
Higher-Order Logic

for Natural Language Semantics

Yoad Winter

Utrecht Institute of Linguistics

May 15, 2018

WOL Departementsmiddag, Mathematisch Instituut, Utrecht

1 / 34

1 - Introduction

Inferences in language

Classical syllogisms:

Every human is mortal, and Socrates is human ⇒ Socrates is mortal

Other inferences with quantifiers:

More teachers than students snore, and at most five teachers snore ⇒ At most

four students snore

Plurals and reciprocity:

Dan and Sue killed each other ⇒ Dan killed Sue and Sue killed Dan

Spatial and temporal inferences:

The bird is above the house and between the house and the cloud ⇒ The bird is

below the cloud

Events:

Carthage was destroyed in 146 BC ⇒ Carthage’s destruction occurred in 146 BC

Presupposition:

If John stops smoking he’ll be able to run the marathon ⇒ John smokes
2 / 34

1 - Introduction

Traditional view

Inferences in language are translated to formal logic.

Every human is mortal, and Socrates is human ⇒ Socrates is mortal

(∀x .H(x)→ M(x)) ∧ H(s)⇒ M(s)

Translation procedure is left undefined.

3 / 34

1 - Introduction

Modern view

Since 1970s:

Inferences as empirical facts – psychology, linguistics, computer
science.

Applied logic.

In Linguistics –
Formal Semantics: study of (in)valid inferences in language

Formal Syntax: study of (un)grammaticality in language
*mortal every is human

Challenge: the scientific study of grammar as mediating between
syntactic structures of natural language and logical inferences

4 / 34

1 - Introduction

Plan of Talk

1 Introduction

2 Type-logical semantics (1970s-2000s)

3 Abstract type-logical grammar (2000s-)

Common thread: Higher-Order Logics and λ-Calculus

A friendly intro

Farmer, William M. The seven virtues of simple type theory. Journal of Applied Logic 6
(2008):267–286.

5 / 34

2 - Type-Logical Semantics

Types and lexical typing

e: entities
t: truth-values

Inductively: et – functions from entities to truth-values

e(et) – functions from entities to et functions

(e(et))(et) – functions from e(et) functions to et functions

. . .

Types over e and t:

T e,t def
= {e} ∪ {t} ∪ {(τσ) | τ, σ ∈ T }

Words:

W = finite non-empty set

Lexical typing over W :

T0 : W → T mapping words to types

Example: T0(Socrates) = e; T0(mortal) = et
6 / 34

2 - Type-Logical Semantics

Expressions and their typing

EXP = the expressions over W , typed by a function T : EXP → T

W ⊆ EXP ⊆W ∗

T extends T0

Concatenation is possible when function application is.

Notation ϕ :τ or ϕτ “ϕ is an expression of type τ”

Example:
Socrates :e mortal :et

Socrates·mortal : t

Expressions over W and T0

Base: w : T0(w)

every w ∈W is an expression of type T0(w)

Induction:

ϕ :τσ ψ :τ

ϕ·ψ :σ

ϕ :τσ ψ :τ

ψ ·ϕ :σ
7 / 34

2 - Type-Logical Semantics

Example

Socrates : e

is : (et)(et) mortal : et

is·mortal : et
Socrates·is·mortal : t

Tree notation:

t

Socrates : e et

is : (et)(et) mortal : et

8 / 34

2 - Type-Logical Semantics

Models and denotations

De = non-empty set

Dt = {0, 1}≤
Dτσ = Dσ

Dτ

Interpretation over words W and lexical typing T0:

I : W →
⋃

τ∈T Dτ , s.t. for every w ∈W : I (w) ∈ DT0(w)

– mapping each word to an element of the domain of its type

Model over W and typing T0 = a pair 〈De , I 〉
– the denotation in a model M = 〈De , I 〉 extends I for expressions

Expression denotation over M = 〈De , I 〉

Base: [[w]]M = I (w)

every w ∈W denotes its interpretation in M

Induction:

[[ϕ]]M = Aτσ [[ψ]]M = Bτ

[[ϕ·ψ]]M = A(B)

[[ϕ]]M = Aτσ [[ψ]]M = Bτ

[[ψ ·ϕ]]M = A(B) 9 / 34

2 - Type-Logical Semantics

Example: denotations in a model

Model:

I (Socrates) = s ∈ De I (mortal) = mortal ∈ Det

I (is) = IS ∈ D(et)(et)

the identity function of type (et)(et)

denoted “λPet .P”

Denotations:

[[is mortal]]M = IS(mortal) = (λP.P)(mortal) = mortal

[[Socrates is mortal]]M = [[is mortal]]M([[Socrates]]M) = mortal(s)

10 / 34

2 - Type-Logical Semantics

Example: simple transitive sentences

Socrates likes Plato

t

Socrates : e et

likes : e(et) Plato : e

(like(p))(s)

se like(p)

likee(et) pe

e(et) functions ≡ binary relations over De

likee(et) ≡ LIKE = {〈x , y〉 ∈ D2
e | (like(y))(x)}

like(p) ≡ {x ∈ De | LIKE (x ,p)}

11 / 34

2 - Type-Logical Semantics

λ-calculus quick and dirty

Abstraction: λxτ .ϕσ

describes a function from Dτ to Dσ: substitute value in Dτ for every free x
in ϕ

Application: ϕτσ(ψτ)

describes an object in Dσ: the result of applying the function described by
ϕ to the object described by ψ

12 / 34

2 - Type-Logical Semantics

Example: reflexives in transitive sentences

Socrates likes himself

t

Socrates : e et

likes : e(et) himself : (e(et))(et)

(HIMSELF(like))(s)

se HIMSELF(like)

likee(et) HIMSELF

HIMSELF = λRe(et).λxe .(R(x))(x)

map binary relation R ′ ⊆ E × E to set {x ∈ E | 〈x , x〉 ∈ R ′}

(HIMSELF(like))(s)

= ((λRe(et).λxe .(R(x))(x))(like))(s)

= (λxe .(like(x))(x))(s) s ∈ {x ∈ De | 〈x, x〉 ∈ like′}

= (like(s))(s) 〈s, s〉 ∈ like′

13 / 34

2 - Type-Logical Semantics

Back to logical inferences in language

Socrates likes himself ⇒ Socrates likes Socrates

Both expressions of type t – by derivation

We only consider models where
I (himself) = HIMSELF = λRe(et).λxe .(R(x))(x)

In these models:
[[Socrates likes himself]]M ≤ [[Socrates likes Socrates]]M

Combinators

Defined in “pure” λ-calculus.

No reliance on properties of basic domains like Dt or De

Map any function f : (A×A)→B to g :A→B s.t. g(x)= f (x , x).

14 / 34

2 - Type-Logical Semantics

Equality and higher-order logic

For any two λ-terms ϕ and ψ:

ϕ = ψ is a (impure) λ-term of type t

[[ϕ = ψ]]M = 1 iff [[ϕ]]M = [[ψ]]M

Equality turns λ-calculus into an expressive higher-order logic

15 / 34

2 - Type-Logical Semantics

Logical sugaring

>t λxt .x = λxt .x

⊥t λxt .> = λxt .x

¬ϕt ϕ = ⊥

¬Aet λxe .¬A(x) (polymorphism)

ϕt ∧ ψt λft(tt).f (ϕ)(ψ) = λft(tt).f (>)(>)

relies on |Dt | = 2 (∨, →)

Aet ∧ Bet λxe .A(x) ∧ B(x) (polymorphism)

∀xτ .ϕt λxτ .ϕt = λxτ .>
substituting any value for x in ϕ gives 1 (higher-order, ∃)

INJ(Fτσ,Aτ t ,Bσt) F is an injection from A to B . . .

|Aτ t | ≤ |Bσt | ∃Fτσ.INJ(F ,A,B)

16 / 34

2 - Type-Logical Semantics

Example: at least half

At least half of the students are snoring
= there are at least as many snoring students as non-snoring students

AT LEAST HALF = λAet .λBet .|A ∧ ¬B| ≤ |A ∧ B|

(AT LEAST HALF(student))(snore)

= |student ∧ ¬snore| ≤ |student ∧ snore|

17 / 34

2 - Type-Logical Semantics

Inferences in language – made easier

Classical syllogisms:
Every human is mortal, and Socrates is human ⇒ Socrates is mortal

Other inferences with quantifiers:
More teachers than students snore, and at most five teachers snore ⇒ At most four students snore

Plurals and reciprocity:

Dan and Sue killed each other ⇒ Dan killed Sue and Sue killed Dan

Spatial and temporal inferences:
The bird is above the house and between the house and the cloud ⇒ The bird is below the cloud

Events:
Carthage was destroyed in 146 BC ⇒ Carthage’s destruction occurred in 146 BC

Presupposition:

If John stops smoking he’ll be able to run the marathon ⇒ John smokes

Further reading and references

Winter, Yoad. Elements of Formal Semantics: An Introduction to the Mathematical
Theory of Meaning in Natural Language. Edinburgh University Press, 2016.

Semantics, BA Kunstmatige Intelligentie, UU.

18 / 34

3 - Abstract type-logical grammar

Relative clauses

(1) Some man that saw Dan ran.

(2) Some man that Dan saw ran.

First-order translations:

(1’) ∃x .man(x) ∧ see(x ,d) ∧ run(x)

(2’) ∃x .man(x) ∧ see(d, x) ∧ run(x)

How do we reach such translations?

19 / 34

3 - Abstract type-logical grammar

Higher-order treatment

(1) Some man that saw Dan ran.

(2) Some man that Dan saw ran.

THAT = λAet .λBet .λxe .B(x) ∧ A(x)

map char. functions of two sets to char. function of intersection

man that ran: (THAT(run))(man) = λx .man(x) ∧ run(x)

man that saw Dan: (THAT(see(d)))(man) = λx .man(x) ∧ (see(d))(x)

SOME = λAet .λBet .∃xe .A(x) ∧ B(x)

map char. functions of two sets to 1 iff intersection is not empty

some man ran: (SOME(man))(run)

= ∃x .man(x) ∧ run(x)

some man that saw Dan ran: (SOME(THAT(see(d)))(man))(run)

= ∃x .man(x) ∧ (see(d))(x) ∧ run(x)

20 / 34

3 - Abstract type-logical grammar

Higher-order treatment (cont.)

(1) Some man that saw Dan ran

(SOME(THAT(see(d))(man)))(run)

SOME(THAT(see(d))(man))

SOME(et)((et)t) THAT(see(d))(man)

THAT(see(d))

THAT(et)((et)(et)) see(d)

seee(et) de

manet

runet

∃x .man(x) ∧ see(d)(x) ∧ run(x) X

21 / 34

3 - Abstract type-logical grammar

Higher-order treatment (cont.)

(2) Some man that Dan saw ran

(SOME(THAT(see(d))(man)))(run)

SOME(THAT(see(d))(man))

SOME(et)((et)t) THAT(see(d))(man)

THAT(see(d))

THAT(et)((et)(et)) see(d)

de seee(et)

manet

runet

∃x .man(x) ∧ see(d)(x) ∧ run(x) 7

22 / 34

3 - Abstract type-logical grammar

Two sides of a problem

Expressions “that saw Dan” and “that Dan saw” are treated as
equivalent.

Correct meaning missing = undergeneration

Solution: add dual principle to function application

d can appear in either argument of see of type e(et)
either see(d) or λx .see(x)(d)

Incorrect meaning present = overgeneration

Solution: involve word order in deriving expressions and their
denotations

saw Dan: see(d)

Dan saw: λx .see(x)(d)

What is “a dual principle to FA”?

Prawitz, Dag. Natural Deduction: A Proof-Theoretical Study, Almqvist &
Wiksell, Stockholm, 1965

23 / 34

3 - Abstract type-logical grammar

Function Application and Modus Ponens

Function Application (FA) Interpretation

τσ τ

σ

A B

A(B)

Implication Elimination (Modus Ponens)

ϕ→ ψ ϕ

ψ

If Mary is tall then Tina is tall,
and Mary is tall

⇒ Tina is tall

Dual operations to FA and MP

What logical principle allows us to deduce a function or a conditional
statement?

24 / 34

3 - Abstract type-logical grammar

Hypothetical Reasoning with conditional statements

(A) Tina is taller than Mary

⇒ If Mary is tall then Tina is tall

(B) Tina is taller than Mary
and Mary is tall

⇒ Tina is tall

Proving (B) using (A)

Tina is taller than Mary

If Mary is tall then Tina is tall
(A)

Mary is tall

Tina is tall
MP

Proving (A) using (B)

Tina is taller than Mary [Mary is tall]1

Tina is tall
(B)

If Mary is tall then Tina is tall
discharge hypothesis 1

25 / 34

3 - Abstract type-logical grammar

Implication Introduction

. . . [ϕ]1

...

ψ

ϕ→ ψ
discharge hypothesis 1

Example

Given: ϕ1 → (ϕ2 → ψ) and ϕ2

Prove: ϕ1 → ψ

ϕ1 → (ϕ2 → ψ) [ϕ1]1

ϕ2 → ψ
MP

ϕ2

ψ
MP

ϕ1 → ψ
discharge hypothesis 1

26 / 34

3 - Abstract type-logical grammar

Function Introduction (abstraction)

. . . [τ]1

...
σ
τσ discharge hypothesis 1

Example

Given: e(et) and e

Prove: et

e(et) [e]1

et APP e
t APP

et
discharge hypothesis 1

Lambek, Joachim. The mathematics of sentence structure. American Mathematical
Monthly (65), 154-169, 1958.

van Benthem, Johan. Essays in Logical Semantics, D. Reidel, Dordrecht, 1986.
27 / 34

3 - Abstract type-logical grammar

Function Introduction – Interpretation

. . . [u : τ]1

...
z : σ

λu.z : τσ
discharge hypothesis 1

Example

Given: seee(et) and dane

Prove: dane used as second argument of seee(et)

see : e(et) [u : e]1

see(u) : et
FA

dan : e

see(u)(dan) : t
FA

λue .see(u)(dan) : et
discharge hypothesis 1

28 / 34

3 - Abstract type-logical grammar

Relatives and Hypothetical Reasoning

(2) Some man that Dan saw ran

(SOME(THAT(λue .see(u)(d))(man)))(run)

SOME(THAT(λue .see(u)(d))(man))

SOME(et)((et)t) THAT(λue .see(u)(d))(man)

THAT(λue .see(u)(d))

THAT(et)((et)(et)) λue .see(u)(d)

de seee(et)

manet

runet

∃x .man(x) ∧ see(x)(d) ∧ run(x) X

29 / 34

3 - Abstract type-logical grammar

Relatives and Hypothetical Reasoning (cont.)

(1) Some man that saw Dan ran

(SOME(THAT(see(d))(man)))(run)

SOME(THAT(see(d))(man))

SOME(et)((et)t) THAT(see(d))(man)

THAT(see(d))

THAT(et)((et)(et)) see(d)

seee(et) de

manet

runet

∃x .man(x) ∧ see(d)(x) ∧ run(x) X

30 / 34

3 - Abstract type-logical grammar

Using signs

“The linguistic sign unites, not a thing and
a name, but a concept and a sound-image.”
(de Saussure 1916)

de Saussure, Ferdinand. Cours de Linguistique Générale, Payot & Cie, Paris, 1916.

Curry, Haskell B. Some logical aspects of grammatical structure. Structure of Language
and its Mathematical Aspects, ed. by R. O. Jakobson. American Mathematical Society,
Providence. 1961.

de Groote, Philippe. Towards Abstract Categorial Grammars. In Proceedings of the 39th
annual meeting of the Association for Computational Linguistics. 2001.

Muskens, Reinhard. Language, lambdas and logic. Resource Sensitivity in Binding and

Anaphora, ed. by G.-J. Kruijff and R. Oehrle. Kluwer, Dordrecht. 2003.

31 / 34

3 - Abstract type-logical grammar

Sign composition

dan (sign) + see (sign) ={
Danf (form)
de (meaning)

}
+

{
λxf .λyf .y ·see ·x (form)
seee(et) (meaning)

}
=

Solution 1:

see(dan)

=

{
(λx .λy .y ·see ·x)(Dan) = λy .y ·see ·Dan (form)
see(dan) (meaning)

}
Solution 2:

λU.see(U)(dan)

=

{
λuf .(λx .λy .y ·see ·x)(u)(Dan) = λu.Dan·see ·u (form)
λue .see(u)(dan) (meaning)

}
32 / 34

3 - Abstract type-logical grammar

Summary

Three virtues of higher-order logic for natural language semantics:

Expressivity

Types and function application

Extendable to complex structures

33 / 34

	Introduction
	Type-Logical Semantics
	Abstract type-logical grammar

