Higher-Order Logic for Natural Language Semantics

Yoad Winter

Utrecht Institute of Linguistics

May 15, 2018

WOL Departementsmiddag, Mathematisch Instituut, Utrecht

Inferences in language

Classical syllogisms:

Every human is mortal, and Socrates is human \Rightarrow Socrates is mortal

Other inferences with quantifiers:

More teachers than students snore, and at most five teachers snore \Rightarrow At most four students snore

Plurals and reciprocity:

Dan and Sue killed each other \Rightarrow Dan killed Sue and Sue killed Dan

Spatial and temporal inferences:

The bird is above the house and between the house and the cloud \Rightarrow The bird is below the cloud

Events:

Carthage was destroyed in 146 BC \Rightarrow Carthage's destruction occurred in 146 BC

Presupposition:

If John stops smoking he'll be able to run the marathon \Rightarrow John smokes

Traditional view

Inferences in language are translated to formal logic.

Every human is mortal, and Socrates is human \Rightarrow Socrates is mortal $(\forall x.H(x) \rightarrow M(x)) \land H(s) \Rightarrow M(s)$

Translation procedure is left undefined.

Modern view

Since 1970s:

- Inferences as *empirical facts* psychology, linguistics, computer science.
- Applied logic.
- In Linguistics Formal Semantics: study of (in)valid inferences in language Formal Syntax: study of (un)grammaticality in language *mortal every is human
- **Challenge**: the scientific study of grammar as mediating between syntactic structures of natural language and logical inferences

Plan of Talk

1 Introduction

- 2 Type-logical semantics (1970s-2000s)
- 3 Abstract type-logical grammar (2000s-)

Common thread: Higher-Order Logics and λ -Calculus

A friendly intro

Farmer, William M. The seven virtues of simple type theory. *Journal of Applied Logic* 6 (2008):267–286.

Types and lexical typing

- e: entities
- t: truth-values

Inductively: et - functions from entities to truth-values e(et) - functions from entities to et functions (e(et))(et) - functions from e(et) functions to et functions ...

Types over *e* and *t*:

$$\mathcal{T}^{\mathsf{e},t} \stackrel{def}{=} \{\mathsf{e}\} \cup \{t\} \cup \{(\tau\sigma) \mid \tau, \sigma \in \mathcal{T}\}$$

Words:

W = finite non-empty set

Lexical typing over W:

 $\mathcal{T}_0: \, \mathcal{W}
ightarrow \mathcal{T} \,$ mapping words to types

Example: $T_0(Socrates) = e$; $T_0(mortal) = et$

Expressions and their typing

- EXP = the expressions over W, typed by a function $\textit{T}:\textit{EXP} \rightarrow \mathcal{T}$
 - $W \subseteq EXP \subseteq W^*$
 - T extends T_0
 - Concatenation is possible when function application is.
 - Notation φ : τ or φ_{τ} " φ is an expression of type τ "

		Socrates: e	mortal: et	
0	Example:	Socrates.	mortal: t	

Expressions over W and T_0

Base: $w : T_0(w)$

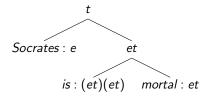
every $w \in W$ is an expression of type $T_0(w)$

Induction:
$$\frac{\varphi : \tau \sigma \quad \psi : \tau}{\varphi \cdot \psi : \sigma} \quad \frac{\varphi : \tau \sigma \quad \psi : \tau}{\psi \cdot \varphi : \sigma}$$

7/34

Example

Tree notation:



Models and denotations

- $D_e = \text{non-empty set}$
- $egin{array}{rcl} D_t &=& \{0,1\}_\leq\ D_{ au\sigma} &=& D_{\sigma}{}^{D_{ au}} \end{array}$

Interpretation over words W and lexical typing T_0 : $I: W \to \bigcup_{\tau \in \mathcal{T}} D_{\tau}$, s.t. for every $w \in W$: $I(w) \in D_{T_0(w)}$ – mapping each word to an element of the domain of its type

Model over W and typing T_0 = a pair $\langle D_e, I \rangle$

- the **denotation** in a model $M = \langle D_e, I \rangle$ extends I for expressions

Expression denotation over $M = \langle D_e, I \rangle$ Base: $\llbracket w \rrbracket^M = I(w)$ every $w \in W$ denotes its interpretation in MInduction: $\frac{\llbracket \varphi \rrbracket^M = A_{\tau\sigma} \quad \llbracket \psi \rrbracket^M = B_{\tau}}{\llbracket \varphi \cdot \psi \rrbracket^M = A(B)} \quad \frac{\llbracket \varphi \rrbracket^M = A_{\tau\sigma} \quad \llbracket \psi \rrbracket^M = B_{\tau}}{\llbracket \psi \cdot \varphi \rrbracket^M = A(B)}$

Example: denotations in a model

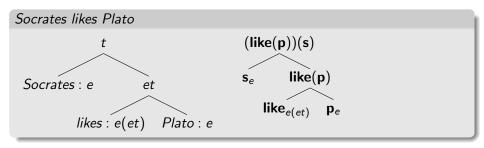
Model:

$$\begin{split} I(\textit{Socrates}) &= \mathbf{s} \in D_e \qquad I(\textit{mortal}) = \mathbf{mortal} \in D_{et} \\ I(\textit{is}) &= \mathsf{IS} \in D_{(et)(et)} \\ & \text{the identity function of type } (et)(et) \\ & \text{denoted "} \lambda P_{et}.P" \end{split}$$

Denotations:

 $\llbracket is mortal \rrbracket^{M} = IS(mortal) = (\lambda P.P)(mortal) = mortal$ $\llbracket Socrates is mortal \rrbracket^{M} = \llbracket is mortal \rrbracket^{M}(\llbracket Socrates \rrbracket^{M}) = mortal(s)$

Example: simple transitive sentences



 $e(et) \text{ functions } \equiv \text{ binary relations over } D_e$ $\mathbf{like}_{e(et)} \equiv LIKE = \{\langle x, y \rangle \in D_e^2 \mid (\mathbf{like}(y))(x)\}$ $\mathbf{like}(\mathbf{p}) \equiv \{x \in D_e \mid LIKE(x, \mathbf{p})\}$

$\lambda\text{-calculus}$ quick and dirty

Abstraction: $\lambda x_{\tau}.\varphi_{\sigma}$

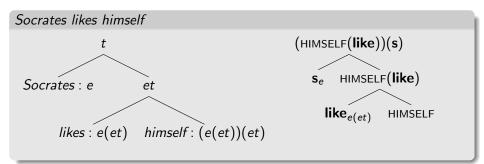
describes a function from D_τ to $D_\sigma:$ substitute value in D_τ for every free x in φ

Application: $\varphi_{\tau\sigma}(\psi_{\tau})$

describes an object in D_{σ} : the result of applying the function described by φ to the object described by ψ

2 - Type-Logical Semantics

Example: reflexives in transitive sentences



$$\begin{split} \mathsf{HIMSELF} &= \lambda R_{e(et)} . \lambda x_{e} . (R(x))(x) \\ \mathsf{map binary relation } R' \subseteq E \times E \text{ to set } \{x \in E \mid \langle x, x \rangle \in R'\} \\ &(\mathsf{HIMSELF}(\mathsf{like}))(\mathsf{s}) \\ &= ((\lambda R_{e(et)} . \lambda x_{e} . (R(x))(x))(\mathsf{like}))(\mathsf{s}) \\ &= (\lambda x_{e} . (\mathsf{like}(x))(x))(\mathsf{s}) \\ &= (\mathsf{like}(\mathsf{s}))(\mathsf{s}) \\ &\leq \{x \in D_{e} \mid \langle x, x \rangle \in \mathsf{like'}\} \\ &= (\mathsf{like}(\mathsf{s}))(\mathsf{s}) \\ \end{split}$$

Back to logical inferences in language

Socrates likes himself \Rightarrow Socrates likes Socrates

- Both expressions of type t by derivation
- We only consider models where $I(himself) = HIMSELF = \lambda R_{e(et)} \cdot \lambda x_e \cdot (R(x))(x)$
- In these models:

 $\llbracket \textit{Socrates likes himself} \rrbracket^M \leq \llbracket \textit{Socrates likes Socrates} \rrbracket^M$

Combinators

Defined in "pure" λ -calculus.

No reliance on properties of basic domains like D_t or D_e

Map any function $f:(A \times A) \rightarrow B$ to $g:A \rightarrow B$ s.t. g(x) = f(x, x).

Equality and higher-order logic

For any two $\lambda\text{-terms }\varphi$ and $\psi\text{:}$

•
$$\varphi = \psi$$
 is a (impure) λ -term of type t

•
$$\llbracket \varphi = \psi \rrbracket^M = 1$$
 iff $\llbracket \varphi \rrbracket^M = \llbracket \psi \rrbracket^M$

Equality turns λ -calculus into an expressive higher-order logic

Logical sugaring

\top_t	$\lambda x_t . x = \lambda x_t . x$	
\perp_t	$\lambda x_t. \top = \lambda x_t. x$	
$\neg \varphi_t$	$\varphi = \bot$	
$\neg A_{et}$	$\lambda x_e. \neg A(x)$	(polymorphism)
$\varphi_t \wedge \psi_t$	$\lambda f_{t(tt)}.f(arphi)(\psi) = \lambda f_{t(tt)}.f(op)(op)$ relies on $ D_t =2$	(\lor, \rightarrow)
$A_{et} \wedge B_{et}$	$\lambda x_e.A(x) \wedge B(x)$	(polymorphism)
$\forall x_{\tau}. \varphi_t$	$\lambda x_{ au}.arphi_t=\lambda x_{ au}. op$ substituting any value for x in $arphi$ gives 1	(higher-order, ∃)
$\operatorname{INJ}(F_{ au\sigma}, A_{ au t}, B_{\sigma t})$	F is an injection from A to B	
$ A_{\tau t} \le B_{\sigma t} $	$\exists F_{ au\sigma}.$ INJ (F,A,B)	

Example: at least half

At least half of the students are snoring

= there are at least as many snoring students as non-snoring students

 $\mathsf{AT_LEAST_HALF} = \lambda A_{et} . \lambda B_{et} . |A \land \neg B| \le |A \land B|$

(AT_LEAST_HALF(**student**))(**snore**)

= |student $\land \neg$ snore $| \le |$ student \land snore|

Inferences in language - made easier

Classical syllogisms:

Every human is mortal, and Socrates is human \Rightarrow Socrates is mortal

Other inferences with quantifiers:

More teachers than students snore, and at most five teachers snore \Rightarrow At most four students snore

Plurals and reciprocity:

Dan and Sue killed each other \Rightarrow Dan killed Sue and Sue killed Dan

Spatial and temporal inferences:

The bird is above the house and between the house and the cloud \Rightarrow The bird is below the cloud

Events:

Carthage was destroyed in 146 BC \Rightarrow Carthage's destruction occurred in 146 BC

Presupposition:

If John stops smoking he'll be able to run the marathon \Rightarrow John smokes

Further reading and references

Winter, Yoad. *Elements of Formal Semantics: An Introduction to the Mathematical Theory of Meaning in Natural Language*. Edinburgh University Press, 2016.

Semantics, BA Kunstmatige Intelligentie, UU.

Relative clauses

- (1) Some man that saw Dan ran.
- (2) Some man that Dan saw ran.

First-order translations:

(1')
$$\exists x. \operatorname{man}(x) \land \operatorname{see}(x, \mathbf{d}) \land \operatorname{run}(x)$$

(2') $\exists x. \operatorname{man}(x) \land \operatorname{see}(\mathbf{d}, x) \land \operatorname{run}(x)$

How do we reach such translations?

Higher-order treatment

- (1) Some man that saw Dan ran.
- (2) Some man that Dan saw ran.

THAT =
$$\lambda A_{et} . \lambda B_{et} . \lambda x_e . B(x) \wedge A(x)$$

map char. functions of two sets to char. function of intersectionman that ran: $(THAT(run))(man) = \lambda x.man(x) \wedge run(x)$ man that saw Dan: $(THAT(see(d)))(man) = \lambda x.man(x) \wedge (see(d))(x)$

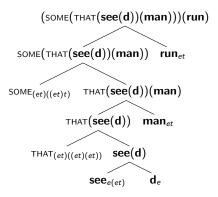
$$\mathsf{SOME} = \lambda A_{et} . \lambda B_{et} . \exists x_e . A(x) \land B(x)$$

map char. functions of two sets to 1 iff intersection is not emptysome man ran:(some(man))(run) $= \exists x.man(x) \land run(x)$ some man that saw Dan ran:(some(THAT(see(d)))(man))(run)

 $= \exists x. \mathsf{man}(x) \land (\mathsf{see}(\mathsf{d}))(x) \land \mathsf{run}(x)$

Higher-order treatment (cont.)

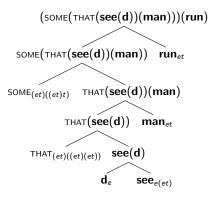
(1) Some man that saw Dan ran



 $\exists x. man(x) \land see(d)(x) \land run(x)$

Higher-order treatment (cont.)

(2) Some man that Dan saw ran



 $\exists x. man(x) \land see(d)(x) \land run(x)$

Two sides of a problem

Expressions "that saw Dan" and "that Dan saw" are treated as equivalent.

Correct meaning missing = undergeneration
 Solution: add dual principle to function application

- **d** can appear in either argument of see of type e(et)
- either see(d) or $\lambda x.see(x)(d)$
- Incorrect meaning present = overgeneration
 Solution: involve word order in deriving expressions and their denotations
 - saw Dan: see(d)
 - Dan saw: $\lambda x.see(x)(d)$

What is "a dual principle to FA"?

Prawitz, Dag. *Natural Deduction: A Proof-Theoretical Study*, Almqvist & Wiksell, Stockholm, 1965

Function Application and Modus Ponens

Function Application (FA)			Interpretation		
$ au\sigma$	au		Α	В	
σ			A($\overline{A(B)}$	

Implication Elimination (Modus Ponens)

$$\begin{array}{ccc} \varphi \to \psi & \varphi \\ \hline \psi & \end{array}$$

If Mary is tall then Tina is tall, and Mary is tall \Rightarrow Tina is tall

Dual operations to FA and MP

What logical principle allows us to *deduce* a function or a conditional statement?

Hypothetical Reasoning with conditional statements

- (A) Tina is taller than Mary
 - \Rightarrow If Mary is tall then Tina is tall
- (B) Tina is taller than Mary and Mary is tall
 ⇒ Tina is tall

Proving (B) using (A)

Tina is taller than Mary
If Mary is tall then Tina is tall(A)
Mary is tall
MPTina is tallMP

Proving (A) using (B)

Implication Introduction

$$\dots \qquad [arphi]^1$$
 \vdots $\dfrac{\psi}{arphi
ightarrow \psi}$ discharge hypothesis 1

Example

Given:
$$\varphi_1 \rightarrow (\varphi_2 \rightarrow \psi)$$
 and φ_2
Prove: $\varphi_1 \rightarrow \psi$

$$\frac{\varphi_1 \rightarrow (\varphi_2 \rightarrow \psi) \quad [\varphi_1]^1}{\frac{\varphi_2 \rightarrow \psi}{\frac{\psi}{\varphi_1 \rightarrow \psi}}} \stackrel{\text{MP}}{\text{mischarge hypothesis 1}}$$

Function Introduction (abstraction)

Example

Given: e(et) and e

Prove: et

$$rac{e(et) \quad [e]^1}{rac{et}{rac{et}{rac{et}{et}}}} \stackrel{APP}{} \stackrel{e}{} ext{APP}}$$

Lambek, Joachim. The mathematics of sentence structure. *American Mathematical Monthly* (65), 154-169, 1958.

van Benthem, Johan. Essays in Logical Semantics, D. Reidel, Dordrecht, 1986.

Function Introduction – Interpretation

Example

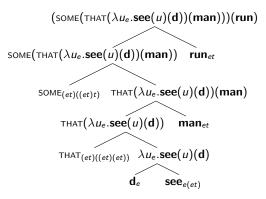
Given: $see_{e(et)}$ and dan_e

Prove: dan_e used as second argument of $see_{e(et)}$

$$\frac{\mathbf{see} : e(et) \quad [u : e]^{1}}{\mathbf{see}(u) : et} \overset{\mathsf{FA}}{\to} \frac{\mathbf{dan} : e}{\mathbf{dan} : e} \overset{\mathsf{FA}}{\to} \frac{\mathbf{see}(u)(\mathbf{dan}) : t}{\lambda u_{e}.\mathbf{see}(u)(\mathbf{dan}) : et} \overset{\mathsf{discharge hypothesis 1}}{\to}$$

Relatives and Hypothetical Reasoning

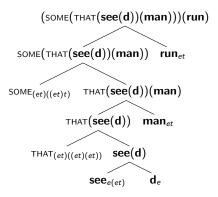
(2) Some man that Dan saw ran



 $\exists x. man(x) \land see(x)(d) \land run(x) \checkmark$

Relatives and Hypothetical Reasoning (cont.)

(1) Some man that saw Dan ran



 $\exists x. man(x) \land see(d)(x) \land run(x)$

Using signs

"The linguistic sign unites, not a thing and a name, but a concept and a sound-image." (de Saussure 1916)

de Saussure, Ferdinand. Cours de Linguistique Générale, Payot & Cie, Paris, 1916.

Curry, Haskell B. Some logical aspects of grammatical structure. *Structure of Language and its Mathematical Aspects*, ed. by R. O. Jakobson. American Mathematical Society, Providence. 1961.

de Groote, Philippe. Towards Abstract Categorial Grammars. In *Proceedings of the 39th annual meeting of the Association for Computational Linguistics*. 2001.

Muskens, Reinhard. Language, lambdas and logic. *Resource Sensitivity in Binding and Anaphora*, ed. by G.-J. Kruijff and R. Oehrle. Kluwer, Dordrecht. 2003.

Sign composition

$$\begin{array}{l} \text{DAN (sign)} + \text{ see (sign)} = \\ \left\{ \begin{array}{c} Dan_f & (\text{form}) \\ \mathbf{d}_e & (\text{meaning}) \end{array} \right\} + \left\{ \begin{array}{c} \lambda x_f . \lambda y_f . y \cdot see \cdot x & (\text{form}) \\ \mathbf{see}_{e(et)} & (\text{meaning}) \end{array} \right\} = \end{array}$$

Solution 1:

 $SEE(DAN) = \begin{cases} (\lambda x.\lambda y.y.see \cdot x)(Dan) = \lambda y.y.see \cdot Dan & (form) \\ see(dan) & (meaning) \end{cases}$

Solution 2:

 $\lambda U.\text{SEE}(U)(\text{DAN}) = \begin{cases} \lambda u_f.(\lambda x.\lambda y.y.\text{see} \cdot x)(u)(Dan) = \lambda u.Dan \cdot \text{see} \cdot u & (\text{form}) \\ \lambda u_e.\text{see}(u)(\text{dan}) & (\text{meaning}) \end{cases}$

Summary

Three virtues of higher-order logic for natural language semantics:

- Expressivity
- Types and function application
- Extendable to complex structures