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History, Problem

R. Bull (1966) Every normal extension of S4.3 has the FMP

Kit Fine (1971) Every normal extension of S4.3 has the Finite
Frame Property, is finitely axiomatizable and is characterized by
finite chains of clusters.

Problem: lift the results from theoremhood to derivability, and
describe the lattice of all consequencs relations ` extending
S4.3.

Solution: - using the fact that all logics extending S4.3 enjoy
projective unification (D-W 2009).
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Results

• Syntactic and Semantic characterization of finitary (structural)
consequence relations ` extending `L, for L ∈ NExtS4.3:

• form of all (passive) rules in consequence relations `,

• If K is a class of fin. subdir. irr. S4.3-algebras characterizing
L ∈ NExtS4.3, then for any conseq. relation ` extending `L :
◦ ` is characterized by a class of algebras of the form of the
direct products A×Hn, where A ∈ K and Hn is so called Henle
algebra with n-atoms, i.e. ` has Strongly Finite Model Property
(SFMP).
◦ ` is finitely based (can obtained by adding finitely many rules
to `L) and it is decidable.

• The lattice of all consequence relations extending S4.3 is
countable and distributive.
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S4.3

Var = {p1,p2, . . . } all propositional variables
Fm - modal formulas built up with {∧,¬,�,>}; Fmn {pi : i ≤ n}
→,∨,↔,♦,⊥ as usual;
(Fm,∧,¬,�,>) the algebra of modal language, ε : Var → Fm
substitution;

A modal logic - any subset L of Fm containing all
classical tautologies, the axiom (K ) : �(α→ β)→ (�α→ �β)
and closed under substitutions and

MP :
α→ β, α

β
and RN :

α

�α
.

K the least, S4 = K + (T ) : �α→ α + (4) : ��α→ �α.
S4.3 = S4 + (.3) : �(�α→ �β) ∨�(�β → �α)

L 7→ `L

its global consequence relation; X `L α means: α can be
derived from X ∪ L using the rules MP and RN.
Here ` denotes a structural global conseq. rel. extending `S4.3
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Algebraic Semantics

A modal algebra A = (A,∧,¬,�,>), �(a ∧ b) = �a ∧�b,
�> = >;

Log(A) = {α : v(α) = >, for all v : Var → A},
for a class K, Log(K) =

⋂
{Log(A) : A ∈ K}, Each A

generates a consequence relation |=A:

X |=A α iff
(
v [X ] ⊆ {>} ⇒ v(α) = >, for each v : Var → A

)
.

|=A α iff α ∈ Log(A). Now, for a class K,
X |=K α iff

(
X |=A α, for each A ∈ K

)
,

A class L is strongly adequate for a consequence relation ` if,
for each finite X and α ∈ Fm

X ` α iff X |=L α

A conseq. rel. ` has the Strongly Finite Model Property (SFMP)
if there is a strongly adequate family L of finite algebras for `.
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Algebraic Semantics

If A = B × C, then X |=A α iff X |=B α and X |=C α,
provided that X ∈ Sat(B) and X ∈ Sat(C),
otherwise, X |=A α for each α ∈ Fm.

It follows that |=K ≤ |=A, if A ∈ SP(K).

FACTS:

Let K is a class of modal algebras and ` is a consequence
relation such that `K ≤ `. Then there is a class L ⊆ SP(K)
such that ` = `L.

If K is a class of topological BA TBA and A is a finite subdirectly
irreducible TBA, then Log(K) ⊆ Log(A) iff A ∈ SH(K).
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Kripke Semantics

A frame F = (V ,R): a set V (worlds), a binary relation R on V .

Log(F) = {α : (F, x)  α, for each x ∈ V and each } = the
logic of F = the set of all formulas that are true in F.

Complex alg. F+ = (P(V ),∩,′ ,�,V ), �a = {x ∈ V : R(x) ⊆ a},

The n-element cluster is a pair n = (Vn,Rn), where
Vn = {1, . . . ,n} and Rn = Vn × Vn.
1, 2, 3,..., n denote 1- , 2- , 3- ,... n-element clusters,
respectively, 1+, 2+, 3+,..., n+ their complex algebras,

A modal algebra A is a Henle algebra if �a = ⊥ for each a 6= >.
Henle algebras are s.i. (simples) for S5.
n+ is the Henle algebra with n generators.

Note: 1+ = 2 =def ({⊥,>},min,¬,�), with �a = a.
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Unification in logic. Projective unifiers

ε is a unifier for a formula α in a logic L if `L ε(α).

α is unifiable in L if `L τ(α), for some substitution τ .

σ is more general than τ , if there is a θ such that, for x ∈ x ,

`L θ ◦ σ = τ

σ is a mgu, most general unifier for α in L if σ is more general
then any unifier for α in L;

A substitution ε is a projective unifier of a formula α if

(i) `L ε(α);

(ii) α `L ε(x)↔ x , for each variable x ∈ x . (project. subst.).

Projective unifier (formula) - S.Ghilardi (1999 Unification in INT)
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(i) `L ε(α);

(ii) α `L ε(x)↔ x , for each variable x ∈ x . (project. subst.).

Projective unifier (formula) - S.Ghilardi (1999 Unification in INT)



Projective unifiers

A logic L has projective unification, if every formula unifiable in
L has a projective unifier.

Theorem (D-W, 2009)

A modal logic L extending S4 enjoys projective unification, iff
�(�y → �z) ∨�(�z → �y) ∈ L, i.e. S4.3 ⊆ L.

The proof - constructing unifiers (compositions); another - by
Ghilardi characterization [Best solving modal equqtions]: α has
a projective unifier iff ModL(α) has the extension property.

A rule r : α1, . . . , αn, /β schematic, finitary. Here r : α/β,
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Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



Rules: Admissible, Derivable, Passive, SC

r : α/β is admissible in L, if adding r does not change (the
theorems of) L: τ(α) ∈ L ⇒ τ(β) ∈ L, for every substitution τ .

r : α/β is derivable in L, if α `L β.

A logic L is Structurally Complete, SC, if every (struct.) rule
which is admissible in L is derivable in L;

Theorem(D. Makinson). `0 is SC iff it is MAXIMAL among all
(struct.) ` such that: (•) `0 ϕ ⇐⇒ ` ϕ, for all ϕ.

Every ` has the SC extension `0 staisfying (•)

r : α/β is passive in L, if α is not unifiable in L,

EXAMPLE S5 /∈ SC :

P2 :
♦α ∧ ♦∼α

β
, P ′2 :

♦α ∧ ♦∼α
⊥

P2 admissible, not derivable: ♦x ∧ ♦∼x consistent not unifiable



ASC

A logic L is Almost Structurally Complete (ASC), if every rule
which is admissible in L and is not passive is derivable in L;

Projective unification in NExtS4.3 implies:

Theorem (D-W, 2009)

Every modal logic L extending S4.3 is ASC.
L is structurally complete iff
McKinsey axiom M : �♦α→ ♦�α ∈ L iff S4.3M ⊆ L.

For L ∈ NExtS4.3M, `L is maximal among all consequence
relations with theorems = L;
Non-axiomatic extensions ` of `L, for L ∈ NExtS4.3, can be
obtained by adding passive rules only.
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NExt S4.3

S4.3M

Log(2)

S4.3

S5

Splitting of NExtS4.3

For L ∈ NExtS4.3M, L 7→ `L is a bijection (a lattice iso).



NExt S4.3

S4.3M

Log(2)

S4.3

S5

Splitting of NExtS4.3

For L ∈ NExtS4.3M, L 7→ `L is a bijection (a lattice iso).



Passive Rules in NExt S4.3

FACT. If α is not unifiable and Var(α) ⊆ {p1, . . . ,pn}, then
α `S4 (♦p1 ∧ ♦ ∼ p1) ∨ · · · ∨ (♦pn ∧ ♦ ∼ pn).

For fixed n, consider boolean atoms in Fmn:

pσ(1)1 ∧ · · · ∧ pσ(n)n

where σ : {1, . . . ,n} → {0,1}, and p0 = p, and p1 =∼ p. There
are 2n boolean atoms in Fmn, denoted by: θ1, . . . , θ2n . Let `n be
the extension of `S4.3 with the rule

♦θ1 ∧ · · · ∧ ♦θ2n

B
The above rule is valid in any 2n − 1 (or less) element cluster,
and it is not valid in the 2n element cluster. Hence, for n ∈ ω,
`S4.3 < · · · < `n < · · · < `1 = `S4.3 +P2 and
`S4.3 +P2 ∈ SC.
Each passive rule is equivalent over S4.3 to a subrule of P2, to

♦γ ∧ ♦∼γ
δ

for some γ, δ.
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Passive Rules in NExt S4.3

(Rybakov) P2 forms a basis for admissible (passive) rules over
S4.3. All passive rules are consequences of P2 and hence,
(see Rybakov):
The modal consequence relation resulting by extending a
modal logic L ⊇ S4.3 with the rule P2 is structurally complete.

Theorem
Each consequence relation over S4.3 can be given by
extending a normal modal logic with a collection of passive
rules of the form:

♦θ1 ∧ · · · ∧ ♦θs

δ

2 ≤ s ≤ 2n and where {p1, . . . ,pn}∩ Var (δ) = ∅
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Algebraic characterization

EXT(S4.3) - a lattice of all conseq. relations extending `S4.3

Let L ∈ NExtS4.3 and K be a class of finite s.i. S4.3-algebras
with L = Log(K). Let ` be an extension of `L with some
passive rules.

TASK: Find a class L of algebras which is strongly adequate for
`, i.e. such that for each finite X and each α

X ` α iff X |=L α
(

iff X |=B α, for each B ∈ L
)

Let K` = {B ∈ K : ` ≤ |=B} be the class of algebras from
K which are models for `. K` is not sufficient to characterize `.

Lemma
α |=K β iff �α→ β ∈ Log(K), for each α, β
No class of s.i. S4.3-algebras can be strongly adequate for any
proper extension of `L with passive rules. To get models for `
products of s.i. algebras with Henle algebras are necessary.
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Algebraic characterization

Theorem
Let ` be an extension of `L, for L ∈ NExtS4.3, with some
passive rules and let K be a class of sub. irr. alg. strongly
adequate for `L. Then

(i) ` is finitely based.
(ii) L = {A × n+ : A ∈ S(K) , n ≥ 1, ` ≤ |=A×n+} is strongly
adequate for `.
Moreover there are classes K1,K2, . . . ,Km such that
S(K) ⊇ K1 ⊇ K2 ⊇ · · · ⊇ Km and

Γ ` ϕ ⇐⇒ Γ |=L ϕ,

for all finite sets Γ of formulas and for all ϕ, where

L = Km ∪
((

Km−1 \Km
)
× (m− 1)+

)
∪ · · · ∪

((
K1 \K2

)
× 1+

)
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An idea:

(1) passive rules

(?)
♦Ker(hs)

�δ
, Ker(hs) kernel of a homomorph into a Henle alg.

with 2 ≤ s ≤ n and Var(Ker(hs)) ∩ Var(δ) = ∅. Rn a set of p.r.,

`′n= an extension of `L with the rules Rn
Ln =def L + {α→ β : α/β is a rule in Rn}. Then
(•) ♦Ker(hn) `′n �δ iff ♦Ker(hn)→ �δ ∈ Ln, for every hn, δ

(2) Let `1 =def `, L1 =def L, R1 = ∅, R2 = all `-valid rules of the
form (?) with n = 2. L2 is finitely axiomatizable (K.Fine), one
can choose from a finite subset of
{α→ β : α/β is a rule in R2}, R′2 - the finite set of `-valid rules
corresponding to the finite set of axioms for L2, R′2 and R2 are
equivalent by (•), hence there is a finite basis for `2. Now `3,
L3 and finite R′3 etc. (A basis for ` )=

⋃∞
n=2 R′n is finite since⋃∞

n=2 Ln is finitely axiomatizable, by K.Fine;s result .
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Algebraic characterization

Proof of (ii)
for each Ln there is Kn = S(Kn) ⊆ S(K) such that
Ln = Log(Kn).

We have S(K) = K1 ⊇ K2 ⊇ K3 ⊇ · · · and the sequence
terminates on, say, Km. Let L2 = K2 ∪

((
K1 \K2

)
× 1+

)
Ln+1 = Kn+1 ∪

((
Kn \Kn+1

)
× n+

)
∪ · · · ∪

((
K1 \K2

)
× 1+

)
where Ki ×A = {B × A : B ∈ Ki}. by induction on n show that
Ln is a model for `n, that is `n ≤ `Ln

Corollary

Every finitary modal consequence relation extending S4.3 has
the strongly finite model property.
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Decidability, SC extensions, EXT(S4.3) Distributive

Corollary

Every modal consequence relation extending S4.3 is decidable.

If ` is SC, then all passive rules are ` derivable, hence L2 is
inconsistent, i.e. K2 = ∅. Thus,

Corollary

The structurally complete extension of `K, that is, the extension
of `K with P2, is strongly complete with respect to the family
{B × 2 : B ∈ K}.

Theorem
The lattice EXT(S4.3) is countable and distributive.

Corollary

The lattice of all subquasivarieties of the variety of
S4.3-algebras is countable and distributive.
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