
Order-Based Inference in Natural

Logic

YAROSLAV FYODOROV, Computer Science Faculty, Technion - IIT,
Haifa, Israel. E-mail: yaroslav@cs.technion.ac.il

YOAD WINTER, Computer Science Faculty, Technion - IIT, Haifa,
Israel. E-mail: winter@cs.technion.ac.il

NISSIM FRANCEZ, Computer Science Faculty, Technion - IIT, Haifa,
Israel. E-mail: francez@cs.technion.ac.il

Abstract

This paper develops a version of Natural Logic – an inference system that works directly on natural
language syntactic representations, with no intermediate translation to logical formulae. Following
work by Sánchez, we develop a small fragment that computes semantic order relations between
derivation trees in Categorial Grammar. The proposed system has the following new characteristics:
(i) It uses orderings between derivation trees as purely syntactic units, derivable by a formal calculus.
(ii) The system is extended for conjunctive phenomena like coordination and relative clauses. This
allows a simple account of non-monotonic expressions that are reducible to conjunctions of monotonic
ones. (iii) A decision procedure for provability is developed for a fragment of Natural Logic.

Keywords: inference, monotonicity, natural logic, order, semantics

1 Introduction

Model-theoretic semantic theories of natural language assume that most linguistic
expressions – or even all of them – represent objects in partially ordered domains so
that meanings of expressions of the same category are naturally comparable. Formal
semantics treats order relations between expressions of complex categories as compo-
sitionally derived from orders between expressions of simpler categories, according to
the rules of a given grammar and certain semantic properties of words. For instance,
the denotation of the nominal expression tall student is semantically ‘smaller than’
the denotation of the noun student in every model. This simple ordering, together
with the ‘order reversing’ meaning of the determiner no, is responsible for the fact
that the noun phrase no tall student is semantically ‘greater than’ the noun phrase
no student in every model. At the top level, these order statements result in a se-
mantic ordering of natural language sentences. In an adequate semantic theory, this
ordering corresponds to an intuitively valid entailment relation between sentences.
For instance, the aforementioned order statements, together with the other elements
in the sentence, are responsible for the valid conclusion of the sentence John saw no
tall student from the premise John saw no student.

Fruitful as this view on inference in natural language is, its formulation within
model-theoretic semantics is not immediately helpful for the design of computationally

385L. J. of the IGPL, Vol. 11 No. 4, pp. 385–416 c©Oxford University Press 2003, all rights reserved

386 Order-Based Inference in Natural Logic

significant inference systems. This paper aims to develop an inference system for
natural language using basic insights on order relations coming directly from model-
theoretic semantics, but using only proof-theoretical symbolic manipulation of natural
language syntactic representations with no appeal to models. On the other hand, the
direct relationships between structures and meanings in model-theoretic semantics
allows us to dispense with the translation of natural language syntactic representations
into a level of logical representation. Rather, inferences are computed directly from
semantically annotated syntactic derivations of expressions.

This methodology means that “higher order” properties of natural language ex-
pressions become an integral part of the system. We believe that this is descriptively
necessary, and may furthermore have distinct advantages over common techniques of
translation into First Order Logic. To consider one example for this point, an adjec-
tive like tall is a restrictive modifier of nouns: any tall N is an N, for every noun N.
Similarly, the degree word very is a restrictive modifier of adjectives: anything that
is very A is A, for any adjective A. In first order logic, it is hard (or even impossi-
ble) to represent such inferential properties of modifiers like tall and very.1 In the
proposed system of natural logic, one feature, the feature ‘R’ (restrictiveness of mod-
ifiers), with the proper inference rules, represents this property for all modificational
syntactic categories. The main challenge of Natural Logic is to find an optimal set of
semantic features that allows to capture computationally as much as possible of the
inference properties of natural language.

In [10] and [7], a similar conception of Natural Logic is used for describing certain
semantic properties of natural language expressions. Sánchez proposes a mechanism
that decorates categorial grammar proofs of natural language expressions using signs
that indicate the monotonicity properties of these expressions – whether they are ’or-
der preserving’ or ’order reversing’. Sánchez shows that this monotonicity marking
can be used to account for non-trivial inferences in natural language. However, while
Sánchez’ annotation of proof trees is rigorously defined, the derivation of the order
statements that use them is not fully formalised. A similar limitation exists in more
recent extensions of Sánchez’ work, as in [2] and [1]. Therefore, Sánchez’ system
and its current descendents do not fully derive inferences between natural language
sentences. The first step we take in this paper is to use Sánchez’ treatment of mono-
tonicity for defining order statements as purely syntactic relations between derivation
trees in categorial grammar, using a formal calculus that we call the order calculus.
As a logic this ‘natural logic’ is different from traditional conceptions of logic as a
closure of a set of atomic formulas under certain operators. Here each formula is a
pair of derivation trees in Categorial Grammar and therefore the whole power of CG
is needed to describe formulas.

Another non-obvious question about Sánchez’ system is whether this treatment of
monotonicity can extend to cover inferences with non-monotonic expressions. We
show that at least for a (large) subset of non-monotonic items, such a treatment is
possible using a novel treatment of coordination in natural logic that relies on the
semantic fact that items like and and or are greatest lower bound/least upper bound
operators respectively with respect to the order relations in the categories they apply

1Although there exists a standard representation of adjectives in FOL, in which tall man is represented as tall′(x)∧

man′(x), this representation treats tall as if it were intersective, which is not necessarily the case. Furthermore, an

adjective phrase like very tall has no straightforward representation in FOL to begin with.

2. SEMANTIC ORDER RELATIONS IN NATURAL LANGUAGE 387

to. This immediately captures entailments with so called continuous non-monotonic
expressions, which as proven in [8] are equivalent to conjunctions of monotonic ex-
pressions. After introducing this system, we present an algorithm that, under certain
restrictions, finds a proof of any order relation that is provable in the order calculus.

Section 2 describes some notions and techniques from natural language semantics
that are crucial for the following sections. Section 3 develops a categorial inference
system that formalises Sánchez’ work, and extends it to treat coordination. Section 4
gives a small lexicon for the system, which is used for illustrating its application for
some inferences with natural language sentences. Section 5 develops the proposed
preliminary decision procedure for provability and sketches briefly elements of its
correctness proof. The more detailed proof can be found in [9]. Section 6 briefly
discusses previous works on direct inference in natural language, and their relations
with the present enterprise. Section 7 describes a working prototype for computing
inferences in natural logic, which has been implemented upon Bob Carpenter’s tlg
categorial grammar parser ([3]).

2 Semantic order relations in natural language

Semantic order relations between expressions in natural language are very common,
and, as we will show in this paper, are useful for the derivation of inferences in an
effective way. There are three origins for linguistic order relations on which we would
like to concentrate:

1. Construction-based order relations are generated from specific constructions or
lexical items of the language.

2. Lexical order relations are relations between words that appear due to their lexical
meaning.

3. Imported order relations are deduced by inference processes on input in natural
language or are explicitly provided by some external source.

As an example for order relations of the first kind consider the following entail-
ments:

(1) a. John is a tall student ⇒ John is a student

b. John is very tall ⇒ John is tall

c. John is a very tall student ⇒ John is a student.

These entailments reflect general properties of the words tall and very when they
function as modifiers, which are informally written below as order relations, where N
and A are a noun and an adjective respectively.

(2) a. tall(N) ≤N

b. very(A) ≤ A

c. (very(tal))(N) ≤ N.

It should be pointed out that the relation in (2c), which reflects a general property
of the complex expression very tall, logically follows from the ordering properties of
the words tall and very as described in (2a)and (2b).This kind of construction-based
ordering is central to the inference processes in natural logic, which we aim to capture
within what we call an Order Calculus.

388 Order-Based Inference in Natural Logic

Lexical order relations reflect knowledge about the meaning of words. For in-
stance:

(3) a. student ≤ person

b. run ≤ move

c. father ≤ parent

Of course, lexical relations may be more complex than order relations. For instance,
the following proposition reflects the familiar connection between the transitive verb
kill and the intransitive verb die. The notations kill′ and die′ represent the binary
predicate and the unary predicate that these words denote, respectively.

(4) ∀x[∃y[kill′(y, x)]→ die′(x)]

The properties of the logic required to express lexical relations is a subject that we
will not touch here. We simply assume that lexical order relations are given, as part
of a lexical knowledge base that is not part of the order calculus itself. Additional
’imported’ order relations may be inferred from other knowledge bases. For instance,
a premise stating that all swans are white may be inferred from some description
(linguistic or another) of animal life. Linguistic expressions like every, all, always etc.
are useful for expressing such order statements. Lexical rules on the meanings of these
words derive the appropriate order statements.

Let us now review some notions and techniques from natural language semantics,
which are central for the development of the order calculus in the next section. We
assume that expressions in natural language are associated with types. The primitive
types are a finite set, in which we identify a subset of primitive partial order (PO) types
and, in turn, its subset of primitive boolean types. In any given model, each primitive
type is associated with a domain. The domains associated with primitive PO types
are partially ordered by a given partial order relation, while the domains associated
with primitive boolean types have a boolean algebra defined on them. Non-primitive
types inductively describe the functional compounds of primitive types. Standardly,
Currying allows us to describe n-ary functions by unary types. A type that describes
n-ary functions with a PO or boolean range is called a (non-primitive) PO type or
boolean type respectively. An ordering relation on non-primitive PO domains is defined
pointwise using the orderings of primitive PO domains. These notions are formally
defined below.

Definition 2.1 (types) Let T0 be some finite set of primitive types. The set of
types is the smallest set T that satisfies:

1. T0 ⊆ T,

2. If τ ∈ T and σ ∈ T then also (τσ) ∈ T.

Standardly, types e (for ‘entities’) and t (for ‘truth values’) are among the primitive
types.

Definition 2.2 (domains) For each primitive type τ ∈ T0, let Dτ be the corre-
sponding non-empty domain. Let these primitive domains be mutually disjoint. For
each non-primitive type (τσ) ∈ T \ T0, let Dτσ be the set of functions from Dτ to
Dσ.

Definition 2.3 (PO and Boolean types) Let T0
po ⊆ T0 and T0

bool ⊆ T0
po be two

finite sets of primitive PO types and primitive boolean types respectively, s.t. t ∈

2. SEMANTIC ORDER RELATIONS IN NATURAL LANGUAGE 389

T0
bool. The set of PO (Boolean) types is the smallest set Tpo ⊆ T (Tbool ⊆ T) that

satisfies:

1. T0
po ⊆ Tpo (T0

bool ⊆ Tbool),

2. If τ ∈ T and σ ∈ Tpo (σ ∈ Tbool) then also (τσ) ∈ Tpo ((τσ) ∈ Tbool).

Definition 2.4 (pointwise partial (boolean) order) For each primitive PO (boolean)
type τ ∈ T0

po (τ ∈ T0
bool), let ’≤τ ’ be a partial (boolean) order on Dτ . For each non-

primitive PO (boolean) type (τσ) ∈ Tpo \ T0
po ((τσ) ∈ Tbool \ T0

bool), the pointwise
partial (boolean) order ’≤τσ’ on Dτσ is defined by:

x ≤τσ y holds iff for every z ∈ Dτ , x(z) ≤σ y(z) holds.

We sometimes use the notation ’x ≥ y’ instead of ’y ≤ x’, when convenient. Stan-
dardly, the domain Dt of truth values is the doubleton {0, 1}, for falsity and truth
respectively, with the numerical partial order ’less or equal’. This boolean order im-
poses similar boolean orders on the boolean domains whose type “ends with t”. The
domain De of entities is arbitrarily chosen (with no partial order assumed).

After defining the elementary semantic notions with respect to order relations, we
may move on to special behaviour of functions with respect to these relations, and to
some order-based notions that are important for the purposes of this paper.

Definition 2.5 (restrictive function) A function f ∈ Dττ , where τ is a PO type,
is called restrictive iff for every x ∈ Dτ : f(x) ≤ x.

Using these definitions we get an intuitive account of entailments as in (1).The
function that the adjective tall denotes is of type (et)(et) – from a nominal of type
et to a nominal of type et, and we assume that it is a restrictive function. Similarly,
the function that the degree modifier very denotes is of type ((et)(et))((et)(et)) –
from an adjectival phrase of type (et)(et) to an adjectival phrase of type (et)(et), and
we assume that it is a restrictive function as well. Consequently, the function that
the adjectival phrase very tall denotes is of type (et)(et). By restrictiveness of very
we get the relation very(tall) ≤(et)(et) tall . Hence by definition of ’≤(et)(et)’, we get
the relation (very(tall))(student) ≤et tall(student). By restrictiveness of tall we get:
tall(student) ≤et student . Hence, by transitivity of ’≤et’: (very(tall))(student) ≤et

student.
Of course, the notion of restrictive functions can be naturally extended to n-ary

functions, and then it is sometimes said that a function of type ’ending with τ ’ is
restrictive on one of its τ type arguments. A special kind of restrictive functions is
known as greatest lower bound (glb) functions. Consider the definition of the binary
case, which is most useful for our purposes.

Definition 2.6 (greatest lower bound) A function f ∈ Dτ(ττ), where τ is a boolean
type, is called glb iff for all x, y, z ∈ Dτ the following two conditions hold:

1. (f(x))(y) ≤ x and (f(x))(y) ≤ y;

2. if z ≤ x and z ≤ y then z ≤ (f(x))(y).

The first requirement states that f is restrictive, or returns a lower bound, on both
its arguments; the second requirement states that f returns a greatest lower bound
on its arguments. A glb function is sometimes denoted by ‘∧’ (boolean meet), and
then ‘(f(x))(y)’ is abbreviated as ‘x ∧ y’.2

2From the definition of the glb follows its uniqueness whenever existing.

390 Order-Based Inference in Natural Logic

A symmetric notion is the notion of least upper bound (lub) functions.

Definition 2.7 (least upper bound) A function f ∈ Dτ(ττ), where τ is a boolean
type, is called lub iff for all x, y, z ∈ Dτ the following two conditions hold:

1. (f(x))(y) ≥ x and (f(x))(y) ≥ y;

2. if z ≥ x and z ≥ y then z ≥ (f(x))(y).

The first requirement states that f returns an upper bound on both its arguments;
the second requirement states that f returns a least upper bound on its arguments.
A lub function is sometimes denoted by ’∨’ (boolean join), and then ’(f(x))(y)’ is
abbreviated as ’x ∨ y’.

In natural language there are at least three kinds of glb functions:

1. Conjunctions. The standardly assumed meaning of conjunctions such as dance
and smile, Mary danced and John smiled, and every teacher and some student is
the glb of the meanings of the conjuncts.

2. Relative clauses. A ’subject oriented’ relative clause such as child who sneezed
(e.g. in the nominal the child who sneezed) is treated as a glb of the noun (child)
denotation and the verb phrase (sneezed) denotation.

3. Intersective adjectives. Adjectives like blue and pregnant are often assumed to
denote ’intersective functions’: functions of type (et)(et) that intersect their argu-
ment with an implicit argument of type et. For instance, the nominal blue car is
synonymous with the nominal car that is blue, which is formed using a glb relative.

A lub function in natural language is the disjunction or : the standardly assumed
meaning of disjunctions such as dance or smile, Mary danced or John smiled, and
every teacher or some student is the lub of the meanings of the disjuncts.

Another useful property of functions in natural language that is expressed in terms
of order relations is monotonicity.

Definition 2.8 (monotonicity) Let σ1 and σ2 be PO types. A function f ∈ Dσ1σ2

is:

upward monotone iff for all x, y ∈ Dσ1 : x ≤σ1 y ⇒ f(x) ≤σ2 f(y);

downward monotone iff for all x, y ∈ Dσ1 : x ≤σ1 y ⇒ f(x) ≥σ2 f(y).

For instance, natural language determiners like some and every are treated as func-
tions of type (et)((et)t). The determiner some is analysed as a function that is upward
monotone on both its arguments, due to entailments as in (5).The determiner every is
analysed as a function that is downward monotone on its first argument and upward
monotone on its second argument, due to entailments as in (6).

(5) a. Some tall student ran ⇒ Some student ran

b. Some student ran ⇒ Some student moved

(6) a. Every student ran ⇒ Every tall student ran

b. Every student ran ⇒ Every student moved

Note further that a determiner like exactly one is neither upward nor downward mono-
tone on any of its arguments. This is verified by the following lack of entailments.

(7) a. Exactly one tall student ran
6⇒
6⇐

Exactly one student ran

3. THE CATEGORIAL INFERENCE ENGINE 391

b. Exactly one student ran
6⇒
6⇐

Exactly one student moved

3 The Categorial Inference Engine

In this section we introduce the system that will be used to derive semantic order re-
lations between syntactic representations of expressions in natural language without
resorting to their meanings. A categorial calculus, a variant of the simple AB-calculus,
is responsible for assigning derivation trees to expressions of natural language. The
categories in these trees are decorated by some semantic features, which give infor-
mation on the order-based semantic properties of the expressions under the given
syntactic analysis. An order calculus is responsible for deriving order statements
between such decorated derivation trees. Especially, this calculus derives order rela-
tions between derivation trees of sentences, which correspond to semantic entailment
relations between readings of sentences themselves.3

We first define the decorated categories of the grammar. These categories are based
on a small set of primitive categories and its standard extension to the set of categories
in applicative categorial grammar, with the additional feature that decorated cate-
gories can have signs marking certain semantic properties (like monotonicity, restric-
tiveness, or glb/lub behaviour of expressions that derive them). A standard mapping
from (decorated) categories to functional semantic types is defined. This is needed
not only for the standard definition of a type-theoretical semantics, but furthermore
for the specification of which expressions (possibly of different syntactic categories)
are of the same semantic type and hence should be comparable in the order calculus.
The subset of categories that is of special interest in our inference system is the set of
partial order categories (PO categories) and boolean categories, those categories that
correspond to PO and boolean types. Order relations are defined for this set. We
follow [4] and eliminate non-PO categories from the set of decorated categories. Here
and henceforth, by types we refer to semantic types and by categories to syntactic
categories.

The set of (undecorated) categories is standardly defined as in applicative cate-
gorial grammar (in ‘result on left’ style slash format), with a mapping type from
categories to types. We assume that the set of primitive categories includes at least
two designated categories, s (for sentences) and s (a category whose use will become
clear as we go along).

Definition 3.1 (categories) Let CAT0 be a finite set of primitive categories s.t.

{s, s} ⊆ CAT0. Let type0 : CAT0 → T be a typing function for this set s.t.

type0(s) = type0(s) = t. The set of categories is defined, together with its typing

function type extending type0, as the smallest set CAT that satisfies:

1. CAT0 ⊆ CAT. For any A ∈ CAT0 : type(A) = type0(A);

2. If A ∈ CAT and B ∈ CAT then A/B ∈ CAT and A\B ∈ CAT, and type(A/
B) = type(A\B) = (type(B) type(A)).

Note that the type of a primitive category need not be a primitive type.

3Here and henceforth, when we talk about entailment relations, we also consider cases where there are two or more

premises. In the next section it will become clear how the system captures such entailments.

392 Order-Based Inference in Natural Logic

Definition 3.2 (PO categories) The set CATpo of PO categories is defined by
{A ∈ CAT : type(A) ∈ Tpo} - the set of categories whose type is PO.

We use annotations on elements from the set of PO categories to encode three
kinds of semantic properties: monotonicity, restrictive modification and conjunc-
tion/disjunction. The annotation uses a semantic feature
F ∈ {+,−, R, C,D} on the main (back)slash constructor of the category, for denoting
upward (+) monotonicity, downward (−) monotonicity, restrictive modification (R),
conjunction (C) and disjunction (D), respectively.4 The annotation F on a cate-
gory A/FB that is assigned to an expression α means that α is upward/downward
monotone, restrictive etc.

Monotonicity: any category A/B or A\B where both A and B are PO categories
can be decorated by a monotonicity +/− sign, for upward/downward monotonicity.
For instance, assigning the decorated category (s/+(s\np))/−n to the determiner every
specifies the (correct) assumption that this determiner is downward monotone on its
nominal argument and, furthermore, that the noun phrase it generates (of the category
s/+(s\np)) is upward monotone on its verb phrase argument.

Restrictive Modification: Any non-primitive PO category that corresponds to a
type ττ is a category of a semantic modifier and can be marked by ’R’ to describe
the fact that its semantic function is restrictive.5 For instance, a restrictive adverb
like yesterday, in its role as a modifier of intransitive verbs, will be assigned the
decorated category (s\np)\R(s\np). A restrictive adjective like tall, in its role as a
nominal modifier, will be assigned the decorated category n/Rn.

Conjunction/Disjunction: A non-primitive PO category that corresponds to a type
τ(ττ), where τ is a boolean type, is in fact a ’coordinator’, which can be marked
by a ‘C’/‘D’ sign, for conjunction/disjunction (=glb/lub). For instance, the relative
pronoun who will get the marking (n\n)/C(s\np) for describing its conjunctive role in
relative clauses missing a subject (e.g. as in a child who walks).

The set CATd of decorated categories contains the PO categories, possibly marked
for monotonicity, conjunction/disjunction or restrictiveness. A category that is marked
for conjunction or disjunction does not have any other marking.6

Definition 3.3 (decorated categories) The set of decorated categories is defined,

together with its typing function typed extending type, as the smallest set CATd

that satisfies:

1. CATpo ⊆ CATd. For any A ∈ CATpo: typed(A) = type(A).

2. If A ∈ CATd and B ∈ CATd then A/FB ∈ CATd and A\FB ∈ CATd, where
F is in the set {+,−, R, C,D, ε} (ε is the empty marking) and the following
conditions hold:

(a) typed(A/FB) = typed(A\FB) = (typed(A) typed(B));

(b) If F=’R’ then typed(A) = typed(B);

(c) If F=’C’ or F=’D’ then:

4In fact, these properties are not mutually exclusive. For instance, a restrictive modifier may or may not be upward

monotone, but a conjunction is always upward monotone and restrictive on both its arguments (see fact 3.11 below).

In [9], categories are decorated by sets of semantic features.

5Primitive categories of this type are always arguments, and therefore do not function as modifiers, despite their

semantic type.

6The restrictiveness and upward monotonicity of conjunction and the upward monotonicity of disjunction will follow

from the inference rules for these features.

3. THE CATEGORIAL INFERENCE ENGINE 393

(i) A = C/εD or A = C\εD;

(ii) typed(B) = τ where τ is a boolean type, and typed(A) = (ττ).

Notation: We use A/∗B (or A\∗B) as a pattern matching any of the categories A/FB
(or A\FB), where F ∈ {+,−, R, C,D, ε}.

We define two notions of equivalence between decorated categories. Formal equiv-
alence between two decorated categories means that they are derived from the same
standard syntactic category and may only be different in their semantic annotations.
Two decorated categories are called semantically equivalent if their semantic type is
the same. The formal equivalence classes of categories are the standard categories of
applicative categorial grammar. We assume that the syntax is insensitive to semantic
annotations, and therefore only these equivalence classes are relevant for the defini-
tion of the syntactic inference rules in the grammar.7 Semantic equivalence between
categories means that denotations of expressions of these categories are semantically
comparable.

Definition 3.4 (formally equivalent categories) For any two decorated categories
A,B ∈ CATd we say that A is formally equivalent to B, and denote A ≡f B, iff:

1. A and B are primitive and A = B or {A,B} = {s, s}; or

2. A = A1/
∗A2, B = B1/

∗B2, A1 ≡f B1 and A2 ≡f B2; or

3. A = A1\∗A2, B = B1\∗B2, A1 ≡f B1 and A2 ≡f B2.

Definition 3.5 (semantically equivalent categories) For any two decorated cat-
egories A,B ∈ CATd we say that A is semantically equivalent to B, and denote

A ≡s B, iff typed(A) = typed(B).

To give an example, it is standard to assign the type e to the primitive category np

(for noun phrases) and to give the type et to the primitive category n (for nouns).
Consequently, the categories n and s\np (for intransitive verbs) become semantically
equivalent. Under the assumption above that the grammar assigns the category
(n\n)/C(s\np) to the word who, the calculus is therefore able to compare the deriva-
tion tree of the nominal child who walks slowly with the derivation trees of the verb
walks, and to prove that the former is ‘smaller than’ the latter, although they are of
different syntactic categories.

We use a variant of the standard applicative AB calculus over the decorated cate-
gories, which is responsible for derivation of syntactic analyses for given expressions.
The only difference from the standard AB calculus is that here the argument category
B in a functor category A/B (or A\B) may be decorated differently than the category
B′ that combines with the functor. Therefore we require formal equivalence between
B and B′, and not simply identity.

Definition 3.6 (AB calculus) For any two decorated categories A/∗B (or A\∗B)
and B′ ≡f B we have the following (back)slash elimination rules.

A/∗B B′

A
/E

B′ A\∗B

A
\E

7We do not treat here the case of negative polarity items like any and ever, which are commonly assumed to be

sensitive to monotonicity marking. For an account of NPI within a version of natural logic see [2].

394 Order-Based Inference in Natural Logic

Notation: We use the ’|’ sign as a pattern matching both ’/’ and ’\’, in cases where
the direction of the slash is immaterial. In such cases the patterns

A|∗B B′

A
|E and

B′ A|∗B

A
|E

each match both of the above elimination rules.
The AB calculus together with a lexicon constitute a grammar that is used for

assigning derivation trees to natural language expressions. The derivation trees are
the syntactic objects for which the order calculus is defined below. The definition of
the lexicon and derivation trees is straightforward. We add to any lexicon the word
w> (the ‘top word’) of category s, the use of which will become clear in the sequel.

Definition 3.7 (lexicon) A lexicon is a pair 〈Σ, cat〉, where Σ is a finite set of words
s.t. w> 6∈ Σ, and cat is a function from Σ∪{w>} to non-empty finite subsets of CATd

s.t. cat(w>) = {s}.

Definition 3.8 (derivation tree) A labelled tree T is a derivation tree for a string
σ ∈ Σ+ iff: (i) The frontier of T is labelled by the elements of σ, (ii) Every leaf x in T
has no brother and label(mother(x)) ∈ cat(label(x)), and (iii) The internal nodes
in T (those not in its frontier) form a proof tree in the AB calculus.

The main part of the system is the order calculus defined below, which is the engine
that derives semantic order relations between derivation trees of natural language
expressions. The formulas manipulated by this calculus are order statements between
derivation trees of formally or semantically equivalent categories. Thus, the general
form of formulas in this calculus is:

αA ≤ βB , where αA and βB are derivation trees of decorated categories A and
B respectively such that A ≡s B.

Notational conventions: ’T2 ≥ T1’ instead of ’T1 ≤ T2’; ’T2 ≡ T1’ instead of ’T1 ≤ T2

and T2 ≤ T1’. This (semantic) equivalence between derivation trees should be dis-
tinguished from formal or semantic equivalence between categories as defined above.
Note that all the decorated categories in CATd are based on PO categories in CATpo.
Therefore, it makes sense to compare any two derivation trees that have semantically
equivalent categories at their roots, as the semantic domains of all decorated categories
are guaranteed to be ordered. Note further that the notation ’≤’ is now treated as a
syntactic relation between trees, and not as a semantic relation between denotations
as in Section 2.

Having specified the item form in the system, we can now move on to the definition
of the inference rules in the order calculus. Inference rules with no premises are order
axioms, and they impose order statements between natural language expressions of
certain constructions. Other rules derive order statements from given order state-
ments. Two simple rules in the system, reflecting basic properties of the ’≤’ relation
(independent of derivation trees that it relates) are Reflexivity and Transitivity. In
addition, there are rules that treat specific structures generated by the AB calcu-
lus. We consider here three typical structures: function application, modification and
coordination.

Function application is general application of (back)slash elimination rules with no
further restrictions. In this case we derive an ordering between f(x) and g(y) using
two rules: (i) Monotonicity – where f ≡ g is a monotonic function and an ordering is

3. THE CATEGORIAL INFERENCE ENGINE 395

given between x and y; and (ii) Function replacement – where x ≡ y and an ordering
is given between f and g (which do not have to be monotonic).

Modification holds in the special case of function application where the domain and
the range of f are the same. A Restrictive Modification axiom derives then an order
between x and f(x). Coordination is a situation where a ‘Curried’ function F is of
boolean type τ(ττ). That is, F has two arguments of the same type as the result.8

Coordination rules derive an order between F (x, y) and z using orders between z and
x and/or between z and y. These rules reflect the fact that conjunction/disjunction
are greatest lower bound/least upper bound operators with respect to the ’≤’ relation.
An additional rule, combining coordination and function application, reflects our
assumption that all coordinators in natural language are pointwise operators.

The order calculus embodies these assumptions on top of a grammar that induced
by the AB calculus. In the following definition of this calculus, the notation ΦX ,ΨY

stands for a derivation trees Φ,Ψ in the AB calculus where the derived category (at
the root) is X,Y respectively. An order relation is therefore of the form ΦX ≤ ΨY ,
where the categories X and Y are semantically equivalent. Derivation trees that need
to be more elaborate in order relations are often enclosed by boxes, to highlight the
ΦX and ΨY sides of the order relation. We also use a A|±B notation to denote a
category, which is marked for either upward or downward monotonicity. For instance,
the notation ΦA|±B matches both derivation trees in the AB calculus of the forms
ΦA/+B , ΦA\+B , ΦA/−B and ΦA\−B .

Definition 3.9 (order calculus (OC))

Reflexivity: ∅
α ≤ α

REFL
Transitivity: α ≤ β β ≤ γ

α ≤ γ
TRANS

Monotonicity:
αB′ ≤ βB′′

γA|±B αB′

A
|E

≤
≥

γA|±B βB′′

A
|E

MON

’≤’ and ’≥’ for ’+’ and ’−’ respectively; B ≡f B′ ≡f B′′

Function
Replacement:

αA|∗B ≤ βC|∗D γB′ ≡ δD′

αA|∗B γB′

A
|E ≤

βC|∗D δD′

C
|E

FR

where A ≡s C, B ≡s D, B ≡f B′, D ≡f D′.

Restrictive
Modification:

∅

αA′|RA βA′′

A′
|E ≤ βA′′

RMOD

where A ≡s A′ ≡s A′′.

Conjunction:

8In this description of coordination, items like relative pronouns are treated as coordinators, because their type can

be assumed to be (et)((et)(et)). Here and henceforth, we refer to coordination in this extended, semantic, sense.

396 Order-Based Inference in Natural Logic

∅

α
(A|B)|CC

γC

A|B
|E

βB

A
|E

≤ Ψ

C1
α′

A′ ≤ βB α′
A′ ≤ γC

α′
A′ ≤ α

(A|B)|CC
γC

A|B
|E

βB

A
|E

C2

where Ψ = βB or Ψ = γC

Disjunction:
∅

Ψ ≤
α

(A|B)|DC
γC

A|B
|E

βB

A
|E

D1
βB ≤ α′

A′ γC ≤ α′
A′

α
(A|B)|DC

γC

A|B
|E

βB

A
|E

≤ α′
A′

D2

where Ψ = βB or Ψ = γC

Pointwise Coordination:

∅

α
((A|B)|(A|B))|C/D(A|B)

βA|B

(A|B)|(A|B)
|E

γA|B

A|B
|E

δB

A
|E

≡

α
(A|C/DA)|A

βA|B δB

A
|E

A|A
|E

γA|B δB

A
|E

A
|E

PWC

We define provability in the order calculus C as the relation that exists between
a finite set P = {αi ≤ βi : i ∈ {1...n}} of premise order statements and any order
statement α ≤ β derived from P in C using application of inference rules.

The Pointwise Coordination (PWC) rule presupposes that any conjunctive/disjunc-
tive expression of category ((A|B)|(A|B))|C/D(A|B) can also be analysed as category
(A|C/DA)|A respectively, and conversely: any expression of category (A|C/DA)|A is
also of category ((A|B)|(A|B))|C/D(A|B), where B is a category derivable in the AB
calculus from a given lexicon. The PWC rule partly follows from the Function Re-
placement, Conjunction and Disjunction rules. Let us abbreviate the conclusion of
this axiom as stating that (f coor g)(x) ≡ f(x) coor g(x), where coor is a cross-
categorial coordinator (see the following section for our treatment of cross-categorial
coordination). We observe the following fact.

Fact 3.10 The order statements (f∧g)(x) ≤ f(x)∧g(x) and (f∨g)(x) ≥ f(x)∨g(x)
are derivable in the order calculus without the PWC rule.

A sketch of the proof of the first part of this fact is the following simplified derivation
in the order calculus.

∅
f ∧ g ≤ f

C1

(f ∧ g)(x) ≤ f(x)
FR

∅
f ∧ g ≤ g

C1

(f ∧ g)(x) ≤ g(x)
FR

(f∧g)(x) ≤ f(x)∧g(x)
C2

3. THE CATEGORIAL INFERENCE ENGINE 397

The proof of the second part is similar.
Note further the following simple fact about this system.

Fact 3.11 (i) Any conjunctive category (A|B)|CC can be replaced by (A|RB)|CC with
no additional inferences derived by this notation. (ii) Any conjunctive/disjunctive
category (A|B)|C/DC can be replaced by (A|+B)|+C with no additional inferences
derived by this notation.

In other words, this fact states that it is provable in the system that (i) any conjunction
combines with its first argument to yield a restrictive modifier and that (ii) that
conjunction and disjunction are both upward monotone on both arguments. This
fact justifies our assumption in the definition of decorated categories that conjunctive
and disjunctive categories are otherwise unmarked on their arguments.
Sketch of proof: (i) is directly by C1.
For (ii), the following inference (in abbreviated format) shows that conjunction is
upward monotonic in its second argument:

∅
y ∧ z ≤ y

C1

∅
y ∧ z ≤ z

C1

z ≤ z′ (assumption)

y ∧ z ≤ z′
TRANS

y ∧ z ≤ y ∧ z′
C2

The reasoning for the other cases with conjunction and disjunction is similar.
To illustrate the use of the order calculus, we give below some examples for order

statements between natural language expressions that can be obtained by direct ap-
plication of these rules to trees derived by a simple lexicon for the AB calculus like
the one defined in the next section. For simplicity of notation we omit the derivation
trees of the expressions and just add parentheses where necessary.

• tall(student) ≤ student (restrictive adjective modification)9

yesterday(ran) ≤ ran (restrictive adverb modification)

• some(tall student) ≤ some(student) (upward monotonicity of some on first ar-
gument)
every(student) ≤ every(tall student) (downward monotonicity of every on first
argument)

• (every student) (yesterday (ran)) ≤ (every student) (ran) (upward monotonicity
of every on second argument)
(no student) (ran) ≤ (no student) (yesterday (ran)) (downward monotonicity
of no on second argument)

• (every student)(ran) ≤ (every tall student)(ran) (function replacement)

• student who ran ≤ student,
student who ran ≤ ran (conjunctive behaviour of relatives)

• every student and some teacher ran = every student ran and some teacher ran
(pointwise coordination)

For proving the soundness of this system we use a standard extension of the AB
calculus such that any derivable expression is assigned, besides a category A, also

9Non-restrictive adjectives like fake do not follow this pattern (e.g. a fake diamond is not a diamond), and we

assume that this non-restrictiveness should be reflected in the category of the adjective, so that the modification

rule does not apply to them.

398 Order-Based Inference in Natural Logic

a semantic value of type typed(A). For lexical items such a value may come with
restrictions (meaning postulates) according to the semantic feature in A.10 Semantic
values of derivation trees for complex items are defined inductively using the Curry-
Howard isomorphism. The models for an order statement T1 ≤ T2, where T1 and
T2 are derivation trees for categories A1, A2 with semantic values ψ1, ψ2 respectively,
are the models for which ψ2 dominates ψ1 in their PO-domain. Using these notions,
it is easy to show that the above rules of the order calculus are sound relative to a
standard semantics. We will not formally develop this point further here. However,
in the appendix we illustrate a semantics for items in the lexicon that is provided
there. While showing soundness of our system relative to standard semantics is pretty
routine, a harder question is whether the system is complete. In other words: for a
given lexicon of words with decorated categories, does the system derive all the valid
order relations over this lexicon that semantically follow from the decorations under
their standard semantics? We hypothesise that this is so, but we have not found a
proof for this hypothesis yet.

4 The order calculus as an inference system for natural

language

In this section we illustrate how the order calculus as defined above can be used for
deriving inferences in natural language. To do that we have to add three ingredients to
the system that has been described so far: a presentation of natural language sentences
as order relations that can be manipulated by the order calculus, a concrete lexicon,
and lexical/extra-logical order relations, which are used as additional assumptions of
the order calculus. We describe these three parts and then give some examples for
derivations in the resulting system.

4.1 Assertions as order relations

The premises and the goal in the system are assertions of natural language sentences.
We regard such assertions as order statements of the form > ≤ T , where T is a deriva-
tion tree of a sentence and > (’top’) is notation for the following special derivation
tree.

> =
w>

s

Thus, we treat assertions as a special case of order statements, between a derivation
tree of a sentence and a ’top’ element that corresponds to the truth value ’true’. This
allows us to have a single uniform item form in the system, encoding both assertions of
sentences and order relations between any linguistic expressions. Thus, the formulas
of the order calculus that represent assertions of natural language sentences are of the
following form.

> ≤ αs, αs is a derivation tree that derives s.

10For instance, for a lexical item ADJ of category n/Rn (a restrictive modifier of nouns), we assign in any model

a value ADJ (of type (et)(et)) that satisfies the meaning postulate ∀Xet∀ye[(ADJ(X))(y) → X(y)]. See more on

this strategy in the appendix.

4. THE ORDER CALCULUS AS AN NL INFERENCE SYSTEM 399

Word(s) Category

every (s/+(s\np))/−n

no (s/−(s\np))/−n

some (s/+(s\np))/+n

at least ((s/+(s\np))/+n)/−num

at most ((s/−(s\np))/−n)/+num

exactly ((s/(s\np))/n)/num

two,three,four num

student, teacher, person n

boys, girls, people n

ran, walked, smiled, moved s\np

hugged, kissed, touched, admired (s\np)/np

tall, short, young, old n/Rn

very, extremely (n/n)/R(n/n)

deliberately, yesterday (s\np)\R(s\np)

who (n\n)/C(s\np)

and (s\s)/Cs

Table 1. lexicon

4.2 Lexicon and ad hoc syntactic rules

We use a lexicon that will allow us to demonstrate the main properties of the system
in treating monotonic and non-monotonic expressions. The set T0 of primitive types
that we use includes the types t (for truth values), e (for entities) and v (for natural
numbers). The primitive PO types in T0

po are t and v and the only primitive boolean
type is t. The set of primitive categories with their corresponding types (assigned by
the type0 function) is:

s:t s:t np:e n:(et) num:v

The categories s and s are for sentences, np is for noun phrases, n is for nouns and
num is for numerals. A lexicon that uses these categories is given in table 1.

In order to give a proper treatment of coordination and of quantified NPs in object
position, the AB calculus itself is insufficient. In order to avoid complications in
the syntactic calculus that are unnecessary for our present purposes, we use ad hoc
schemes that add elements to the lexicon given in figure 1. These schemes add more
categories to lexical items of two kinds:

1. Lexical items of categories that contain the category s/F(s\np), of quantifiers
in subject position. The scheme replaces this category by the corresponding
category for quantifiers in object position: (s\np)\F((s\np)/np). For instance:
we add to the determiner every the category
((s\np)\+((s\np)/np))/−n.

2. Coordinators of category (s\s)/Fs are also given a category (A\A)/FA, for each
category A of a boolean type in the (finite) category closure of categories by
the AB calculus in the lexicon that is given in Table 1.

The usage of these two schemes is illustrated in the appendix by the extended lexicon
that they derive from the “core lexicon” in table 1. In the proofs below, we use this
extended lexicon rather than the one above.

In addition, we add the following restriction on the usages of the coordinator cate-
gories:

• A derivation tree of category (X |Y)|C/DZ appears only in derivation trees where
is combines first with derivation trees Z and Y .

400 Order-Based Inference in Natural Logic

> ≤

every

(s/+(s\np))/−n

αn

s/+(s\np)
/E

βs\np

s
/E

αn ≤ βs\np

∀

Fig. 1. postulate on every

This assumption rules out derivation trees where the category (X |Y)|C/DZ combines
with T |((X |Y)|Z) or where (X |Y)|C/DZ combines first with Z and the result X |Y
combines with T |(X |Y). The linguistic motivations behind this assumption is that (i)
the category (X |Y)|C/DZ corresponds actually to a binary function; (ii) a coordinator
canot be an argument of another function.

We do not give full formalizations of this assumption and the ad hoc schemes above.
They are used only in order to allow a simplest version of categorial grammar so to
concentrate on the problems of computing order statements. A more comprehensive
syntactic calculus (e.g. as in [3]) would eliminate these schemes altogether.

4.3 Lexical/extra-logical order statements

We postulate the following order statements between derivation trees of simple ex-
pressions (for simplicity, only the expressions are given, without the corresponding
derivation trees in the grammar):

• exactly = at least and at most

• two ≤ three ≤ four

• student ≤ person, teacher ≤ person, boys ≤ people, girls ≤ people

• ran ≤ moved, walked ≤ moved

• hugged ≤ touched, kissed ≤ touched

Another ad hoc order relation is derived by the presence of the determiner every and
is given in Figure 1. This rule is used to enrich the system with more order relations
that are derived from assumptions in natural language (in the form ‘every x y’). Of
course, a more complete treatment of quantifiers would eliminate this rule.

4.4 Examples

Example 1 [7] observes that in a premise sentence the number of upward/downward
monotonic functions that take scope over a given expression determines whether a
replacement of this expression by a ’bigger’/’smaller’ expression is truth-preserving.
For instance, consider the two sound inferences below.

(8)
every student kissed every teacher

every student kissed every tall teacher

(9)
every student who kissed every tall teacher smiled

every student who kissed every teacher smiled

4. THE ORDER CALCULUS AS AN NL INFERENCE SYSTEM 401

In inference (51),the object noun phrase every teacher can be replaced by every tall
teacher, preserving the truth of the premise. This is by virtue of the fact that the
derivation trees for the nominals teacher/tall teacher, which are ordered according
to the Modification axiom, are arguments of every in a position that is downward
monotonic, and the whole object NP is in the scope of the noun phrase every student
in a position that is upward monotonic. By contrast, in inference (52)the same noun
phrase appears in a downward monotonic position: the nominal student who kissed
every tall teacher is a first argument of every, which is marked as downward monotone
on this argument. Consequently, (52) shows a reverse inference relation to (51): in
(52)the sentence with the modified nominal entails the sentence with the non-modified
nominal, and is not entailed by it. The opposite directions for these inferences are
not provable thanks to the soundness of the system.

Let us see how the above inference system derives this fact. First, the system
derives a ‘≤’ order relation between the two verb phrases kissed every teacher and
kissed every tall teacher. This is formally described in figure 2. In inference (51),the
verb phrase kissed every (tall) teacher is an argument of the (lifted) noun phrase
every student, whose category is marked with ‘+’ on this argument. Therefore, the
system directly proves the ≤ ordering between the premise S1 and the conclusion
S2 using the MON rule. Once such an order statement S1 ≤ S2 is proven between
sentences, the fact that the assertion of S1 is given in the form > ≤ S1 allows deriving
by Transitivity > ≤ S2, which is the assertion we need. By contrast, the inference in
(52)is derived because the category of the relative who is marked by ‘C’, hence by fact
3.11 it behaves like a category marked by ‘+’. This derives the order statement who
kissed every teacher ≤ who kissed every tall teacher. Further, Function Replacement
derives student who kissed every teacher ≤ student who kissed every tall teacher. But
using MON and the ‘−’ sign on the category of every we now derive every student
who kissed every teacher ≥ every student who kissed every tall teacher, and another
Function Replacement step derives a ≤ order statement between the premise and the
conclusion in (52).

Example 2 Another property of the system is that when a given premise is ma-
nipulated using the Monotonicity rule, different arguments of one function may re-
quire substitution by other arguments, and intermediate derivation trees may need
to be generated in the proof process. For instance, consider the sound inferences in
(54).

(10)
no teacher ran

no tall teacher ran yesterday

every teacher ran yesterday

every tall teacher ran

Using only one application of the Monotonicity rule we cannot derive these inferences,
and we need to use intermediate sentences like no tall teacher ran (or no teacher ran
yesterday) and every teacher ran (or every tall teacher ran yesterday). The conclusion
is then proven using the Transitivity rule. For instance, the order statement every
teacher ran yesterday ≤ every tall teacher ran yesterday is directly derived using
RMOD and downward monotonicity of the determiner every on its first argument.
The order statement every tall teacher ran yesterday ≤ every tall teacher ran is directly
derived using RMOD and upward monotonicity of every on its second argument.

Example 3 The use of more than one premise and the conjunctive meaning of the
relative is exemplified in the proof of the following inference.

402 Order-Based Inference in Natural Logic

∅

tall

n/Rn

teacher

n

n
/E

≤
teacher

n

RMOD

every

((s \ np)\+((s \ np)/np))/n−

tall teacher

A
A

A

�
�
�

n

(s \ np)\+((s \np)/np)
/E

≥

every

((s \ np)\+((s \ np)/np))/−n

teacher

n

(s \ np)\+((s \ np)/np)
/E

MON

kissed

(s\np)/np

every tall teacher

A
A

A

�
�
�

(s \ np)\+((s \np)/np)

s\np
\E

≥

kissed

(s\np)/np

every teacher

A
A

A

�
�
�

(s \ np)\+((s \np)/np)

s\np
\E

FR

Fig. 2. kissed every teacher ≤ kissed every tall teacher

(11)
every student smiled no student who smiled walked

no student walked

The proof is based on the following steps. First we obtain student ≤ smiled using the
ad hoc rule on simple every sentences. Then by Reflexivity student ≤ student and by
conjunction rule C2 we get student ≤ student who smiled. Downward monotonicity
of no and Function Replacement derive the statement no student who smiled walked
≤ no student walked. The formal process is given in figure 3.

Example 4 One of the surprising features of this system is that using the mono-
tonicity and conjunction rules we can prove some non-trivial inferences with non-
monotonic expressions. [8] notes that many non-monotone expressions in natural
language can be expressed as conjunctions of monotonic expressions. For instance,
the non-monotone item exactly is equivalent to a conjunction of the monotonic at least
and at most. This fact makes it possible to prove inferences like the following.

(12)
exactly four tall boys walked at most four boys walked

exactly four boys walked

The proof starts by using our lexical assumption exactly = at least and at most.
Consecutive steps of Pointwise Coordination and Function Replacement lead to at
least and at most four tall boys walked = at least four tall boys walked and at most
four tall boys walked. By C1 the derivation tree of this sentence is smaller than at
least four tall boys walked, which in turn, by upward monotonicity of at least four
and RMOD, is smaller than at least four boys walked. The conclusion > ≤ at least
four boys walked and the second premise in (57)lead by C2 to > ≤ at least four boys
walked and at most four boys walked, which using some steps of FR and Pointwise
Coordination lead to at least and at most four boys walked, which as before is equal
to the conclusion in (57).

5. DECISION PROCEDURE FOR PROVABILITY 403

> ≤

every

(s/+(s\np))/−nsg

student

nsg

s/+(s\np)
/E smiled

s\np

s
/E

smiled

s\np

≥
student

n

∀

student

n

≥
student

n

student

n

who

(n\n)/C(s\np)

smiled

s\np

n\n
/E

n
\E

≥
student

n

C2

no

(s/−(s\np))/−n

student who smiled

A
A

A

�
�
�

n

s/−(s\np)
/E

≤

no

(s/−(s\np))/−n

student

n

s/−(s\np)
/E

MON

no student who smiled

A
A

A

�
�
�

s/(s\np)

walked

s\np

s
/E

≤

no student

A
A

A

�
�
�

s/−(s\np)

walked

A
A

A

�
�
�

s\np

s
/E

FR

Fig. 3. conjunctive behaviour of relatives

5 Decision procedure for provability

This section introduces a decision procedure for provability in the order calculus and
sketches its correctness proof, under certain limitations. Subsection 5.1 informally
describes the proposed algorithm, which is further discussed in Subsection 5.2. Sub-
section 5.3 gives a sketch of the correctness proof, which is more formally given in [9].

5.1 Description of the algorithm

The algorithm we introduce below is a recursive function derive that decides whether
a proof of an order statement T0 ≤ T exists in the order calculus, given a (possibly
empty) finite set A of n order statement premises T1 ≤ T ′

1, T2 ≤ T ′
2 etc. The trees

T0, T, T1, T
′
1, T2, T

′
2 etc. are all derivation trees in the AB calculus and a given lexicon

(not necessarily the one given in Section 4). This algorithm can be immediately used
to search for a proof of an assertion > ≤ S given a set of premises > ≤ S1, > ≤ S2

etc., where S, S1, S2 etc. are derivation trees of natural language sentences.
The Goals parameter keeps track of all the pairs of trees that appeared in recursive

calls to the algorithm. Thus, the initial call is with Goals = ∅. A proof of an order
relation T0 ≤ T can be viewed as a series of order relations T0 = V1 ≤ ... ≤ Vm = T ,
where the proof of each order relation Vj ≤ Vj+1 does not involve any Transitivity
step Vj ≤ U ≤ Vj+1. In attempting to prove an order relation between T0 and T , we

404 Order-Based Inference in Natural Logic

∅
very(tall) ≤ tall

RMOD

(very(tall))(student) ≤ tall(student)
FR

∅
tall(student) ≤ student

RMOD

(very(tall))(student) ≤ student
TRANS

Fig. 4. very tall student ≤ student

distinguish between two cases, with complementary assumptions on the order relation
that is being searched for:

1. Assume that in the order relation T0 = V1 ≤ ... ≤ Vm = T that is being searched
for, there is no full replacement of a tree using a premise. In other words: no
i ∈ {1..n} and no j ∈ {1..m− 1} satisfy Vj = Ti and Vj+1 = T ′

i . In this case, the
algorithm attempts the following possibilities:

(a) The possibilities to recursively prove the order relation T ′
0 ≤ T , where T ′

0 is a
subtree of T0 that is guaranteed to satisfy T0 ≤ T ′

0 by one of the rules of the
order calculus. Symmetrically: the possibilities to recursively prove the order
relation T0 ≤ T ′, where T ′ is a subtree of T that is guaranteed to satisfy T ′ ≤ T
by one of the rules of the order calculus.
These possibilities are searched, according to the form of the rules, in a way that
will be described below.

(b) The possibilities to prove directly the order relation T0 ≤ T using the FR (func-
tion replacement) and MON (monotonicity) rules.

This process is performed using a function that is called subderive.

2. Otherwise, assume that in the order relation T0 = V1 ≤ ... ≤ Vm = T that is
being searched for, there is a full replacement of a tree using a premise. In other
words: for some i ∈ {1..n} and some j ∈ {1..m − 1}, Vj = Ti and Vj+1 = T ′

i .
Assuming that the leftmost occurrence of such a replacement is a replacement of
a tree Ti by T ′

i using the premise Ti ≤ T ′
i , the algorithm attempts to derive Ti

from T0 using the function subderive. This use of subderive is justified because
obviously there is no full replacement of trees using a premise left to Ti. Then the
algorithm recursively continues the attempt to derive T from T ′

i .

In each recursive call to derive or subderive, we add the present goal 〈T0, T 〉 to
the set of goals in the Goals parameter. A proof for this goal is not searched for
recursively. This prevents repetition of attempts to prove the same goal, which may
cause the algorithm not to terminate.

Before introducing the algorithm itself, we make a small change in the proof system
of the order calculus, which does not affect provability, but which is more convenient
for the description of the algorithm. Consider the valid inference in the order calculus
that is given in Figure 4.

Let us denote the derivation tree for very tall student in this figure by T0, and the
derivation tree for student by T . The function category of the derivation of very tall
is n/n, which is not marked as a restrictive modifier. Consequently, it is impossible to
generate T directly from T0 using the RMOD rule. In addition, T is a simple word,
without a function-argument structure, and therefore no direct use of the Function
Replacement or Monotonicity rules is possible. The needed order relation between the

5. DECISION PROCEDURE FOR PROVABILITY 405

trees for very tall and tall are therefore not derived using the algorithm as sketched
above. This problem is more general: it would reappear even if very were not defined
as restrictive but is provable to be restrictive. However, there is a simple way to
change the RMOD rule in a way that allows us to derive this order relation. Consider
the following simple fact.

Fact 5.1 A function f of type ττ , where τ is a poset type, is restrictive if and only
if f ≤ id, where id is the identity function of type ττ .

We replace the RMOD axiom by the following rules:

∅
αA′|RA ≤ idA′|A

RMOD1

αA′|∗A ≤ idA′|A

αA′|∗A βA′′

A′
|E ≤ βA′′

RMOD2

where A ≡s A′ ≡s A′′.

We assume that for each pair of PO categories A and A′, s.t. T(A) = T(A′), that are
in the (finite) category closure of the lexicon by the AB calculus, there exists a word
idA′|A. Note that this restatement of RMOD is only for the sake of the statement of
the algorithm. To show that this does not change the order calculus in any significant
way, it is sufficient to observe that the replacement of RMOD by RMOD1 and RMOD2

and the addition of the needed id elements to the lexicon do not change the provability
of order relations that do not involve id. The id elements do have of course a natural
semantic correlate: the identity functions in the respective domains. The proof of the
order relation between T0 and T is now as given in figure 5.

And this proof is found by the algorithm that is described below.
To describe the algorithm itself, let us first observe the following fact about the

axioms C1, PWC and RMOD1. Given a left hand tree Tl in the conclusion Tl ≤ Tr of
these rules, the tree Tr can be defined as a function of Tl. Let us call the corresponding
functions for these rules fC1,r, fPWC,r and fRMOD1,r.

11 The letter r designates the
fact that the right hand side of the conclusion is generated from the left hand side.
In a similar way we can define the functions fD1,l and fPWC,l that generate the left
hand sides of the conclusions of D1 and PWC from their right hand side. Observe
now a similar point about the derivation rules C2 and D2. In C2, the premises can
be expressed as a function of the conclusion Tl ≤ Tr. Let us therefore denote the
premises by Tl ≤ fC2,1(Tr) and Tl ≤ fC2,2(Tr). Similarly, in D2, we denote the
premises by fD2,1(Tl) ≤ Tr and fD2,2(Tl) ≤ Tr.

The function subderive uses these functions in trying to extract provable “smaller”
order relations from the two derivation trees in the goal T0 ≤ T . The functions for
the coordination rules C1, C2, D1, D2 and PWC are used in a straightforward way
to search for such “smaller” order relations. Similarly for the restrictive modification
rules RMOD1 and RMOD2. The Monotonicity and Function Replacement rules are
used in a combined manner: when two function-argument structures are given, the
functions are compared to each other, and the arguments are compared to each other
according to monotonicity marking of the functions, to search for a proof of an order
relation between the two structures. We denote α ∈ MON ↑ or α ∈MON ↓ when

11The time complexity for computing these functions is constant, independently of their arguments. Note further

that the function fRMOD1,r needs only the categories A and A′ in the derivation tree α
A′|RA

, so that fRMOD1,r(α)

is idA′|A.

406 Order-Based Inference in Natural Logic

∅

very

(n/n)/R(n/n)

≤ id(n/n)/(n/n)

RMOD1

very

(n/n)/R(n/n)

tall

n/n

n/n
/E

≤

tall

n/Rn

RMOD2
∅

tall

n/Rn

≤ idn/n

RMOD1

very

(n/n)/R(n/n)

tall

n/Rn

n/n
/E

≤ idn/n

TRANS

very tall

A
A

A

�
�
�

n/n

student

n

n
/E

≤

student

n

RMOD2

Fig. 5. very tall student ≤ student

the monotonicity of the category that is derived by a derivation tree α is marked by
+ or − respectively. The derive and subderive functions are given below. Recall
that A is the set of given premises and that n = |A|.

derive(T0, T,Goals) =

1. if 〈T0, T 〉 ∈ Goals then return false

2. Goals′ ← Goals ∪ {〈T0, T 〉}

3. if subderive(T0, T,Goals
′) then return true

4. for each i ∈ {1..n}:
if subderive(T0, Ti, Goals

′) and derive(T ′
i , T,Goals

′)
then return true

5. return false

subderive(T0, T,Goals) =

1. if T0 = T then return true

2. for each ax ∈ Axioms:

2.1 if fax,r(T0) is defined and derive(fax,r(T0), T,Goals) then return true.

2.2 if fax,l(T) is defined and derive(T0, fax,l(T), Goals) then return true.

3. 3.1 if fD2,1(T0) and fD2,2(T0) are defined and derive(fD2,1(T0), T,Goals) and

5. DECISION PROCEDURE FOR PROVABILITY 407

derive(fD2,2(T0), T,Goals) then return true.
3.2 if fC2,1(T) and fC2,2(T) are defined and derive(T0, fC2,1(T), Goals) and

derive(T0, fC2,2(T), Goals) then return true.

4. if T0 =
α β
c and T =

γ δ
c and derive(α, γ,Goals)

4.1 if α ∈MON ↑ or γ ∈MON ↑ and derive(β, δ,Goals) return true.
4.2 if α ∈MON ↓ or γ ∈MON ↓ and derive(δ, β,Goals) return true.
4.3 if (α ∈ MON ↓ and γ ∈ MON ↑) or (α ∈ MON ↑ and γ ∈ MON ↓)

return true.
4.4 if derive(β, δ,Goals) and derive(δ, β,Goals) return true.

5. If T0 =

αA|A′ βA′′

A , where A ≡s A′ ≡s A′′ and derive(α, idA|A′ , Goals) and
derive(β, T ′, Goals) return true.

6. return false

Step 2 in the algorithm covers the C1, D1 and PWC axioms: for each of these
axioms, the algorithm attempts to derive a an order relation between a modification
of T0 (in the case of D1 and PWC) and T , or between T0 and a modification of T (in
the case of C1 and PWC). Step 3 covers the derivation rules C2 and D2: it attempts
to derive order relations between subtrees of T0 (in the case of D2) and T , between
T0 and subtrees of T (in the case of C2). Step 4 covers the MON and FR rules, and
step 5 covers the RMOD1 and RMOD2 rules.

5.2 Discussion

The Goals parameter in derive and subderive is needed in order to prevent a sit-
uation where the same goal is used in recursive steps of the algorithm, which may
lead to non-termination. To see this, consider the following (artificial) example. Let
the premises be the following, in a grammar where α and γ are derivation trees of
category c.

Premise 1: T1 ≤ T ′
1, where T1 = α and T ′

1 = α β
c

|E

Premise 2: T2 ≤ T ′
2, where T2 = γ β

c
|E and T ′

2 = γ.

Now consider a call to derive, with parameters T0 = α, T = γ, and Goals = ∅.
In Step 3 of derive, with i = 1, the algorithm calls subderive(T0, T1, Goals

′) which
returns true, since T0 = T1 (=α). The function derive will then be recursively called

with T0 = α β
c

|E and T = γ. When Step 3 is performed inside this call with i = 2,

the algorithm calls subderive with T0 = T ′
1 and T = T2. Step 4.4 of subderive will

now call derive with T0 = α and T1 = γ (the left subtrees of T ′
1 and T2 respectively).

This pair is already in Goals, as it is the initial order statement we tried to prove, and
consequently derive will return false. In the absence of the Goals parameters, the
algorithm would not have terminated, because it would attempt to prove the order
relation α ≤ γ again and again.

It is now possible to see the problem for the method of the algorithm with the
original RMOD rule. A proof as in (4) cannot be found by our method, since there
is no simple direct way to derive from the goal (very(tall))(student) ≤ student the

408 Order-Based Inference in Natural Logic

needed subgoal very(tall) ≤ tall . With the revised rules RMOD1 and RMOD2,
step 5 in subderive generates the subgoal very(tall) ≤ id n|n, and for this subgoal,
the subsequent subderive call generates the subgoal very ≤ id (n|n)|(n|n). The latter
subgoal guarantees very(tall) ≤ tall , although it is not needed to generate this specific
order relation as a subgoal in the proof search process.

5.3 Correctness of the algorithm

In this subsection we sketch the main restrictions that guarantee correctness of the
above algorithm. The full correctness proof appears in [9]. The soundness of the
algorithm, i.e. the fact that any order statement for which it returns true has a
proof in the Order Calculus, follows quite directly from the way the algorithm was
defined. Termination is guaranteed by two facts: first, given a goal T0 ≤ T and a set
of premises there is only a finite set of derivation trees that can appear as arguments
of the derive function in the recursive search process for a proof of T0 ≤ T . Second,
no pair of trees in this finite set appears more than once as an inner node of the
search tree induced by the recursive search process in the algorithm. This situation
is guaranteed by the Goal parameter of derive, in the way exemplified above.

In order for the algorithm to be complete, i.e. to return true for each order state-
ment that has a proof in the order calculus, we have to adopt certain assumptions
about the lexicon and the premises in the system. Recall Fact 3.10 about the PWC
axiom, and let us call usages of PWC that are provable in the OC without PWC
trivial usages of PWC.

Let us define now a normal form of a proof in the order calculus. We will claim
that under certain assumptions, a normal form exists for every proof in the Order
Calculus that has no usage of PWC (or only trivial usages). Then we classify a
subset of normal forms that do not include any sequences of order relations of mixed-
monotonicity. We claim that normal forms that satisfy this restriction are arrived at
by the algorithm, and speculate that the elimination of mixed monotonicity sequences
(unlike the elimination of PWC!) from normal forms, is linguistically innocuous.

Let us first define three (non-disjoint) sets of inference rules and axioms in the
Order Calculus:

1. Right Productive (R-PROD) rules are rules where the right hand tree Tr in the
derived order relation Tl ≤ Tr is a function of the left hand tree Tl. These rules
are REFL, PWC, RMOD1, RMOD2, C1, and D2.

2. Left Productive (L-PROD) rules are rules where the left hand tree Tl in the derived
order relation Tl ≤ Tr is a function of the right hand tree Tr. These rules are
REFL, PWC, C2 and D1.

3. Subtree Replacement (STR) rules are rules in which Tr is a simple replacement of
subtrees in Tl, given order relations between those subtrees. These rules are MON
and FR.

Definition 5.2 (normal form) Let T ≤ T ′ be an order statement that is derivable
in the order calculus from the premises T1 ≤ T ′

1, T2 ≤ T ′
2, ..., Tn ≤ T ′

n. Then the
normal forms of a proof of T ≤ T ′ is one of the following structures:

5. DECISION PROCEDURE FOR PROVABILITY 409

1. A type 1 normal form is

α1

A
A

A

�
�
�

S1 ≤ S′
1

α2

A
A

A

�
�
�

S2 ≤ S′
2

. . .

αn

A
A

A

�
�
�

Sn ≤ S′
n

T ≤ T ′
R

,

where R 6= TRANS, n ≥ 0 and α1, . . . , αn are normal forms.

2.
∅

Ti ≤ T ′
i
PREM

where Ti ≤ T ′
i is a premise.

3. A type 2 normal form is

α1

A
A

A

�
�
�

S1 ≤ S′
1

R1

α2

A
A

A

�
�
�

S2 ≤ S′
2

R2

. . .

αn

A
A

A

�
�
�

Sn ≤ S′
n

Rn

T ≤ T ′ TRANS∗

where n ≥ 2, α1, ..., αn are type 1 normal forms, T = S1, S
′
1 = S2, S

′
2 =

S3, ..., S
′
n−1 = Sn, S

′
n = T and the string formed by the rules R1R2...Rn belongs

to the regular language12:
(PREM∗, R-PROD∗, STR∗, L-PROD∗) (PREM+, R-PROD∗, STR∗, L-PROD∗)∗

PREM∗.

In words, a normal form of a proof is a structure that satisfies the following require-
ments:

• All occurrences of the transitivity rule are “flattened”.

• The last steps of subproofs in a “flattened” transitivity step are repetitions
of the pattern premises, right productive rules, subtree replacement rules, left
productive rules, premises.

• The subproofs in each normal form are normal forms.

Next, we define the notion of a normal form that is free from sequences of mixed
monotonicity.

Definition 5.3 (mixed monotonicity) Let f1(x1), . . . , fn(xn) be derivation trees,

where f(x) is a derivation
fA|B xB

A
. We say that a part of normal form:

f1(x1) ≤ f2(x2) ≤ . . . ≤ fn(xn)

has mixed monotonicity iff one the following holds:

• f1, fn ∈ MON ↑ ∪MON ↓ and there exist i, j, k: 1 ≤ i ≤ j ≤ k ≤ n, s.t.
fi, fk ∈MON ↑, fj ∈MON ↓ or fi, fk ∈MON ↓, fj ∈MON ↑.

• f1 6∈ MON ↑ ∪MON ↓ or fn 6∈ MON ↑ ∪MON ↓ and there exist i, j:
1 ≤ i ≤ j ≤ n s.t. fi ∈MON ↑, fj ∈MON ↓ or fi ∈MON ↓, fj ∈MON ↑.

12We use standard notation for regular expressions where E∗ denotes zero or more repetitions of the regular

expression E, E+ denotes one or more repetitions of E, E? — zero or one occurrences of E and (E1|E2) is E1 or

E2.

410 Order-Based Inference in Natural Logic

• f1, fn 6∈ MON ↑ ∪MON ↓ and there exists i: 1 < i < n, s.t. fi ∈ MON ↑
∪MON ↓.

In [9] it is shown that under some syntactically plausible assumptions (see below)
on the usage of coordination categories and restrictive modification, the algorithm
discovers every proof that is PWC-free, provided its normal form is free from sequences
of mixed monotonicity. At present we are not aware of any linguistic implication of
this last assumption, but this is an open question.

Proofs that are not PWC-free Unlike the restriction on mixed monotonicity,
the requirement that the proof does not involve a (non-trivial) usage of the PWC
rule is of course a limitation of the algorithm. One example for a proof that the
algorithm cannot find is the proof of the inference (57),described in Section 4.4. A
simpler example, which illustrates better the problem of the proposed algorithm to
cope with non-trivial usages of PWC, is the following proof (in simplified format).

SUB1

some person ≤
some teacher or
some student

PREM

some person
smiled ≤

some teacher or
some student

smiled

FR
some teacher or
some student

smiled ≤

some teacher
smiled or some
student smiled

PWC

some person
smiled ≤

some teacher
smiled or some
student smiled

TRANS

SUB2

some teacher
smiled ≤ some girls walked

PREM
some student

smiled ≤ some girls walked

PREM

some teacher
smiled or some
student smiled ≤ some girls walked

D2

some person
smiled ≤

some teacher
smiled or some
student smiled

SUB1
some teacher

smiled or some
student smiled ≤ some girls walked

SUB2

some person
smiled ≤ some girls walked

TRANS

The problem for the algorithm to find the proof is because in the attempt to derive
sentences that are ‘less or equal’ than the sentence some girls walked, no attempt is
made to use the disjunction some teacher smiled or some student smiled. Further, the
algorithm does not attempt to derive some teacher or some student smiled from some
person smiled. Whether or not there is a correct decision procedure for provability in
the Order Calculus including (non-trivial usages of) PWC is unknown to us.

In the rest of this section, we discuss syntactic assumptions that are needed on
coordination and restrictive modification.

Assumption on coordination We have already assumed above that a derivation
tree α of category A|A for a “half-coordinated” expression coor X combines only with
derivation trees of category A (and not of category B|(A|A)). This is a reflection
of the fact that coordination is an n-ary syntactic function (with n ≥ 2), and hence
Currying as in the categorial fragment above is not a satisfying syntactic treatment
of this phenomenon. In addition, we now assume that no premise is an order relation
α ≤ β or β ≤ α, for such a derivation tree α of a “half coordination”. Given this, it is
provable that every proof using FR of an order relation that involves a coordination
α coor0 β on its left side is of the following form (coor 0 and coor 1 are coordinators):

. . .

αc

coor0c\c/c βc

c\c
/E

c
\E

≤
α′

c

coor1c\c/c β′
c

c\c
/E

c
\E

FR

5. DECISION PROCEDURE FOR PROVABILITY 411

where α ≡ α′, β ≡ β′ and coor 0 ≤ coor1. A similar fact holds when we assume that
a coordination appears on the right side of the proven order relation. Assume now
that in the process of mapping a proof to a normal form we get a structure of the
following form:

(13)

...
α ≤ α ∨ β

D1
...

α ∨ β ≤ α′ ∨ β′ FR ...

γ ≤ δ

As we said above, in the FR step it must be the case that α ≡ α′ and β ≡ β′. Taking
into account that β ≡ β′ is equivalent to β ≤ β′ and β ≥ β′, we can replace (77)by
the following, smaller, form:

...
α ≤ α′

∅
α′ ≤ α′ ∨ β′ D1

γ ≤ δ

This reduction of the size of the proof allows us to rely on an induction assumption
that each proof of a smaller size than the original proof that ends in a derivation step
as in (77)has a normal form.

A simpler assumption on coordinator categories could be that they are only lexical.
Thus, we could assume that the C/D marking for conjunction and disjunction appears
only in categories of the form (X |Y)|C/DZ. This assumption will also be linguistically
plausible: we do not know any need for a category X |Y , where X is a coordinator
category.

Assumption on restrictive modification In order for a normal form to exist,
we assume that no restrictive modifier is created from application of a lexical category
to other categories. That is, no lexical category is of the form ((...|R...)|A). Suppose
for instance that a derivation tree f(x) has a category that is marked by R. Then the
following is a proof of g(x) ≤ id, but it is easy to see that there is no normal proof
for this order relation.

g ≤ f

g(x) ≤ f(x)
FR

∅
f(x) ≤ id

RMOD1

g(x) ≤ id
TRANS

(14)

There is no linguistic motivation to rule out lexical items with categories of the form
((...|R...)|A). However, the only example we know of a lexical item that violates this
rule is prepositions, and we expect prepositions to be comparable to other prepositions
only. Since all the prepositions are restrictive on their second argument, we expect
that they are marked for restrictiveness in a consistent manner, in which case there
exists an alternative proof for (78)directly using the RMOD1 rule:

∅

[g(x)]R ≤ idA|A

RMOD1

Therefore, we will require that no restrictive modifier is created by function appli-
cation, taking into account that: (a) prepositions violate this requirement, (b) this
violation does not affect the possibility to normalise the proof.

412 Order-Based Inference in Natural Logic

6 Notes on previous work

There are many works that deal with formal inference in natural language, and we
will not attempt to give here a comprehensive overview. Here we only mention two
works that concentrate on direct parallelism between natural language structures and
formal proofs.

Purdy proposes in [6] a sound and complete inference system that is based on
operations with n-ary relations. The expressive power of this system lies between the
predicate calculus without identity and the predicate calculus with identity. Purdy
then shows how sentences in a simple fragment of English can be easily translated
into this formalism. It is not clear to us, however, to what extent the structure of
Purdy’s fragment resembles the structure of English. Most notably, the English noun
phrase is missing from this fragment. This is because the analysis of structures of
the form Determiner - Noun - N-ary Predicate requires a representation for each of
the three elements in Purdy’s system. If the determiner is to combine with the noun
first, as in most English grammars, then Purdy’s system would require translation
procedures that are not simpler than those needed for the standard predicate calculus.
Consequently, it is hard to see how Purdy’s system can deal with common phenomena
like NP coordination in an elegant way.

In [5] McAllester and Givan propose an inference system that is sound and complete,
and moreover decidable in polynomial time. The system is based on so-called class
expressions – expressions that denote sets. A determiner like every can combine with
two class expressions to form an atomic formula. Alternatively, a determiner, a class
expression and a binary relation can form together another class expression. These
operations are quite parallel to natural language structures and furthermore, the time
complexity of the system is rather low. However, the proposed logical system is pretty
weak. For instance, since negation operates only on atomic formulae, a determiner like
no can be handled only when it appears in subject position (e.g. no student smiled)
but not in object position (e.g. John likes no student). In addition, the inference rules
in the system are specialised for deduction in the proposed fragment of the predicate
calculus, and it seems hard to extend them for richer constructions.

These limitations of inference systems for natural languagemotivate our study of
“natural logic”, logical formalism with better correspondence to natural language
syntax, and with inference rules that are more directly related to model-theoretic
semantics of natural language. Such systems may be applicable for a larger variety of
fragments. The price to be paid for the larger syntactic flexibility is that completeness
results are harder to obtain. Indeed, as mentioned above, whether the system that
was defined in this paper is complete or not is unknown to us at the moment.

7 An implementation

The decision procedure for provability that was described in Section 5 was used to
implement a working demo of an inference system for natural language. The system
consists of four major parts: a parser for Categorial Grammar, a proof engine for the
Order Calculus, a lexicon and a user interface.

As defined in Section 4, items of the Order Calculus are order statements between
derivation trees in Categorial Grammar. Therefore, the input to the inference system

7. AN IMPLEMENTATION 413

is a set of premises that are specified as a list of pairs of natural language expres-
sions, each pair describing an order statement between the corresponding derivation
trees, and an additional pair of natural language expressions, providing as a goal or-
der statement that should be proved by the system. Consequently, all the natural
language expressions that are fed into the system are first parsed by the CG parser. If
the parser fails to parse one of the NL expressions, the inference process stops and a
negative response is returned.13 If all the expressions are accepted by the CG parser,
the OC prover either shows a proof for the goal order statement or a negative reaction
is given. When an order statement is provable in the OC, there usually exist a num-
ber of proofs, with different possible orders for applying the rules, with the different
number of the uses of REFL rule or even with altogether different structures (e.g.
one proof that uses PWC rule and another that does not). The system returns some
of the proofs sorted by the order of their detection. Usually, these are the shortest
proofs.

The CG parser is responsible for the creation of derivation trees in CG for natural
language expressions. The parser that is used in the system is an adaptation of the
tlg prover written by Bob Carpenter ([3]). The tlg prover is a bottom-up chart parser
for categorial grammar using hypothetical reasoning as a deduction system for CG. In
addition to the derivation trees it produces lambda-terms representing the semantics
of NL expressions. Since we use a much simpler categorial grammar and we do not
make use of semantic representations, we have changed the parser in order to adapt
it for our purposes.

The lexicon that is used in the system is a superset of the lexicon defined in Table 1.
However, there are some deviations from the way the lexicon is defined in Section 4
in the treatment of noun phrases and coordination. Instead of assigning each noun
phrase a number of categories, which are used in different positions inside the sentence,
noun phrases are described by one category, corresponding to the subject position,
from which the CG parser can deduce new categories, corresponding to object position
or to the position of the noun phrase in prepositional phrases. The Order Calculus was
extended to treat such transformations correctly. For more details on this extension
see [9]. Also coordination is treated not by lexical rules, but by a unification scheme
in PROLOG. Also this procedure is described in more detail in [9].

The order calculus prover is a pretty straightforward implementation in Prolog of
the decision procedure that was defined in Section 5, except for a number of tech-
nical details. While in the decision procedure the premises of the proof are treated
as global parameters, in the Prolog implementation the premises are passed to the
derive and the subderive predicates explicitly. A more important change is that
the prover, instead of merely deciding about the provability or non-provability of an
order statement, returns the proof of the order statement whenever existing. Since
every step of the algorithm corresponds to a usage of a specific rule of the OC, a proof
in the OC can be retrieved from the call tree of the algorithm.

The system is available either as a stand-alone Prolog application with a mini-
malistic interface to the prover or as a CGI application installed on the web-server
through a more complex web-based interface. The web-based user interface uses
HTML/JavaScript as a front-end and CGI/Prolog as a back-end. Figures 6 and 7

13For inference with ambiguity we adopt a liberal approach: true is returned if there exists an assignment of

readings to all the ambiguous expressions, s.t. the desired inference can be proven.

414 Order-Based Inference in Natural Logic

Fig. 6. A screenshot of the web-based GUI

show an example of the web-based GUI and an example of the system’s output.
The implementation was done using SICStus Prolog. However, the use of features

specific to SICStus was kept to the minimum and they are mainly restricted to the
CGI-Prolog interface, so it should be possible to adapt the stand-alone application of
the prover to any other ISO compliant Prolog implementation.

The Prolog implementation was successfully ran with SICStus Prolog 3.8.5 under
RedHat Linux 2.2.16-3smp running on i686 processor and SICStus Prolog 3.8.3 under
SunOs 5.8 running on sun4u processor. The web-server we have used was in both cases
Apache web-server. The system is available online at http://lingua.cs.technion.
ac.il/~yaroslav/oc/.

8 Conclusions

The design of a proof system for natural language is of course a huge task, most of
whose limits are presently still unknown. We believe that in order to explore these
limits it is helpful to attempt directions that use as many insights as possible from
logic, computer science and linguistics. In this paper we tried to show that an attempt
to use natural language syntax together with principles from higher order model-
theoretic semantics may be worthwhile. Much work is left to be done on extending the
system, exploring possible completeness results and improving the decision procedure
for provability, which is presently of (at least) exponential complexity, and has some
non-trivial restrictions on the input grammar and derivable order relations. On the
other hand, the semantic and syntactic flexibility of the proposed inference system,
together with its conceptual simplicity, suggest that such an enterprise could be highly

A. EXTENDED LEXICON 415

Fig. 7. A proof shown in Fitch presentation style

rewarding.

A Extended lexicon

Table 2 includes part of the extended lexicon that is derived for the lexicon in table 1.14 Some
semantic values are given in the table using their description in Montague’s IL. Semantic values that
are not given in the table are specified below.
1. Non-logical Constants (‡): Nouns like student, boys are assumed to denote arbitrary semantic

values of type et.

2. Restrictive modifiers denote values of type ττ with the appropriate meaning postulate: for M is
a value of type ττ , the meaning postulate is:

• For τ = et (§): ∀Xet∀ye[(M(X))(y) → X(y)].

• For τ = (et)(et) (¶): ∀R(et)(et)∀Xet∀ye[((M(R))(X))(y) → (R(X))(y)].

3. For the numerals two, three etc. (†) we assume semantic values that are the corresponding natural
numbers, with standard numerical order. The items at least, at most and exactly (∗) are accord-
ingly defined as functions from natural numbers to determiners (of type (et)((et)t). For example:

14We do not include here lexical items that are generated but are unnecessary for proofs throughout this paper.

416 Order-Based Inference in Natural Logic

the semantic value for at least maps any natural number n to the determiner D of type (et)((et)t)
that maps any set object Aet to the generalised quantifier {Bet : |A ∩ B| ≤ n}.

Acknowledgments

The parts of the second and third authors were partly supported by the fund for the promotion of research at the

Technion, research no. 120-042, and by a BSF grant ”Extensions and Implementations of Natural Logic”. Part of

the research by the second author was curried out during a stay at the Utrecht University, which was supported

by an NWO grant no. B30-541. We are grateful to Johan van Benthem, Raffaella Bernardi, Ed Keenan, Michael

Moortgat, Rani Nelken, Ian Pratt-Hartmann and the participants of ICOS-2 for their remarks on this work.

References

[1] Carlos Areces and Raffaella Bernardi. Polarity in the base logic. Unpublished ms., Utrecht
University, 2000.

[2] R. Bernardi. Monotonic reasoning from a proof-theoretical perspective. In Proceedings of Formal

Grammar, 1999.

[3] B. Carpenter. Type-Logical Semantics. MIT Press, Cambridge, Massachusetts, 1997.

[4] E. Keenan and L. Faltz. Boolean Semantics for Natural Language. D. Reidel, Dordrecht, 1985.

[5] D. A. McAllester and R. Givan. Natural language syntax and first-order inference. Artificial

Intelligence, 56:1–20, 1992.

[6] W. C. Purdy. A logic for natural language. Notre Dame Journal of Formal Logic, 32:409–425,
1991.

[7] V. Sánchez. Studies on Natural Logic and Categorial Grammar. PhD thesis, University of
Amsterdam, 1991.

[8] E. Thijsse. On some proposed universals of natural language. In A. ter Meulen, editor, Studies

in Modeltheoretic Semantics. Foris, Dordrecht, 1983.

[9] Yaroslav Fyodorov. Implementing and Extending Natural Logic. MSc thesis, Technion - IIT,
2002. http://www.cs.technion.ac.il/~yaroslav/thesis

[10] Johan van Benthem. Meaning: interpretation and inference. Synthese, 73:451–470, 1987.

[11] van Benthem, J. Language in Action: categories, lambdas and dynamic logic. North-Holland,
Amsterdam. 1991.

Received 15 January 2001.

A
.

E
X

T
E

N
D

E
D

L
E

X
IC

O
N

4
1
7

Word(s) Category Semantics
every (subject position) (s/+(s\np))/−n λPet.λQet.∀x[P (x) → Q(x)]
every (object position) ((s/(s\np))\+(s\np))/−n λPet.λQe(et).λye.∀x[P (x)→ Q(x)(y)]
no (subject position) (s/−(s\np))/−n λPet.λQet.∀x[P (x) → ¬Q(x)]
no (object position) ((s/(s\np))\−(s\np))/−n λPet.λQe(et).λye.∀x[P (x)→ ¬Q(x)(y)]
some (subject position) (s/+(s\np))/+n λPet.λQet.∃x[P (x) ∧Q(x)]
some (object position) ((s/(s\np))\+(s\np))/+n λPet.λQe(et).λye.∃x[P (x) ∧Q(x)(y)]
at least (subject position) ((s/+(s\np))/+n)/−num ∗
at least (object position) (((s/(s\np))\+(s\np))/+n)/−num ∗
at most (subject position) ((s/−(s\np))/−n)/+num ∗
at most (object position) (((s/(s\np))\−(s\np))/−n)/+num ∗
exactly (subject position) ((s/(s\np))/n)/num ∗
exactly (object position) (((s/(s\np))\(s\np))/n)/num ∗
two,three,four num †
student, teacher, person n ‡
boys, girls, people n ‡
ran, walked, smiled, moved s\np ‡
hugged, kissed, touched, admired (s\np)/np ‡
tall, short, young, old n/Rn §
very, extremely (n/n)/R(n/n) ¶
deliberately, yesterday (s\np)\R(s\np) §
who (n\n)/C(s\np) λPet.λQet.λxe.P (x) ∧Q(x)
and (sentences) (s\s)/Cs λPt.λQt.P ∧Q
and (NP in subject position) ((s/+(s\np))\(s/+(s\np)))/C(s/+(s\np)) λP(et)t.λQ(et)t.λRet.P (R) ∧Q(R)
and (NP in object position) (((s/(s\np))\(s\np))\((s/(s\np))\(s\np)))/C

((s/(s\np))\(s\np))
λP(e(et))(et).λQ(e(et))(et).λRe(et).

λxe.P (R)(x) ∧Q(R)(x)
and (nouns) (n\n)/Cn λPet.λQet.λxe.P (x) ∧Q(x)
and (verb phrases) ((s\np)\(s\np))/C(s\np) λPet.λQet.λxe.P (x) ∧Q(x)
and (adjectives) ((n/n)\(n/n))/C(n/n) λP(et)(et).λQ(et)(et).λRet.λxe.

P (R)(x) ∧Q(R)(x)
w> s 1t

T
a
b
l
e

2
.

E
x
ten

d
ed

lex
ico

n
w

ith
sem

a
n
tics

