a belief "a witch arrived"

de re reading: There is a person, say Mary, which is a witch, and John has a belief "Mary arrived"

believe:

type: (st)((es)(st)) – a two-place property relating propositions and i-concepts denotation: **believe**' (arbitrary)