
Semantics – CKI – Utrecht, Spring 2012

Boolean Semantics

Topics: cross-categorial expressions, boolean algebras, the boolean
hypothesis on natural languages, boolean types

In the previous talks we have often used sentences with predicative constructions
involving the expressions and, or, not and neither...nor as illustrations for entail-
ments that motivate a modeltheoretic analysis. The accounts we gave of such en-
tailments, however, have systematically missed an obvious generalization: coor-
dination and negation are of course not confined to simple intransitive predicates.
These are general mechanisms in natural languages that can apply to different
categories.

Not only does the syntax of these constructions involve systematic regulari-
ties across categories, also their semantics shows interesting entailment patterns.
For instance, entailments we discussed like (1a)⇒(1c-d) or (1c-1d)⇒ (1b), with
predicate coordinations, have natural correspondences with coordinations of other
categories as in (2)-(4).

(1) a. Tina is tall and thin.

b. Tina is tall or thin.

c. Tina is tall.

d. Tina is thin.

(2) a. Tina is tall and Mary is thin.

b. Tina is tall or Mary is thin.

c. Tina is tall.

d. Mary is thin.

(3) a. Tina and Mary are tall.

b. Tina or Mary is tall.

c. Tina is tall.

1



d. Mary is tall.

(4) a. Tina kissed and hugged Mary.

b. Tina kissed or hugged Mary.

c. Tina kissed Mary.

d. Tina hugged Mary.

Not surprisingly, cross-categorial entailment relations appear also between nei-
ther...nor and not, as exemplified by the (a)⇒(b)/(c) entailments in (5)-(8).

(5) a. Tina is neither tall nor thin.

b. Tina is not tall.

c. Tina is not thin.

(6) a. Neither Tina is tall nor is Mary.

b. Tina is not tall.

c. Mary is not tall.

(7) a. Neither Tina nor Mary is tall.

b. Tina is not tall.

c. Mary is not tall.

(8) a. Tina neither kissed nor hugged Mary.

b. Tina did not kiss Mary.

c. Tina did not hug Mary.

Warning: Beware of the hasty conclusion that these patterns are general rules.
For instance, in (1), replacing Tina by the noun phrase no girl would make the en-
tailment (1a)⇒(1c) disappear: the sentence no girl is tall and thin does not entail
no girl is tall. Semantic differences between noun phrases that are responsible for
such differences will be explained in the next lecture.

In view of the appearance of coordinators (and to a lesser extent, of negation
particles) with different categories, a natural expectation from any syntactic theory
is to provide an account of what is common to different structures in which these
expressions partake. Most existing syntactic theories of coordination start from a
syntactic meta-rule parallel to (9), for all categories X.

2



(9) X→ X coordinator X

A unified syntactic-semantic theory should explain how rules such as this get a
semantic interpretation: How does the denotation of the coordinator combine with
the denotations of different categories? How should we account for the cross-
categorial semantic regularities we have observed?

Boolean Semantics is a framework of modeltheoretic semantics that attempts
to answer these questions. Given the model structure we have outlined in the
previous lecture, there is a large group of domains in the model that share a par-
ticular mathematical structure, known as a Boolean Algebra. It turns out that
once this fact is observed, coordinators and negation particles can be given an
adequate semantics that holds for different domains. Moreover, because of the
similar structure of these domains, conjunction, disjunction and negation behave
the same across categories. In order to see how this comes about, we have to say
more on what is common to different domains: to explicate a bit the notion of
boolean algebras.

We will not go deeply here into the mathematical theory of boolean alge-
bras. Rather, let us informally illustrate how observing the common, so-called
“boolean” structure of different domains can help us to account for the cross-
categorial semantic behavior of coordination and negation. To demonstrate the
general idea, let us start with the familiar domain of intransitive predicates. As we
have said, this domain corresponds to all the subsets of the E domain of individ-
uals: the power set of E, for which we use the notation ℘(E). For instance, when
E = {a, b, c} we have:

℘(E) = ℘({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}

There are some interesting properties to this set:

1. It is partially ordered by set inclusion, as illustrated in figure 1.

2. It includes a “smallest set” with respect to inclusion: the empty set ∅.

3. It includes a “largest set” with respect to inclusion: the whole domain E =
{a, b, c}.

4. For every two sets A,B ∈ ℘(E), their intersection A ∩B is in ℘(E).

5. For every two sets A,B ∈ ℘(E), their union A ∪B is in ℘(E).

6. For every set A in ℘(E), its complement A = E \ A is in ℘(E).

3



Figure 1: boolean order of ℘({a, b, c})

To sum up, ℘(E) “comes” with the tuple 〈⊆, ∅, E,∩,∪, 〉 that defines special
relations between members of ℘(E). The mathematical beauty of this structure
comes from the intimate relations between these items and operations. Here are
only a few of the most central relations:

• A ∩ B is the (unique) X ∈ ℘(E) s.t. X ⊆ A, X ⊆ B and for every
Y ∈ ℘(E) that satisfies Y ⊆ A and Y ⊆ B: if X ⊆ Y then X = Y .
For this reason A ∩ B is called the greatest lower bound of A and B with
respect to inclusion: it is the “largest” set that is a subset of both A and B.

• A ∪ B is the (unique) X ∈ ℘(E) s.t. A ⊆ X , B ⊆ X and for every
Y ∈ ℘(E) that satisfies A ⊆ Y and B ⊆ Y : if Y ⊆ X then X = Y .
For this reason A ∪ B is called the least upper bound of A and B with
respect to inclusion: it is the “smallest” set that is a superset of both A and
B.

Due to these to properties, intersection and union can be defined using inclusion
and vice versa. Other important identities are:

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
These two identities are called the distributive law.

• A ∩ A = ∅ A ∪ A = E (the complement law)

These relations together characterize the domain of intransitive predicates ℘(E),
together with the tuple 〈⊆, ∅, E,∩,∪, 〉 as a boolean algebra.

4



Important note: Although any power set with the mentioned operations is
a boolean algebra, the converse does not hold. The notion of boolean algebra
is more abstract and general than the power set construction. Keep this point
in mind and refer to exercises for the definition of type-theoretical domains as
boolean algebras. These are examples for boolean algebras that are not power
sets, although they are intimately related to power sets through the sets that their
function members characterize.

Many useful domains besides the domain of intransitive predicates are boole-
an algebras too. For instance, the domain of truth-values {0, 1} can be easily
presented as boolean structure. One way to do that is to replace the arbitrary
names 0 and 1 by the empty set ∅ for false and some singleton set {x} for true.
Obviously, the domain {0, 1} = {∅, {x}} is the power set ℘({x}) of the singleton
set {x}, since it includes all subsets of {x}: the empty set and {x} itself. This
is not the only way to define a boolean structure over the Dt domain, but it is
straightforward as it lets Dt be a power set that has the same properties with re-
spect to inclusion, intersection, union and complementation that we considered
above. Note that unlike the case of the predicate domain, now we have in the
algebra only the smallest member ∅ and the largest member {x} and no “interme-
diate” members inbetween. Indeed,Dt has the structure of the smallest non-trivial
boolean algebra.

Let and and or have in the domain of truth values the same function they had
in the et domain: intersection and union respectively. The sentences in (2) get the
denotations in (2’) below.

(2’) a. tall′(tina′) ∩ thin′(mary′)

b. tall′(tina′) ∪ thin′(mary′)

c. tall′(tina′)

d. thin′(mary′)

The entailments in (2) are now easily accounted for: it is clear that whenever (2’a)
is {x} (true) so are (2’c) and (2’d). Otherwise, suppose (2’c) for instance could
be ∅ (false). Then (2’a) would be ∅ ∩ thin′(mary′) = ∅, in contradiction to our
assumption that (2’a) is {x}. Similarly, whenever (2’c)/(2’d) is {x}, so is (2’b).
Thus, we account for the entailments observed in (2).

We see that using the boolean perspective on the domains for predicates and
truth-values we can let the and and or coordinators uniformly denote the intersec-
tion and union functions respectively. Similar points, with some syntactic com-
plexities, hold for negation. Boolean semantics adopts the following generaliza-

5



tion of these observations.

The boolean hypothesis: All domains for denotations of expressions in natural
language are boolean algebras. Coordination and negation cross-categorially de-
note the corresponding boolean operators in each domain.

This means that the denotation of coordinators and negation particles is not stipu-
lated ad hoc for each category in which they occur. There is a uniform semantic
function for these expressions across all the different domains in which they can
operate. More can be said, in fact. Having stipulated that the Dt domain has the
structure of a (minimal) boolean algebra, we can deduce the boolean structure of
many other domains directly from their type-theoretical definition as given in the
previous lecture. For instance, the boolean structure of Det appears because it is
defined as a set of functions into a boolean domain, Dt. In general, all domains
of functions with a boolean range are naturally defined as boolean algebras. We
formally characterize the boolean types as follows.

Definition 1 (boolean types) Type t is boolean, and any type αβ is boolean iff β
is boolean.

Examples:

• Boolean types: t, et, (et)(et), e(et), (ee)t

• Non-boolean types: e, ee, (et)e

Intuitively, all types that “end with t” are boolean and those that “end with e” are
non-boolean.

Definition 2 (polymorphic boolean operators) Let τ be a boolean type. Let
∧t(tt), ∨t(tt), ¬tt and→t(tt) be the standard propositional functions. Denote:

6



uτ(ττ) =

{
∧t(tt) if τ = t
λXτ .λYτ .λZσ1 .X(Z) uσ2(σ2σ2) Y (Z) if τ = σ1σ2

tτ(ττ) =

{
∨t(tt) if τ = t
λXτ .λYτ .λZσ1 .X(Z) tσ2(σ2σ2) Y (Z) if τ = σ1σ2

¬ττ =

{
¬tt if τ = t
λXτ .λZσ1 .¬σ2σ2(X(Z)) if τ = σ1σ2

vτ(τt) =

{
→t(tt) if τ = t
λXτ .λYτ .∀Zσ1 [X(Z) vσ2(σ2t) Y (Z)] if τ = σ1σ2

0τ = X u ¬X , for arbitrary Xτ

1τ = X t ¬X , for arbitrary Xτ

The notations X u Y , X t Y and X v Y are ”sugarings” for (u(X))(Y ),
(t(X))(Y ) and (v(X))(Y ) respectively.

Examples: apply these definitions to selected cases of (1)-(8) above.

The examples above have illustrated the relations between boolean operators
in the corresponding domains, and not much more than this is required for our
objectives in this course. Note however, that now it is clear why domains like De

are not classified as boolean domains. The reason is that no boolean structure is
projected on this domain from the structure we have assumed for Dt. This shows
an interesting (and debatable) conclusion from the boolean hypothesis: all non-
boolean types, although sometimes simple and plausible, are not straightforward
candidates for being types of natural language expressions. Their postulation does
not support the simple and unified account of conjunction, disjunction and nega-
tion that was illustrated above. Therefore, we have a strong theoretical reason to
avoid them.

We seem to be running into a problem. The boolean hypothesis flatly con-
tradicts our assumption that proper names denote e type entities. How do proper
names as in (3) get interpreted and coordinated after all? In the next lecture we
will see how the boolean hypothesis can be maintained in a way that not only an-
swers this question, but also gives an insightful account of the semantics of noun
phrases in general.

7


