
Semantics – CKI – Utrecht, Spring 2010

Semantiek – end exam

Dr. Yoad Winter and Chris Blom

16 April 2010

Instructions

1. Please fill in your answers on the exam sheets (5 pages).
2. Exam duration: 2.5 hours
3. You may use any pre-prepared material.
4. Please write your student number here: .
5. The students who have not yet filled in the evaluation form on the web are kindly re-

quested to fill in the enclosed printed version after completing the exam.

Good luck!

Question 1 (5+5+4+8=22 points + 5 bonus points)
Consider the following sentences, with the assumed constituent structures:

(1.0) The room is [clean].
(1.1) The room is [not clean].
(1.2) The room is [almost clean].
(1.3) The room is [completely clean].
(1.4) The room is [[not completely] clean].
(1.5) The room is [[almost completely] clean].
(1.6) The room is [not [completely clean]].
(1.7) The room is [almost [completely clean]].

a. Write down the types for the following occurrences of words from these sentences:

- The word not in (1.1):
- The word almost in (1.2):
- The word completely in (1.3)-(1.7):
- The word not in (1.4):
- The word almost in (1.5):
- The word not in (1.6):
- The word almost in (1.7):

b. Write down all entailments between the sentences in (1.0)-(1.5):

c. In order to show a truth-conditional distinction between (1.4) and (1.6), show an entail-
ment with one of the other sentences in (1.0)-(1.7) that one of the sentences (1.4) and
(1.6) supports and the other does not:

⇒ ; 6⇒ .

1

d. (Bonus:) Can you find a similar truth-conditional distinction between (1.5) and (1.7)? If
you can show an entailment that one of the sentences (1.5) and (1.7) supports and the
other does not:

⇒
6⇒ .

e. What assumptions should we adopt about the denotations of almost in sentences (1.2) and
(1.5) that would account for the entailments you described in your answer to b? Complete
the following statements:

- almost in (1.2) must denote a function f that for each argument A of type

satisfies:

- almost in (1.5) must denote a function g that for each argument B of type

satisfies:

Question 2 (6+6+6+6+3+3=30 points + 5 bonus points)
Consider the following sentences, with the assumed constituent structures:

(2.1) [[Exactly one] [singer [who dances]]] retires.
(2.2) [John, [who dances],] retires.

We assume the following types for the lexical expressions in (2.1)-(2.2):1

exactly one (et)((et)t)
singer et
dances et
retires et
John e

a. Assume that the denotation of John is the entity j, and that the sets characterized by
the denotations for singer, dances and retires are S, D and R respectively. Write down
appropriate truth-values for (2.1) and (2.2) using these denotations:

truth-value for (2.1): truth-value for (2.2):

b. Give two different appropriate types for the word who in (2.1) and (2.2):

type for who in (2.1): type for who in (2.2):

c. Using these types and the denotations you gave for (2.1) and (2.2), write the two appro-
priate λ-terms for the meaning of who in the two sentences:

λ-term for who in (2.1):

λ-term for who in (2.2):

Consider now the following sentence, with the assumed constituent structure:

(2.3) [[[Exactly one] singer], [who dances]], retires.

1exactly one is assumed to be a lexical expression.

2

d. We assume that (2.3), with the comma intonations after singer and dances, is not equiv-
alent to (2.1), without these intonations. Describe a model that supports this intuition by
giving a definition to the sets S, D and R:

S =

D =

R =

e. Write down now a general truth-value for (2.3) using the sets S, D, and R in any model
(not necessarily the one you described in 2d):

truth-value for (2.3):

f. Propose now a type for the word who in (2.3):

type for who in (2.3):

g. (bonus question:) Suppose that you would be required to find an appropriate denotation
for the word who in (2.3). What problem would you encounter?

Question 3 (6+4+5+5+10=30 points)
Consider the following sentences, with the assumed constituent structures:
(3.0) [The picture] disappeared.
(3.1) [The [picture [of John]]] disappeared.
(3.2) [[John ’s] picture] disappeared.
(3.3) [A picture] disappeared.
We assume that the definite article the is of type (et)e, and its denotation the is defined as
follows, for every one-place predicate Pet characterizing a set A ⊆ De:

the(P) =

{
a A = {a}
undefined otherwise

Thus – under this treatment the truth-value of (3.0) is:
true – if there is a unique picture and that picture disappeared;
false – if there is a unique picture and that picture did not disappear;
undefined – if there is no unique picture.

Let us now assume that the sentences (3.1) and (3.2) are equivalent. Thus, according to the truth-
conditionality criterion, in all intended models the truth-values of these sentences should come
out the same (true, false or undefined). Our task in this question is to satisfy this requirement.

a. We assume that the types of the words picture, John and disappeared are et, e and et
respectively. Complete the proper types for the words of and ’s in (3.1) and (3.2):

type for of in (3.1): type for ’s in (3.2):

b. Let of be the denotation of the word of in (3.1), of the type you suggested in 3a. Note the
entailment (3.1)⇒(3.3). What semantic restriction(s) should the denotation of satisfy in
every model, in order to account for this entailment? Write it formally.

3

c. Note the equivalence (3.1)⇔(3.2). Make sure now that this equivalence is captured by
defining the denotation of the word ’s. Write down this denotation as a λ-term of the type
you suggested in 3a, using the constants of and the of the types defined above:

λ-term for ’s in (3.1):

In some cases there seems to be a strong relation between the meaning of the words of and ’s
and the meaning of the verb own. For instance, consider the tautological status of the following
sentences:
(3.4) John [owns [[John ’s] dog]].
(3.5) John [owns [the [dog [of John]]]].

d. We standardly assume that the type of the transitive verb own is e(et) and that it denotes
a function own. Taking the tautologies (3.4) and (3.5) into account, write a λ-term for the
denotation of of the word of, in terms of the constant own of type e(et).

λ-term for of in (3.2):

e. We now want to make sure that the truth-value of (3.4) is true or undefined in all intended
models. We will do that by using the denotations you gave above for ’s, in terms of a
constants own and the.

First, write down the truth-value for (3.4) in terms of the constants j, own, ’s and dog:

Now, in this formula, replace s’ by the λ-term you gave in 3c using the constants of and
the.

Do the necessary reductions in order to get a normal form:

Replace of by the definition you gave in 3d using the constant own:

Do the necessary reductions in order to get a normal form:

Explain informally why the formula you now got is true or undefined in all intended
models that respect the definition we gave for the.

Question 4 (9+9=18 points)
Consider the Haskell lexicon on the next page. In this question you will be asked to add entries
to this lexicon with appropriate categories and denotations, in order to allow parsing and truth-
value assignment for the following sentences.
(4.1) Luke is neither evil nor alien nor hairy.
(4.2) Neither exactly one nor more than two jedi are hairy or alien.
(4.3) Han neither killed Luke nor ran.
(4.4) Between one and four aliens are hairy.

a. Define entries for ”Neither” and ”nor” such that (4.1) , (4.2) and (4.3). can be parsed:
, entry "neither"
, entry "neither"

4

, entry "neither"
, entry "nor"
, entry "nor"
, entry "nor"

b. The lexicon contains an entry for and that takes two numbers and returns a pair of num-
bers. Its category takes a num left and a num right and returns a pair num:*num. Its
function takes a Int and another Int and returns a pair (Int,Int). Use such a pair
of numbers for defining an inclusive interval, in order to give the denotation for ”be-
tween”. Add an entry for between that makes it possible to parse (4.4).

, entry "between" between
between ::
between

Lexicon.hs
-- takes a function that characterizes a set and returns that set
toList :: (E->T) -> [E]
toList f = filter f entities
-- takes a set and returns its characteristic function
charf :: [E] -> E -> T
charf list x = x ‘elem‘ list
-- takes a function that characterizes a set and returns its cardinality
card :: (E->T) -> Int
card f = length (toList f)
-- category for determiners
det = ((s:/(np:\s)):/n)

lexicon :: Lexicon
lexicon =

[entry "Luke" np (Luke :: E)
, entry "Han" np (Han :: E)
, entry "Leia" np (Leia :: E)
, entry "evil" n ((charf evil_set) :: E->T)
, entry "hairy" n ((charf hairy_set) :: E->T)
, entry "alien" n ((charf alien_set) :: E->T)
, entry "aliens" n ((charf alien_set) :: E->T)
, entry "jedi" n ((charf jedi_set) :: E->T)
, entry "ran" (np:\s) ((charf ran_set) :: E->T)
, entry "killed" ((np:\s):/np) ((charf2 killed_relation) :: E->E->T)
, entry "kissed" ((np:\s):/np) ((charf2 kissed_relation) :: E->E->T)
, entry "is" ((np:\s):/n) ((\x -> x) :: (E->T)->E->T)
, entry "are" ((np:\s):/n) ((\x -> x) :: (E->T)->E->T)
, entry "than" (n:\n) ((\x -> x) :: (E->T)->E->T)
, entry "or" (n:\n:/n) ((\/) :: (E->T)->(E->T)->E->T)
, entry "and" (n:\n:/n) ((/\) :: (E->T)->(E->T)->E->T)
, entry "not" (n:/n) (compl :: (E->T)->E->T)
, entry "one" num (1 :: Int)
, entry "two" num (2 :: Int)
, entry "three" num (3 :: Int)
, entry "some" det (pred_det (>0))
, entry "exactly" (det :/ num) (\x -> pred_det (==x))
, entry "more_than" (det :/ num) (\x -> pred_det (>x))
, entry "less_than" (det :/ num) (\x -> pred_det (<x))
, entry "more" (det :/ n) more
, entry "and" (num:\((num:*num):/num)) num_and
]

pred_det :: (Int->T) -> (E->T) -> (E->T) -> T
pred_det p f g = p (card (f /\ g))

num_and :: Int -> Int -> (Int,Int)
num_and a b = (a,b)

more :: (E->T) -> (E->T) -> (E->T) -> T
more a b c = card (a /\ c) - card (b /\ c) > 0

5

