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Abstract

This paper examines two approaches to presuppositions: one viewing them as in-
ferences projecting from sentences under negation and other logical operators, and
another defining them as admittance conditions of utterances. Neither approach
fully accounts for the ‘proviso problem’, which arises when a sentence’s presuppo-
sitional inferences are logically stronger than its necessary admittance conditions.
To address this challenge, we propose a calculus of a trivalent logic that formally
distinguishes between admittance and projection, extending Karttunen’s dynamic,
logical form-based analysis. The resulting framework enables a simple pragmatic
strategy: presuppositional conclusions are accommodated unless overridden by a
contextually likelier admittance condition. We provide evidence that this approach
is empirically superior to methods that address the proviso problem using pragmatic
strengthening.

1 Introduction

Classical works on presuppositions view them as inferences that escape the scope of sen-
tential operators, such as negation, conditionals and questions. By contrast, admittance-
based approaches treat presuppositions as conditions that a context must meet for a
sentence to be uttered felicitously. This paper argues for a unified semantic system
that integrates both perspectives, and proposes a pragmatic principle for presupposition
accommodation based on this system. We show that this principle provides a more ade-
quate solution to the ‘proviso problem’ than previous approaches that rely on pragmatic
strengthening.

This work comprises two parts, which can be read independently. The first part
develops the formal semantic aspects of the proposed system, emphasizing its distinctions
from related frameworks. The second part applies these conclusions to the pragmatics
of accommodation but does not require technical familiarity with the formal details.
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The remainder of this introduction outlines the background for both components of the
paper.

The view of presuppositions as inferences was prominent in early truth-conditional
analyses (Van Fraassen 1968) and it continues to guide much further work on the topic
(Beaver et al. 2024). The admittance-based analysis was proposed by Stalnaker (1973)
and Karttunen (1974), and received standard formulations in dynamic frameworks using
possible world semantics (Heim 1992, Nouwen et al. 2016). A priori, there is no con-
tradiction between these two approaches. Furthermore, when analyzing semantic and
pragmatic properties of language utterances it is empirically necessary to use both of
them. To illustrate that, let us first consider the following example:

(1) Sue will like Dan’s beard.

Putting matters of tense aside, from (1) we readily conclude the following sentence:

(2) Dan has a beard.

Like other entailments, we can describe this inference by observing that whenever sen-
tence (1) is judged as true, so is (2). Unlike classical logical inferences, (2) is also
judged as true when (1) is false. Equivalently, (2) is inferred, or ‘projected’, from the
negation of (1) as well as from other complex sentences containing (1) (Chierchia &
McConnel-Ginet 1990). To avoid the theoretically-laden term ‘presupposition’, we call
(2) a presuppositional conclusion of (1). In addition, statement (2) also has a pragmatic
role in admitting utterances of (1). For (1) to be an acceptable utterance, statement
(2) must be part of the common ground of the interlocutors, or else it must be silently
accommodated by the hearer (von Fintel 2008). Thus, we say that the presuppositional
conclusion (2) is also a necessary admittance condition of sentence (1): it must be part
of any discourse context where (1) is used felicitously.

Presuppositional conclusions and necessary admittance conditions do not always co-
incide in this way. For example, let us consider the following sentence:

(3) If Sue visits Dan, she will like his beard.

Out of the blue, speakers infer from (3) that Dan has a beard, similarly to (1). This
qualifies (2) as a presuppositional conclusion of (3). However, (2) is not a necessary
admittance condition of (3). To see that, let us suppose that (3) is uttered in the
following context:

(4) Dan doesn’t usually have a beard, but he knows that Sue likes it when he lets
his beard grow. Therefore, whenever Sue visits him, he grows a beard before she
arrives.

In the context of (4), hearers of sentence (3) accept it as felicitous. The statement (2)
does not logically follow from the context in (4), nor can it be inferred from (3) when
uttered in this context. Thus, the conclusion (2) that qualifies as “presuppositional”
according to standard projection tests is not necessary for (3)’s admissibility. A more
appropriate candidate for being a necessary admittance condition of sentence (3) is the
following conditional:
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(5) If Sue visits Dan, he has (will have) a beard.

Any context like (4) that makes (5) true is expected to admit (3).
In most current semantic theories, sentences like (3) are treated by taking (5) to be

(3)’s unitary ‘presupposition’. Notably, the dynamic semantics of Stalnaker and Heim
treats contexts and presuppositions as sets of possible worlds, which correctly accounts
for admittance phenomena. However, as pointed out by Geurts (1996), in cases like (3)
the Heim-Stalnaker analysis does not directly account for presuppositional conclusions
like (2), a problem that Geurts referred to as the ‘proviso problem’. A similar problem
appears with trivalent theories of presupposition that rely on principles of the Strong
Kleene truth tables (Kleene 1952, Peters 1979). Indeed, the problem that Geurts dubbed
the ‘proviso problem’ had been first discovered by Karttunen (1973, p.188) as a problem
for trivalent accounts.

To address the proviso problem of trivalent and possible world semantics, a com-
mon strategy is to strengthen the minimal admittance condition into a presuppositional
inference. In semantics and pragmatics there is a host of proposals as to how this
strengthening takes place, with little consensus on its motivations and precise details.
For discussion, see (van Rooij 2007, Singh 2007, Schlenker 2011, Lassiter 2012, Fox 2008,
2013, Mayr & Romoli 2016, Mandelkern 2016b, 2018, among others).

But should our semantic theory aim at a unitary notion of presupposition in the
first place? This paper argues for a negative answer on this question. As we will show,
Karttunen’s (1974) analysis allows the core semantic mechanism to formally distinguish
the admittance conditions of a sentence from its presuppositional conclusions. In Kart-
tunen’s representation of logical forms, an admittance condition is satisfied if it is logically
entailed by its local context. To see how this technical detail leads to different expecta-
tions than those of other dynamic analyses, let us reconsider sentence (3), representing
its meaning using the following formula S:

S = Sue visits Dan→ (Dan has a beard : Sue likes a beard of Dan′s)

The notation (Dan has a beard : Sue likes a beard of Dan′s) indicates that the statement
‘Dan has a beard’ is an admittance condition of (3)’s consequent (=Sue likes Dan’s
beard). When this condition is satisfied by the consequent’s local context, the consequent
asserts that Dan has a beard Sue likes. To obtain this local context, we need to update
the global context of sentence (3) by conjoining it with S’s antecedent Sue visits Dan.
Let us first consider a null global context, i.e. the tautological proposition >, which
represents a scenario where no prior constraints are imposed. In this context, the local
context of S’s consequent is > ∧ Sue visits Dan, i.e. ‘Sue visits Dan’, which does not
entail that Dan has a beard. Accordingly, the admittance condition of S’s consequent
remains unsatisfied. Karttunen (1974) did not expand on this point, but in the present
analysis it gives us a straightforward account of why Dan has a beard is understood as
(3)’s presuppositional conclusion when the sentence is uttered out of the blue.

Karttunen’s analysis focuses on cases where admittance conditions are satisfied. For
our example, let us consider (3) in the global context (5), which is represented using the

3



following formula C:

C = Sue visits Dan→ Dan has a beard

Updating C using S’s antecedent makes C ∧ Sue visits Dan the local context of S’s
consequent. By Modus Ponens, this local context entails, hence satisfies, the admittance
condition ‘Dan has a beard’ of S’s consequent. Thus, in the context of C, sentence
S has all its admittance conditions locally satisfied, hence it has no presuppositional
conclusions.

The analysis sketched above illustrates that the distinction between an admittance
condition of a sentence and its presuppositional conclusion can be obtained by adding
projection to Karttunen’s mechanism. To develop this idea further, the present paper
introduces a logical system that we refer to as the Karttunen Calculus. This system is
based on the uniform ‘incremental’ principles of the Strong Kleene trivalent truth ta-
bles, thus generalizing Karttunen’s proposal and avoiding some of its seemingly ad hoc
properties. We argue that the Karttunen calculus provides a sounder semantic basis
than previous approaches that rely on a unitary definition of presupposition. To show
that, we introduce a pragmatic strategy that we call K-accommodation. According to
this procedure, presuppositional conclusions are the first candidates that hearers of a
sentence S try to accommodate. If the strongest presuppositional conclusion p is among
the pragmatically likeliest propositions that admit S, it becomes the only candidate for
accommodation. This situation is exemplified in sentence (3) above, whose presupposi-
tional conclusion p=(2) is accommodated when it is uttered in a null context. However,
if there are pragmatically likelier propositions that admit S, hearers will accommodate
one of these propositions rather than p. This may lead to inferences that are sometimes
referred to as ‘conditional presuppositions’. For instance, from sentence (6) below, most
hearers infer (7a) rather than (7b):

(6) If Genovia is a monarchy then the king of Genovia is in danger.

(7) a. If Genovia is a monarchy, it has a king.

b. Genovia has a king.

Upon hearing sentence (6) in a null context, deducing its presuppositional conclusion
(7b) would violate the ignorance implicature about (6)’s antecedent. As a result, the
logically weaker but pragmatically likelier admittance condition (7a) is accommodated.

The critical difference between K-accommodation and pragmatic strengthening of
admittance conditions appears in cases where a priori, there is no pragmatic reason to
prefer one of the candidate inferences. Under these circumstances, K-accommodation ex-
pects the presuppositional conclusion to be accommodated, whereas pragmatic strength-
ening expects the hearer to accommodate the admittance condition. Following Kart-
tunen (1973,1974), Geurts (1996) and Mandelkern (2016a,b), we show that in such cases,
the presuppositional conclusion is indeed accommodated. We argue that this advantage
of the Karttunen calculus and the proposed K-accommodation strategy makes them em-
pirically preferable to standard approaches augmented with pragmatic strengthening.

The paper is structured as follows: Section 2 introduces the Karttunen calculus,
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highlighting its key differences from other trivalent approaches, specifically in the pro-
jection of presuppositional conclusions and their distinction from admittance conditions.
Section 3 applies this distinction for to K-accommodation, demonstrating its empirical
advantages over pragmatic strengthening. Section 4 concludes. Appendix A formally
defines the incremental trivalent interpretation mechanism used in Section 2. Appendix
B employs this definition for proving the main logical results of this paper.

2 Admittance and projection in trivalent systems: truth
tables vs. Karttunen calculus

This section introduces the Karttunen Calculus, comparing its analysis of admittance
and projection with standard theories of presupposition. Our starting point is trivalent
truth-functional semantics (Kleene 1952, Fitting 1994). This framework provides a basis
for analyzing presuppositions (Van Fraassen 1968) and extends naturally to dynamic
approaches in possible world semantics (Stalnaker 1973, Peters 1979, Heim 1992). In
dynamic analyses, the formal presuppositions of an expression exp must be satisfied
within its local context. This local context is derived by sequentially updating the
global context of the sentence with the expressions that are compositionally processed
before exp. Karttunen’s concept of satisfaction is similar to the Heim-Stalnaker analysis,
but the two approaches differ in how they represent contexts and presuppositions. For
Stalnaker and Heim, these are sets of possible worlds. Satisfaction between them is
defined as set inclusion, with no explicit representation of failed presuppositions. By
contrast, Karttunen defines satisfaction in terms of entailment between the logical forms
of the context and the presupposition. Although Karttunen (1974) did not exploit this
property, it allows us to track a failed presupposition and project it further if necessary.1

The proposed calculus uses this property to project unsatisfied presuppositions, en-
abling them to contribute to the derivation of the sentence’s presuppositional conclusions.
This mechanism involves two generalizations of Karttunen’s proposal. First, Karttunen’s
rules for updating local contexts lacked general motivation, which is provided here by
the incrementality principles of trivalent semantics. Second, we present a unified frame-
work for trivalent approaches, including Karttunen’s, as projection calculi – mechanisms
that derive presuppositional conclusions from sentential formulas. This facilitates the
comparison between the proposed Karttunen calculus and other trivalent mechanisms.

With these theoretical preliminaries in place, we establish a general result that con-
trasts Karttunen-like calculi with trivalent truth tables. As we will show, the truth-
functional account formally equates admittance with presuppositional inference, and
this property carries over to dynamic approaches in possible world semantics. The Kart-
tunen calculus captures admittance similarly to truth-functional semantics. However, in
cases revealing the ‘proviso problem’, the presuppositional conclusions that it projects
are logically stronger than admittance conditions. This distinction between projection
and admittance is crucial for our pragmatic proposal in Section 3.

1For further discussion of (Karttunen 1974) and other dynamic approaches, see (Francez 2019).

5



The following subsections explore the different aspects of the proposal: Subsection
2.1 reviews the incrementality of trivalent semantics using Peters’s (1979) asymmetric
version of Kleene’s truth-tables, emphasizing its alignment of admittance with presup-
positional inference. Subsection 2.2 defines a trivalent propositional language, setting
the stage for calculi governing presupposition projection. Subsection 2.3 presents a pro-
jection calculus based on the Kleene-Peters tables, facilitating their comparison to the
Karttunen calculus, which is defined in Subsection 2.4. Subsection 2.5 establishes our
main formal results, comparing the Karttunen calculus with the Kleene-Peters tables.
Finally, Subsection 2.6 explores a version of the Karttunen calculus that treats symmetric
projection from disjunctions.

2.1 The Kleene-Peters connectives

This section reviews trivalent truth-tables, showing how their analysis of presuppositions
effectively identifies projection and admittance. Most trivalent approaches to presup-
position rely on an ‘incremental’ analysis: they disregard local presupposition failures
once the interpretation of a full sentence has been determined by previously processed
semantic values.2 To illustrate this idea, let us consider the following example:

(8) If Sue used to smoke Marlboros, she stopped smoking.

When we assume that Sue never smoked Marlboros, the incremental trivalent analysis of
implication treats the conditional in (8) as true, just as a classical bivalent analysis.3 In
this analysis, potential failures of the consequent’s presupposition in (8) – i.e., situations
where Sue has never smoked – are ignored. This agrees with the ‘filtering’ intuition about
(8): the sentence doesn’t trigger non-trivial presuppositional conclusions. A similar
treatment accounts for filtering with other connectives, as in the following examples:

(9) Sue gave a wonderful concert yesterday, and she is performing again tonight.

(10) Either Sue isn’t married, or her partner rarely shows up.

In (9), the trivalent analysis, like the classical bivalent analysis, treats the sentence as
false if Sue didn’t give a concert, avoiding potential failures of the presupposition of again.
Similarly, sentence (10) is treated as true if Sue isn’t married, preventing potential failure
of the presupposition that Sue has a partner. In general: with all binary constructions,
the incremental analysis ignores potential failures in the righthand operand if the value
of the lefthand operand determines the result of the bivalent operation.

Peters (1979) used a simple implementation of this incremental approach in his asym-
metric version of the Kleene connectives. We refer to Peters’s connectives (Figure 1) as
the Kleene-Peters (KP) tables. Like other trivalent systems, the KP tables adopt the
following convention:

2The term ‘previously processed’ refers to configurational parsing, meaning that the order of inter-
pretation does not necessarily correspond with linear order (Mandelkern & Romoli 2017, Chung 2018).
This point does not affect the examples presented in this paper.

3For the purposes of the discussion in this paper, we treat conditionals as material implications,
setting aside potential complications that might affect the analysis of presuppositions (Carballo 2008).
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α ¬α
0 1
1 0
∗ ∗

α ∧ β 0 1 ∗
0 0 0 0
1 0 1 ∗
∗ ∗ ∗ ∗

α ∨ β 0 1 ∗
0 0 1 ∗
1 1 1 1
∗ ∗ ∗ ∗

α→ β 0 1 ∗
0 1 1 1
1 0 1 ∗
∗ ∗ ∗ ∗

Figure 1: Kleene-Peters (KP) truth tables

Convention 1. Sentences denote one of the three values ‘true’ (1), ‘false’ (0), or, in
cases of presupposition failure, ‘undefined’ (∗). When a sentence is true or false we say
that its interpretation is ‘well-defined’.

Using this convention, a trivalent theory analyzes a bivalent proposition α as a presup-
positional conclusion of a sentence S if α is true whenever S is ‘well-defined’, i.e. true or
false. Equivalently, α is considered a presuppositional conclusion of S if it follows from
S and its negation (Van Fraassen 1968).

As we saw in examples (8)-(10), incremental trivalent analyses like those of the
KP tables correctly model the intuitive ‘filtering’ of presuppositions with conditionals,
conjunction and disjunction. However, the KP tables introduce a ‘proviso’ problem with
these binary connectives. To see that, let us consider the following sentence:

(11) If Sue jogs, she stopped smoking.

For (11) to be well-defined, the KP analysis requires one of two things: either Sue used
to smoke or she does not jog. In the first case, the consequent is well-defined, hence so
is the full sentence. In the latter case the antecedent is false, which makes (11) trivially
true. Using the material implication treatment of conditionals, we conclude that (11) is
well-defined in the KP analysis if and only if the following conditional statement holds:

(12) If Sue jogs, she used to smoke.

The “only if” means that the KP tables expect (12) to be a presuppositional conclusion of
(11). Furthermore, the “if” means that any presuppositional conclusion of (11) logically
follows from (12). In short, we say that the KP tables expects (12) to be the logically
strongest presuppositional conclusion of sentence (11). This prediction fails to capture
the fact that in out-of-the-blue contexts, hearers readily infer from (11) that Sue used
to smoke. In current jargon, we say that hearers project the presuppositional content
of (11)’s consequent (=‘Sue stopped smoking’). This projected conclusion is logically
stronger than (12), contrary to the expectations of the KP tables.

Although the conditional (12) is not the logically strongest presuppositional conclu-
sion of sentence (11), it intuitively supports felicitous utterances of this sentence. Sup-
pose that hearers believe that Sue’s jogging is related to her smoking habits as stated
in (12). Such hearers will not experience a presupposition failure in (11) even if they
don’t know whether Sue actually used to smoke. Thus, (12) is an admittance condition
of (11). Furthermore, we expect any situation where hearers accept (11) as felicitous to
support (12). Thus, (12) is the logically weakest admittance condition of (11).
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The KP tables capture this intuition. Using the Kleene-Peters tables, we define a
KP-admittance condition of a sentence S as any bivalent proposition C such that the
conjunction of C and S is well-defined under any interpretation. With this definition,
the context (12) KP-admits (11), and any context C that KP-admits (11) entails (12).4

Thus, in agreement with intuition, the KP tables expect (12) to be (11)’s weakest ad-
mittance condition.

We have seen that the KP tables predict that the strongest presuppositional conclu-
sion from sentence (12) is also (12)’s weakest admittance condition. This identification
of the two notions is a general property of the KP tables, which is formally stated below:

Theorem 1. According to the KP analysis, the strongest presuppositional conclusion of
a sentence S is equivalent to the weakest context that admits S.

This theorem is proved in Appendix B using the formal analysis of KP-interpretations
in Appendix A.

Theorem 1 underlies the “proviso” problem for the KP analysis. In broader terms,
this theorem is also relevant for dynamic accounts in possible world semantics. As
Peters (1979) showed, the KP tables are descriptively equivalent to a possible-world
interpretation of Karttunen’s (1974) proposal.5 The possible world analysis was further
developed in much subsequent work on presupposition following Stalnaker (1973) and
Karttunen (1974).6 The kind of congruence that Peters showed holds for these accounts
as well. Thus, while there may be theoretical reasons to prefer possible world accounts to
truth-functional accounts, for our present purposes it is sufficient to focus on the latter.

Incremental analyses like the KP tables and satisfaction-based methods often em-
phasize the (a)symmetric properties of presupposition projection.7 For conjunctions and
conditionals, the asymmetry of the KP connectives is empirically welcome (Mandelkern
et al. 2020). However, their strict incrementality introduces familiar challenges with
disjunctions, as in the following examples (Roberts 1989):

(13) a. Either there is no bathroom, or the bathroom is in a funny place.

b. Either the bathroom is in a funny place, or there is no bathroom.

Neither sentence in (13) entails the existence of a bathroom. The KP tables capture
this fact in their analysis of (13a). However, counterintuitively, the asymmetry of KP

4Since C is bivalent, the KP conjunction of C and (11) is well-defined if and only if either C is false
or (11) is well-defined. Using KP implication, the latter condition is equivalent to the requirement that
(12) is true. Thus, the conjunction of C and (11) is well-defined in all situations if and only if C entails
(12).

5Peters concluded that this congruence undermines Karttunen’s argument against truth-functional
accounts. However, Peters’s semantics did not correctly reflect Karttunen’s entailment-based analysis,
and ignored his empirical argument against classical trivalent semantics: the proviso problem (Karttunen
1973:p.188).

6See Heim (1982, 1992), Beaver (2001), Rothschild (2011) and Nouwen et al. (2016), and references
therein. Another notable early dynamic proposal is (Heim 1983), which, however, is not committed to
interpreting Karttunen’s system using possible worlds.

7For recent proposals and experimental results about (a)symmetric projection see (Kalomoiros 2023)
and the references therein.
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disjunction renders (13b) undefined in the absence of a bathroom. This is a reason to
prefer the symmetric disjunction of the Strong Kleene tables. For the purposes of this
paper we adopt the asymmetric KP tables as the basis for developing the Karttunen
calculus. However, as we will demonstrate in Section 2.6, the same method allows us
to define a ‘Karttunen-like’ calculus corresponding to other truth-functional definitions.
Consequently, the evaluation of (quasi-/a-)symmetric frameworks is orthogonal to our
main proposal.

2.2 Trivalent formulas and projection calculi

For studying presuppositions using trivalent truth tables, the informal analysis above
is sufficient. However, in order to introduce the Karttunen calculus and compare it
to the KP tables, we formally define a propositional language that represents trivalent
sentence meanings. We begin with a classical propositional language, denoted L2, which
is interpreted as bivalent. Standardly, L2 formulas are either strings in some non-empty
set C of elementary formulas (“constants”), or a combination of these constants using the
classical operators ¬, ∧, ∨ and →. Meanings of English sentences without propositional
connectives are represented as pairs of such L2 formulas: a presuppositional part and an
assertive part. For example, sentence (14a) below is represented by the pair of bivalent
formulas in (14b), where US = ‘Sue used to smoke’ and S = ‘Sue smokes’:

(14) a. Sue stopped smoking.

b. (US : ¬S )

Intuitively, sentence (14a) is admissible if and only if Sue used to smoke. Under this
condition, (14a) is equivalent to the statement ‘Sue does not smoke’. Accordingly, when
the presuppositional part US is true, we interpret (US : ¬S ) using the (bivalent) value
of the assertion ¬S . When US is false, (US : ¬S ) is undefined.

Sentences containing propositional connectives are analyzed as propositional opera-
tions on pairs as in (14b). For example, the representation of sentence (11) (=‘if Sue
jogs, she stopped smoking’) is as follows, where J =‘Sue jogs’:

(15) (> :J )→ (US : ¬S )

The presuppositional part of (> :J ) is tautological (>), as ‘Sue jogs’ is analyzed without
any presuppositional import.

More generally, to represent trivalent propositions, we use a propositional language,
denoted L3, which consists of pairs of L2 formulas as well as complex formulas con-
structed using propositional operators. Formally, we define:

Definition 2.1 (trivalent language L3). Given a propositional language L2 over arbi-
trary constants, the trivalent language L3 over L2 is the closure of L2 × L2 under the
propositional operators ¬, ∧, ∨ and →.

Our goal is to systematically determine the presuppositional conclusions and admittance
conditions of any given L3 formula. We refer to such a mechanism as a projection calculus.
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For example, in a calculus that mimics the KP analysis of sentence (11) in Section 2.1,
the bivalent statement J→US is derived as formula (15)’s strongest presuppositional
conclusion, as well as its weakest admittance condition. In the following section we
introduce a projection calculus that corresponds to the KP tables in this way.

To represent admittance conditions in projection calculi, it is convenient to add
a representation of contexts to our definition of L3. Recall that when a sentence S
is uttered in a context C, we represent this using the conjunction C and S. Using
L3 formulas, bivalent contexts like C should appear as (> : C), with a tautological
presuppositional part. For example, when sentence (11) above (=‘if Sue jogs, she stopped
smoking’) is uttered in the context of the sentence ‘Sue used to smoke’, we represent it
in L3 by conjoining (> :US ) with the formula (15) as follows:

(16) (> :US ) ∧ [(> :J )→ (US : ¬S )]

We abbreviate (16) by the following notation:

(17) US [(> :J )→ (US : ¬S )]

In general, we introduce the following notational convention:

Convention 2. For a trivalent formula κ ∈ L3 in the context of a bivalent formula
α ∈ L2, we use the notation:

α[κ] = (> :α) ∧ κ.

This shorthand, familiar from other satisfaction-based accounts, will be used freely here-
after.

2.3 The Kleene-Peters calculus

Before presenting the Karttunen calculus, we first examine the proof-theoretical coun-
terpart of the Kleene-Peters tables, referred to as the KP Calculus. This serves two
objectives. First, the familiar KP tables help us to demonstrate the explicit analysis of
projection and admittance in a logical calculus. Second, having a similar framework for
describing the KP tables and the Karttunen calculus facilitates the comparison of their
semantic predictions. Since the KP semantics shares the implications of possible world
accounts, this highlights the unique aspects of the Karttunen calculus compared to both
approaches.

We have seen that the semantics of the KP tables supports an informal analysis of
projection and admittance. A projection calculus formalizes this analysis by mapping
any trivalent formula κ in L3 to a bivalent formula P(κ) in L2. In the KP calculus, we aim
for the derived proposition P(κ) to accurately represent κ’s strongest presuppositional
conclusion according to the KP tables. Furthermore, we expect the calculus to reflect
KP-admittance of κ by a context α by deriving a tautological presuppositional conclusion
P(α[κ]) for κ within the context of α.

To define the KP calculus on any trivalent formula κ, we will inductively employ the
assertive contents of κ’s sub-formulas as well as their presuppositional contents. As for
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the inductive use of assertive contents, we first observe a simple fact: the assertion of any
sentence with propositional connectives depends compositionally only on the assertive
contents of its sub-parts and the bivalent semantics of its connectives. For instance, to
know what the conditional (18a) below asserts we don’t need to think twice – it’s the
conditional (18b) formed by the assertive parts of the two operands:

(18) a. If Sue stops singing, Dan will continue to contemplate.

b. If Sue doesn’t sing, Dan will contemplate.

More generally, in Definition 2.2 below we formally introduce the assertion operator A
over the trivalent language L3:

Definition 2.2 (assertive component). The assertive component of any trivalent for-
mula κ ∈ L3 is the bivalent formula A(κ) ∈ L2 that is inductively defined as follows:

A((κ1 :κ2)) = κ2

A(¬ϕ) = ¬A(ϕ)

A(ϕ opψ) = A(ϕ) opA(ψ)
where op is any binary operator

Definition 2.2 specifies κ’s assertive component by inductively connecting the assertive
contents β of the elementary trivalent formulas (α :β) that make up κ. Importantly, this
‘assertion calculus’ does not use any of the presuppositional contents (=the α’s) within
κ’s trivalent sub-formulas.8

The analysis of presupposition projection using the KP tables is more complex, as it
requires us to consider both presuppositional and assertive components of sub-formulas.
Specifically, in our discussion of sentences (8)-(10) above, we saw how the KP analysis
requires checking whether the assertive content of the lefthand operand determines the
result of the operation. To capture this idea formally, we define for any two-place bivalent
operator op a corresponding unary operator ldvop. We refer to the ldvop operator as
the left-determinacy operator associated with op. The ldvop operator sends any bivalent
formula α to a formula that is true if and only if α has a truth-value that determines
the bivalent value of the formula α opβ, independently of the value of β. For instance,

8Due to the following properties of Kleene systems, this property is shared by all trivalent truth tables
in the ‘Kleene hierarchy’ (Fitting 1994):

(i) If [[ϕ]] 6= ∗ and [[ψ]] 6= ∗, then [[ϕ opψ]] 6= ∗
(if the presuppositions of both operands are satisfied, then the presuppositions of the binary
construction are satisfied as well).

(ii) If [[ϕ]] = ∗ and [[ϕ opψ]] 6= ∗, then [[ϕ opψ]] = [[⊥ opψ]] = [[> opψ]];

If [[ψ]] = ∗ and [[ϕ opψ]] 6= ∗, then [[ϕ opψ]] = [[ϕ op⊥]] = [[ϕ op>]]

(if one operand shows a presupposition failure but the presuppositions of the binary construction
are satisfied, then the other operand has a determinant value).

11



when op is material implication, we define:

ldv→(α) is true

iff α determines the result of the implication α→β, for any bivalent β

Put differently, this means that the bivalent formula (α→>) ↔ (α→⊥) is true. Thus,
we define:

(19) ldvop(α) = (α op⊥ ↔ α op>).

In words: a bivalent formula α has a left-determinant value of the operator op if using α
as the lefthand operand of op makes the value of the operation indifferent to the value
of its righthand operand. Consequently, for the bivalent binary connectives we get the
following equivalences:

(20) ldv∧(α) ≡¬α
ldv∨(α) ≡α
ldv→(α)≡¬α

In words: α has an left-determinant value of conjunction (disjunction/implication) if
and only if it is false (true/false, respectively).

The KP calculus uses the ldv operator to map any trivalent formula κ in L3 to a
bivalent formula PKP(κ) in L2. This is formally defined as follows:

Definition 2.3 (KP calculus). Let κ ∈ L3 be a trivalent formula. We inductively define
the bivalent formula PKP(κ) ∈ L2 as follows:

PKP((κ1 :κ2)) = κ1

PKP(¬ϕ) = PKP(ϕ)

PKP(ϕ opψ) = PKP(ϕ) ∧ (PKP(ψ) ∨ ldvop(A(ϕ)))

To see how this definition treats common the classical binary connectives, we can cash
out its treatment using the equivalences in (20):

(21) a. PKP(ϕ ∧ ψ) ≡ PKP(ϕ) ∧ (PKP(ψ) ∨ ¬A(ϕ))

b. PKP(ϕ ∨ ψ) ≡ PKP(ϕ) ∧ (PKP(ψ) ∨A(ϕ))

c. PKP(ϕ→ψ) ≡ PKP(ϕ) ∧ (PKP(ψ) ∨ ¬A(ϕ))

The next step is to verify that KP calculus as defined above correctly mimics the op-
eration of the KP tables. To establish that, we associate each complex trivalent formula
κ with the formula (PKP(κ) :A(κ)) – the simple L3 formula that consists of PKP(κ) and
κ’s assertive component. Provably, this simple trivalent formula is interpreted in the
same way the KP tables interpret the original formula κ. In other words, we say that
the KP calculus is sound with respect to KP-interpretations. Formally:

Fact 2.1 (soundness of KP calculus). For any trivalent formula κ ∈ L3, the interpre-
tation of κ according to the KP tables equals the interpretation of the simple trivalent
formula (PKP(κ) :A(κ)).
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The proof of Fact 2.1 follows from Definition 2.3 by induction on the structure of κ and
the definition of KP-interpretations in Appendix A.

From Fact 2.1 it follows that for any trivalent formula κ, the formula PKP(κ) derived
by the KP calculus expresses the proposition that the KP tables model as κ’s strongest
presuppositional conclusion. Let us illustrate this using sentences (8) and (11), repro-
duced below together with their L3 representations:

(22) a. If Sue used to smoke Marlboros, she stopped smoking.

b. (> :USM )→ (US : ¬S )

(23) a. If Sue jogs, she stopped smoking.

b. (> :J )→ (US : ¬S )

Both formulas (22b) and (23b) are of the form (> : γ) → (US : ¬S ). Applying the KP
calculus to this formula leads to the following analysis:

(24) PKP((> :γ)→ (US : ¬S ))

≡ PKP((> :γ)) ∧ (PKP((US : ¬S )) ∨ ¬A((> :γ))) . by (21c)

= > ∧ (US ∨ ¬γ) . by def. of PKP and A

≡ US ∨ ¬γ

In example (22) we have γ = USM (=‘Sue used to smoke Marlboros’). Thus, the KP
calculus derives the formula US∨¬USM . This is a tautology, as USM entails US (=‘Sue
used to smoke’). We see that, in parallel to the analysis of “filtering” by the KP tables,
and in agreement with intuition, sentence (22a) is treated as lacking any presupposition.
By contrast, in (23) we have γ = J (=‘Sue jogs’), which has no logical relation with
US . Thus, like the KP tables, the KP calculus counterintuitively expects sentence (23)
to have the presuppositional conclusion US ∨¬J , or, using material implication: ‘if Sue
jogs, she used to smoke’.

We have seen that the soundness of the KP calculus corresponds with our informal
analysis of presuppositional conclusions and admittance in Section 2.1. Formally, we
state these alignments in the following corollary, which follows from the soundness of
the calculus:

Corollary 1. For any trivalent formula κ ∈ L3 and bivalent formula α ∈ L2:

PKP(κ)⇒ α iff κ presupposes α according to the KP tables

PKP(α[κ]) ≡ > iff α admits κ according to the KP tables

When the entailment PKP(κ)⇒ α holds, we say that κ KP-presupposes α. When the
equivalence PKP(α[κ])≡> holds, we say that α KP-admits κ. From Theorem 1, we con-
clude that κ’s strongest KP-presupposition, PKP(κ), is also κ’s weakest KP-admittance
condition. Formally:

Corollary 2. For any κ ∈ L3: PKP(κ) KP-admits κ, and is entailed by any α ∈ L2 that
KP-admits κ.

This corollary will serve as a key point of comparison with the Karttunen calculus in
the next section.
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2.4 The Karttunen calculus

In the previous sections, we have seen how, contrary to intuition, the Kleene-Peters
analysis identifies presuppositional inference with admittance. This section introduces
the Karttunen (K ) calculus, whose incremental trivalent approach is similar to that of
the KP tables. However, while the K-calculus generates the same admittance conditions
as the KP tables, it yields stronger presuppositional inferences, in line with linguistic
intuitions about projection.

Since Karttunen’s method relies on propositional contexts, we let the K-calculus ma-
nipulate items of the form α[κ], as in Convention 2.9 The calculus is defined by mapping
any item α[κ] to a bivalent formula PK(α[κ]), which we view as κ’s strongest presuppo-
sitional conclusion in the context of α. When α is null, i.e. tautological, this represents
a scenario where no prior assumptions are made, hence we view the result PK(>[κ])
as κ’s strongest presuppositional conclusion, independently of context. For example, in
a null context, sentence (23a) (=‘if Sue jogs, she stopped smoking’) is represented us-
ing the formula >[(> : J )→(US : ¬S )]. From this formula, the K-calculus derives the
result US (‘Sue used to smoke’), which adequately represents (23a)’s presuppositional
conclusion. When we introduce the more specific context J→US (‘if Sue jogs, she used
to smoke’), the K-calculus derives a tautological result, which correctly captures the
intuitive admittance of sentence (23a) by this context.

Formally, we define the K-calculus inductively based on the structure of κ:

Definition 2.4 (Karttunen Calculus). For any trivalent formula κ ∈ L3 and bivalent
context α ∈ L2, the bivalent formula PK(α[κ]) ∈ L2 is defined as follows:

PK(α[(κ1 :κ2)]) =

{
> α⇒ κ1

κ1 α 6⇒ κ1

PK(α[¬ϕ]) = PK(α[ϕ])

PK(α[ϕ opψ]) = PK(α[ϕ]) ∧ PK(α′ [ψ]),

where α′ = α∧PK(α[ϕ])∧¬ldvop(A(ϕ))

The formula PK(α[κ]) is used for modelling κ’s strongest presuppositional conclusion in
the context of α. In short, we refer to it as κ’s K-presupposition in α.

We can describe the three clauses in Definition 2.4 as follows:

� When κ is a simple trivalent formula (κ1 :κ2), its K-presupposition in a context α
is null (=tautological) if α entails (thus satisfies) κ1, and it is κ1 otherwise. As we
will see, this is the main difference between the K-calculus and the KP analysis.

� Negation (κ = ¬ϕ) is standardly defined as preserving K-presuppositions.

9This does not add to the expressivity of the K-calculus compared to the KP calculus. We could
equivalently introduce the K-calculus using the item form (> : α) ∧ κ in L3 instead of its “syntactic
sugaring” α[κ]. Incidentally, the Heim-Stalnaker’s way of updating contexts inductively uses forms
(. . . ((α[κ1])[κ2]) . . .)[κn], where κ1, κ2, . . . are trivalent. This is a sugaring for (> :α)∧κ1 ∧κ2 ∧ . . .∧κn.
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� When κ is a binary construction ϕ opψ, its K-presupposition in α is ϕ’s K-
presupposition in α, conjoined with ψ’s K-presupposition in a context α′, which
updates α using ϕ’s K-presupposition and assertive content. As we will see below,
this an adaptation of the incremental trivalent method.

Definition 2.4 generalizes Karttunen’s (1974) system. As in (Karttunen 1974:p.184),
presuppositions of simple formulas are satisfied when they are logically entailed by
their local context.10 Unlike Karttunen’s analysis, Definition 2.4 keeps κ1 as the K-
presupposition of (κ1 : κ2) if κ1 is not entailed by the context. This is the core of the
projection mechanism in the K-calculus, which will be useful in our analysis of presup-
position accommodation in Section 3.

The treatment of a binary construction ϕ opψ is defined so that the context α′ of the
righthand operand ψ “neutralizes” presuppositional effects of ψ whenever ϕ’s assertive
value left-determines the value of the operator op. This is obtained by negating the
left-determinant value of ϕ in relation to the op operator. Thus, when ϕ left-determines
op, the context α′ is false, which renders ψ’s K-presupposition in α′ trivially true. As
we will see in Section 2.6, this adjusts the treatment of binary connectives in the KP
calculus to handle entailments between formulas in Karttunen’s proposal.

Let us illustrate the operation of the K-calculus in some simple examples. Satis-
faction of sentence (25b) below in the context of (25a) is modelled by the tautological
K-presupposition derived in (25c):

(25) a. Context : Sue used to smoke Marlboros.

b. Sentence: Sue stopped smoking.

c. USM [(US : ¬S )]

By the assumption USM ⇒ US , we have:

PK(USM [(US : ¬S )]) = >, i.e. (25b) is admitted by (25a)

When the context in (25) is replaced by ‘Sue jogs’ (J ), the sentence’s presuppositional
part is not entailed by its context. Therefore, by Definition 2.4 we get:

(26) PK(J [(US : ¬S )]) = US

Thus, in the context of ‘Sue jogs’, the K-presupposition of sentence (25b) is that Sue used
to smoke. The same K-presupposition is derived when (25b) is used in a null context.

The second clause in Definition 2.4 standardly preserves presuppositions under nega-
tion. For example, let us consider the K-presupposition of the negative sentence Sue
didn’t stop smoking in the context ‘Sue jogs’:

(27) PK(J [¬(US : ¬S )]) = PK(J [(US : ¬S )]) = US

This is the same K-presupposition (26) as that of the positive sentence in (25b).

10Most adaptations of Karttunen (1974) describe contexts and lexical presuppositions as sets of possible
worlds (Stalnaker 1973), thus are less restrictive than entailment. Outside DRT (van der Sandt 1988),
entailments between formulas were rarely explored until (Mandelkern 2016a).
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When it comes to binary connectives, Definition 2.4 utilizes the ldv operator simi-
larly to the KP calculus. Due to the identities in (20), we conclude:

(28) a. PK(α[ϕ ∧ ψ]) = PK(α[ϕ]) ∧ PK( (α∧PK(α[ϕ])∧A(ϕ)) [ψ] )

b. PK(α[ϕ ∨ ψ]) = PK(α[ϕ]) ∧ PK( (α∧PK(α[ϕ])∧¬A(ϕ)) [ψ] )

c. PK(α[ϕ→ψ]) = PK(α[ϕ]) ∧ PK( (α∧PK(α[ϕ])∧A(ϕ)) [ψ] )

In words: in conjunctions and implications, the context of the second operand is obtained
using the assertive part of the first operand; in disjunctions it is obtained using the
negation of that assertive part. To exemplify this treatment, let us reconsider examples
(22) and (23), reproduced below:

(29) a. If Sue used to smoke Marlboros, she stopped smoking.

b. (> :USM )→ (US : ¬S )

(30) a. If Sue jogs, she stopped smoking.

b. (> :J )→ (US : ¬S )

Both (29b) and (30b) are of the form (> : γ) → (US : ¬S ). In a null context >, the
treatment of implication in (28c) derives the following analysis for this formula:

(31) PK(>[(> :γ)→ (US : ¬S )])

= PK(>[(> :γ)]) ∧PK((> ∧PK(>[(> :γ)]) ∧A((> :γ)))[(US : ¬S )])

. by substituting α = >, ϕ = (> :γ) and ψ = (US : ¬S) in (28c)

≡ > ∧PK((> ∧> ∧ γ)[(US : ¬S )])

. by Definition 2.4 PK(>[(> :γ)]) = >; and A((> :γ)) = γ

≡ PK(γ[(US : ¬S )])

=

{
> γ ⇒ US

US γ 6⇒ US

. by Definition 2.4

In example (29) we have γ = USM , which entails US . Thus, the result of analysis (31)
is tautological. In (30) we have γ = J , which does not entail US , hence the result is US .
In sum, we conclude:

(32) PK(>[(> :USM )→ (US : ¬S )]) ≡ >
PK(>[(> :J )→ (US : ¬S )]) ≡ US

This accounts for the ‘filtering’ effect in sentence (29a), as well as for the intuitive
presuppositional conclusion from (30a). In contrast to the Kleene-Peters treatment of
example (30) (in (24)), the K-calculus projects the presupposition of the consequent
intact without unnecessarily “conditionalizing” it on the antecedent.

As we will see, despite this difference in presuppositional conclusions, admittance
conditions in the K-calculus are the same as in the KP semantics. For example, let us
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reconsider sentence (30a), but now in the context of the conditional ‘Sue used to smoke
if she jogs’. In this case, the K-calculus supports the following derivation:

(33) a. Context : Sue used to smoke if she jogs.

b. Sentence: If Sue jogs, she stopped smoking. (=(30a))

c. PK((J→US )[(> :J )→ (US : ¬S )])

= PK((J→US )[(>:J )]) ∧
PK(((J→US ) ∧PK((J→US )[(>:J )]) ∧A((>:J )))[(US:¬S )])

≡ > ∧PK(((J→US ) ∧ > ∧ J )[(US : ¬S )])

≡ PK((J ∧US )[(US : ¬S )])

≡ > (since J ∧US ⇒ US)

Thus, like the KP analysis, the K-calculus correctly treats (33a) as admitting (33b).
The parallelism between the K-calculus and the KP system goes deeper than that.

From the facts that will be shown below, we conclude that in the K-calculus, as in the KP
semantics, (33a) is treated as the logically weakest admittance condition of (33b). Figure
2 summarizes our observations on the K-calculus and the KP calculus with respect to
the conditional sentence (33b). In the following subsection, we generally establish the
differences and similarities between the two systems.

Figure 2: The weakest admittance condition and strongest presuppositional conclusion
of sentence (33b) (=‘if Sue jogs, she stopped smoking’) in the K-calculus and in the KP
calculus.

2.5 Presuppositional conclusions vs. admittance in the K-calculus

We have seen that in the proposed K-calculus, a presuppositional conclusion from a
sentence in a null context may be logically stronger than an admittance condition. This
contrasts with the KP tables, where the strongest presuppositional conclusion coincides
with the weakest admittance condition (Theorem 1). To compare the two systems more
generally, we first formally define admittance within the K-calculus. Analogous to our
definition of admittance using the KP tables, we say that a context C ‘K-admits’ a
sentence S when the conjunction of C and S has no unsatisfied K-presuppositions.
Equivalently, the K-presupposition of S in C is tautological. Formally, we define:
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Definition 2.5 (K-admittance). A bivalent formula α ∈ L2 K-admits a trivalent for-
mula κ ∈ L3 if PK(α[κ]) ≡ >.

Further, since we are often interested in a sentence’s K-presupposition in a null context,
the following convention comes in handy:

Convention 3. For any trivalent formula κ ∈ L3 we denote:

PK(κ) = PK(>[κ]).

The formula PK([κ]) is used for modelling κ’s strongest presuppositional conclusion
independently of context. In short, we refer to it as κ’s K-presupposition.

With these notions of K-admittance and K-presupposition, we state two theorems
that formally establish the general relations between the K-calculus and the KP tables.
Theorem 2 below asserts that the admittance relation is identical in the K-calculus and
the Kleene-Peters tables:

Theorem 2. For any bivalent formula α ∈ L2 and trivalent formula κ ∈ L3:

α K-admits κ iff α KP-admits κ.

Due to this identity between K-admittance and KP-admittance, we henceforth use both
terms interchangeably. Next, establishing a relation between admittance and presuppo-
sition in the K-calculus, Theorem 3 claims that the strongest presuppositional conclusion
that the K-calculus derives for a sentence is sufficient for K-admitting it:

Theorem 3. For any trivalent formula κ ∈ L3:

PK(κ) K-admits κ.

The proofs of Theorems 2 and 3 (Appendix B) follow by induction on the structure of
trivalent formulas κ ∈ L3.

By Theorem 1, the strongest KP-presupposition of a sentence is its logically weak-
est KP-admittance condition. Thus, from Theorems 2 and 3 we infer the following
logical relations between K-presupposition and K-admittance, or, equivalently, between
K-presupposition and KP-presupposition/admittance:

Corollary 3. For any trivalent formula κ ∈ L3:

PK(κ)⇒ PKP(κ).

Importantly, there is no entailment in the opposite direction: K-presuppositions may
be properly stronger than K/KP-admittance conditions, as we saw in the analysis of
example (30) above.

These meta-theoretical conclusions are summarized in Figure 3.

2.6 On symmetric projection and general K-systems

Section 2.1 mentioned symmetric presupposition projection with disjunctions as in sen-
tences (13a-b), repeated below:
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Figure 3: The derived K-presupposition of a sentence may be logically stronger than its
strongest KP-presupposition. By contrast, weakest admittance conditions are the same
in both systems, and equivalent to this KP-presupposition. Tautology (>) is the trivial
presuppositional conclusion (=follows from any sentence), whereas contradiction (⊥) is
the trivial admittance condition (=admits any sentence).

α ∨ β 0 1 ∗
0 0 1 ∗
1 1 1 1
∗ ∗ 1 ∗

Figure 4: Strong Kleene disjunction

(34) a. Either there is no bathroom, or the bathroom is in a funny place.

b. Either the bathroom is in a funny place, or there is no bathroom.

Like the KP tables, the K-calculus accounts for left-to-right filtering as in (34a), but
not for the right-to-left filtering in (34b). In this section we show that any trivalent
Kleene-like table can be transformed to a parallel Karttunen-like calculus. In particular,
this holds for symmetric disjunction. To illustrate, consider replacing the asymmetric
KP disjunction by the symmetric Strong Kleene (SK) table in Figure 4. This motivates
the replacement of the asymmetric disjunction rule (35) in the KP calculus with the
symmetric rule for disjunction in (36):
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(35) Kleene-Peters disjunction – asymmetric:

P(ϕ ∨ ψ) = P(ϕ) ∧ (P(ψ) ∨A(ϕ)) (=(21b))

(36) Strong Kleene disjunction – symmetric:

P(ϕ ∨ ψ) = [P(ϕ) ∧ (P(ψ) ∨A(ϕ))]

∨ [P(ψ) ∧ (P(ϕ) ∨A(ψ))]

Similarly, to treat symmetric filtering as in (34), we can replace the disjunction rule
in the K-calculus (28b), restated in (37), by the revised symmetric recipe in (38) (cf.
Karttunen 1974:p.185):

(37) Karttunen disjunction – asymmetric:

PK(α[ϕ ∨ ψ]) = PK(α[ϕ]) ∧ PK( (α∧PK(α[ϕ])∧¬A(ϕ)) [ψ] )

(38) Karttunen disjunction – symmetric:

PK’(α[ϕ ∨ ψ]) = [PK’(α[ϕ]) ∧ PK’( (α∧PK’(α[ϕ])∧¬A(ϕ)) [ψ] )]

∨ [PK’(α[ψ]) ∧ PK’( (α∧PK’(α[ψ])∧¬A(ψ)) [ϕ] )]

In (38), the second disjunct adds ψ to the context of evaluating the presupposition of
ϕ. This modification introduces symmetry into the rule, treating (34b) similarly to the
analysis of (34a) in the K-calculus.

This emulation of symmetric truth tables using a K-like calculus raises a more general
question: how is the K-calculus or variations thereof related to calculi that model triva-
lent truth tables? The answer is surprisingly simple: the two kinds of calculi only differ
in their rules for simple formulas. To exemplify that, let us consider the sentence Sue
stopped smoking in the context of the statement ‘Sue jogs’. The analyses of this situation
in the KP and K calculi are given in (39a) and (39b) (=(26)) below, respectively:

(39) a. PKP(J [(US :¬S )]) ≡ US ∨ ¬J ≡ J → US

b. PK(J [(US :¬S )]) ≡ US

This is in a nutshell the ‘proviso’ difference between the KP semantics and the K-calculus.
In the K-calculus, any lexical K-presupposition (e.g., US in (39b)) that is not entailed
by its local context is projected. By contrast, the KP calculus does not restrict itself
to projecting only lexical presuppositions; it can also generate implications like J→US ,
which is not lexically triggered.

In all other respects, the projection rules of the two calculi are fully aligned. However,
this claim is not immediately obvious in the case of binary operations. To clarify, let us
observe the following fact about the KP calculus (our reason for underlining part of the
equation will become clear presently):

Fact 2.2. For all trivalent formulas ϕ,ψ in L3:
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PKP(ϕ opψ) ≡ PKP(ϕ) ∧ PKP((PKP(ϕ)∧¬ldvop(A(ϕ)))[ψ])

This equivalence mirrors the binary construction rule in K-calculus (Definition 2.4):

PK(ϕ opψ) = PK(ϕ) ∧ PK((PK(ϕ)∧¬ldvop(A(ϕ)))[ψ])

Fact 2.2 is proved in Appendix B. It demonstrates an equivalent formulation of the
rule for binary operations in the KP calculus, which parallels the rule of the K-calculus,
leaving the satisfaction rule of simple formulas the only difference between the two
calculi. Similarly, the symmetric disjunction rules (36) and (38) can be demonstrated to
correspond.

We have seen that the K-calculus can be modified to incorporate symmetric pro-
jection rules, consistent with the treatment of (a)symmetry within trivalent semantics.
Using a parallel method, we can transform any trivalent projection calculus C into a K-
variant CK . In the case where of the KP calculus and the K-calculus, we saw in Section
2.5 that the K-presupposition of a sentence may be logically stronger than its strongest
KP-presupposition, although the weakest admittance conditions remain equivalent in
both systems. We hypothesize that this relationship holds more generally, as stated in
the following conjecture:11

Conjecture 1. Let C be a projection calculus based on trivalent truth tables, with a par-
allel K-variant CK . The CK-presupposition of any trivalent formula is logically stronger
than, or equivalent to, its C-presupposition. By contrast, the admittance conditions of
any formula are equivalent in the two calculi.

If correct, this conjecture could prove valuable in allowing us to rely on general prop-
erties of Karttunen’s entailment-based satisfaction for trivalent systems where projection
from binary constructions is symmetric (as in Kleene’s systems), asymmetric (as in the
Kleene-Peters system) or mixed (e.g. symmetric for disjunction and asymmetric for other
operations). Further investigation of such systems is left for further research.

Note on the definition of local contexts. The treatment of local contexts in the
K-calculus warrants some further explanation. From Fact 2.2 it follows that introducing
the underlined term PKP(ϕ) within the KP system is innocuous and thus unnecessary.
Why, then, did we introduce the corresponding underlined term PK(ϕ) in the K-calculus?
The reason is that omitting this clause would yield a K-like system that is empirically
inadequate than the K-calculus, and also inferior to the KP semantics. To illustrate this,
let us consider the following example:

(40) If Sue continues to smoke, then Dan will know that Sue continues to smoke.

From (40), we infer the presuppositional conclusion that Sue used to smoke, which is
simply accounted for as a projection from the antecedent’s presupposition. Importantly,
however, sentence (40) does not entail that Sue still smokes – in a null context, it may
be admitted even if Sue used to smoke but has since quit. Thus, one part (‘Sue used
to smoke’) of the factive’s presupposition is filtered, while another part (‘Sue smokes

11I am thankful to an L&P reviewer for remarks in relation to this conjecture.
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now’) is projected from the antecedent.12 In the K-calculus, presupposition filtering is a
matter of all-or-nothing. For example, in (40), the assertive part (‘Sue still smokes’) of
the antecedent does not entail the factive’s presupposition (‘Sue used to smoke and still
does’). We conclude that in the K-calculus, the presupposition ‘Sue used to smoke’ of
(40)’s antecedent must also be involved in filtering the presupposition of the consequent.
This is our motivation for introducing the K-presupposition PK(ϕ) of the antecedent
into the context of the consequent (underlined in Fact 2.2 above).

To verify that the resulting K-calculus rule functions as intended, let us consider the
derivation for sentence (40) in (42), using the notation in (41):

(41) US = Sue used to smoke S = Sue smokes

(US ∧ S :BS) = Dan knows that Sue continues to smoke

= ‘Dan believes that Sue smokes, with the presupposition that Sue used to
smoke and smokes’13

(42) PK(>[(US :S )→ (US ∧ S :BS)])

= PK(>[(US :S )]) ∧PK((> ∧PK(>[(US :S )]) ∧A((US :S )))[(US ∧ S :BS)])

= US ∧PK((> ∧US ∧ S )[(US ∧ S :BS)])

≡ US ∧PK((US ∧ S )[(US ∧ S :BS)])

≡ US ∧ >
≡ US

The underlined part in (42) highlights the presupposition PK(>[(US : S )]) from (40)’s
antecedent (‘Sue continues to smoke’) as part of the local context for the consequent
(US ∧ S :BS) (‘Dan knows that Sue continues to smoke’). Together with this presuppo-
sition (=US , ‘Sue used to smoke’), the antecedent filters the consequent’s presupposition
US ∧ S (‘Sue used to smoke and smokes’). This example provides further justification
for the definition of binary operations in the Karttunen calculus.

3 Pragmatic accommodation with the Karttunen calculus

The previous section introduced the Karttunen (K) calculus and the distinction it draws
between presuppositional conclusions and admittance conditions. The logically strongest
presuppositional conclusion of a sentence is modeled by the K-presupposition derived by
the K-calculus in a null context. By contrast, a K-admittance condition is defined as
any context that renders a sentence’s K-presupposition tautological.

12In (40)’s consequent, the factive’s complement, a known presupposition trigger, has a non-trivial
presupposition (‘Sue used to smoke’). In such cases, Beaver & Krahmer (2001, p.150) propose a recursive
definition where presuppositions are trivalent, i.e. can have non-trivial presuppositions (cf. Blamey’s 1986
transplication). Here, we ignore this complexity and treat sentences like Dan knows Sue continues to
smoke as presupposing the bivalent conjunction of the complement’s presupposition (‘Sue used to smoke’)
and its assertive component (‘Sue smokes’).

13Famously, the assertive meaning of the verb know is more complicated than ‘to believe something
true’. This hardly affects the current treatment, as BS can be interpreted using other analyses of know.
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Like other semantic approaches to presupposition, the K-calculus does not on its own
account for presupposition accommodation: the pragmatic process by which hearers use
presuppositions for updating the common ground of a conversation. This leaves certain
aspects of the ‘proviso problem’ unaddressed. The challenge for the K-calculus is that
hearers sometimes accommodate information that is logically weaker than, or indepen-
dent of, a sentence’s K-presupposition. Following Karttunen (1973,1974) we articulate
this pragmatic strategy, building on further observations by Geurts (1996) and Man-
delkern (2016b,a). In the proposed K-accommodation strategy, the K-presupposition
of an utterance is the first candidate that a hearer considers for accommodation when
a sentence’s admittance conditions are not satisfied. However, if another statement
that satisfies the admittance conditions is pragmatically more plausible than the K-
presupposition, the hearer will prefer accommodating that statement. This approach
contrasts with standard analyses like the Kleene-Peters tables or dynamic possible world
semantics, where the sentence’s weakest admittance condition (=standard ‘presupposi-
tion’) is the default for accommodation. Empirical differences between these methods
emerge when there is no pragmatic pressure favoring an alternative to the semantically
derived presupposition. Following Geurts and Mandalkern – and ultimately Karttunen
– we argue that in such cases, speakers prefer to accommodate the K-presupposition
rather than the standard presupposition. This preference highlights the advantage of
the K-calculus over previous semantic accounts that do not distinguish presuppositions
from admittance conditions.

3.1 Accommodation: strengthening presuppositions or defeating them?

Let us first consider the following example from (Katzir & Singh 2013):14

(43) If Lyle flies to Toronto, his sister will pick him up from the airport.

When hearing (43) out of the blue, we reasonably infer that Lyle has a sister. Thus, the
proposition that we consider as the semantic presuppositional conclusion from (43) is
also pragmatically inferred. How does this inference work? To analyze this, let us first
review some familiar pragmatic notions from (Stalnaker 1974). When hearers interpret a
sentence, they do that while assuming a proposition C, which they consider the common
ground of the conversation. Adopting Stalnaker’s (1974/1999:p.49) notion of ‘pragmatic
presupposition’, we can intuitively describe the common ground as follows:

(44) The common ground CGi assumed by an interlocutor i in a conversation with
a partner j is what i assumes or believes, assumes or believes that j assumes
or believes, and assumes or believes that j recognizes that i is making these
assumptions or has these beliefs.

Ideally, the common ground C that hearers assume (=CGH) admits any sentence S
that they hear. In such cases, C is updated by S’s assertive content and the conversation

14(43) mirrors the point made earlier with (30a). Karttunen (1973, p.188) first noted this issue
for trivalent theories; Geurts (1996) later called it the ‘proviso problem’ for possible-world theories of
satisfaction.
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goes on as smoothly as possible. However, actual exchanges of information do not
always go in this ideal way. In practice, hearers may often encounter sentences that
are not admitted by the common ground they have previously assumed. In such cases,
cooperative interlocutors can adjust their assumptions to maintain the conversation.
For example, upon hearing the utterance I’ve got to pick up my sister, a hearer unaware
that the speaker has a sister might naturally accommodate this information without
further questions (Stalnaker 1974/1999:p.52). In general terms, we describe this kind of
pragmatic inference as follows:

(45) Hearers who hear a sentence S that is not admitted by their assumed common
ground C may update C by accommodating a proposition ϕ such that the up-
dated context C ∧ ϕ does admit S.

Hearers interpreting a sentence S in a common ground C typically have three options.
If S is admitted by C, they immediately update C using S’s assertive content (i). If
C does not admit S, hearers can accommodate some ϕ such that C ∧ ϕ admits S (ii).
Otherwise, hearers can ask for clarifications (iii). The third reaction typically occurs
when hearers do not hold the relevant assumptions, but believe they should have known
them if they were true. For instance, this might be the reaction of a number theorist
who is being told that the mathematician who proved Goldbach’s Conjecture is from Yale
(von Fintel 2004, 2008).

Now let us get back to sentence (43). When uttered in a null context, semantic
approaches like KP semantics or the Heim-Stalnaker account derive the following con-
ditional as (43)’s unitary semantic ‘presupposition’:

(46) If Lyle flies to Toronto, he has a sister.

This conditional is weaker than the inference hearers usually draw:

(47) Lyle has a sister.

Standard pragmatic accounts address this problem by pragmatically strengthening (46)
into (47). According to this analysis, the unlikelihood of the connection that (46) makes
between flying to Toronto and having a sister leads hearers to replace (46) by (47), which
is then accommodated into their assumed common ground CGH .15

In our pragmatic account using the K-calculus, we take the K-presupposition as
the first candidate for accommodation. Out of the blue, when the context CGH is
informationally null (=tautological), the K-calculus analyzes sentence (43) with (47)
as its K-presupposition. In this case there is no pragmatic reason to accommodate
any weaker admittance condition, especially not the weakest K-admittance condition
(46), which is pragmatically odd. Accordingly, the K-calculus directly accounts for the
observed inference of (47) from (43).

15Since the early proposals by Karttunen & Peters (1979) and Soames (1982), different accounts have
been proposed as to the origins of strengthening: see (van Rooij 2007, Singh 2007, Schlenker 2011,
Lassiter 2012, Fox 2013, 2022, Mayr & Romoli 2016), among others. For critique, see (Geurts 1996,
Mandelkern 2016b,a, 2018, Mandelkern & Rothschild 2018).
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The situation is different with examples like the following:16

(48) If Genovia is a monarchy then the king of Genovia is in danger.

Out of the blue, we do not infer from (48) that Genovia has a king. Standard accounts
analyze this sentence with the presupposition:

(49) If Genovia is a monarchy, it has a king.

The connection that (49) makes between monarchies and kings is perfectly coherent.
Accordingly, standard accounts expect (49) to be accommodated upon hearing (48)
without any strengthening.

Using the K-calculus in a null context, the following K-presupposition is projected
intact from (48)’s consequent:

(50) Genovia has a king.

This is so because (48)’s antecedent does not entail having a king: a monarchy could
plausibly have a ruler who is not a male. Therefore, using the K-calculus, we need to
explain why hearers, upon hearing (48) out of the blue, do not directly accommodate
(50). The reasoning here diverges from the strengthening analysis.17 Accommodating
(50) is problematic because this statement entails the antecedent of (49) (=Genovia is a
monarchy). Thus, if the speaker had (50) in the assumed CG, that would violate Grice’s
(1975) Ignorance implicature about conditionals. Accordingly, the hearer is motivated to
search for alternative candidates for accommodation, i.e. other propositions that entail
(48)’s K-admittance condition (49). One plausible alternative is the following generic
statement:

(51) Monarchies normally have kings.

Given the history of monarchies, (51) is a fairly natural assumption. Furthermore, in the
lack of shared knowledge about Genovia, both hearer and speaker are likely to assume
the following conditional pattern:

(52) If Genovia is a monarchy (republic, dictatorship, etc.) it is a normal monarchy
(republic, dictatorship).

From these default assumptions it follows that (50) holds.18 Thus, if the speaker has
(51) in the assumed CG without specific details about Genovia, the K-calculus correctly
expects sentence (48) to be admitted. In such a null context, where the speaker is
aware that her hearers know nothing about Genovia, she is more likely to assume the
generic sentence (51) than to assume the Genovia-specific claim in (50). As a result, in
typical conversations, hearers are expected to favor (51) over (50) as their candidate for
accommodation.

16Similar examples have been discussed in the literature since (Karttunen 1973:p.184, 1974:p.192).
Sentence (48) is a minor variation on similar examples from (Karttunen 1974, Schlenker 2007).

17This pragmatic direction was initiated by Karttunen (1973,1974), and followed in various forms in
(Gazdar 1979, van der Sandt 1988, Geurts 1996, 1999, Mandelkern 2016a), among others.

18On logical inferences from generics like (51) see (Veltman 1996), among others.
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3.2 K-accommodation

The pragmatic alternative we propose using the K-calculus begins with the K-presuppo-
sition as the initial candidate for accommodation, but replaces it by another candidate
that K-admits the sentence if there is a pragmatic reason to do so. We refer to this
strategy as K-accommodation. At first glance, K-accommodation may look like the
mirror image of the strengthening approach. However, the pragmatic assumptions of
the two approaches are notably different. The following example from (Geurts 1996)
nicely illustrates one such difference:

(53) If Theo is a scuba diver, then he will bring his wet suit.

Standard semantic approaches derive for (53) the following presupposition:

(54) If Theo is a scuba diver, he has a wet suit.

Strengthening is not necessary in this case, since (54) is a perfectly coherent statement.
Consequently, standard approaches treat (54) as the only candidate for accommodation
when (53) is heard in a null context. By contrast, the K-presupposition of (53) in a null
context is:

(55) Theo has a wet suit.

Empirically, speakers do not consistently infer (55) when they encounter (53). In con-
trast to example (48), discussed above, there is nothing pragmatically deviant in sug-
gesting that the speaker has included (55) in her postulated CG. The challenge for
K-accommodation is then: why isn’t (55) consistently inferred from (53)? The explana-
tion proposed here is that the following generic statement is substantially more plausible
than (55) as part of the speaker’s assumed CG :

(56) Scuba divers normally have wet suits.

If (56) is assumed in the CG, then the lack of specific information about Theo entails the
conditional (54), similarly to our analysis of (48) above. Thus, given that the speaker is
aware that the hearer H knows nothing about Theo, it is more reasonable to accommo-
date a generic statement like (56) into H’s assumed CG rather than the Theo-specific
assertion (55). It is important to observe that this reasoning does not apply in the case
of (43). Unlike the scenario in (53), in (43) it would be odd for hearers to consider the
generic statement fliers to Toronto normally have sisters as a more likely part of the
speaker’s CG than (47).

In general, we define K-accommodation as follows. To interpret an utterance of a
sentence S against an assumed common ground C = CGH , a hearer H uses the following
set of propositions based on H’s estimations regarding the speaker’s common ground
CGS :

(57) Candidates for accommodation:

A = { ϕ | C ∧ ϕ admits S, and H considers ϕ at least as likely to be in the

speaker’s CGS as any other proposition ϕ′ s.t. C ∧ ϕ′ admits S }
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In K-accommodation, the hearer starts with the K-presupposition p of S in C as a basis,
but disregards it if it not found among the likeliest candidates in A.19 Formally:

(58) K-accommodation:

With the set of propositions A and S’s K-presupposition p = PK(C[S]) in C:

If p ∈ A: the hearer K-accommodates p

Otherwise: the hearer K-accommodates any of the propositions in A
According the K-accommodation strategy, the hearer may always accommodate a state-
ment ϕ that the speaker is likelier to assume than the K-presupposition, as long as C∧ϕ
admits the speaker’s utterance. This process explains why (54) is pragmatically inferred
from (53).

K-accommodation also captures a phenomenon commonly referred to as ‘semi-con-
ditional’ presuppositions (Geurts 1996, Singh 2007, Schlenker 2011). This concerns vari-
ants of (53) such as the following:

(59) If Theo is a scuba diver and wants to impress Sue, then he will bring his wet
suit.

Geurts observes that from (59), as with (53), hearers naturally draw the conditional
inference (54), which is logically stronger than (59)’s admittance condition below:

(60) If Theo is a scuba diver and wants to impress Sue, he has a wet suit.

As with (53), the K-presupposition of sentence (59) in a null context is Theo has a wet
suit (=(55)). K-accommodation analyzes (59) by assessing the plausibility of this K-
presupposition against other propositions that admit (60). In particular, a hearer may
consider the following generic sentences:

(61) a. Scuba divers normally have wet suits. (=(56))

b. Scuba divers who want to impress someone (Sue) normally have wet suits.

c. People who want to impress someone (Sue) normally have wet suits.

Among these statements, only (61a) may reasonably be considered as substantially
more plausible than (55) to be part of the common ground. As a result, (61a) is K-
accommodated rather than (55) or alternative assumptions like (61b) and (61c).

3.3 Comparing K-accommodation to pragmatic strengthening

K-accommodation differs from more standard approaches in taking the K-presupposition
to be the default inference: all else being equal, the hearer will accommodate the K-
presupposition and disregard other propositions that make the context admit the utter-
ance. By contrast, in more standard approaches, the first candidate for accommodation
is the weakest admittance condition. One type of empirical difference between the two
approaches is illustrated in the following example by (Mandelkern 2016b):20

19Such a defeat does not necessarily lead to logically weaker statement than p. For example, in
relation to (53), a plausible candidate for K-accommodation is (56), which is logically independent of
the K-presupposition (55).

20See Mandelkern (2016a,b) for additional examples that illustrate the same point.
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(62) [It is common ground that Smith has gone missing, and we don’t know whether
he is still alive. A detective enters and says:]
If the butler’s clothes contain traces of Smith’s blood, then we’ll soon have Smith’s
murderer behind bars.

The conclusion that hearers are likely to draw from (62) is that Smith was murdered.
This poses a challenge for standard approaches, but aligns with the predictions of K-
accommodation. To see why this is the case, consider the K-presupposition and the
weakest K-admittance condition of (62), which are as follows:

(63) a. Smith was murdered.

b. If the butler’s clothes contain traces of Smith’s blood, then Smith was mur-
dered.

The dependence that (63b) creates between finding traces of Smith’s blood and Smith’s
murder is entirely plausible and seems as likely as (63a) to be part of the detective’s
assumed common ground. As Mandelkern observes, this implies that standard pragmatic
approaches incorrectly predict that hearers would accommodate (63b) rather than (63a).
In contrast, for K-accommodation to fail in a similar manner, hearers would need to
estimate that (63b), or perhaps the following generic statement, is significantly more
plausible as part of the common ground than (63a):

(64) If traces of some person’s blood are found on someone else’s clothes, then that
person is normally a murder victim.

However, neither (64) nor (63b) appears to be pragmatically more plausible than (63a).
According to K-accommodation, this implies that hearers have no reason to dismiss the
K-presupposition (63a). Consequently, they are expected to K-accommodate it, which
is consistent with the observed inference.

Another instance where K-accommodation proves advantageous over more standard
pragmatic approaches arises in contrasts such as the following (Geurts 1996, p.278):

(65) a. If Lyle flies to Toronto, then his lover will pick him up from the airport.

b. Ann knows that if Lyle flies to Toronto, then he has a lover.

From sentence (65a), similarly to (43), we intuitively infer:

(66) Lyle has a lover.

By contrast, from sentence (65b) we intuitively infer the following conditional:

(67) If Lyle flies to Toronto, then he has a lover.

Standard analyses predict that (67) serves as the unitary presupposition for both (65a)
and (65b). In the case of (65a), this prediction is analogous to the analysis of (43) above.
Regarding (65b), the factive verb know directly triggers the conditional presupposition
(67), which is subsequently projected as the presupposition of (65b). The question is:
do standard analyses expect hearers to strengthen (67) into (66)? This question is not
easily resolved on general pragmatic grounds, but importantly, either resolution poses
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challenges to the standard approach. Strengthening (67) to (66) yields counterintuitive
results in (65b), while leaving (67) unstrengthened creates problems with treating (65a).

K-accommodation avoids this dilemma. While (65a)’s K-presupposition is p1=(66),
sentence (65b) K-presupposes the conditional p2=(67). Both p1 and p2 seem to be
equally plausible as part of the assumed common ground. This predicts that the speaker
could have reasonably assumed either proposition. As a result, the hearer has no reason
to reject the K-presupposition in either case. The outcome is intuitive enough: in (65a),
hearers will K-accommodate p1, while in (65b), they will K-accommodate p2, diverging
from the predictions of standard presupposition strengthening.

3.4 Loose ends in the analysis of accommodation

We have proposed that upon hearing a sentence S, hearers by default accommodate
S’s K-presupposition. Other statements that admit S are only accommodated when
hearers have a reason to believe they are likelier to be assumed by the speaker than
the K-presupposition. This notion of “likelihood” is part of all accounts of the proviso
problem (Fox 2013, 222-3), but is not easy to define. To make theories of accommodation
more predictive, one way is to enrich a probabilistic theory as in (Lassiter 2012) with an
explanatory account of probabilistic (in)dependence between statements. Lassiter (2012,
17-19) postulates that conditionals as in (54) (=‘if he’s a diver, he has a wetsuit’) are a
priori plausible because of the dependency between the antecedent and the consequent,
whereas such a dependency does not exist in conditionals like (67) (=‘if he flies to
Toronto, he has a lover’). Although this is intuitive enough, we should like to account
for these judgements using general principles. Such principles are not part of theories
of accommodation (including Lassiter’s), which aim to account for the effects of world
knowledge on presupposition, but not for the principles that govern this knowledge. This
reduces the predictive power of all theories of accommodation. However, also without a
principled account of “likelihood”, intuitions about this notion can be tested empirically,
for instance by comparing speaker judgements on generics like (51) (=‘monarchies have
kings’) and (56) (‘divers have wetsuits’) as opposed to sentences like the following:

(68) Travelers to Toronto normally have lovers.

We expect a correlation between acceptance of generics like (51), (56) and (68) and
accommodation of conditional inferences in cases like (48), (53) and (65a), respectively.
Establishing such correlations might also allow us to test subtle differences between
theories of accommodation. This is a major experimental effort that has yet to be
undertaken.

Another factor that affects the evaluation of theories of accommodation involves
coherence effects that are not necessarily related to accommodation per se. To see that,
let us consider the following example:21

(69) ?I’m not sure if Lyle has a lover in Toronto, but if he flies there every time his
wife is away, his lover picks him up from Pearson Airport.

21I am thankful to an L&P reviewer for pointing out such examples.
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In (69) the speaker openly expresses uncertainty about whether Lyle has a lover. By ze-
roing out the likelihood that the speaker assumes this K-presupposition, this leads the K-
accommodation strategy to expect that hearers accommodate another proposition that
admits (69), e.g. a logically weaker conditional like (67). Why doesn’t (69) nevertheless
sound coherent? We might consider this as a counterexample to the K-accommodation
strategy, but it may also stem from independent factors of sentence coherence. First, let
us note that putting the focus on his lover as in (70) below improves (69) considerably:

(70) I’m not sure if Lyle has a lover in Toronto, but if he flies there every time his
wife is away, it’s his lover who picks him up from Pearson Airport.

Second, similar incoherence effects to (69) appear even in cases where K-accommodation
does expect conditional inferences. For instance:

(71) ?I’m not sure if Theo has a wet suit, but if he is a scuba diver, he will bring his
wet suit.

These facts suggest that the incoherence of (69) is connected to general focus principles
and not to accommodation of presuppositional material per se. Similar (in)coherence
effects also arise when no presuppositions are involved, as in the following examples:

(72) a. ?I’m not sure if Lyle has a lover in Toronto, but if he flies there every time
his wife is away, he has a lover there. (neutral stress on ‘has’)

b. I’m not sure if Lyle has a lover in Toronto, but if he flies there every time
his wife is away, he does have/certainly has a lover there.

Stressing the second ‘has’ in (72) improves the coherence of the assertion, similar to
the (in)coherence effects with the presupposition in (69) and (70) above. This suggests
that presupposition accommodation is sensitive to similar principles about information
structure as direct assertion. We conclude that a pragmatic filter of sentence coherence
must be superimposed on any theory of accommodation. Like the question of likelihood
of generic propositions and their effects on the theory of accommodation, this point is
at least partly orthogonal to the accommodation mechanism, and its elaboration is left
for further research.

4 Conclusion

We distinguished two logical notions central to formal semantics and pragmatics: presup-
positional conclusions, defined as inferences with exceptional projection properties, and
admittance conditions, which reflect the Strawsonian intuition that sentences may resist
truth-value judgments in specific contexts. We observed that semantic theories of pre-
suppositions naturally connect these notions. A sentence is admitted in a given context
if the only presuppositional conclusion from their conjunction is tautological. We exam-
ined two such theories: the Kleene-Peters trivalent truth tables and Karttunen’s dynamic
approach. These theories were given a general formalization as calculi for presupposi-
tional inference with trivalent formulas, providing a basis for comparing their logical
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properties. It was found that although the Kleene-Peters calculus and the Karttunen
calculus agree on admittance conditions and share the principle of value determination,
they diverge on how presuppositional conclusions are derived. Karttunen’s entailment-
based treatment operates on logical forms, enabling unsatisfied admittance conditions
to project. The emerging distinction between the logical strength of projected inferences
and admittance conditions informs our proposed solution to the ‘proviso problem’. In
our pragmatic proposal, presuppositional conclusions are treated as primary candidates
for accommodation, while allowing pragmatically more plausible admittance conditions
to take precedence. This integration of projection and admittance into formal semantics
and pragmatics clarifies the analysis of presupposition and explains the prominence of
lexical presuppositions in pragmatic reasoning. Furthermore, the proposed framework
suggests a promising direction for advancing experimental research on accommodation in
discourse and enriching philosophical discussions on the semantics-pragmatics interface.
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A Kleene-Peters interpretations

This appendix defines the interpretation of the trivalent language L3 using the KP ta-
bles, formally establishing Theorem 1 and the soundness of the KP calculus (Fact 2.1)
in relation to this interpretation. A bivalent interpretation [[·]]bi of propositional L2 for-
mulas is routinely obtained by extending an arbitrary interpretation of the propositional
constants in L2 using the standard bivalent truth-tables. Simple trivalent formulas in L3,
i.e. pairs of L2 formulas, are interpreted using Blamey’s (1986) transplication operator,
a basic version of which is defined below:

Definition A.1 (transplication). Given a bivalent interpretation [[·]]bi of L2, for any
α, β ∈ L2, we define the trivalent interpretation [[(α :β)]]bi’ as follows:

[[(α :β)]]bi’ =

{
[[β]]bi [[α]]bi = 1

∗ [[α]]bi = 0

In words: when the basic presupposition α is true, the pair (α :β) is evaluated like the
bivalent assertive content β; when α is false, (α :β) is ‘undefined’.

Complex formulas in L3 are interpreted using the KP tables, which are based on the
notion of left-determinant value (cf. George 2014). Formally, we define:

Definition A.2 (KP binary operators). Let op be a binary operator with the bivalent
truth-table f : ({0, 1}×{0, 1})→{0, 1}. The trivalent KP truth-table of op is the function
[[op]]KP : ({0, 1, ∗}×{0, 1, ∗})→{0, 1, ∗} that for any u, v ∈ {0, 1, ∗} is defined by:

[[op]]KP(u, v)=


f(u, v) u, v∈{0, 1}

f(u, 1) u∈{0, 1} and f(u, 1)=f(u, 0), i.e. u is a left-determinant value

∗ otherwise

With Definition A.2, all binary operators can be expressed using negation and con-
junction. Specifically, for disjunction and implication we standardly get:

Fact A.1. For any ϕ,ψ ∈ L3, for any KP-interpretation:

[[ϕ ∨ ψ]]KP = [[¬((¬ϕ) ∧ ¬ψ)]]KP

[[ϕ→ ψ]]KP = [[¬(ϕ ∧ ¬ψ)]]KP

A KP-interpretation of a formula in L3 inductively uses standard trivalent nega-
tion with this KP semantics of binary operators, together with the transplication-based
interpretation of simple trivalent components:

Definition A.3 (KP-interpretation of L3). Let [[·]]bi be a bivalent interpretation of L2,
and let [[·]]bi’ be the corresponding interpretation of L2 × L2 (Definition A.1). For any
trivalent formula κ ∈ L3, the KP-interpretation of κ is denoted [[κ]]KP and is defined
inductively as follows:

[[(κ1 :κ2)]]
KP = [[(κ1 :κ2)]]

bi’

[[¬ϕ]]KP = [[¬]]([[ϕ]]KP), where [[¬]](0)=1, [[¬]](1)=0 and [[¬]](∗)=∗
[[ϕ opψ]]KP = [[op]]KP([[ϕ]]KP, [[ψ]]KP)
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B Proofs of theorems

Theorem 1 relies on the semantic notions of ‘presuppositional conclusion’ and ‘admit-
tance condition’ in relation to KP-interpretations. These notions of KP-presupposition
and KP-admittance are formally defined below:

Definition B.1 (KP-presupposition). A trivalent formula κ ∈ L3 KP-presupposes a
bivalent formula α ∈ L2 if for any bivalent interpretation [[·]]bi and its corresponding
KP-interpretation [[·]]KP:

if [[κ]]KP 6=∗ then [[α]]bi=1.

In words: under any KP-interpretation, if κ is well-defined then α is true.

Definition B.2 (KP-admittance). A bivalent formula α ∈ L2 KP-admits a trivalent
formula κ ∈ L3 if for all KP-interpretations:

[[α[κ]]]KP 6= ∗.

In words: in the context of α, the formula κ is well-defined under any KP-interpretation.

Theorem 1. For any trivalent formula κ ∈ L3, any strongest KP-presupposition α1 ∈ L2

of κ is equivalent to any weakest α2 ∈ L2 that KP-admits κ. Thus, for any bivalent
interpretation:

[[α1]]
bi=1 iff [[α2]]

bi=1

Proof. By construction of κ ∈ L3, there is a bivalent formula β ∈ L2 s.t. for any KP-
interpretation:

[[β]]bi=1 iff [[κ]]KP 6=∗ (i)

Since α1 is a KP-presupposition of κ, we have [[κ]]KP 6=∗ ⇒ α1, hence by (i), β ⇒ α1. By
(i), β is also a KP-presupposition of κ. Thus, since α1 is a strongest KP-presupposition
of κ we have:

α1 ≡ β (ii)

Since α2 is a KP-admittance condition of κ, we have for any KP-interpretation:

[[α2[κ]]]KP = [[(> :α2) ∧ κ]]KP 6= ∗
We conclude by definition of KP-conjunction:

If [[α2]]
bi=1 then [[κ]]KP 6=∗.

Thus, by (i) we have: α2 ⇒ β (iii)

By (i) and definition of KP-conjunction, we have for any KP-interpretation:

[[β[κ]]]KP = [[(> :β) ∧ κ]]KP 6= ∗
hence β KP-admits κ (iv)

From (iii) and (iv), and since α2 is a weakest KP-admittance condition of κ we have:
α2 ≡ β.

From (ii) we conclude: α1 ≡ α2.
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For proving Theorems 2 and 3, it is useful to note that, similarly to the KP tables
(Fact A.1), the K-calculus standardly allows expressing disjunction and implication using
negation and conjunction. Formally:

Fact B.1. For any ϕ,ψ ∈ L3, for any α ∈ L2:

PK(α[ϕ ∨ ψ]) ≡ PK(α[¬((¬ϕ) ∧ ¬ψ)])

PK(α[ϕ→ ψ]) ≡ PK(α[¬(ϕ ∧ ¬ψ)])

Theorem 2. For any bivalent formula α ∈ L2 and trivalent formula κ ∈ L3:

α K-admits κ iff α KP-admits κ.

Proof. By soundness of the KP calculus (Fact 2.1), we need to show for any α ∈ L2 and
κ ∈ L3:

PK(α[κ]) ≡ > iff PKP(α[κ]) ≡ >.

We will show that by induction on the structure of κ. Thus, for any α ∈ L2 and
subformula κ′ of κ, we assume that α K-admits κ′ if α KP-admits κ′. By Facts A.1 and
B.1, we only need to consider simple L3 formulas and complex formulas κ that are made
of negation and conjunction:

κ = (κ1 :κ2):

By definition of K-calculus:

PK(α[(κ1 :κ2)]) ≡ > iff α⇒ κ1.

By definition of KP-calculus:

PKP(α[(κ1 :κ2)]) ≡ > iff PKP((> :α) ∧ (κ1 :κ2)) ≡ > iff κ1 ∨ ¬α ≡ >
iff α⇒ κ1.

We conclude: PK(α[(κ1 :κ2)]) ≡ > iff PKP(α[(κ1 :κ2)]) ≡ >.

κ = ¬ϕ:

By definition of K-calculus:

PK(α[¬ϕ]) = PK(α[ϕ]).

By definition of KP-calculus:

PKP(α[¬ϕ])

= PKP((> :α) ∧ ¬ϕ)

≡ PKP(¬ϕ) ∨ ¬α
≡ PKP(ϕ) ∨ ¬α
≡ PKP((> :α) ∧ ϕ)

= PKP(α[ϕ])

By induction PK(α[ϕ]) ≡ PKP(α[ϕ]), hence we conclude: PK(α[¬ϕ]) ≡ PKP(α[¬ϕ]).
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κ = ϕ ∧ ψ:

By definition of K-calculus:

PK(α[ϕ ∧ ψ]) = PK(α[ϕ]) ∧PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ])

Thus, we conclude:

PK(α[ϕ ∧ ψ]) ≡ >
iff PK(α[ϕ]) ≡ > and PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ]) ≡ >
iff PK(α[ϕ]) ≡ > and PK((α ∧A(ϕ))[ψ]) ≡ >

And by induction:

iff PKP(α[ϕ]) ≡ > and PKP((α ∧A(ϕ))[ψ]) ≡ > (i)

We note:

PKP(α[ϕ ∧ ψ])

= PKP((> :α) ∧ (ϕ ∧ ψ))

≡ PKP(ϕ ∧ ψ) ∨ ¬α
≡ (PKP(ϕ) ∧ (PKP(ψ) ∨ ¬A(ϕ))) ∨ ¬α
≡ (PKP(ϕ) ∨ ¬α) ∧ ((PKP(ψ) ∨ ¬A(ϕ)) ∨ ¬α)

≡ (PKP(ϕ) ∨ ¬α) ∧ (PKP(ψ) ∨ ¬(α ∧A(ϕ)))

≡ PKP((> :α) ∧ ϕ) ∧PKP((> :α ∧A(ϕ)) ∧ ψ)

= PKP(α[ϕ]) ∧PKP((α ∧A(ϕ))[ψ])
Thus:

PKP(α[ϕ ∧ ψ]) ≡ >
iff PKP(α[ϕ]) ≡ > and PKP((α ∧A(ϕ))[ψ]) ≡ >

And from (i) we conclude:

PK(α[ϕ ∧ ψ]) ≡ > iff PKP(α[ϕ ∧ ψ]) ≡ >

The following lemma is useful for proving Theorem 3:

Lemma 1. For any trivalent κ∈L3 and bivalent α, β ∈L2 s.t. α⇒ β and β K-admits
κ, we have: α K-admits κ.

In words: K-admittance is closed under logical strengthening of the context.

Proof. We will show that by induction on the structure of κ. Thus, for any subformula
κ′ of κ, we assume that K-admittance of κ′ is closed under strengthening of the context.
By Fact B.1, we only need to consider simple L3 formulas and complex formulas κ that
are made of negation and conjunction:

κ = (κ1 :κ2):

By assumption β K-admits (κ1 :κ2), hence by definition of K-calculus: β ⇒ κ1.

From α⇒β we conclude that α⇒κ1, hence by definition of K-calculus:

α K-admits (κ1 :κ2).

37



κ = ¬ϕ:

By assumption β K-admits ¬ϕ, hence by definition of K-calculus: β K-admits ϕ.

From α⇒β we conclude by induction that α K-admits ϕ.

Thus, by definition of K-calculus α K-admits ¬ϕ.

κ = ϕ ∧ ψ:

By assumption β K-admits ϕ ∧ ψ, hence by definition of K-calculus:

PK(β[ϕ ∧ ψ]) = PK(β[ϕ]) ∧PK((β ∧PK(β[ϕ]) ∧A(ϕ))[ψ]) ≡ > (i)

From (i) we conclude that PK(β[ϕ]) ≡ >, hence by induction, since α⇒β:

PK(α[ϕ]) ≡ > (ii)

By substituting PK(β[ϕ]) ≡ > in (i), we get:

PK(β[ϕ ∧ ψ]) ≡ > ∧PK((β ∧ > ∧A(ϕ))[ψ]) ≡ >
Or: PK((β ∧A(ϕ))[ψ]) ≡ >

And by induction, since α ∧A(ϕ)⇒ β ∧A(ϕ):

PK((α ∧A(ϕ))[ψ]) ≡ > (iii)

By definition of K-calculus and (ii)-(iii), we conclude:

PK(α[ϕ ∧ ψ])

= PK(α[ϕ]) ∧PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ])
(ii)

≡ > ∧PK((α ∧ > ∧A(ϕ))[ψ])
(iii)

≡ >
Thus, α K-admits ϕ ∧ ψ.

Theorem 3. For any trivalent formula κ ∈ L3:

PK(κ) K-admits κ.

Proof. The proof will follow from substituting α = > in a more general claim:

For any trivalent formula κ ∈ L3 and bivalent formula α ∈ L2:

PK((α ∧PK(α[κ]))[κ]) ≡ >, i.e. α ∧PK(α[κ]) K-admits κ (i)

To prove (i) for any α ∈ L2, we rely on Lemma 1 using an induction on the structure
of κ. Thus, we assume that for any subformula κ′ of κ, for any α ∈ L2: α ∧ PK(α[κ′])
K-admits κ′. By Fact B.1, for this induction we only need to consider simple L3 formulas
and complex formulas κ that are made of negation and conjunction:

κ = (κ1 :κ2):

If α⇒ κ1 then by definition of K-calculus: PK(α[(κ1 :κ2)]) = >. Thus:

PK((α ∧PK(α[(κ1 :κ2)]))[(κ1 :κ2)]) ≡ PK((α ∧>)[(κ1 :κ2)]) ≡ PK(α[(κ1 :κ2)]) = >.

If α 6⇒ κ1 then by definition of K-calculus: PK(α[(κ1 :κ2)]) = κ1.

And since α ∧ κ1 ⇒ κ1:

PK((α ∧PK(α[(κ1 :κ2)]))[(κ1 :κ2)]) ≡ PK((α ∧ κ1)[(κ1 :κ2)]) = >.
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κ = ¬ϕ:

By definition of K-calculus: PK(β[¬ϕ]) = PK(β[ϕ]) for any β ∈ L2.

Thus:

PK((α ∧PK(α[¬ϕ]))[¬ϕ])

= PK((α ∧PK(α[ϕ]))[¬ϕ])

= PK((α ∧PK(α[ϕ]))[ϕ])

By the induction hypothesis:

≡ >
κ = ϕ ∧ ψ:

By definition of K-calculus:

PK(α[κ]) = PK(α[ϕ ∧ ψ])

= PK(α[ϕ]) ∧PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ])

We denote:

θ = α ∧PK(α[κ]) = α ∧PK(α[ϕ]) ∧PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ]) (ii)

Thus: PK((α ∧PK(α[κ]))[κ]) = PK(θ[κ]) = PK(θ[ϕ ∧ ψ])

Thus, by definition of K-calculus, we have:

PK((α ∧PK(α[κ]))[κ]) = PK(θ[ϕ]) ∧PK((θ ∧PK(θ[ϕ]) ∧A(ϕ))[ψ]) (iii)

Now, from the induction hypothesis we have:

PK((α ∧PK(α[ϕ]))[ϕ])≡>
Thus, by Lemma 1 we conclude for any bivalent formula τ ∈ L2:

PK((α ∧PK(α[ϕ]) ∧ τ)[ϕ]) ≡ >
By substituting τ = PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ]) we have by our notation (ii):

α ∧PK(α[ϕ]) ∧ τ = θ

Thus:

PK(θ[ϕ]) ≡ > (iv)

By substituting (iv) in (iii) we conclude:

PK((α ∧PK(α[κ]))[κ]) ≡ > ∧PK((θ ∧ > ∧A(ϕ))[ψ]) ≡ PK((θ ∧A(ϕ))[ψ])

By the notation in (ii):

= PK((α∧PK(α[ϕ]) ∧PK((α ∧PK(α[ϕ]) ∧A(ϕ))[ψ]) ∧A(ϕ))[ψ])

By denoting α0 = α∧PK(α[ϕ]) ∧A(ϕ) we get:

= PK((α0 ∧PK(α0[ψ]))[ψ])

≡ > by induction.

We have proven Fact (i) above, from which we conclude that for any formula κ ∈ L3:

PK((> ∧PK(>[κ]))[κ]) ≡ >
Thus, PK((PK(κ))[κ]) ≡ >, or:

PK(κ) K-admits κ.
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Fact 2.2. For all trivalent formulas ϕ,ψ in L3:

PKP(ϕ opψ) ≡ PKP(ϕ) ∧ PKP((PKP(ϕ)∧¬ldvop(A(ϕ)))[ψ])

Proof. PKP(ϕ) ∧ PKP((PKP(ϕ)∧¬ldvop(A(ϕ)))[ψ])

= PKP(ϕ) ∧ PKP( (> : PKP(ϕ)∧¬ldvop(A(ϕ))) ∧ ψ) (convention 2)

= PKP(ϕ) ∧ (PKP(ψ) ∨ ¬(PKP(ϕ)∧¬ldvop(A(ϕ)))) (def. of KP calculus)

≡ PKP(ϕ) ∧ (PKP(ψ) ∨ ((¬PKP(ϕ))∨ldvop(A(ϕ)))) (De Morgan)

≡ PKP(ϕ) ∧ ((¬PKP(ϕ)) ∨ (PKP(ψ)∨ldvop(A(ϕ)))) (comm. and assoc. of ∨)

≡ PKP(ϕ) ∧ (PKP(ψ) ∨ ldvop(A(ϕ))) (α ∧ ((¬α) ∨ β) ≡ α ∧ β)

= PKP(ϕ opψ) (def. of KP calculus)
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