
Semantics – CKI – Utrecht, Spring 2011

Semantiek – end exam

Dr. Yoad Winter and Chris Blom

15 April 2011
Instructions

1. Please fill in your answers on the exam sheets (5 pages).
2. Exam duration: 2.5 hours
3. You may use any pre-prepared material.
4. Please write your student number here: .

Good luck!

Question 1 (5+5+3+7+5=25 points)
Consider the following sentences.

(1.1) John is mayor (of Utrecht).
(1.2) John was mayor (of Utrecht).

Remark: the addition “in Utrecht” does not matter for our analysis, and is only for the sake of
clarification.

Obviously, there is no entailment between (1.1) and (1.2). In order to capture this, we treat
grammatical tense (is/was) as indicating time in possible world semantics.
To do that, we assume a function time that maps every index i ∈ Ds to a real number. The
times of the indices in Ds introduce an order between them. Thus, if time(i1) < time(i2) then
the time of the index i1 is earlier than that of the index i2.
For the words John, mayor is and was in (1.1) and (1.2) we assume the following types and
denotations:
John e john

mayor e(st) mayor

is (e(st))(e(st)) IS = λPe(st).P

was (e(st))(e(st)) WAS = λPe(st).λxe.λis.∃js[time(j) < time(i) ∧ P (x)(j)]
a. Simplify as much as possible the following formulas for (1.1) and (1.2), respectively:

IS(mayor)(john)

WAS(mayor)(john)

b. Assume a modelM whereDs = {i1, i2}, time(i1) = 1, time(i2) = 2 and mayor(john) =
{i1}. Write down the denotations of sentences (1.1) and (1.2) in M :

[[(1.1)]]M =

[[(1.2)]]M =

1

c. Explain briefly how the denotations that you showed in your answer to b account for the
lack of entailment (in both directions) between sentences (1.1) and (1.2):

d. Consider now the following sentences.

(1.3) John is former mayor (of Utrecht).
(1.4) John was mayor (of Utrecht) and John is not mayor (of Utrecht).

Assuming that sentence (1.3) is equivalent to (1.4), suggest a type and a meaning for the
adjective former in (1.3).

type former:

denotation former: FORMER =

e. Using your answer to d, simplify as much as possible the following formula for (1.3):

IS(FORMER(mayor))(john)

Make sure that the result is equivalent to our treatment of (1.4).

Question 2 (4+6+5+5+6+6=32 points)
Consider the following sentences, where V1 and V2 stand for verbs.

(2.1) All students who V1 V2.
(2.2) All students who V2 V1.

For instance, when V1=dance and V2=smile we get:
sentence (2.1) = all students who dance smile;
sentence (2.2) = all students who smile dance.

a. Write down two verbs for V1 and V2, for which sentence (2.1) is a tautology, but (2.2) is
not.

V1 = V2 =

b. Write down two other examples for pairs like V1 and V2.

pair 1:

pair 2:

c. Using only the words students, who, entities, only, are and the two verbs V1 and V2 from
your answer to a, form a sentence (2.3) that is equivalent to (2.1). Assume that the noun
entities denotes the function characterizing the whole domain De of entities.

(2.3)

d. Reconsider the two verbs V1 and V2 from your answer to a. Using the set denotations
[[V1]] (for the verb V1), [[V2]] (for the verb V2) and S (for the noun students), and the set
theoretical operations ∩ (intersection) and ⊆ (set inclusion), write down the (identical)

2

truth-value of sentences (2.1) and (2.3).

e. Reconsider the two verbs V1 and V2 from your answer to a, as appearing in the following
(non-)entailments, where D1, D2 and D3 are determiner expressions.

(2.4) D1 student(s) who V1 smiled⇒ D1 student(s) who V2 smiled

(2.5) D2 student(s) who V2 smiled⇒ D2 student(s) who V1 smiled

(2.6) D3 student(s) who V1 smiled 6⇒ D3 student(s) who V2 smiled;
D3 student(s) who V2 smiled 6⇒ D3 student(s) who V1 smiled

Write down examples for the determiner expressions in (2.4)-(2.6) that satisfy these non-
entailments:

D1 = D2 = D3 =

f. Answer the following questions:

Which property of D1 does entailment (2.4) illustrate?

Which property of D2 does entailment (2.5) illustrate?

Which property of D3 does entailment (2.6) illustrate?

Question 3 (3+3+13=19 points)
Consider the following sentences, with the assumed binary structures:

(3.0) John [[showed Mary] Fido].
(3.1) John [[showed [every student]] his dog].

We analyze the verb show as being of type e(e(et)), denoting a (Curried char. function) of a
trinary relation between entities.

a. Write down the (most simplified) truth-value denotation of sentence (3.0), using the de-
notations show of type e(e(et)) and john, mary and fido (all three of type e). You
must use the assumed structure in (3.0).

For the analysis of (3.1), we define the following Z operator:

Z = λRe(e(et)).λQ(et)t.λfee .λxe.Q(λye.R(y)(f(y))(x))

Using this operator we analyze sentence (3.1) as follows:

(3.2) Z(showede(e(et)))(λAet.studentet ⊆ A)(his dogee)(johne)

b. Consider the following four statements in (i)-(iv).

Formula (3.2) represents the following paraphrase of sentence (3.1) –

3

(i) There is some masculine entity x, and John showed every student the dog that be-
longs to x.

(ii) John showed every student the dog that belongs to John.
(iii) For every student x, John showed x the dog that belongs to x.
(iv) No one of the statements above.

Mark the most appropriate statement among (i)-(iv).

c. To support your answer to a, write down the most simplified form of formula (3.2).

Remark: You are requested not to write your simplification steps on the exam sheet.

Question 4 (6+6+6+6=24 points)

For this question, refer to the lexicon on page 5. Suppose we have a predefined function
height :: E -> Int that takes an entity and returns an integer which represents the enti-
ties length in centimeters.

1. Use height to define a function taller :: E -> E -> T that takes two entities
and returns True if the second has a larger or equal height than the first and False
otherwise.
taller :: E -> E -> T

taller
2. Add a lexicon entry for taller such that the following sentences can be parsed with the

given lexicon.

1) "Everyone is taller than Yoda"
2) "Chewbacca is @ taller than everyone"
3) "No_one is taller than Chewbacca"

(@ is short for the SAT combinator)

, entry "taller" () taller
3. Give a denotation for the adjective tall in terms of taller, such that the following entail-

ments hold for all x of type e and all F of type et:

1) x is a tall F ⇒ x is a F
2) x is a tall F ⇒ x is taller than most F

You may use any of the functions that are present in the lexicon in your definition.

tall_adj ::

tall_adj
4. Add a lexicon entry for taller such that the following sentences can be parsed with the

given lexicon.

4) "Vader is_a tall boy"
5) "Leia is_a tall girl"

, entry "tall" () tall_adj

4

-- charf takes a set of entities and returns its characteristic function
charf :: (Eq a) => [a] -> a -> T
charf = \set -> \x -> x ‘elem‘ set

-- toList take a char. funtion and return the set it characterizes
toList :: (E->T) -> [E]
toList f = filter f (domain f)

{- card : takes a function f and returns the
cardinality of the set that f characterizes -}

card :: (E -> Bool) -> Int
card f = length (toList f)

sat :: (E->E->T) -> ((E->T)->T) -> (E -> T)
sat r q y = q (\x -> r x y)

{---- Denotations of GQ and DET’s--------}
every f g = f .<. g
some f g = exists (f /\ g)
most f g = card (f /\ g) > card (f /\ (compl g))
everyone f = forall f

-- some abbreviations for common syntactic categories
n = N -- nouns
s = S -- sentences
np = NP -- noun phrases
iv = np :\ s -- intransitive verbs
tv = iv :/ np -- transitive verbs
det = s :/ iv :/ n -- determiners
gq = s:/(np:\s) -- generalized quantifiers

lexicon = Lexicon
{-=== Entities ===-}
[entry "Luke" np Luke
, entry "Leia" np Leia
, entry "Chewbacca" np Chewbacca
, entry "Yoda" np Yoda
, entry "Vader" np Vader
, entry "@" (iv:/gq:/tv) sat
, entry "is_a" ((np:\s):/n) ((\x -> x) :: (E->T) -> (E->T))
, entry "is" ((np:\s):/n) ((\x -> x) :: (E->T) -> (E->T))
, entry "is" (iv:/iv) ((\x -> x) :: (E->T) -> (E->T))
, entry "than" (tv:\tv) ((\x -> x) :: (E->E->T) -> (E->E->T))
, entry "boy" n (charf [Luke,Yoda,Chewbacca,Vader])
, entry "girl" n (charf [Leia])
, entry "alien" n (charf [Chewbacca,Yoda])
, entry "every" det every
, entry "most" det most
, entry "everyone" gq everyone
, entry "no_one" gq (\f -> card f == 0)
]

5

