CANONICAL FORMULAS FOR wK4

GURAM BEZHANISHVILI AND NICK BEZHANISHVILI

ABSTRACT. We generalize the theory of canonical formulas for K4 (the logic of transitive frames)
to wK4 (the logic of weakly transitive frames). Our main result establishes that each logic over
wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem for logics
over K4. The key new ingredients include the concepts of transitive and strongly cofinal subframes
of weakly transitive spaces. This yields, along with the standard notions of subframe and cofinal
subframe logics, the new notions of transitive subframe and strongly cofinal subframe logics over
wK4. We obtain axiomatizations of all four kinds of subframe logics over wK4. We conclude by
giving a number of examples of different kinds of subframe logics over wK4.

1. INTRODUCTION

Axiomatizability, the finite model property (FMP), and decidability are some of the most fre-
quently studied properties of modal logics. There are a number of general results stating that large
families of modal logics are finitely axiomatizable, have the FMP, and hence are decidable. Prob-
ably the first such general result was obtained by Scroggs [24] who proved that all logics over S5
are finitely axiomatizable, have the FMP, and hence are decidable. Scroggs’ proof was algebraic.
Using frame-theoretic methods, Fine [15] proved that each logic over S4.3 is finitely axiomatizable,
has the FMP, and hence is decidable (that each such logic has the FMP was proved earlier by Bull
[11] using algebraic methods). As S5 is an extension of S4.3, Scroggs’ result follows. In [16] Fine
developed the technique of frame formulas for logics over S4, which allowed him to axiomatize
large classes of logics over S4. This technique generalizes to logics over K4. A similar axiomatiza-
tion of large classes of superintuitionistic logics was obtained earlier by Jankov [18] using algebraic
methods. These classes of logics are known as splitting and join-splitting logics. Jankov’s method
was generalized to n-transitive modal logics by Rautenberg [23]. A number of deep results about
the structure of the lattice of normal modal logics was obtained by Blok using the technique of
splittings (see, e.g., [9, 10]). Further interesting results on splittings were obtained by Kracht (see,
e.g., [19, 20]) and Wolter (see, e.g., [25, 26]).

In [17] Fine introduced the concept of a subframe logic over K4, axiomatized all subframe logics
over K4 by means of subframe formulas, and proved that each subframe logic over K4 has the FMP.
Fine’s line of research was generalized by Zakharyaschev. In [29] Zakharyaschev introduced the
concept of a cofinal subframe logic over K4 (which generalizes the concept of a subframe logic over
K4), axiomatized all cofinal subframe logics over K4 by means of cofinal subframe formulas (which
generalize subframe formulas), and proved that each cofinal subframe logic over K4 has the FMP.
This, in particular, implies the Bull-Fine theorem that all logics over S4.3 have the FMP because
each logic over S4.3 is a cofinal subframe logic. In [28] Zakharyaschev developed the technique
of canonical formulas for K4 and proved that all logics over K4 are axiomatizable by canonical
formulas. The technique of canonical formulas for superintuitionistic logics was developed earlier
by Zakharyaschev in [27], where it was shown that all superintuitionistic logics are axiomatizable
by canonical formulas.

The algebraic technique of Jankov, Rautenberg, and Blok is closely related to the frame-theoretic
technique of Fine and Zakharyaschev via the duality between modal algebras and modal spaces
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(descriptive Kripke frames). In particular, the splitting formulas developed by Jankov for super-
intuitionistic logics and generalized by Rautenberg to modal logics provide an algebraic version of
Fine’s frame formulas. Zakharyaschev’s canonical formulas generalize Fine’s frame formulas, as well
as subframe and cofinal subframe formulas. An algebraic version of Zakharyaschev’s canonical for-
mulas for superintuitionistic logics was developed in [1], where Jankov’s formulas were generalized
and it was shown that the resulting formulas are equivalent to Zakharyaschev’s canonical formu-
las for superintuitionistic logics via the generalized Esakia duality for Heyting algebras. The key
ingredient of this generalized duality is the dual characterization of partial p-morphisms by means
of (A, —)-preserving homomorphisms. An algebraic version of Zakharyaschev’s canonical formulas
for K4 was developed in [2], where the Jankov-Rautenberg formulas for K4 were generalized and it
was shown that the resulting formulas are equivalent to Zakharyaschev’s canonical formulas for K4
via the generalized duality between modal algebras and modal spaces. The key ingredient of this
generalized duality is the characterization of partial p-morphisms by means of relativized modal
algebra homomorphisms.

The aim of this paper is to generalize the theory of canonical formulas for K4 to wK4. It is
well known that K4 = K + (0Op — Op) is the logic of all transitive frames. On the other hand,
wK4 =K+ (00p — pV Op) is the logic of all weakly transitive frames, where a frame § = (W, R)
is weakly transitive if

(Vw,v,u € W)(wRv AvRu = w =uV wRu).

In Rautenberg’s terminology [23], wK4 is the least 1-transitive modal logic.! The logic wK4 plays
an important role in the topological semantics of modal logic. As was shown by Esakia [14], if we
interpret ¢ as topological derivative, then wK4 is the logic of all topological spaces, while K4 is
the logic of all Ty-spaces (the spaces in which each point is locally closed). There are continuum
many logics in the interval [wK4, K4]|. In particular, the logic wK4Ty of all Ty-spaces, which was
axiomatized in [3], belongs to this interval.

We view this paper as part of the program that develops an algebraic approach to canonical
formulas. The key ingredient of the program is to find appropriate (generalized) dualities and put
algebraic and frame-theoretic approaches in the context of these dualities, making them different
sides of the same coin. As we already pointed out, an algebraic approach to canonical formulas
for superintuitionistic logics was developed in [1]. It utilized the algebraic proof of the FMP for
all (cofinal) subframe superintuitionistic logics given in [4]. An algebraic approach to canonical
formulas for logics over K4 was developed in [2]. It was based on the algebraic proof of the FMP
for all (cofinal) subframe logics over K4 developed in [5]. But [5] actually proved more, that all
(cofinal) subframe logics over wK4 have the FMP. This result will play a substantial role in our
considerations.

Although our arguments mostly follow the same pattern as in [2], the generalization of the method
developed for K4 to wK4 is not straightforward. Zakharyaschev’s notion of a cofinal subframe
that works for the transitive case is not sufficiently strong for the weakly transitive case. This is
because each subframe of a transitive space (transitive descriptive Kripke frame) is automatically
transitive, while there are subframes of weakly transitive spaces (weakly transitive descriptive
Kripke frames) that are not transitive. Thus, we introduce a new notion of a transitive subframe
of a weakly transitive space. We call a subframe of a weakly transitive space strongly cofinal if it
is both transitive and cofinal. We give an algebraic characterization of strongly cofinal subframes,
which allows us to introduce canonical formulas for finite subdirectly irreducible wK4-algebras.
Using the results of [2] and [5], we prove that every logic over wK4 is axiomatizable by canonical
formulas, thus generalizing Zakharyaschev’s theorem. We also give an algebraic characterization of
transitive subframes, and show that negation-free canonical formulas for wK4 are closely linked to

IKracht [21, Sec. 2.5] calls an n-transitive modal logic weakly transitive, so his terminology is different from ours.
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transitive subframes of weakly transitive spaces. As a result, we prove that every logic over wK4
axiomatizable by negation-free formulas is axiomatizable by negation-free canonical formulas.

Our considerations yield four different notions of subframes of weakly transitive spaces: sub-
frames, transitive subframes, cofinal subframes, and strongly cofinal subframes. These four notions
give rise to four different classes of subframe logics over wK4. We give algebraic characterizations
of these four notions of subframes, as well as axiomatize the corresponding four classes of subframe
logics. This provides a generalization of [2], where subframe and cofinal subframe logics over K4
were axiomatized using algebraic methods. The key ingredient of the proof is the FMP for (cofinal)
subframe logics over wK4 [5] and the technique of frame-based formulas of [6, 7]. We conclude
the paper by giving a number of examples of subframe, transitive subframe, cofinal subframe, and
strongly cofinal subframe logics over wK4. These examples underline similarities and differences
between different kinds of subframe logics over wK4 and K4.

The paper is organized as follows. In Section 2 we recall the generalized duality for modal algebras
developed in [2]. In Section 3 we restrict our attention to wK4-algebras and weakly transitive
spaces, and develop Zakharyaschev’s closed domain condition (CDC) for wK4. In Section 4 we
introduce the notions of transitive and strongly cofinal subframes of weakly transitive spaces, and
establish their main properties. In Section 5 we define canonical formulas for finite subdirectly
irreducible wK4-algebras, and show that every logic over wK4 is axiomatizable by canonical
formulas. In Section 6 we define negation-free canonical formulas, and show that every logic over
wK4 axiomatizable by negation-free formulas is axiomatizable by negation-free canonical formulas.
Section 7 consists of three subsections. In the first subsection we generalize the technique of frame-
based formulas of [6, 7] to wK4; in the second subsection we discuss how to arrive at Rautenberg’s
axiomatization of splitting and join-splitting logics over wK4 from our results; and in the third
subsection we axiomatize subframe, transitive subframe, cofinal subframe, and strongly cofinal
subframe logics over wK4. In Section 8 we give several examples of subframe, transitive subframe,
cofinal subframe, and strongly cofinal subframe logics over wK4. Finally, in Section 9 we summarize
our results and discuss possible venues for further research.

2. PRELIMINARIES

We recall (see, e.g., [8, 12, 21]) that a modal algebra is a pair (A, ), where A is a Boolean algebra
and ¢ is a unary function on A satisfying 00 = 0 and ¢(a VvV b) = ¢a VvV Ob for all a,b € A. As usual,
we define 0 : A — A by Oa = =0—a. Then it is easy to see that (01 = 1, O(a A b) = Oa A b, and
Qa = =O-a. When no confusion arises we denote a modal algebra (A, {) simply by A. Let A and
B be modal algebras. We recall that a map n: A — B is a modal algebra homomorphism if n is a
Boolean algebra homomorphism and 7(0a) = On(a) for all a € A. Let MA denote the category of
modal algebras and modal algebra homomorphisms.

Let A be a modal algebra and s € A. We recall (see, e.g., [25, 5, 2]) that the relativization of A
to s is the modal algebra As = {z € A: z < s}, where 0, =0, 1s =8, cA\sy = Ay, zVsy =z Vy,
-5 = sA—x, and Qgx = sAQx for all z,y € A,. For modal algebras A and B,amap n: A — B is
a relativized modal algebra homomorphism if 1) is a modal algebra homomorphism from A to B,).
Clearly n is a modal algebra homomorphism iff (1) = 1. As follows from [2, Sec. 3], n: A — Bis a
relativized modal algebra homomorphism iff 7(0) = 0, n(a Ab) = n(a) An(b), n(aV b) = n(a)Vn(b),
and n(Qa) = Onayn(a). We let MAR denote the category of modal algebras and relativized modal
algebra homomorphisms. Then MA is a (non-full) subcategory of MAR,

We recall (see, e.g., [5]) that a modal space (descriptive Kripke frame) is a pair (X, R), where
X is a Stone space (zero-dimensional compact Hausdorff space) and R is a binary relation on X
such that the R-image R[x] of each z € X is closed and the R-inverse image R™![U] of each clopen
U C X is clopen. When no confusion arises we denote a modal space (X, R) simply by X. Let X
and Y be modal spaces. We recall that a map f : X — Y is a p-morphism if f(R[z]) = R[f(z)]
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for all z € X. We let MS denote the category of modal spaces and continuous p-morphisms. It is
a classic result in modal logic that MA is dually equivalent to MS.

Let X and Y be modal spaces and f : X — Y be a partial map. We recall [2] that f is a
partial continuous map if dom(f) is a clopen subset of X and f is a continuous map from dom(f)
to Y. We also recall that f is a partial continuous p-morphism if f is a partial continuous map and
f(R[z]) = R[f(x)] for all z € dom(f). We let MSP denote the category of modal spaces and partial
continuous p-morphisms. Then MS is a (non-full) subcategory of MAP. Moreover, as follows from
[2, Thm. 3.4], MAR is dually equivalent to MSP.

We briefly recall the functors (=), : MAR — MSP and (—)* : MSP — MAR that establish a dual
equivalence of MAR and MSP. For a modal algebra A, let X4 be the set of ultrafilters of A. For
a€ A let pla) ={x € Xa:a € x}. Then {p(a): a € A} is a basis for the topology 74 on X 4.
Define R4 on X4 by xRy iff (Va € A)(a € y = Oa € z). Then A, = (X4, R4) is a modal space.
For a relativized modal algebra homomorphism n : A — B, let n, : B, — A, be the partial map
such that dom(n,) = ¢(n(1)) and for x € dom(n,) we have n.(x) = n~!(z). Then n, : B, — A, is
a partial continuous p-morphism. This defines the functor (—), : MAR — MSP.

For a modal space X, let Cp(X) be the Boolean algebra of clopen subsets of X, and let X* =
(Cp(X),Or), where Or(U) = R71[U]. Then X* is a modal algebra. For a partial continuous
p-morphism f: X — Y, let f*:Y* — X* be given by f*(U) = f~Y(U). Then f*:Y* — X*is a
relativized modal algebra homomorphism. This defines the functor (—)* : MSP — MAR. Moreover,
for each A € MAR, we have ¢ : A — A,* is a natural isomorphism in MAR. Also, for each X € MSP,
let ¢ : X — X*, be given by e(z) = {U € X* : 2 € U}. Then ¢ is a natural isomorphism in MSP,
and so the functors (—), and (—)* establish a dual equivalence between MAR and MSP.

3. wK4-ALGEBRAS AND THE CLOSED DOMAIN CONDITION

Let A be a modal algebra. We recall (see, e.g., [5]) that A is a wK4-algebra if 0Qa < aV Qa,
that A is a K4-algebra if 0Qa < Qa, and that A is an S4-algebra if A is a K4-algebra and a < {a.
Let wK4 denote the category of wK4-algebras and modal algebra homomorphisms, K4 denote the
category of K4-algebras and modal algebra homomorphisms, and S4 denote the category of S4-
algebras and modal algebra homomorphisms. Clearly S4 is a full subcategory of K4, K4 is a full
subcategory of wK4, and wK4 is a full subcategory of MA.

Let X be a modal space. We recall (see, e.g., [5]) that X is weakly transitive if R is weakly
transitive, that X is transitive if R is transitive, and that X is reflexive and transitive if R is
reflexive and transitive. Let wTS denote the category of weakly transitive spaces and continuous
p-morphisms, TS denote the category of transitive spaces and continuous p-morphisms, and RTS
denote the category of reflexive and transitive spaces and continuous p-morphisms. Clearly RTS
is a full subcategory of TS, TS is a full subcategory of wTS, and wTS is a full subcategory of MS.
The next theorem is well known (see, e.g., [5, Thm. 3.4]).

Theorem 3.1. wK4 is dually equivalent to wTS, K4 is dually equivalent to TS, and S4 is dually
equivalent to RTS.

We also have that a relativization of a wK4-algebra is a wK4-algebra, a relativization of a
K4-algebra is a K4-algebra, and a relativization of an S4-algebra is an S4-algebra [5, Lem. 4.8].

Next we recall the closed domain condition for transitive spaces. Let X be a transitive space
and let R = RU{(x,z) : * € X} be the reflexive closure of R. We recall [2, p. 104] that 0 is
a quasi-antichain in X if xRy implies yRx for each z,y € 0. Let © be a (possibly empty) set of
quasi-antichains in X. Suppose that Y is a transitive space and f: X — Y is a partial continuous
p-morphism. We say that f satisfies the closed domain condition (CDC) for © if x ¢ dom(f)
implies f(R[x]) # R*[0] for each 0 € D.

Let S C Y. We recall (see, e.g., [2, Sec. 4]) that z € S is minimal if yRx implies xRy for
each y € S. Let min(S) denote the set of minimal points of S. For U a clopen subset of Y,
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x>

X¥
FIGURE 1. The weakly transitive space X

let Dy = {minf(R[z]) : f(R[z]) N U # (0}. By [2, Lem. 4.3], the following four conditions are
equivalent: (i) f satisfies (CDC) for Dy, (ii) z ¢ dom(f) implies minf(R[z]) ¢ Dy, (iii) ¢ dom(f)
implies f(R[z]) NU = 0, and (iv) Or(f~5(U)) € f~1(Or(U)). The key ingredient of the proof is
that if X and Y are transitive spaces and f : X — Y is a partial continuous p-morphism, then
f(R[z]) = RY[minf(R[z])] for each z € X. As the next example shows, this property does not
necessarily hold in weakly transitive spaces.

Example 3.2. Let X consist of two irreflexive points z and y such that xRy and yRx; see
Figure 1. Clearly X¥ is a non-transitive weakly transitive space. Let f : XJ¥ — Xi' be the
identity map. Then f is a partial (continuous) p-morphism, which is total. Moreover, R[x] = {y},
min(R[z]) = {y}, and R*[min(R[a])] = X§. Thus, f(R[z]) = {y} and R*[minf(R[x])] = X},
implying that f(R[z]) # RT[minf(R|[x])].

Nevertheless, the following weaker statement holds for weakly transitive spaces.

Lemma 3.3. Let X and Y be weakly transitive spaces and let f: X — Y be a partial continuous
p-morphism. If x ¢ dom(f), then f(R[z]) = RT [minf(R|[x])].

Proof. As R[z] is closed and dom(f) is clopen, R[z] N dom(f) is closed in dom(f). Therefore,
f(R[z]) is closed in Y. As (Y, R") is a reflexive and transitive space [5, Lem. 3.6] and f(R[z]) is
closed in Y, for each u € f(R[z]) there exists v € minf(R[x]) such that vR"u [13, Sec. I11.2]. Thus,
f(R[z]) € RT[minf(R[z])]. Conversely, let v € R [minf(R[x])]. Then there exists v € minf(R[z])
such that vRTu. Therefore, v = uw or vRu. If v = u, then u € f(R[z]). Suppose that vRu.
As v € minf(R[z]) C f(R[z]), there exists y € dom(f) such that xRy and f(y) = v. Since f
is a partial p-morphism, there exists z € dom(f) such that yRz and f(z) = u. Because R is
weakly transitive, xRy and yRz imply x = z or xRz. As x ¢ dom(f) and z € dom(f), we have
x # z. Therefore, zRz. Thus, u € f(R[z]), and so RT[minf(R[z])] C f(R[z]). Consequently,

f(R[z]) = RF [minf (R[z])]. 0
Lemma 3.4. Let X and Y be weakly transitive spaces, f : X — Y be a partial continuous p-
morphism, U be a clopen subset of Y, and Dy = {minf(R[z]) : f(R[z]) "NU # 0}. Then the
following four conditions are equivalent.
(1) = ¢ dom(f) implies f(R[x]) # RT[0] for each d € Dy.
(2) = ¢ dom(f) implies minf(R[x ]) ¢ Dy.
(3) z §édom( ) implies f(R[x]) NU = (.
(4) Or(f7HU)) C FH(OR(D)).

Proof. The proof is the same as the proof of [2, Lem. 4.3], but rests on Lemma 3.3. O

Note that condition (1) of Lemma 3.4 is Zakharyaschev’s (CDC) for ®¢. Thus, each of the four
conditions of Lemma 3.4 can be taken as the definition of (CDC) for weakly transitive spaces. We
choose condition (3) of Lemma 3.4 as our definition of (CDC) for weakly transitive spaces.

Definition 3.5. Let X and Y be weakly transitive spaces, f : X — Y be a partial continuous
p-morphism, and U be a clopen subset of Y. We say that f satisfies the closed domain condition
(CDC) for U if x ¢ dom(f) implies f(R[z])NU = 0.

Theorem 3.6. Let A and B be wK4-algebras, n : A — B be a relativized modal algebra homo-
morphism, and a € A. Then the following two conditions are equivalent:
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(1) n(0a) = On(a).
(2) ny : Bx — A, satisfies (CDC') for p(a).

Proof. Since n(¢a) < On(a) always holds [2, Lem. 3.3], the theorem follows from Lemma 3.4 and
the generalized duality for modal algebras. O

Corollary 3.7. Let A and B be wK4-algebras, n : A — B be a relativized modal algebra homo-
morphism, and D C A. Then the following two conditions are equivalent:

(1) n(Qa) = On(a) for each a € D.
(2) 1y : By — Ay satisfies (CDC) for © = {¢(a) : a € D}.

It follows that (CDC) amounts to preserving ¢ for some selected set of elements of A.

4. TRANSITIVE AND STRONGLY COFINAL SUBFRAMES OF WEAKLY TRANSITIVE SPACES

We recall (see, e.g., [5, Def. 4.1]) that a subframe of a modal space X is a clopen subset of X.
Let X be a transitive space. By [2, Def. 4.7], a subframe S of X is cofinal if X = (R*)7![S].
Zakharyaschev’s definition of a cofinal subframe is slightly weaker, namely that R[S] C (R*)~![S]
[12, p. 295]. Clearly if X = (RT)7![S], then R[S] C (R*)~![S]. Although the converse is not true
in general, we do have that if R[S] C (R*)7![S], then S is a cofinal subframe of the closed upset
R*[S] of X.2 Since for the theory of canonical formulas (see Section 5) this difference between two
notions of cofinality is negligible, throughout the paper we will always assume that a subframe is
cofinal whenever X = (RT)7![9].

Note that if f : X — Y is a partial continuous p-morphism, then dom(f) is a subframe of X. We
call a partial continuous p-morphism f between weakly transitive spaces X and Y cofinal if dom(f)
is a cofinal subframe of X. Cofinal partial continuous p-morphisms between transitive spaces play
a crucial role in Zakharyaschev’s development of the theory of canonical formulas for K4. For
weakly transitive spaces this notion turns out to be too weak. This is because if X is a transitive
space, then each subframe of X is automatically transitive (see Definition 4.1 below); however, if
X is weakly transitive, then there exist subframes of X that are not transitive (see Theorem 4.2
below). As we will see in Section 5, it is the notions of transitive cofinal subframes and transitive
cofinal partial continuous p-morphisms that play the same role for weakly transitive spaces as the
notions of cofinal subframes and cofinal partial continuous p-morphisms for transitive spaces.

Definition 4.1. Let X be a weakly transitive space and let S be a subframe of X. We call S
transitive if R~ R™[S]] € R™Y[S], and we call S strongly cofinal if S is transitive and cofinal.

Our immediate goal is to characterize transitive subframes of weakly transitive spaces. Let X
be a weakly transitive space and let S C X. We recall (see, e.g., [5, Sec. 3]) that = € S is mazimal
if Ry implies yRx for each y € S. Let max(S) denote the set of maximal points of S. Moreover,
let u(S) ={x € S: R[z]NnS = 0}. Clearly u(S) C max(S), but not vice versa. Furthermore, we
recall (see, e.g., [12, Sec. 3.2]) that C' C X is a cluster if for each z,y € C we have x # y implies
xRy; a cluster C' of X is proper if it consists of more than one point, C' is simple if it consists of a
single reflexive point, and C'is degenerate if it consists of a single irreflexive point. For x € X, let
C(z) ={z}U{y € X : xRy and yRx} be the cluster generated by x.

Theorem 4.2. Let X be a weakly transitive space and let S be a subframe of X. Then S is
transitive iff for each proper cluster C' of X, if C Nmax(S) = {z}, then x is reflexive.

Proof. First suppose that S is transitive. Let C' be a proper cluster of X with C' N max(S) = {z}.
As C is proper, z € R™'[R™![S]]. Since S is transitive, z € R7![S]. Therefore, there is y € S such
that xRy. But as C Nmax(S) = {z}, we have y = z, and so z is reflexive.

2We recall that U is an upset of X if x € U and xRy imply y € U, and that by the standard duality between MA
and MS, homomorphic images of a modal algebra A correspond to closed upsets of the dual space A. of A.
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Next suppose that for each proper cluster C' of X, if C' Nmax(S) = {s}, then s is reflexive. Let
x € R7YR7[S]]. Then there exist y € X and z € S such that zRyRz. If z = y, then 2Rz, and so
x € R7Y[S]. Thus, without loss of generality we may assume that z # y. As (X, R") is a reflexive
and transitive space, S is closed in X, and z € S, by [13, Sec. I11.2], there exists u € max(S) such
that zR*u. Therefore, zRTu, and so xRu or x = u. If zRu, then x € R'[S]. Suppose that
x = u. Then z,y € C(z), implying that C(z) is proper. If C(x) contains a point from S — {z},
then # € R7[S]. On the other hand, if C'(z) NS = {z}, then z is reflexive, and again z € R™![S].
Thus, x € R[R™![S]] implies z € R™![S], and so S is transitive. O

As an immediate consequence of Theorem 4.2, we obtain:

Corollary 4.3. Let X be a weakly transitive space.

(1) X is a transitive subframe of X.

(2) If each point of a subframe S of X is reflexive, then S is transitive.

(3) If a subframe S of X is a cluster, then S is transitive.

(4) If X is transitive, then each subframe of X is transitive.

(5) If X is transitive, then a subframe S of X is cofinal iff S is strongly cofinal.

As follows from Definition 4.1, each strongly cofinal subframe of a weakly transitive space is both
transitive and cofinal. On the other hand, the two notions of transitive and cofinal subframes are
independent. Since there exist subframes of transitive spaces that are not cofinal, it follows from
Corollary 4.3.4 that not every transitive subframe is cofinal. Consequently, not every transitive
subframe is strongly cofinal. That not every cofinal subframe is transitive follows from the next
example, which also shows that there exist cofinal subframes that are not strongly cofinal.

Example 4.4. Let XI' be the weakly transitive space of Example 3.2 and let S = {y}. It is
obvious that S is a cofinal subframe of XI. On the other hand, as follows from Theorem 4.2, S is
not transitive, hence S is not strongly cofinal.

Theorem 4.5. Let X be a weakly transitive space and let S be a subframe of X. Then S is strongly
cofinal iff the following two conditions are satisfied:

(1) w(X) C S,

(2) = ¢ u(X) implies x € R71[9].

Proof. First suppose that S is strongly cofinal. Let » € u(X). As S is cofinal, X = (R*)71[9],
so z € (RY)7![S]. But since x € u(X), we have R[z] = ), hence x € S, and so u(X) C S. Thus,
condition (1) is satisfied. Now let = ¢ p(X). Then there exists y € X such that zRy. As S is
cofinal, y € (R*)~![S]. Therefore, there exists z € S such that yRTz. If y = z, then z € R7[9].
On the other hand, if yRz, then x € R™YR7I[S]]. As S is transitive, R~ R7I[S]] € R™1[S],
implying that € R7![S]. Thus, condition (2) is also satisfied.

Next suppose that u(X) C S and = ¢ u(X) implies x € R7![S]. To see that S is transitive,
let x € R7YR7![S]]. As z has an R-successor, x ¢ u(X). Therefore, z € R™![S], and so S is
transitive. To see that S is cofinal, let * € X. Then z € u(X) or z € R7I[S]. As pu(X) C S, in
either case we see that x € (R")7![S], and so S is cofinal. O

Proposition 4.6. Let A be a wK4-algebra, s € A, and X be the dual weakly transitive space of A.

(1) The subframe p(s) of X is transitive iff 0Os < Os.
(2) The subframe p(s) of X is cofinal iff OTs = 1.
(3) The following conditions are equivalent:
(a) The subframe p(s) of X is strongly cofinal.
(b) 00s < Os and OTs = 1.
(¢) D0 < s and OOV Qs = 1.
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Proof. (1) We have ¢(s) is transitive iff R71[R™p(s)]] € R~ [p(s)] iff ¢(00s) C ¢(Os) iff 0Os <
Qs.

(2) We have ¢(s) is cofinal iff (RT)"L[p(s)] = X iff p(OTs) = (1) iff OTs = 1.

(3) That (s) is strongly cofinal iff Qs < Os and OTs = 1 follows from (1) and (2). By
Theorem 4.5, ¢(s) is strongly cofinal iff u(X) C o(s) and ¢ u(X) implies z € R~ p(s)].
As u(X) = ¢(0), we have u(X) C ¢(s) iff ¢(J0) C ¢(s), which happens iff 00 < s. Also,
r ¢ u(X) implies * € R™Y[p(s)] is equivalent to u(X) U R™1[p(s)] = X, which is equivalent to
©(0 V Os) = ¢(1), which happens iff J0 V {s = 1. Thus, ¢(s) is strongly cofinal iff J0 < s and
aov s = 1. O

Definition 4.7. Let A be a wK4-algebra and s € A.
(1) We call s transitive if OOs < Os, cofinal if OTs = 1, and strongly cofinal if OOs < Os and
Ots=1.
(2) We call the relativization Ay transitive if s is transitive, cofinal if s is cofinal, and strongly
cofinal if s is strongly cofinal.

As follows from Proposition 4.6.3, s € A is strongly cofinal iff 0 < s and LJO V $s = 1.

Definition 4.8. Let X and Y be weakly transitive spaces and let f : X — Y be a partial continuous
p-morphism.

(1) We call f transitive if dom(f) is a transitive subframe of X.

(2) We call f strongly cofinal if dom(f) is a strongly cofinal subframe of X.

Definition 4.9. Let A and B be wK4-algebras and let n: A — B be a relativized modal algebra
homomorphism.

(1) We call n transitive if OOn(1) < On(1).
(2) We call  cofinal if OFn(1) = 1.
(3) We call n strongly cofinal if 0On(1) < On(1) and OFtn(1) = 1.

Proposition 4.10. Let A and B be wK4-algebras and let n: A — B be a relativized modal algebra
homomorphism.

(1) n is transitive iff . : B, — Ay is transitive.
(2) n is cofinal iff n. : B. — Ay is cofinal.
(3) The following conditions are equivalent:

(a) n is strongly cofinal.

(b) 0 <n(1) and OOV On(1) = 1.

(¢) n«: By — A is strongly cofinal.

Proof. Since dom(n.) = ¢(n(1)) (see [2, Claim 3.5]), the result is immediate from Proposition 4.6
and Definitions 4.8 and 4.9. u

5. CANONICAL FORMULAS FOR wK4

Let A be a wK4-algebra. For a € A, let 0Ta = aV $a. Then OTa = a A Oa. It is well known
(see, e.g., [5, Lem. 3.6]) that (A,0T) is an S4-algebra (and if (X, R) is the dual space of A, then
(X, R™) is the dual space of (A,01)). It follows that H := 0" (A) = {0%a : a € A} is a Heyting
algebra, where for h,g € H, we have h ? g=0%(h —g).

We recall that a filter ' of a modal algebra A is a O-filter if a € F implies Oa € F, and that
congruences of A correspond to [-filters of A. Therefore, A is subdirectly irreducible iff there exists
a least U-filter of A properly containing the O-filter {1}. Since the O-filters of a wK4-algebra A
are in 1-1 correspondence with the filters of H, we obtain that A is subdirectly irreducible iff H is
subdirectly irreducible, which is equivalent to H having the second largest element.
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We assume that modal formulas are built from propositional variables and the constant T by
means of the connectives —, vV and the modal operator ). The constant L, the connectives A, —,
+», and the modal operator O are the standard abbreviations: L := =T, p A ¢ := =(—p V —q),
p—q:=-pVqgp+q:=(p—q) NA(qg— p), and Op := =O—p. For modal formulas a and 3, we
use the following abbreviation: .8 := a A Of.

Let A be a finite subdirectly irreducible wK4-algebra. Then H = [O7(A) is a subdirectly
irreducible Heyting algebra, hence H has the second largest element which we denote by ¢. Let D
be a subset of A. For each a € A we introduce a new variable p, and define the canonical formula
a(A, D) associated with A and D as follows:

a(A, D) =0" [(OOm — Op1) A (T < OTp1) A (L < po)A
N\ {pave <> pa Vb a,b € AYA
\{Pare <> pa Apy:a,b € AYA
N\ {Poa < Opipa s a € AYA
\{Poa <> Opa : a € D}| — (p1 — p).

Remark 5.1. If A happens to be a K4-algebra, then ak4(A, D) is obtained from «(A, D) by
deleting the conjunct OOp1 — Op1 (see [2, Sec. 5.1]), which is redundant in the transitive case.

Our goal is to show that each logic over wK4 (that is, each normal extension of wK4) is
axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s theorem. Our strategy is
the same as in [2], where we gave an algebraic proof of Zakharyaschev’s theorem for K4. In fact, the
theorems of this section and their proofs are direct generalizations of the corresponding theorems
and proofs for the K4-case developed in [2, Sec. 5]. In each of the proofs given below, we describe in
detail exactly where the corresponding proof from [2, Sec. 5] requires a generalization, and supply
the details about how the required generalization works.

We start by the following generalization of [2, Lem. 4.1].

Lemma 5.2. Let A be a wK4-algebra, a,b € A, and O%a £ b. Then there exists a subdirectly irre-
ducible wK4-algebra B and an onto modal algebra homomorphism 1 : A — B such that n(O%a) = 1

and n(b) # 1.

Proof. The only place in the proof of [2, Lem. 4.1] where it is used that A is a K4-algebra is
in showing that the filter generated by (" a is a C-filter. But the filter generated by O%a is a
C-filter already in a wK4-algebra. To see this, let I be the filter generated by (07 a and let = € F.
Then O%a < . Therefore, OO0V a < Oz. As A is a wK4-algebra, O7a = a A Oa < OOa. Also,
O%a =aA0a < Oa. Thus, Ota < DaA0O0a = O(a AUOa) = O0%a. Consequently, Ota < Uz, so
Oz € F, and so F is a O-filter. The rest of the proof is the same as the proof of [2, Lem. 4.1]. O

Next we generalize [2, Thm. 5.2].

Theorem 5.3. Let A be a finite subdirectly irreducible wK4-algebra, D C A, and B be a wK4-
algebra. Then B [~ (A, D) iff there exist a homomorphic image C of B and a 1-1 modal algebra
homomorphism n from A into a strongly cofinal relativization Cs of C' such that n(Qa) = On(a) for
each a € D.

Proof. The proof follows the same path as the proof of [2, Thm. 5.2] with some slight modifications.
First suppose that there exist a homomorphic image C' of B and a 1-1 modal algebra homomorphism
n from A into a strongly cofinal relativization Cs of C such that n(Qa) = On(a) for each a € D.
Define a valuation v on A by v(p,) = a. As 014 < 14, we have 0014 < O14. Therefore, v(OOp; —
Op1) = OOv(p1) = Ov(p1) = 001a — Olg = 14. Moreover, v(T <> OTpy) =14 <> 0714 = 14.
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Thus, v(a(A4,D)) =014 — (14 — t) = t, and so A = a(A, D). Next define a valuation y on C
by 1(ps) = nov(pa) = n(a) for each a € A. Since s is strongly cofinal, s is transitive and cofinal.
As s is cofinal, it follows from the proof of [2, Thm. 5.2] that u(T <> OFp1) = 1¢. As s is transitive,
w(OOp1 — Op1) = O0u(p1) — Ou(pr) = OOs — Os = 1¢. Now the same argument as in the proof
of [2, Thm. 5.2] gives pu(a(A,D)) = n(la) — n(t) # 1c. Consequently, a(A, D) is refuted on C.
As C'is a homomorphic image of B, we also have that «(A, D) is refuted on B.

Next suppose that B = «a(A, D). Then there exists a valuation g on B such that p(a(A, D)) #
1g. Letting I’ denote the subformula of a(A, D) in the scope of (07, we obtain u(a(A, D)) =
OFu(T) = (u(p1) — wn(pr)) # 1p. Therefore, Ot u(T) £ u(p1) — p(p:). By Lemma 5.2, there
exist a subdirectly irreducible wK4-algebra C' and an onto homomorphism 6 : B — C' such that
O(0FTu(T)) = 1¢ and O(u(p1) — p(pt)) # 1. Clearly v = 0 o u is a valuation on C such that
Oty(T) = 1¢ and v(p1) — v(p:) # 1o. It follows that v(I') = 1¢. Next define n : A — C by
n(a) = v(p,) for each a € A. Let s = n(l4). Then the same argument as in the proof of [2,
Thm. 5.2] gives that s is cofinal. As v(00p1 — Op1) = 1o, we have OOn(14) — On(la) = 1c,
implying that s is transitive. Thus, s is strongly cofinal. Moreover, the same argument as in the
proof of [2, Thm. 5.2] gives that 7 is a 1-1 modal algebra homomorphism from A into C such that
n(Qa) = On(a) for each a € D, thus completing the proof. O

The following corollary generalizes [2, Cor. 5.3].

Corollary 5.4. Let A be a finite subdirectly irreducible wK4-algebra, D C A, and © = {¢(a) :
a € D}. For each weakly transitive space X, we have X = (A, D) iff there exist a closed upset Y
of X and an onto strongly cofinal partial continuous p-morphism f :Y — A, such that f satisfies

(CDCQC) for ®.

Proof. Since homomorphic images of modal algebras correspond to closed upsets of their dual
spaces, the corollary is a consequence of Theorem 5.3, Proposition 4.10, Corollary 3.7, and Theo-
rem 3.1. U

We next generalize [2, Lem. 4.14].

Lemma 5.5. Let A and B be wK4-algebras, s € A, and n : As — B be an onto modal algebra
homomorphism. Then there exists a« wK4-algebra C and an onto modal algebra homomorphism
0: A — C such that B is isomorphic to the relativization of C to 0(s). Moreover, if s is cofinal in
A, then 0(s) is cofinal in C; if s is transitive in A, then 0(s) is transitive in C; and if s is strongly
cofinal in A, then 0(s) is strongly cofinal in C.

Proof. The proof of the first half of the lemma is the same as that of [2, Lem. 4.14]. It also follows
from [2, Lem. 4.14] that if s is cofinal in A, then 6(s) is cofinal in C. It is straightforward to see
that if s is transitive in A, then 6(s) is transitive in C'. Consequently, if s is strongly cofinal in A,
then 6(s) is strongly cofinal in C'. O

The following key theorem generalizes [2, Thm. 5.5].

Theorem 5.6. If wK4 t/ «a(p1,...,pn), then there exist (A1, D1),...,(Am, Dp) such that each
A; is a finite subdirectly irreducible wK4-algebra, D; C A;, and for each wK4-algebra B we have
B ¥ a(pi,...,pn) iff there exist i < m, a homomorphic image C of B, and a modal algebra
homomorphism n; from A; into a strongly cofinal relativization Cy, of C' such that n;(Q;a) = On;(a)
for each a € D;.

Proof. Our proof follows the same path as the proof of [2, Thm. 5.5], but some modifications
are needed. Let F}, be the free n-generated wK4-algebra and let ¢q,...,g, be the generators of
F,. Since wK4 I/ a(p1,...,pn), we have F,, ¥~ a(p1,...,pn). Therefore, a(g1,...,9n) # 1p,.
By [5, Main Lemmal, there exist s € F), and a finite modal subalgebra B of (F},)s such that
Bs £ a(p1,...,pn). We briefly recall the construction of s. Let B, be the Boolean subalgebra of
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F,, generated by the subpolynomials of a(g,...,9,). Then B, is finite. Let A, denote the set of
atoms of B,. Let also H,, = " (F,). Then H, is a Heyting algebra, where T denotes the Heyting

n

implication in H,,. Let H, be the (A, ?)—subalgebra of H,, generated by " (B,)U{O"=(aAa) :
a € Ay}. By Diego’s Theorem, H,, is finite. Set

s=\ N (haVOf-aha).
a€Aq heH,,
Let B be the Boolean subalgebra of F, generated by B, U H,, and let Bs = {bs : b € B}, where
bs = s Ab. Clearly By is finite. By [5, Main Lemmal, By is a modal subalgebra of (F,)s and
Bs = ap1, ..., pn). Moreover, by [5, Lem. 5.3 and 5.4], max((F,).) C ¢(s), and so ¢(s) is a cofinal
subframe of (F},).. By Theorem 4.2, ¢(s) is also a transitive subframe of (F},).. Thus, ¢(s) is a
strongly cofinal subframe of (F, )., and so s is strongly cofinal in F),.

Let Aq,..., A, be the subdirectly irreducible homomorphic images of B; refuting a(ps,...,pn),
and let 0; : Bs — A; be the corresponding onto homomorphisms. Since each A; refutes a(py, ..., pn),
there exist ai,...,a, € A; such that a(ai,...,a,) # 14,. Let AY be the Boolean subalgebra of A;
generated by the subpolynomials of a(ai,...,a,). We set D; = {-a € AY : ;a € AY}.3

Let B be an arbitrary wK4-algebra. We show that B & a(pi1,...,pn) iff there is i < m, a
homomorphic image C of B, and a modal algebra homomorphism n; from A; into a strongly cofinal
relativization Cy, of C' such that n;(Q;d) = On;(d) for each d € D;.

(«<): First suppose there exist ¢ < m, a homomorphic image C of B, and a modal algebra
homomorphism 7; from A; into a strongly cofinal relativization C,, of C such that 7;(0;d) = On;(d)
for each d € D;. Sincen; : A; — C,, is a 1-1 modal algebra homomorphism, the formula a(p1, ..., p,)
is refuted on C,. We show that a(pi,...,p,) is also refuted on C. For this we need the following
generalization of [2, Lem. 5.6].

Lemma 5.7. Suppose that B is a wK4-algebra and v € B is strongly cofinal. Let B, be the
relativization of B to u. Let also A be a wK4-algebra such that a(ay,...,a,) # 14 for some
ai,...,an € A. We let Ay be the Boolean subalgebra of A generated by the subpolynomials of
alar,...,an), and D = {—a € A, : Oa € Ay}. If there is a 1-1 modal algebra homomorphism n
from A into B, satisfying On(d) = n(0d) for each d € D, then a(n(ai),...,n(an)) # 1.

The proof of the lemma is the same as the proof of [2, Lem. 5.6], but we need the following
generalization of [2, Claim 5.7].

Claim 5.8. Let B be the Boolean subalgebra of B, generated by the subpolynomials of ap, (n(ay),
con(an)). If Rlx] Ne(u) C o(—d) for each d € D and x ¢ o(u), then
uAa(br,...,by) =apg,(b1,...,by)

for each by, ... b, € BS. Consequently, if there exist by,...,b, € BY such that ag,(b1,...,by) #u
then a(by,...,b,) # 1p.

Proof. The proof is by induction on the complexity of a(by,...,b,). The cases when a(by,...,b,) =
bi, a(by,...,by) =V, and a(by,...,b,) = = are proved as in [2, Claim 5.7]. Let a(by,...,b,) =
Of. Then

-

uAa(br,...,bp) =uNOS
and
ap, (bi,...,bp) = Oubu =uAO(uAp).
We show that u A O = u A O(u A B). It is obvious that u A O(u A B) < u A OB. Conversely,
let z € pluNOB). Then z € p(u) and R[z] N @(B) # 0. So there exists y € B, such that
xRy and y € p(B). If y € p(u), then x € p(u A O(u A B)). Suppose y ¢ p(u). As u is cofinal,

3DZ~ could alternatively be defined as {a € A : U;a € Af}.
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(RT)"Lp(u) = B.. Therefore, there exists z € ¢(u) such that yRT2. But y # z as z € p(u) and
y ¢ o(u). Thus, yRz. Since Of € BY, we have = € D. As y ¢ o(u), by the assumption of
the claim, R[y] N p(u) C ¢(B). Consequently, z € ¢(f). If x # z, then as R is weakly transitive,
xRz, and so = € p(u A O(u A B)). If x = z, then zRy and yRz. So x belongs to a proper
cluster C. We claim that R[z] N p(u) # 0. If Rlz] Ne(u) = 0, then C N p(u) = {x}. Therefore,
C Nmax(p(u)) = {z}. This, by Theorem 4.2, means that z is reflexive. Thus, x € R[x] N ¢(u),
a contradiction. Consequently, there exists w € ¢(u) such that zRw. As R is weakly transitive,
yRrxRw, w € ¢(u), and y ¢ p(u), we have yRw. Since R[y|Np(u) C ¢(f), we have w € (). Thus,

x € p(uAO(uAp)). This implies that uA OB < uAO(uA ). Consequently, uNOS =uAO(uApB),

and hence by induction we can conclude that u A a(by,...,b,) = ap, (b1,...,by).
Finally, if ag, (b1,...,by) # u, then as u A a(by,...,b,) = ap,(b1,...,b,) # u, we obtain that
Oé(bl,...,bn)#lB. ]
Consequently, a(p1,...,p,) is refuted on C. Since C' is a homomorphic image of B, it follows

that a(p1,...,pn) is also refuted on B.

(=): Next suppose that B [~ «a(pi,...,pn). Then there exist aj,...,a, € B such that
alay,...,a,) # 1. Let S, be the subalgebra of B generated by ai,...,a,. Then S, is an n-
generated wK4-algebra, and so .S, is a homomorphic image of F,. Let 6 : F,, — S, be the onto
homomorphism and let S, be the Boolean subalgebra of S,, generated by the subpolynomials of
alay,...,a,). We construct a strongly cofinal v and B, in S,, exactly the same way we constructed
s and By in F,,. We also let D = {—-a € S, : 0a € S,}. Clearly 6(s) = u. Also, by [5, Lem.
5.7], Ouby = u A Qb for each b € S,. Let k : By, — (Sp)u, l : (Sp)u — Sn, and m : S,, — B
be the corresponding embeddings. Then k and m are modal algebra homomorphisms, while [ is a
relativized modal algebra homomorphism. Moreover, the embedding molo k : B, — B satisfies
Omlk(a) = mlk(Oya) for each a € S,.

Since 6 : F,, — S, is an onto homomorphism and 6(s) = u, the restriction of 6 to By is
a homomorphism from B, onto B,. As B, [ a(pi,...,pn), there is a subdirectly irreducible
homomorphic image of B, refuting «(p1,...,pn). Since each homomorphic image of B, is also a
homomorphic image of By, we obtain that the subdirectly irreducible homomorphic image of B,
refuting a(p1,...,pn) is A; for some ¢ < m. Let 0; : B, — A; be the onto homomorphism. Then,
by [2, Lem. 2.1], there exists a wK4-algebra 7', an onto homomorphism ¢ : (Sy), — T, and a 1-1
homomorphism n : A; — T such that ( o k = no6;. By Lemma 5.5, there exists a wK4-algebra
FE and an onto homomorphism ¢ : .S, — E such that T is isomorphic to the relativization of E to
&(u). Moreover, as u is strongly cofinal in S,,, we also have that {(u) is strongly cofinal in E. Let
p: T — E be the corresponding relativized modal algebra homomorphism from 7" into E. Then
ol =po(. Applying [2, Lem. 2.1] again, we obtain a wK4-algebra C, an onto homomorphism
n: A — C, and a 1-1 homomorphism ¢ : £ — C such that nom = qo £. Therefore, we arrive at
the following commutative diagram.

k l m

By = (Sh)u Sh, B
T
A—" P g 0

Let n; = gopon and let (4;), be the Boolean subalgebra of A; generated by the subpolynomials
of a(f;(a1),...,0i(an)). Then (A;)q = 0;[Sa). Let a € (A;)a. Then there exists b € S, such that
a = 0;(b). As the diagram commutes and ¢ pmlk(b) = mlk(Q,b) for each b € S, we have 7;(0;a) =
17i(0ibi (b)) = 1:i0i(Oud) = nmlk(Oub) = nOpmlk(b) = Ocnmlk(b) = Ocnibi(b) = Ocmi(a). In
particular, 7;(0;d) = Ocmi(d) for each d € D. Thus, we have found ¢ < m, a homomorphic
image C' of B, and a relativized modal algebra homomorphism 7; from A; into a strongly cofinal
relativization Cj,) of C' such that 7;(0;d) = On;(d) for each d € D;. O
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The following corollary generalizes [2, Cor. 5.8].

Corollary 5.9. If wK4 I/ a(p1,...,pn), then there exist (A1, Dy),...,(Am, D) such that each A;
is a finite subdirectly irreducible wK4-algebra, D; C A;, and for each weakly transitive space X, we
have X = a(p1,...,pn) iff there exist i < m, a closed upset Y of X, and a strongly cofinal partial
continuous p-morphism f; from'Y onto (A;)« satisfying (CDC) for ©; = {¢(a) : a € D;}.

Proof. Since homomorphic images of modal algebras correspond to closed upsets of their dual
spaces, the corollary is a consequence of Theorem 5.6, Proposition 4.10, Corollary 3.7, and Theo-
rem 3.1. O

Next we generalize [2, Cor. 5.9 and 5.10]. The proof is similar and we skip it.

Corollary 5.10.
(1) If wK4 t/ a(p1,...,pn), then there exist (A1, D1),...,(Am,Dp) such that each A; is a
finite subdirectly irreducible wK4-algebra, D; C A;, and for each wK4-algebra B, we have:

BEa(p,...,p.) ilf BE )\ o(Ai, D).
i=1

(2) If K4t a(p1,...,pn), then there exist (A1, D1),...,(Am, Dm) such that each A; is a finite
subdirectly irreducible wK4-algebra, D; C A;, and for each weakly transitive space X, we
have:

m
X Ealpr,...,pn) iff X E /\ a(A;, Dy).
i=1
As a consequence of Corollary 5.10.1, we obtain that every logic over wK4 is axiomatizable by
canonical formulas, thus generalizing Zakharyaschev’s theorem.

Theorem 5.11 (Main Theorem). Each logic L over wK4 is aziomatizable by canonical formulas.
Moreover, if L is finitely axiomatizable, then L is axiomatizable by finitely many canonical formulas.

Proof. Let L be a logic over wK4. Then L = wK4 + {ay : k € I}, for some index set I. Without
loss of generality we may assume that wK4 t/ oy, for each k € I. Therefore, by Corollary 5.10.1, for
each oy, there exist (Ag,, Dk, ), - - -, (Ak,,, Dk,,) such that each Ay, is a finite subdirectly irreducible
wK4-algebra, Dy, C Ay, and for each wK4-algebra B, we have:

km

1=k
As every modal logic is complete with respect to algebraic semantics, we obtain that L = wK4 +
{ /\f;”kl a(A;, D;) : k € I}. Thus, L is axiomatizable by canonical formulas. Clearly if the index set
1 is finite, then this axiomatization is finite as well. O

Remark 5.12. We could have written canonical formulas for wK4 in a slightly different fashion.
Namely, if A is a finite subdirectly irreducible wK4-algebra and D C A, then let

o/(A,D) =007 [(Di = p1) AOLV Opr & T)A (L po)A
/\{Pavb < paVpp:abe AN
N {Pars ¢ pa Apy a,b € APA
/\{pOa < OpiPa 1@ € AN

/\{pOa A4 Opa ta € D}] - (pl —>Pt)-
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Using Proposition 4.10 it is easy to see that for each wK4-algebra B, we have B |= «(A4, D) iff
B E &/(A, D). Thus, one can alternatively axiomatize all logics over wK4 by replacing «(A, D)
with o/ (4, D).

6. NEGATION-FREE CANONICAL FORMULAS FOR wK4

The results of this section generalize the corresponding results of [2, Sec. 6.1] about negation-free
canonical formulas for K4.

Suppose that A is a finite subdirectly irreducible wK4-algebra, H = [t (A), ¢ is the second
largest element of H, and D C A. For each a € A, we introduce a new variable p, and define the
negation-free canonical formula S(A, D) associated with A and D as

B(4, D) =0+ [(00p1 = 0p1) A (L  po)
/\{Pavb < PaVPpiabe AN
/\{pa/\b S paApyia,be AN
/\{pOa < OpiPa @ € AN
/\{Opa ¢ oa : a € D} — (p1 — py).
Thus, S(A, D) is obtained from «(A, D) by deleting the conjunct T <> T py.

Theorem 6.1. Let A be a finite subdirectly irreducible wK4-algebra, D C A, and B be a wK4-
algebra. Then B [~ (A, D) iff there exist a homomorphic image C of B and a relativized modal
algebra homomorphism n from A into a transitive relativization Cs of C satisfying n(¢0a) = On(a)
for each a € D.

Proof. The proof is a simplified version of the proof of Theorem 5.3. O

Corollary 6.2. Let A be a finite subdirectly irreducible wK4-algebra, D C A, and ® = {p(a) : a €
D}. Then for each weakly transitive space X, we have X W= B(A, D) iff there exist a closed upset
Y of X and an onto transitive partial continuous p-morphism f :Y — A, such that f satisfies

(CDQC) for®.

We recall that a modal formula « is negation-free if « is built from propositional variables and
the constants T, L by means of A, V, and ¢. The next theorem is an analogue of Theorem 5.6 for
negation-free canonical formulas.

Theorem 6.3. If wK4 t/ a(p1,...,pn), where a(p1,...,pn) is negation-free, then there exist
(A1,D1),...,(Am, Dp,) such that each A; is a finite subdirectly irreducible wK4-algebra, D; C A;,
and for each wK4-algebra B, we have B = a(p1,...,pn) iff there exist i < m, a homomorphic
image C' of B, and a modal algebra homomorphism n from A; into a transitive relativization Cs of

C.

The proof of the theorem is largely the same as the proof of Theorem 5.6. Since the s constructed
in the proof of Theorem 5.6 is strongly cofinal, it is transitive. The only real difference in the proof
is that we need the following version of Claim 5.8 for negation-free canonical formulas.

Claim 6.4. Let s € B be transitive and let B be the Boolean subalgebra of Bs generated by the
subpolynomials of ap,(n(a1), ..., n(an)). If Rlx]Np(s) C p(—d) for each d € D and x ¢ ¢(s), then

sANa(by,...,by) =ap,(bi,...,bn)

for each by,... b, € BS. Consequently, if there exist by, ... b, € BY such that ap,(by,...,by) # s,
then a(by,...,b,) # 1p.
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Proof. We prove the claim by induction on the complexity of a(by, ..., by,). The cases a(by,...,b,) =
b; and a(by,...,b,) = BV are proved as in Claim 5.8. The case a(by,...,b,) = 8 A~y is proved
similarly.

Let a(by,...,b,) = OB. It is sufficient to prove that s A 05 < s A Q(sAB). Let x € p(s A OS).
Then = € ¢(s) and there exists y € B, such that xRy and y € ¢(8). If y € ¢(s), then we are
done. Suppose that y ¢ ¢(s). If R[y] N ¢(s) # 0, we proceed as in the proof of Claim 5.8. Namely,
consider z € Rly] Ny(s). If x # z, then xRz, and we follow the argument of Claim 5.8. If x = z,
then xRy and yRx. So x belongs to a proper cluster C'. Since s is transitive, as in Claim 5.8, using
Theorem 4.2 we can show that there exists w € ¢(s) such that xtRw. As R is weakly transitive,
this implies that y Rw, and we can proceed as in the proof of Claim 5.8.

Suppose that R[y|N¢(s) = 0. An easy induction shows that for each z ¢ ¢(s) with R[z]Ng(s) = 0,
we have z ¢ () for each negation-free v € BY. To see this, let v = b;. Then as ¢(b;) C ¢(s), we
have z ¢ @(b;). If v = 61 V 2, then ¢(v) = ¢(01) U ¢(d2). By the induction hypothesis, z ¢ ¢(d1)
and z ¢ p(d2). So z ¢ ¢(v). The case v = 01 A d2 is proved similarly. Finally, let v = ¢J and
let zRu. As R[z] Np(s) = 0, we have u ¢ ¢(s). Since R is weakly transitive and zRu, we have
R[u] C R*[z]. Therefore, R[z] N¢(s) = 0 and 2 € ¢(s) imply R[u] N ¢(s) = 0. By the induction
hypothesis, u ¢ (). Thus, as u was an arbitrary successor of z, we have z ¢ ¢(00).

Now, as R[y]N¢(s) = 0 and S is negation-free, we conclude that y ¢ (). The obtained contra-
diction proves that sAQS = sAQ(sAB). Thus, by induction we can conclude that sAa(by,...,b,) =
ap,(bi,...,b,). Finally, if ap,(b1,...,b,) # s, then as s A a(by,...,b,) = ap,(b1,...,by) # s, we
obtain that «(by,...,b,) # 1. O

Consequently, we arrive at the following analogues for negation-free formulas of the corresponding
results of Section 5.

Corollary 6.5. If wK4 t/ a(p1,...,pn), where a(p1,...,pn) is negation-free, then there exist
(A1,D1),...,(Ap, D) such that each A; is a finite subdirectly irreducible wK4-algebra, D; C A;,
and for each weakly transitive space X, we have X = a(p1,...,pn) iff there exist i < m, a closed
upset Y of X, and a transitive partial continuous p-morphism f; from Y onto (A;)s« satisfying
(CDC) for ©; = {¢(a) : a € D;}.

Corollary 6.6.
(1) If wK4 t/ a(p1,...,pn), where a(p1,...,pyn) is negation-free, then there exist (A1, Dy),...,
(A, Dyy) such that each A; is a finite subdirectly irreducible wK4-algebra, D; C A;, and
for each wK4-algebra B, we have:

B a(py,...,pa) iff BE N B(Ai, D).
i=1

(2) If wK4 1t/ a(p1,...,pn), where a(p1,...,py) is negation-free, then there exist (Ay, Dy),...,
(A, D) such that each A; is a finite subdirectly irreducible wK4-algebra, D; C A;, and
for each weakly transitive space X, we have:

X Ealp,....p) ff X E J\ al4s, Dy).
i=1

Theorem 6.7. Each logic L over wK4 axiomatizable by negation-free formulas is axiomatizable
by negation-free canonical formulas. Moreover, if L is axiomatizable by finitely many negation-free
formulas, then L is axiomatizable by finitely many negation-free canonical formulas.

7. SPLITTING AND VARIOUS KINDS OF SUBFRAME LOGICS OVER wK4

In this section we study splitting and various kinds of subframe logics over wK4. As in the
case of logics over K4, we show that splitting formulas for wK4 are a particular case of canonical
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formulas for wK4. This results in an axiomatization of all splitting and join-splitting logics over
wK4 [23].

We already encountered four different notions of subframes of weakly transitive spaces; sub-
frames, transitive subframes, cofinal subframes, and strongly cofinal subframes. Each of this no-
tions yields the corresponding notion of a subframe logic over wK4. We will axiomatize all four
kinds of subframe logics over wK4, thus generalizing the well-known results of Fine [17] and Za-
kharyaschev [29] for K4. Various examples of these kinds of subframe logics over wK4 will be
given in Section 8.

7.1. Algebra-based formulas for wK4. In axiomatizing splitting and various kinds of subframe
logics over wK4, in addition to the technique of canonical formulas for wK4, we will also utilize the
technique of frame-based formulas of [7] (see also [6, Sec. 3.4]). Although the frame-based formulas
were developed for intuitionistic logic, they have a straightforward generalization to wK4, which
we will sketch below.

In [7] and [6] the frame-based formulas were developed for intuitionistic frames, but using the
standard duality between wK4-algebras and weakly transitive spaces, we can develop the corre-
sponding algebra-based formulas for wK4-algebras. Since all the proofs of [7] and [6] transfer
directly to wK4, we will only sketch the proofs and refer the interested reader to [7] and [6, Sec.
3.4].

Definition 7.1. Let < be a reflexive and transitive relation on wK4.* For A, B € wK4, we write
A< Bif A< Band B £ A. We call < an algebra order if the following two conditions are
satisfied:

(1) If A, B € wK4 are finite, subdirectly irreducible, and A < B, then |A| < |B|.?
(2) If A € wK4 is finite and subdirectly irreducible, then there exists a formula «(A) such that
for each B € wK4, we have A < B iff B [~ a(A).

The formula «(A) is called the algebra-based formula of A for <.

For a logic L over wK4 and A € wK4, we say that A is an L-algebra if A = L. Let V[, be the class
of all L-algebras. (It is well known that V7, is a variety.) The following criterion of axiomatizability
of logics by algebra-based formulas is a straightforward generalization of [7, Thm. 3.9] (see also [6,
Thm. 3.4.12]) to logics over wK4:

Theorem 7.2. Let L be a logic over wK4 and let < be an algebra order on wK4. Then L is
axiomatizable by algebra-based formulas for < iff
(a) Vr, is a <-downset of wK4.
(b) For each B € wK4 — V[, there exists a finite subdirectly irreducible A € wK4 — V1, such that
A< B.
If (a) and (b) are satisfied, then the <-minimal elements in wK4 — V', are finite and subdirectly
wrreducible, and L is axiomatizable by the algebra-based formulas of these <-minimal elements.

Proof. (Sketch) First suppose that there exists a family {A; : i € I} of finite subdirectly wK4-
algebras such that L = wK4 + {«(A4;) : i € I'}. Then, using Definition 7.1.2, it is easy to verify
that conditions (a) and (b) are satisfied. Conversely, suppose that L satisfies conditions (a) and
(b). By condition (b), each <-minimal element of wK4 — V, is finite and subdirectly irreducible.
We show that L = wK4 + {a(A) : A € minc(wK4 — Vp)}. Let B = L. Then B € V. By
condition (a), Vp is a downset. Therefore, A £ B for each A € min<(wK4 — V). As each
such A is finite and subdirectly irreducible, B = «a(A) for each A € min<(wK4 — V). Thus,
B = wK4 + {a(A4) : A € min<(wK4 —Vp)}. Conversely, let B = L. Then B € wK4 — V. By

4n [7] and [6] the class is restricted to (the dual spaces of) finitely generated subdirectly irreducible algebras, but
for our purposes this restriction is not essential.
“Here |A| denotes the cardinality of A.
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condition (b), there exists a finite subdirectly irreducible A € wK4 — V, such that A < B. As <
is transitive, by Definition 7.1.1, we may assume that A € min<(wK4 — V). Since A is finite and
subdirectly irreducible, we have B = a(A). Thus, B = wK4 + {«(A4) : A € min<(wK4 — Vp)},
which concludes the proof. O

7.2. Splitting and join-splitting logics over wK4. Let A be a finite subdirectly irreducible
wK4-algebra, H = (0% (A), and t be the second largest element of H. For each a € A, we introduce
a new variable p, and define the Jankov-Rautenberg formula x(A) associated with A as

x(4) =07° {/\{wa < PaVPpiabe AN
/\{pa/\b < pa App:a,b e AN
N\ {p-a > —pa: a € AN
/\{poa < Opa:a€ A}] — Py

Remark 7.3. The term Jankov-Rautenberg formula is not standard. Our reason for choosing it
is that it was Rautenberg [23] who first developed these formulas for subdirectly irreducible n-
transitive modal algebras as a direct generalization of the formulas for finite subdirectly irreducible
Heyting algebras developed by Jankov [18]. The frame-theoretic analogues of these formulas for
K4 are Fine’s frame formulas, which are sometimes called the Jankov-Fine formulas (see, e.g., [8,

Sec. 3.4], [12, Sec. 9.8]).

Note that the formulas x(A) are the Jankov-Rautenberg formulas for 1-transitive modal logics. It
follows from [23, p. 157] that, given a finite subdirectly irreducible wK4-algebra A, a wK4-algebra
B refutes x(A) iff A is (isomorphic to) a subalgebra of a homomorphic image of B.

Let

Y (A) =00+ [(T &) A(L© po)A
/\{pavb & paVpyiabe AN
N {Pars <> Pa Apy: a,b € APA
/\{Poa < Opaia € A}| — py.

The following lemma is a straightforward generalization of [2, Lem. 6.11], and we skip its proof.

Lemma 7.4. Let A be a finite subdirectly irreducible wK4-algebra and let B be o wK4-algebra.
The following three conditions are equivalent:

(1) B = x(A),

(2) BExX'(4),
(3) B k= a(A, A).

As a direct consequence of Lemma 7.4 and the standard duality between MA and MS, we obtain:

Proposition 7.5. Let A be a finite subdirectly irreducible wK4-algebra.
(1) For each wK4-algebra B, we have B W~ a(A, A) iff A is a subalgebra of a homomorphic
1mage of B.
(2) For each weakly transitive space X, we have X = a(A, A) iff there exists a closed upset Y
of X and a continuous p-morphism from'Y onto A,.

Let A, B € wK4. We set A <gy B if A is (isomorphic to) a subalgebra of a homomorphic image
of B. It is easy to see that <gy is an algebra order on wK4 and for a finite subdirectly irreducible
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wK4-algebra A, the formula a(A, A) is the algebra-based formula of A for <gy. As we will see,
these algebra-based formulas axiomatize all splitting and join-splitting logics over wK4.

Let L be a logic over wK4. We recall that L is a splitting logic if there exists a logic S over
wK4 such that (L, S) splits the lattice of logics over wK4. That is, L € S and for each logic L’
over wK4 we have L C L' or L’ C S. We also recall that L is a join-splitting logic if L is a join of
splitting logics over wK4. For a wK4-algebra A, let L(A) be the set of all formulas valid in A. It
is well known that L(A) is a logic over wK4.

The following theorem provides an axiomatization of all splitting and join-splitting logics over
wK4. A version of it for n-transitive modal logics was first established by Rautenberg [23].

Theorem 7.6.
(1) A logic L over wK4 is a splitting logic iff L = wK4 + a(A, A) for some finite subdirectly
irreducible wK4-algebra A.
(2) A logic L over wK4 is a join-splitting logic iff L = wK4 + {a(A;, A;) : 1 € I} for some
family {A; i € I} of finite subdirectly irreducible wK4-algebras.

Proof. (1) First suppose that L is a splitting logic over wK4. As wK4 is congruence-distributive
and has the FMP, using a well-known general result of McKenzie [22, Sec. 4], we can conclude that
there exists a finite subdirectly irreducible wK4-algebra A such that (L, L(A)) is a splitting pair
in the lattice of logics over wK4. Thus, for each wK4-algebra B, we have B |= L iff A is not
(isomorphic to) a subalgebra of a homomorphic image of B. This, by Proposition 7.5, means that
B Liff Bl a(A, A). Consequently, L = wK4 + a(A, A).

Conversely, let L = wK4+a(A, A). We show that (L, L(A)) is a splitting pair. As A = a(A, A),
we have that L ¢ L(A). Now assume that L' is a logic over wK4 such that L ¢ L’. Then there
is a wK4-algebra B such that B = L' and B [~ «(A, A). Therefore, A <gy B, which means that
L' C L(B) C L(A). Thus, (L, L(A)) is a splitting pair.

(2) follows from (1) and the definition of join-splitting logics over wK4. O

7.3. Various kinds of subframe logics over wK4. Let A be a finite subdirectly irreducible
wK4-algebra, H = 0" (A), and t be the second largest element of H. Let

ses(A) =07 [ (00p1 = Op1) A (T 5 0Fp1) A (L & po)A
N\ {Pavs <> pa Vs s a,b € AYA
\{Pars < pa Apy :a,b € AN
N\ {poa ¢ Opipa:ac A}] — (P1 = pr)-
We call ases(A) the strongly cofinal subframe formula of A. Note that ases(A) = a(A, D).

Proposition 7.7. Let A be a finite subdirectly irreducible wK4-algebra.

(1) For each wK4-algebra B, we have B W~ ages(A) iff there exist a homomorphic image C of
B and a 1-1 strongly cofinal relativized modal algebra homomorphism from A into C.

(2) For each weakly transitive space X, we have X = ages(A) iff there exist a closed upset Y
of X and a strongly cofinal partial continuous p-morphism from Y onto A,.

Proof. Apply Theorem 5.3 and Corollary 5.4. O

Transitive subframe formulas are obtained from strongly cofinal subframe formulas by deleting
the conjunct T <> OTpy. Thus, the transitive subframe formula of a finite subdirectly irreducible
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wK4-algebra A is
s(A) =% | (00p1 = Op1) A (L 4 o)

/\{pavb < paVpy:iabe AN
/\{pa/\b < pa App:a,be APA
/\{pOa <~ Oplpa ra € A}] — (p1 — Dt).

Note that azs(A) = B(A, D).
Proposition 7.8. Let A be a finite subdirectly irreducible wK4-algebra.

(1) For each wK4-algebra B, we have B [~ aus(A) iff there exist a homomorphic image C of
B and a 1-1 transitive relativized modal algebra homomorphism from A into C.

(2) For each weakly transitive space X, we have X [~ ayus(A) iff there exist a closed upset'Y of
X and a transitive partial continuous p-morphism from Y onto A,.

Proof. Apply Theorem 6.1 and Corollary 6.2. O

Next we generalize the algebraic account of subframe and cofinal subframe formulas for K4
developed in [2, Sec. 6.3]. Let A be a finite subdirectly irreducible wK4-algebra.
res(A) =OF[(T 4 07 p1) A (L 5 po)A
N\ {pavs < pa vy a,b e AIA
\{Pare <> pa Apy: a,b € AYA
/\{poa < Op1Pa i@ € A}] — (p1 — pt)
We call as(A) the cofinal subframe formula of A. The proof of the next proposition is similar
to that of [2, Cor. 6.13] and we skip it.

Proposition 7.9. Let A be a finite subdirectly irreducible wK4-algebra.

(1) For each wK4-algebra B, we have B = a.s(A) iff there exist a homomorphic image C of
B and a 1-1 cofinal relativized modal algebra homomorphism from A into C.

(2) For each weakly transitive space X, we have X = aes(A) iff there exist a closed upset'Y of
X and a cofinal partial continuous p-morphism from 'Y onto A,.

Recall from [2, Sec. 6.3] that subframe formulas are obtained from cofinal subframe formulas by
deleting the conjunct T <+ OTp;. Thus, the subframe formula of a finite subdirectly irreducible

wK4-algebra A is
as(4) =07 {(i & po) A
/\{pavb < paVpp:abe AN
/\{pa/\b < pa App:a,b e AN
/\{poa < OpiPa s 0 € A}] — (p1 — pt)
The proof of the next proposition is similar to that of [2, Cor. 6.14] and we skip it.

Proposition 7.10. Let A be a finite subdirectly irreducible wK4-algebra.

(1) For each wK4-algebra B, we have B = as(A) iff there exist a homomorphic image C of B
and a 1-1 relativized modal algebra homomorphism from A into C.
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(2) For each weakly transitive space X, we have X = as(A) iff there exist a closed upset Y of
X and a partial continuous p-morphism from Y onto A,.

Definition 7.11. Let A, B € wK4. We set:

(1) A <45 B if there exists a 1-1 strongly cofinal relativized homomorphism from A into a
homomorphic image of B.

(2) A <;s B if there exists a 1-1 transitive relativized homomorphism from A into a homomor-
phic image of B.

(3) A <.s B if there exists a 1-1 cofinal relativized homomorphism from A into a homomorphic
image of B.

(4) A <, B if there exists a 1-1 relativized homomorphism from A into a homomorphic image
of B.

In the terminology of algebra-based formulas, Propositions 7.7, 7.8, 7.9, and 7.10 mean that
each of the four relations <g., <ts, <cs, and < is an algebra order on wK4; and for a finite
subdirectly irreducible A € wK4, the formulas as.s(A), ais(A), acs(A), and as(A) are the algebra-
based formulas for these orders.

Definition 7.12. Let L be a logic over wK4.

(1) We call L a subframe logic if for each weakly transitive space X and a subframe S of X,
from X |= L it follows that S |= L.

(2) We call L a transitive subframe logic if for each weakly transitive space X and a transitive
subframe S of X, from X = L it follows that S |= L.

(3) We call L a cofinal subframe logic if for each weakly transitive space X and a cofinal
subframe S of X, from X = L it follows that S |= L.

(4) We call L a strongly cofinal subframe logic if for each weakly transitive space X and a
strongly cofinal subframe S of X, from X |= L it follows that S = L.

Since subframes correspond to relativizations, transitive subframes correspond to transitive rel-
ativizations, cofinal subframes correspond to cofinal relativizations, and strongly cofinal subframes
correspond to strongly cofinal relativizations, next proposition is obvious.

Proposition 7.13. Let L be a logic over wK4 and let Vi, be its corresponding variety of wK4-
algebras.
(1) L is a subframe logic iff V1, is closed under relativizations.
(2) L is a transitive subframe logic iff V, is closed under transitive relativizations.
(3) L is a cofinal subframe logic iff V1, is closed under cofinal relativizations.
(4) L is a strongly cofinal subframe logic iff V1, is closed under strongly cofinal relativizations.

Let SF, TSF, CSF, and SCSF denote the classes of subframe, transitive subframe, cofinal
subframe, and strongly cofinal subframe logics over wK4, respectively. Clearly SF C TSF,CSF
and TSF,CSF C SCSF.

Theorem 7.14. Each strongly cofinal subframe logic over wK4 has the FMP. Consequently, each
subframe, transitive subframe, and cofinal subframe logic over wK4 has the FMP.

Proof. Let L be a strongly cofinal subframe logic and let L t/ ¢. Then there exists A € V, such
that A = ¢. By [5, Main Lemmal, there exist s € A and a finite subalgebra B; of the relativization
As of A such that Bs [~ . As follows from the proof of Theorem 5.6, s is strongly cofinal in
A. Since L is a strongly cofinal subframe logic, by Proposition 7.13.4, V, is closed under strongly
cofinal relativizations. Therefore, As € V. As V[ is closed under subalgebras, Bs; € V. Thus, ¢
is refuted on a finite L-algebra, and hence L has the FMP. Since SCSF contains SF, TSF, and
CSF, it follows that each subframe, transitive subframe, and cofinal subframe logic over wK4 has

the FMP. U
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Theorem 7.15. Let L be a logic over wK4. Then:

(1) Le SF iff L = wK4 + {as(4;) : i € I} for some family {A; : i € I} of finite subdirectly
irreducible wK4-algebras.

(2) Le TSF iff L =wK4+ {as(A;) : i € I} for some family {A; :i € I} of finite subdirectly
wrreducible wK4-algebras.

(3) LeCSF iff L =wK4 + {aes(A;) : i € I} for some family {A; : i € I} of finite subdirectly
1rreducible wK4-algebras.

(4) L € SCSF iff L = wK4+{ases(A4;) 10 € I} for some family {A; i € I} of finite subdirectly
wrreducible wK4-algebras.

Proof. (1) First suppose that L € SF. As V[, is closed under homomorphic images, by Proposi-
tion 7.13.1, it is obvious that Vp, is a <s-downset. Therefore, <, satisfies condition (a) of Theorem
7.2. To see that < also satisfies condition (b), let B € wK4 — V. It follows from the proof of
Theorem 5.6 that there exists a finite subdirectly irreducible A € wK4 — V, such that A <; B.
Therefore, <, satisfies condition (b) of Theorem 7.2. Thus, by Theorem 7.2, there exists a family
{A; : i € I} of finite subdirectly irreducible wK4-algebras such that A; & L for each ¢ € I and
L =wK4 + {as(4;) :i € I}

Next suppose that L = wK4 + {as(A;) :i € I}. Let A € Vi, and let Ag be a relativization of
A. If Ag ¢ V, then there exists ¢ € I such that Ag £~ as(A4;). By Proposition 7.10.1, there exist
a homomorphic image B of A and a 1-1 relativized modal algebra homomorphism from A; into
B. By Lemma 5.5, B is isomorphic to a relativization of a homomorphic image of A. Therefore,
there is a 1-1 relativized modal algebra homomorphism from A; into a homomorphic image of A.
This, by Proposition 7.10.1, means that A = as(A;). Thus, A ¢ Vp, which is a contradiction.
Consequently, As € V1, so V, is closed under relativizations, and so by Proposition 7.13, L € SF.

The proofs of (2), (3), and (4) are similar. For the if direction, as follows from the proof of
Theorem 5.6, we in fact have A <;s B (resp. A <.s B, A <45 B), and so by Theorem 7.2, there
exists a family {A4; : i € I} of finite subdirectly irreducible wK4-algebras such that A; ¥~ L
for each i € I and L = wK4 + {ays(A;) : i € I} (resp. L = wK4 + {as(4;) 11 € I}, L =
wK4 + {ases(A;) : @ € I}). For the only if direction, if Ay & aus(A4;) (resp. As & aes(Ai),
As [ ases(A;)), by Proposition 7.8.1 (resp. Proposition 7.9.1, Proposition 7.7.1), there exists a
homomorphic image B of A and a 1-1 transitive (resp. cofinal, strongly cofinal) relativized modal
algebra homomorphism from A; into B. But then, by Lemma 5.5, there is a 1-1 transitive (resp.
cofinal, strongly cofinal) relativized modal algebra homomorphism from A; into a homomorphic
image of A. The obtained contradiction proves that Vp, is closed under transitive (resp. cofinal,
strongly cofinal) relativizations, and so by Proposition 7.13, L € TSF (resp. L € CSF, L €
SCSF). O

As a result, we obtain that subframe logics over wK4 are axiomatized by algebra-based formulas
for <, transitive subframe logics over wK4 are axiomatized by algebra-based formulas for <,
cofinal subframe logics over wK4 are axiomatized by algebra-based formulas for <., and strongly
cofinal subframe logics over wK4 are axiomatized by algebra-based formulas for <g..

Theorem 7.16.
(1) SFNK4=TSFNK4C SCSFNK4=CSFNK4.
(2) SFCTSFCSCSF.
(3) SFCCSF C SCSF.
(4) TSFLZCSF and CSF L TSF.

Proof. (1) Since each subframe of a transitive space is a transitive subframe, we have SF N K4 =
TSF NK4. Similarly since a subframe of a transitive space is cofinal iff it is strongly cofinal, we
have SCSF NK4 = CSFNK4. That SFNK4 C CSF N K4 is well known (see, e.g., [12, Cor.
11.23]). Thus, SFNK4=TSFNK4 C SCSFNK4 =CSFNK4.
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FIGURE 2. The weakly transitive space X' and the wK4-algebra A

(2) It is obvious that SF C TSF C SCSF. It follows from (1) that TSF C SCSF. To see
that SF C TSF, let X' be the space consisting of one irreflexive point and let A be its dual
wK4-algebra. The pictures of X' and AT are shown in Figure 2, where the arrows indicate the
action of ¢ on each element of the algebra. By Theorem 7.15.2, L = wK4 + ays(AY) is a transitive
subframe logic. We show that L is not a subframe logic. Let Xi' be the weakly transitive space of
Example 3.2. Then the only nonempty upset of X is Xi', and the only transitive subframe of Xir
is Xi'. Obviously XTI is not a p-morphic image of X¥. So XI = ays(AT), and so XJ = L. On
the other hand, X' is a subframe of X¥ and X' [~ a4(AT). Thus, the class of weakly transitive
spaces validating L is not closed under taking subframes, and so L € TSF — SF.

(3) It is obvious that SF C CSF C SCSF. That SF C CSF follows from (1). The proof of
CSF C SCSF is similar to that of SF C TSF. We again use the space Xif of Example 3.2, but
this time for the logic L' = wK4 + ascs(Aif). The argument is based on the fact that X}r is a
cofinal subframe of X', but that it is not a strongly cofinal subframe of X1

(4) That CSF € TSF follows from (1). To see that TSF ¢ CSF let L = wK4 + ays(AF) be
the logic constructed in (2). Then L € TSF, but L ¢ CSF because X' is a cofinal subframe of
Xy O

Let A be either of SF, TSF, CSF, SCSF. As for logics over K4 (see [12, Sec. 11.3]), we have
that A is a complete sublattice of the lattice of all logics over wK4. Following Wolter [26], we
call L € A a splitting logic in A if there exists S € A such that (L, S) splits A. The next theorem
characterizes splitting logics in SF, TSF, CSF, and SCSF. A version of it for subframe logics is
due to Wolter [26, Sec. 4].

Theorem 7.17.

(1) A logic L over wK4 is a splitting logic in SCSF iff L = wK4 + ags(A) for some finite
subdirectly irreducible wK4-algebra A.

(2) A logic L over wK4 is a splitting logic in CSF iff L = wK4 + a.s(A) for some finite
subdirectly irreducible wK4-algebra A.

(3) A logic L over wK4 is a splitting logic in TSF iff L = wK4 + ays(A) for some finite
subdirectly irreducible wK4-algebra A.

(4) A logic L over wK4 is a splitting logic in SF iff L = wK4+a,(A) for some finite subdirectly
irreducible wK4-algebra A.

Proof. (1) First suppose that L is a splitting logic in SCSF. By Theorem 7.15.4, there exists a
family {A; : i € I} of finite subdirectly irreducible wK4-algebras such that L = wK4 + {as.5(4;) :
i € I}. As L is a splitting logic in SCSF, this implies that there exists ¢ € I such that L =
wK4 + ages(A).

Conversely, let L = wK4 + a4.5(A) for some finite subdirectly irreducible wK4-algebra A. Let
S be the meet (in SCSF) of all logics in SCSF containing L(A). We show that (L, S) is a splitting
pair in SCSF. As A £ L and A | S, we have that L ¢ S. Now assume that L' € SCSF is
such that L ¢ L'. Then there is a wK4-algebra B such that B = L' and B £~ as.s(A). By
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Proposition 7.7.1, A <,.s B. As L' € SCSF and B |= L', we have A = L'. Thus, L' C L(A) C S,
and so (L, S) is a splitting pair in SCSF.
The proofs of (2), (3), and (4) are similar. O

An obvious generalization of Theorem 7.17 provides an axiomatization of finite join-splitting

logics in SF, TSF, CSF, and SCSF.

8. EXAMPLES

In this section we give examples of various logics over wK4 that are axiomatizable by subframe,
transitive subframe, cofinal subframe, and strongly cofinal subframe formulas. We start by intro-
ducing some notation. We denote the frame consisting of a single irreflexive point by X, the
frame consisting of a single reflexive point by X7, the two-point cluster consisting of two irreflexive
points by XiIF the two-point cluster consisting of one reflexive and one irreflexive point by X3,
and the two-point cluster consisting of two reflexive points by X5. We denote the corresponding
dual wK4-algebras by A, A% A¥ AL' and A5, respectively. The weakly transitive spaces XIF,

IO X X3 XTI are shown in Figure 3, where bullets indicate irreflexive points, circles indicate
reflexive points, and ellipses indicate clusters. The wK4-algebras A, A, A¥ AL AL are shown
in Figure 4, where the arrows indicate the action of ¢ on each element of the algebra. We already
encountered X, X and AT in Example 3.2 and Theorem 7.16.

It is well known (see, e.g., [12, Sec. 9.4]) that some of the most utilized modal logics such as
GL, S4, S4.Grz, and K4.Grz are all subframe logics over K4. As we will see shortly, K4 is a
subframe logic over wK4. Hence, each of these logics is a subframe logic over wK4.

It is well known that K4 is the logic of all finite transitive spaces; that is, K4 is the logic of
all finite weakly transitive spaces such that each proper cluster is reflexive. On the other hand, as
follows from [3], wK4Ty = wK4 + T (where To =pAO(gAOp) = OpV O(gAOq)) is the logic of
all finite weakly transitive spaces such that each proper cluster has at most one irreflexive point.

Proposition 8.1.
(1) wK4T = wK4 + a,(A¥).
(2) K4 = wK4 + as(AY) + as(AY") = wK4To + as(AF).

Proof. 1t is well known that both logics on the left-hand side have the FMP. That both logics on
the right-hand side have the FMP follows from Theorem 7.14. Thus, in order to prove that both
pairs of logics of the theorem are equal to each other, it is sufficient to show that the classes of
their finite weakly transitive spaces coincide. Let X be a finite weakly transitive space.
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(1) Tt is sufficient to show that X [~ Tg iff X¥ is a partial p-morphic image of a (closed) upset
of X. First suppose that X [~ To. Then there is a proper cluster of X that contains at least
two irreflexive points, x and y. The subframe of X based on {x,y} is isomorphic to X, and is
clearly a partial p-morphic image of X. Therefore, X refutes as(AY). Next suppose that there
exists a (closed) upset Y of X and a partial onto p-morphism f : Y — XI. We denote the points
of X by 2’ and y'. Since f is onto, there exists x € dom(f) such that f(z) = 2’. As 2’Ry’, there
exists y € dom(f) such that xRy and f(y) = y'. As y'Ra’, there exists u € dom(f) such that
yRu and f(u) = 2’. If u # z, then as R is weakly transitive, xRu, so f(x)Rf(u), and so 2'Ra’,
a contradiction. Therefore, u = x, which implies that x and y belong to the same cluster. Since
f(z) =2, f(y) =y, and 2’ and ¢ are irreflexive, so are x and y. Thus, X [~ Tp, and so we can
conclude that wK4To = wK4 + a4 (AY).

(2) The argument is similar to (1) and rests on the fact that X is transitive iff each proper cluster
C of X is reflexive, which happens iff neither Xi nor X3 is a subframe of X. O

Next we examine the subframe, transitive subframe, cofinal subframe, and strongly cofinal sub-
frame formulas of AY. As we will see, these four kinds of subframe formulas axiomatize four different
logics over wK4, with quite a sensitive difference between them. We will show that as(Aif) axiom-
atizes S4, while the other three subframe formulas axiomatize three weakenings of S4. We recall
that S4 is the logic of all finite reflexive and transitive spaces. Let wS4 (weak S4) be the logic
of all finite weakly transitive spaces with no degenerate clusters, let mS4 be the logic of all finite
weakly transitive spaces whose maximal clusters are reflexive, and let qS4 be the logic of all finite
weakly transitive spaces with no degenerate maximal clusters. Clearly each of qS4, mS4, and wS4
is properly contained in S4; moreover, qS4 is properly contained in both mS4 and wS4, while
mS4 and wS4 are incomparable. It is also evident that S4 is the only logic among the four that
contains K4.

Proposition 8.2.
(1) S4 = wK4 + o, (AY) = K4 + o, (A}).
(2) wS4 = wK4 + a4 (AT).

(3) mS4 = wK4 + as(A¥F).

(4) aS4 = WK4 + a.(AT).

Proof. The proof follows the same path as the proof of Proposition 8.1. Let X be a finite weakly
transitive space.

(1) That S4 = K4 + as(AY) is well known (see, e.g. [12, Sec. 9.4], where a frame-theoretic
version of subframe formulas is used). That S4 = wK4 + as(AY) follows from the fact that X is
reflexive and transitive iff each cluster C' of X is reflexive, which happens iff XI* is not a subframe
of X.

(2) If X contains a degenerate cluster, then by Corollary 4.3.3, X' is a transitive partial p-
morphic image of X. Conversely, suppose that Y is an upset of X and f : Y — X is an onto
transitive partial p-morphism. Then dom(f) = f~}(X¥) is a nonempty antichain of Y, so dom(f)
cannot intersect any proper cluster in more than one point. But since dom(f) is transitive, by
Theorem 4.2, if dom(f) intersects a proper cluster in only one point, then that point is reflex-
ive. This means that dom(f) cannot intersect any proper cluster, and so dom(f) consists of only
degenerate clusters. Therefore, Y and hence X contains at least one degenerate cluster. Thus,
wS4 = wK4 + a5 (AY).

(3) If the maximum of X contains an irreflexive point x, then X' is a cofinal partial p-morphic
image of the upset R*(z) of X generated by x. Conversely, if there is a cofinal partial p-morphism
f from an upset Y of X onto XU, then dom(f) = f~!(XI) is a nonempty antichain of irreflexive
points contained in the maximum of Y. Therefore, there exists at least one irreflexive point in the
maximum of Y, and hence in the maximum of X. Thus, mS4 = wK4 + a.s(AT).
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(4) If the maximum of X contains a degenerate cluster, then this cluster is an upset of X
isomorphic to XI. Clearly this cluster is cofinal, and it is transitive by Corollary 4.3.3. Thus, X1
is a strongly cofinal partial p-morphic image of an upset of X. Conversely, if Y is an upset of X
and f : Y — XU is an onto strongly cofinal partial p-morphism, then dom(f) = f~1(XI) is a
nonempty antichain in the maximum of Y, and the same argument as in (2) shows that dom(f)
does not intersect any proper cluster. Therefore, dom(f) consists of only degenerate clusters. So
the maximum of Y and hence the maximum of X contains at least one degenerate cluster. Thus,
qS4 = wK4 + ae5(AF). O

Next we examine the four kinds of subframe formulas of Aj. The situation is different here. As
we will see, the subframe and transitive subframe formulas of A] are equivalent and axiomatize the
well-known modal logic GL. Also, the cofinal subframe and strongly cofinal subframe formulas of
Aj] are equivalent and axiomatize a weakening of GL. We recall that GL is the logic of all finite
irreflexive transitive spaces. Let mGL be the logic of all finite weakly transitive spaces with no
reflexive points in the maximum. Evidently mGL is properly contained in mGL, and mGL is
incomparable with K4.

Proposition 8.3.

(1) GL =K4 + a5(A]) = wK4 + a5(A]) = wK4 + ay5(A)).
(2) mGL = wK4 + a.s(A4}) = wK4 + as.s(A)).

Proof. The proof follows the same path as the proofs of Propositions 8.1 and 8.2. Let X be a finite
weakly transitive space.

(1) That GL = K4 + a,(A}) is well known (see, e.g., [12, Sec. 9.4]). Moreover, X (= as(A})
iff either a proper or a simple cluster is a subframe of X, which happens iff X = GL. By
Corollary 4.3.3, each of these is a transitive subframe of X. Thus, GL = wK4 + a,(4]) =

(2) Tt is sufficient to observe that X refutes aps(A}) iff either a proper or a simple cluster is
contained in the maximum of X. By Corollary 4.3.3, each of these is a transitive and hence strongly
cofinal subframe of X. Thus, we obtain that mGL = wK4 + a.s(A}) = wK4 + a.s(A}). O

It is well known that S4.Grz is the logic of all finite partially ordered spaces and that K4.Grz
is the logic of all finite transitive spaces that are obtained from finite partially ordered spaces by
deleting any number of reflexivities. We recall (see, e.g., [12, Sec. 5.3]) that K4.1 is the logic of all
finite transitive spaces whose maximal clusters are simple. We also let wK4.1 be the logic of all
finite weakly transitive spaces whose maximal clusters are simple. In other words, wK4.1 is the
wK4-version of K4.1. Clearly wK4.1 is properly contained in K4.1 and is incomparable with
K4.

Proposition 8.4.
(1) S4.Grz = S4 + a(AL) = wK4 + as(AF) + as(AY).
(2) K4.Grz = K4 + a,(A)) = wK4 + as(AT) + ozs(AEir) + as(43). .
(3) K4.1 = K4 + a.s(AY) + aes(A5) = WK4 + as(AY) + as(A5Y) + aes(AY) + aes(AS).
(4) wK4.1 = wK4 + a.s(AY) + aes(AL).

Proof. The proof follows the same path as the proofs of Propositions 8.1, 8.2, and 8.3. Let X be a
finite weakly transitive space.

(1) For S4.Grz = S4 + a,(AL) see [12, Sec. 9.4]. Now apply Proposition 8.2.1.

(2) That K4.Grz = K4 + «,(A}) is proved similarly to (1). Now apply Proposition 8.1.2.

(3) For the first equation see [12, Sec. 9.4]. The second equation follows from Proposition 8.1.2.

(4) We recall from Proposition 8.2.3 that X = a.s(AY) iff each maximal cluster of X is reflexive.
Now, as in (3), we have that X |= aes(AF), aes(AS) iff each maximal cluster of X is simple. O
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These examples underline once again the similarities and differences between various kinds of
subframe logics over wK4 and K4. Many other classes of weakly transitive spaces are also axiom-
atizable by subframe, transitive subframe, cofinal subframe, or strongly cofinal subframe formulas
over wK4. We invite the reader to find axiomatizations of other interesting classes of weakly
transitive spaces by means of these four kinds of subframe formulas.

9. CONCLUSIONS

In this paper we developed the theory of canonical formulas for logics over wK4, and proved that
each logic over wK4 is axiomatizable by canonical formulas, thus generalizing Zakharyaschev’s the-
orem for logics over K4. Our approach followed the same lines as [2], where an algebraic approach
to canonical formulas for logics over K4 was developed. The key new ingredients include the con-
cepts of transitive and strongly cofinal subframes of weakly transitive spaces. This yielded, along
with the standard notions of subframe and cofinal subframe logics, the new notions of transitive
subframe and strongly cofinal subframe logics over wK4. We obtained axiomatizations of all four
kinds of subframe logics over wK4, along with axiomatizations of splitting and join-splitting logics
over wK4. We also gave a number of examples of different kinds of subframe logics over wK4.

We conclude by pointing out several venues for further research in this area. Firstly, the developed
technique of canonical formulas for logics over wK4 may provide a useful tool for studying the
lattice of logics over wK4. In particular, it may help answering the questions of completeness,
finite axiomatizability, the FMP, and /or decidability for large families of logics over wK4 such as
logics of finite depth, finite width, etc. It may also help to generalize the result of Zakharyaschev
and Alekseev [30] that all finitely axiomatizable logics over K4.3 are decidable to logics over the
weak transitive version of K4.3.

Secondly, it appears plausible that the proposed approach may be generalized to n-transitive
modal logics. On the positive side, Rautenberg’s generalization of Jankov’s formulas works for all
n-transitive modal logics [23]. The problem, however, lies in finding the appropriate notions of
subframes for n-transitive frames, and more importantly, in proving the FMP for these n-transitive
subframe logics. Thus, this task is by no means straightforward.

As for the boundaries of the proposed approach, it appears unlikely that it can be generalized
to all normal modal logics since on the one hand, there exist subframe logics over K without the
FMP [25], and on the other hand, there is no obvious way to define canonical formulas (nor Jankov-
Rautenberg formulas) in this general setting. One possible way to overcome the second difficulty
might be in enriching the modal language with additional modalities, such as say the universal
modality or the fixed point operators.

Lastly, the key ingredient of the algebraic approach of [1] to canonical formulas for superintuition-
istic logics was in restricting the signature of Heyting algebras to the locally finite (A, —,0)-reduct
and treating V as an additional operation. An alternative approach, which will be discussed else-
where, is in restricting the signature of Heyting algebras to the locally finite (A, V, 0, 1)-reduct and
treating — as an additional operation. This yields a new notion of canonical formulas for superintu-
itionistic logics, and with the appropriate adjustment, a new notion of canonical formulas for modal
logics over wK4 and K4. It also suggests possible generalizations to other non-classical logics such
as substructral logics, which constitutes yet another interesting direction for future research.
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