HW4 - Lambdas

Deliver your work on paper by 13:15 on March 2.
Don't forget to put your name and studentnumber on it.
Email submissions and late submissions (after 13:15 on March 2) will not be accepted.
1.

Give informal descriptions of the following functions, which are described as lambda terms. For each function give the type of the function, and then describe the function itself as well as its un-Curried version.
For example, $\lambda x_{e} \cdot \lambda y_{e} . y$ is a function of type $e(e e)$. It sends every entity of type e to the identity function of type $e e$, i.e. to the function that sends every entity of type e to itself. Equivalently, $\lambda x_{e} . \lambda y_{e} . y$ is the Curried version of the function that takes two entities of type e and returns the second one as its result.

1. $\lambda x_{e} \cdot \lambda f_{e t} \cdot f(x)$
2. $\lambda f_{(e t) t} \cdot \lambda y_{t} \cdot f\left(\lambda z_{e} \cdot y\right)$
3. $\lambda f_{e e} \cdot \lambda x_{e} . f(f(x))$
4. $\lambda f_{e e} \cdot \lambda g_{(e e) t} \cdot \lambda x_{e} \cdot g\left(\lambda y_{e} \cdot f(x)\right)$
5. $\lambda f_{e(e t)} \cdot \lambda x_{e} \cdot \lambda y_{e} \cdot(f(x))(y) \wedge(f(y))(x)$
remark: \wedge is standard propositional conjunction.
6. Write down the lambda terms corresponding to the following informal descriptions.
7. The function of type $(e(e e))(((e e) t)(e t))$ that sends two functions of types $e(e e)$ and $(e e) t$ to their composition. Recall that the composition of a function $f: A \rightarrow B$ and a function $g: B \rightarrow C$ is the function $h: A \rightarrow C$ s.t. for every $x \in A, h(x)=g(f(x))$.
8. The function of type $(e(e t))(e(e t))$ that sends every (char. function of a) binary relation R to the (char. function of the) symmetric closure of R. Recall that R^{\prime} is the symmetric closure of R if for all pairs $\langle x, y\rangle$ in R, R^{\prime} contains both $\langle x, y\rangle$ and $\langle y, x\rangle$.
9. The function of type $((e e) e) e$ that sends every function of type $(e e) e$ to its value on the identity function of type $e e$.
10. Consider the following equivalence: Tina is a tall person \Leftrightarrow Tina is tall and Tina is a person.

We assume that the words is and a both denote the identity function of type (et)(et). We also assume the binary structures below:

Tina [is [a [tall person]]]
[Tina [is tall]] [and [Tina [is [a person]]]]
Let us assume that the type of the word tall in the constituent tall person is of type (et)(et), and thus different than the et type of the word tall in the constituent is tall. Think of a proper denotation of type (et)(et) for the word tall that would respect the equivalence above.

1. Describe this (et)(et) function informally.
2. Write it as a lambda term.
3. Write down all the other lambda terms for the words in the two sentences of the equivalence.
4. Using the two binary structures above, and the lambda terms for all the words in them, write down lambda terms for the two sentences.
5. Simplify each of these lambda terms, and verify that you reached the same term.
