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Abstract

We introduce a new order-topological semantics for the positive modal mu-calculus
over modal compact Hausdorff spaces, which are generalizations of descriptive frames. We
define Sahlqvist sequents in this language, prove Esakia’s lemma and Sahlqvist preserva-
tion theorem for this semantics. We show that every Sahlqvist sequent has a frame
correspondent in first-order logic with fixed-point operators.

1 Introduction

By topological fixed-point logic we mean a family of fixed-point logics that admit topo-
logical interpretations, and where the fixed-point operators are evaluated with respect
to these topological interpretations. In this paper, which brings together the methods
and results of [4] and [5], we concentrate on a variant of topological fixed-point logic
whose models are modal compact Hausdorff space (MKH-spaces for short). These spaces
were introduced in [4] as a generalization of modal spaces (descriptive frames), which are
central order-topological structures appearing in modal logic. In [4] duality and various
properties of MKH-spaces were studied for positive modal languages without any fixed-
point operators. [5] studied topological fixed-point logic based on descriptive mu-frames.
This is a restricted class of modal spaces (descriptive frames) that admits a topological
interpretation of fixed-point operators. In this paper, we investigate topological semantics
of fixed-point operators (we consider only the least fixed-point operator) similar to the
ones discussed in [5], but in the framework of MKH-spaces of [4]. This way the methods
of [5] are extended to a wider class of models and the language of [4] is expanded by
incorporating (topological) fixed-point operators.

The duality between modal algebras and modal spaces [17] plays an important role in
modal logic (see eg. [6, 19]). Modal algebras are obtained by extending Boolean algebras
with a normal and additive unary operator. Modal spaces are Stone spaces (compact,
Hausdorff and zero-dimensional spaces) equipped with a binary relation satisfying addi-
tional conditions. It is known that modal spaces are isomorphic to descriptive frames
[22], [6, Chapter 5]. This duality is an extension of the celebrated Stone duality between
Boolean algebras and Stone spaces [24]. Every system of modal logic is complete with
respect to modal algebras and via this duality with respect to modal spaces e.g., [22], [6,
Chapter 5].

Modal spaces also admit a coalgebraic representation. The Vietoris space of closed sets
of a Stone space [30], is a standard construction in topology. The construction naturally
extends to an endofunctor on a Stone space. It turns out that the category of modal
spaces and continuous p-morphisms, is isomorphic to the category of coalgebras for the
Vietoris functor on the category of Stone spaces and continuous maps [1, 20]. The Vietoris
functor, however, can be defined in a more general setting of compact Hausdorff spaces.
An MKH-space is defined as a concrete realization of the Vietoris functor on a compact
Hausdorff space. In particular, an MKH-space is a tuple (W,R) where W is a compact
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Hausdorff space and R is a continuous relation on W , meaning the corresponding map
from W to its Vietoris space is continuous. An example of an MKH-space is the interval
[0, 1] with the binary relation ≤. It is well known that [0, 1] is compact and Hausdorff, but
not zero-dimensional. In [4] modal compact regular frames and modal deVries algebras
were introduced as algebraic structures dual to MKH-spaces, and a Sahlqvist preservation
and correspondence result for the positive modal language was proved.

In this paper, we advance the study of MKH-spaces by extending the positive modal
language of [4] with fixed-point operators. We introduce and compare the different se-
mantics of positive modal language extended with a least fixed-point operator over MKH-
spaces. In modal spaces formulas are evaluated as clopen (both closed and open) sets.
Note that clopen subsets, in general, do not form a complete lattice. Thus, there may
exist fixed-point formulas that cannot be interpreted on a modal space as an intersection
of clopen pre-fixed points. To overcome this, descriptive mu-frames (modal mu-spaces)
were introduced in [3] as those descriptive frames that admit a topological interpreta-
tion of the least fixed-point operator. The main motivation to study this semantics is
that every axiomatic system of modal mu-calculus is complete with respect to descriptive
mu-frames [3]. Moreover, powerful Sahlqvist correspondence and completeness results
hold for mu-calculus over descriptive mu-frames [5]. Unlike descriptive frames, every least
fixed-point formula can be interpreted in an MKH-space as the interior of the intersection
of open pre-fixed points. This makes MKH-spaces a natural candidate to study topological
semantics of fixed-point operators.

Sahlqvist correspondence and completeness theorem [21, 26, 27] is a cornerstone re-
sult in classical modal logic. The correspondence result states that every formula in
the Sahlqvist class, which is a syntactically defined class of formulas, corresponds to an
elementary (first-order definable) condition on frames. The first-order condition can be
effectively obtained from the Sahlqvist formula. The completeness result states that every
modal logic obtained by adding Sahlqvist formulas to the basic modal logic K is sound
and complete with respect to a first-order definable class of Kripke frames. A simplified
proof of Sahlqvist theorem was given by Sambin and Vaccaro [23] using order-topological
methods. A crucial lemma in their proof of completeness is Esakia’s lemma [12]. Using the
lemma, the valuation of a positive formula on a closed assignment can be expressed as an
intersection of valuations of the formula on clopen assignments. Goranko and Vakarelov
[14] generalize the results in [23] to the class of inductive formulas, which properly ex-
tend Sahlqvist formulas. In [9] Conradie and Palmigiano use duality theory to extend
the results in [14] to distributive modal logic. In particular, they develop an Ackermann
lemma [2] based algorithm for correspondence and canonicity of inductive formulas. For
an overview of this approach, we refer to [8]. Recently, Sahlqvist theory has also been
extended to the modal mu-calculus. A Sahlqvist correspondence theorem for the mu-
calculus was shown in [29] by extending the classical Sahlqvist-van Benthem algorithm
using the PIA formulas introduced in an earlier work by van Benthem [28]. A related work
[7] extends the algorithmic-algebraic approach in [9] to intuitionistic modal mu-calculus.
Finally, (as already mentioned above) Sahlqvist completeness and correspondence result
for clopen semantics for modal mu-calculus on descriptive mu-frames was proved in [5].

The key contributions of this paper is a Sahlqvist preservation theorem for topological
fixed-point logic over MKH-spaces. We define a Sahlqvist sequent in our language. By
preservation, we mean the following: a Sahlqvist sequent in the language of the positive
modal logic with a least fixed-point operator is valid under arbitrary open assignments if,
and only if, it is valid under arbitrary set-theoretic assignments. Since we are no longer
in the setting of zero-dimensional spaces, the Sahlqvist preservation result in [5] fails for
the clopen semantics for the fixed-point operator. We overcome this by introducing an
alternative topological semantics where the pre-fixed point of a map f is defined as an
open set U such that f(U) ⊆ U , where U is the topological closure of a set U . We call
such sets topological pre-fixed points.
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The fixed-point is then computed as an intersection of all topological pre-fixed points.
For this new semantics and shallow modal formulas we prove an analogue of Esakia’s
lemma, from which our preservation result follows immediately. We show that the new
semantics has a nice algebraic counterpart when restricted to shallow modal formulas.
We also show that the Sahlqvist sequent in our language has a frame correspondent in
LFP, which is first-order language extended with fixed-point operators with topological
interpretations. We also provide a few examples of Sahlqvist sequents, their corresponding
LFP-formulas and their semantics in MKH-spaces.

Finally, we note on an unfortunate overlap of terminology in modal logic and point-
free topology: the meaning of the term “frame” in modal logic differs from its meaning
in point-free topology. By now both terms are well established in the modal logic and
point-free topology literature. We follow these standard terminology hoping that it will
not generate confusion. In particular, in Section 4 of the paper we use the term “frame”
in the context of point-free topology and in Section 6 we refer to “frame conditions” which
have a standard meaning in the modal logic literature.

The paper is organized as follows: in Section 2, we introduce preliminary definitions on
Vietoris construction and MKH-spaces. In Section 3 we introduce and compare different
semantics of the least fixed-point operator over MKH-spaces. In Section 4 we look into the
algebraic semantics for our language. In Section 5 we prove Esakia’s lemma and Sahlqvist
preservation theorem. In Section 6, we prove a correspondence theorem for Sahlqvist
sequents followed by examples in Section 7. We conclude and present directions for future
research in Section 8.
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2 Preliminaries

In this section we recall a few preliminary definitions from [4]. Let W be a non-empty set
and R ⊆ W ×W be a binary relation on W . For w ∈ W , define R[w] = {v ∈ W : wRv}
and R−1[w] = {v ∈W : vRw}. Also, for S ⊆W , R[S] = {w ∈W : R−1[w]∩S 6= ∅} and
R−1[S] = {w ∈W : R[w] ∩ S 6= ∅}.

Definition 2.1 (T -Coalgebra). Let C be a category and let T : C→ C be an endofunc-
tor. A T -coalgebra is a pair (X,σ), where σ : X → T X is a morphism in C. A morphism
between two coalgebras (X,σ) and (X ′, σ′) is a morphism f in C such that the following
diagram commutes:

X X ′

T X T X ′

σ

f

T f

σ′

Definition 2.2 (Modal Space). A modal space is a pair (W,R) where W is a Stone
space and R is a binary relation on W satisfying (i) R[x] is closed for each x ∈ W and
(ii) R−1[U ] is clopen for each clopen U ⊆ W . For modal spaces, (W,R) and (W ′, R′), a
function f : W → W ′ is a p-morphism if (i)wRw′ implies f(w)Rf(w′) and (ii) f(w)Rv
implies there is u ∈W with wRu and f(u) = v. Let MS be the category of modal spaces
and continuous p-morphisms.
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Definition 2.3 (Vietoris Space). For a topological space W and U ⊆ W an open set,
consider the sets

2U = {F ⊆W : F is closed and F ⊆ U}
3U = {F ⊆W : F is closed and F ∩ U 6= ∅}.

Then the Vietoris space V(W ) of W is defined to have the closed sets of W as its points,
and the collection of all sets 2U,3U , where U ⊆W is open, as a subbasis for its topology.

It is a standard result in topology that if W is a Stone space, then so is V(W ) (see,
eg., [11], p. 380). Let Stone be the category of Stone spaces and continuous maps. The
Vietoris construction V extends to a functor V : Stone → Stone, which sends a Stone
space W to V(W ) and a continuous map f : W → Y to V(f) where V(f)(F ) = f [F ] for
all closed sets F ⊆ W . In considering V-coalgebras, note that if R is a relation on W ,
then ρR : W → P(W ) given by ρR(w) = R[w] is a well-defined continuous map from W
to V(W ) iff (W,R) is a modal space. This leads to the following theorem.

Theorem 2.4. ([1, 20, 12]) MS is isomorphic to the category of V-coalgebras on Stone.

It is known that the Vietoris functor can be defined in the more general setting of
compact Hausdorff spaces (see, e.g., [11], p. 244). The category of compact Hausdorff
spaces and continuous maps is denoted by KHaus. The Vietoris construction yields a
functor V : KHaus → KHaus where a continuous map f : W → Y is taken to V(f) with
V(f)(F ) = f [F ] for all closed sets F ⊆ W . It is natural to consider coalgebras for this
functor. We first define the notion of a continuous relation on a compact Hausdorff space.

Definition 2.5 (Continuous Relation). We say, a relation R on a compact Hausdorff
space W is point closed, if the relational image R[w] is a closed set for each w ∈ W .
Further, R is continuous if it is point closed and the map ρR : W → V(W ), taking a point
w to R[w] is a continuous map from the space W to its Vietoris space V(W ). In other
words, R is continuous if (X, ρR) is a Vietoris coalgebra.

Proposition 2.6. ([4]) A relation R on a compact Hausdorff space W is continuous iff
R satisfies the following conditions:

1. R[w] is closed for each w ∈W .

2. R−1[F ] is closed for each closed F ⊆W .

3. R−1[U ] is open for each open U ⊆W .

Definition 2.7 (Modal Compact Hausdorff space). A modal compact Hausdorff
space or an MKH-space is a tuple (W,R) such that W is a compact Hausdorff space
and R is a continuous relation on W . Let MKHaus be the category of MKH-spaces and
continuous p-morphisms.

Theorem 2.8. ([4]) MKHaus is isomorphic to the category of V-coalgebras on KHaus.

3 Topological fixed-point semantics

In this section, we discuss various semantics for the modal mu-calculus on modal compact
Hausdorff spaces. We first recall the Knaster-Tarski theorem for complete lattices.

Theorem 3.1 (Knaster-Tarski Theorem). Let (L,≤) be a complete lattice and f :
L → L be a monotone map, that is, for each a, b ∈ L, with a ≤ b we have f(a) ≤ f(b).
The Knaster-Tarski theorem states that f has a least fixed-point LFP (f), which can be
computed as

LFP (f) =
∧
{a ∈ L : f(a) ≤ a}
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The least fixed-point of f or LFP (f) can be computed in another way. For an ordinal
α, let f0(0) = 0, fα(0) = f(fβ(0)) if α = β + 1, and fα(0) =

∨
β≤α f

β(0), if α is a limit

ordinal. Then LFP (f) = fα(0), for some ordinal α such that fα+1(0) = fα(0).
We restrict our language to positive modal logic. Given a set Prop of countably infinite

propositional variables, the modal mu-formulas in our language are inductively defined
by the following rule

ϕ := ⊥ | > | p | ϕ ∧ ϕ | ϕ ∨ ϕ | 3ϕ | 2ϕ | µxϕ

where p, x ∈ Prop. Note that we have only the least fixed-point operator in our language.
An occurrence of x in ϕ is said to be bound if it is in the scope of a µx, and free, otherwise.
We interpret formulas in our language over MKH-spaces. Given an MKH-space (W,R),
let F ⊆ P(W ) be such that (F,⊆) is a sublattice1 of (P(W ),⊆). That is, ∅,W ∈ F
and if U, V ∈ F, then U ∩ V ∈ F and U ∪ V ∈ F. We denote the (infinite) meets and

joins in F by
∧F

and
∨F

, respectively. If (F,⊆) is complete, then infinite mets and joins

always exist. As we will see below,
∧F

and
∨F

may differ from set-theoretic intersection
and union. An assignment h is a map from the set of propositional variables Prop to F.
For each modal mu-formula ϕ, we denote by [[ϕ]]

F
h , the set of points satisfying ϕ under

assignment h. Given S ⊆ W , let 〈R〉(S) = R−1[S] and [R](S) = W\(R−1[W\S]). We
define the semantics of a modal mu-formula ϕ, by induction on the complexity of formulas
as follows:

[[⊥]]
F
h = ∅,

[[>]]
F
h = W,

[[p]]
F
h = h(p),

[[ϕ ∧ ψ]]
F
h = [[ϕ]]

F
h ∩ [[ψ]]

F
h ,

[[ϕ ∨ ψ]]
F
h = [[ϕ]]

F
h ∪ [[ψ]]

F
h ,

[[3ϕ]]
F
h = 〈R〉([[ϕ]]

F
h),

[[2ϕ]]
F
h = [R]([[ϕ]]

F
h),

where p ∈ Prop.
Let ϕ(x, p1, . . . , pn) be a modal mu-formula. The semantics of ϕ is defined for all

assignments h using the definition above. For a fixed assignment h, ϕ and h give rise to a
map fϕ,h : F→ F defined by fϕ,h(U) = [[ϕ]]

F
hUx

, where U ∈ F, hUx (x) = U and hUx (y) = h(y)
for each propositional variable y 6= x. Since we have restricted our language to positive
modal formulas, fϕ,h is a monotone map with respect to the inclusion order. Assume that
(F,⊆) is a complete lattice. Therefore, by the Knaster-Tarski theorem, fϕ,h has a least

fixed-point. We define [[µxϕ]]
F
h to be the least fixed-point of fϕ,h, which, is computed as

follows

[[µxϕ]]
F
h =

F∧
{U ∈ F : [[ϕ]]

F
hUx
⊆ U}.

A set U ∈ F such that [[ϕ]]
F
hUx
⊆ U is called a pre-fixed point.

Note that the powerset (P(W ),⊆) is a complete lattice where meets and joins are
set-theoretic intersections and unions. Therefore, if F = P(W ), then

[[µxϕ]]
P(W )
h =

⋂
{U ∈ P(W ) : [[ϕ]]

P(W )

hUx
⊆ U}.

In the complete lattice (Cl(W ),⊆) of closed sets of a topological space, infinite meets
are intersections and infinite joins are the closure of the union. Thus, if F = Cl(W ), then

1Note that this requirement is not essential (see Remark 3.3), but it always holds in the examples that we
consider in this paper. So we find it convenient to make this restriction.
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[[µxϕ]]
Cl(W )
h =

⋂
{U ∈ Cl(W ) : [[ϕ]]

Cl(W )

hUx
⊆ U}.

Finally, in the complete lattice (Op(W ),⊆) of open sets of a topological space infinite
meets are the interior of the intersection and joins are unions. Thus, if F = Op(W ), then

[[µxϕ]]
Op(W )
h = Int

(⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hUx
⊆ U}

)
,

where Int is the interior operator.
If F = P(W ), then [[.]]

F
h is called classical or set-theoretic semantics. If F = Cl(W ), then

[[.]]
F
h is called closed semantics, and if F = Op(W ), then [[.]]

F
h is called open semantics. The

assignment h is called a set-theoretic assignment if h(p) ∈ P(W ), closed if h(p) ∈ Cl(W ),
and open if h(p) ∈ Op(W ), for each p ∈ Prop.

The following example illustrates how to compute modal mu-formulas in MKH-spaces.

Example 3.2. Consider the interval [0, 1] ⊆ R with the subspace topology. It is an
example of a compact Hausdorff space which is not totally disconnected. The only clopen
sets are [0, 1] and ∅. Consider the relation ≤ on this space which gives, ≤ [a] = [a, 1],
which shows that ≤ is point closed. Also, for an open set U ⊆ [0, 1] with supremum b we
have 〈≤〉U = [0, b), which is open in the subspace topology. Checking that 〈≤〉 of a closed
set is closed is similar. Therefore, the relation ≤ satisfies the conditions of the Proposition
2.6, which shows ([0, 1],≤) is an MKH-space. Moreover, it is not a modal space.

Consider a modal mu-formula, µx(p ∨ 3x) with the open assignment of p given by
h(p) = (1

3 ,
2
3 ). The valuation for the formula is given by

[[µx( p ∨3x)]]
Op(W )
h = Int

(⋂
{U ∈ Op(W ) : h(p) ∪ 〈≤〉U ⊆ U}

)
.

As noted above, for an open set U ⊆ [0, 1] with supremum b we have 〈≤〉U = [0, b). The
only open sets U which satisfy h(p) ∪ 〈≤〉U ⊆ U , are the ones which are of the the form
[0, b) and contain h(p). The interior of the intersection of all such sets will be the set
[0, 23 ), which is the least fixed-point of the formula.

Remark 3.3. The requirement that (F,⊆) is a complete lattice is not necessary for
interpreting fixed-point operators. It is sufficient to demand that the meet of the sets of
type {U ∈ F : [[ϕ]]

F
hUx
⊆ U}, for each ϕ and h, exist in F. The lattice (F,⊆) may not be

complete, but such meets may still exist in F. For example, for a modal space (W,R) the
lattice (Clop(W ),⊆) of its clopen sets may not be complete. Descriptive mu-frames are
those modal spaces where meets of such sets are clopen, see [3], [5]. Descriptive mu-frames
play an important role in the study of modal mu-calculus. They provide completeness for
any axiomatic system of modal mu-calculus. Moreover, a version of Sahlqvist theorem
holds for descriptive mu-frames [5]. We view MKH-spaces as generalizations of descriptive
mu-frames. Similarly the results in this paper generalize the results of [5] to the case of
MKH-spaces.

Remark 3.4. Also note that regular open (closed) sets of a topological space form a
complete Boolean algebra [11]. These sets provide important topological structures for
interpreting modal mu-formulas. Note that these Boolean algebras are not sublattices
of the powerset Boolean algebra, see e.g., [11]. As already noted in the footnote in the
previous page, the demand that (F,⊆) is a sublattice of the powerset, is made only for
convenience and could be easily dropped in order to accommodate interesting examples
such as regular open (closed) sets. Since we do not consider regular open and closed sets
in this paper, we are going to keep this restriction.

The key property of MKH-spaces is that modal operators 2 and 3 can be interpreted
on open sets. The next theorem shows that modal mu-formulas can also be interpreted
on open sets of an MKH-space.
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Theorem 3.5. The open semantics of modal mu-formulas is well defined, that is, if h is

an open assignment, then [[ϕ]]
Op(W)
h is an open set, for any modal mu-formula ϕ.

Proof. The proof is by induction on the complexity of ϕ. In the base case, when ϕ = >,⊥
or p ∈ Prop, [[ϕ]]

Op(W )
h is an open set, since ∅, W are open sets and h(p) is an open

assignment. For the induction step if ϕ = ϕ1 ∨ϕ2 or ϕ1 ∧ϕ2, [[ϕ]]
Op(W )
h is also open since

finite intersection and union of open sets is open. If ϕ = 3ψ, [[3ψ]]
Op(W )
h = 〈R〉([[ψ]]

Op(W )
h ),

which is open by Proposition 2.6, as [[ψ]]
Op(W )
h is open by induction hypothesis. The case

when ϕ = 2ψ is similar and uses the fact that [R]U is open for an open U . Finally, if
ϕ = µxψ, since we define the semantics of µxψ to be equal to the interior of an intersection

of open sets, [[ϕ]]
Op(W )
h will be an open set.

In order to simplify the notation, instead of [[ϕ(p1, . . . , pn)]]
F
h with h(pi) = Ui, 1 ≤

i ≤ n, we will sometimes simply write ϕ(U1, . . . , Un)F or just ϕ(U1, . . . , Un) if it is clear
from the context. We now show that the semantics for µxϕ defined above, gives the least
fixed-point of ϕ.

Lemma 3.6. Let (W,R) be an MKH-space, F ⊆ P(W ) a complete lattice and h such an

assignment that [[ϕ]]
F
h ∈ F. Then the valuation function defined for modal mu-formulas is

monotone, that is for U, V ∈ F such that U ⊆ V , we have [[ϕ]]
F
hUx
⊆ [[ϕ]]

F
hVx

.

Proof. The above lemma can be proved by induction on the complexity of the formula
ϕ. The basic modal cases are well known. For the case when ϕ = µyψ, we want to
show that for U ⊆ V we have [[µyψ]]

F
hUx
⊆ [[µyψ]]

F
hVx

. By induction hypothesis, we have

[[ψ]]
F
hUx
⊆ [[ψ]]

F
hVx

. This means that for each C ∈ F, if [[ψ]]
F
hVx
⊆ C, then [[ψ]]

F
hUx
⊆ C.

Therefore,
∧
{C : [[ψ]]

F
fCy
⊆ C} ⊆

∧
{C : [[ψ]]

F
gCy
⊆ C}, where f = hUx and g = hVx . Hence,

[[µxψ]]
F
hUx
⊆ [[µxψ]]

F
hVx

, and [[ϕ]]
F
hUx
⊆ [[ϕ]]

F
hVx

.

Theorem 3.7. For a modal mu-formula ϕ, the map given by (U 7→ [[ϕ]]
Op(W )

hUx
), where h

is an open assignment, has the least fixed-point [[µxϕ]]
Op(W )
h .

Proof. We know that Op(W ) is a complete lattice, and [[ϕ]]
Op(W )

hUx
is monotone as shown

in the previous lemma. Therefore, from the Knaster-Tarksi theorem, it follows that

[[µxϕ]]
Op(W )
h is its least fixed-point.

3.1 Open fixed-point semantics

In this section we focus on the open semantics for the least fixed-point operator. We first
prove the following theorem which shows that if we restrict ourselves to open assignments,
the interpretation of any modal mu-formula under the set-theoretic semantics is the same
as in the open semantics.

Theorem 3.8. Let (W,R) be an MKH-space and h be an open assignment. Then, for

each for each modal mu-formula ϕ, [[ϕ]]
P(W )
h = [[ϕ]]

Op(W )
h .

Proof. We prove the lemma by induction on the complexity of formulas. The cases ϕ = >
or ⊥, ϕ = ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, ϕ = 3ψ or 2ψ are obvious. Now assume ϕ = µxψ and
suppose the result holds for ψ. We let fψ,h and gψ,h be a map such that fψ,h(U) =

[[ψ]]
Op(W)

hUx
and gψ,h(U) = [[ψ]]

P(W )

hUx
.
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We have seen earlier that the least fixed-point can also be computed as the limit of
the following increasing sequence of sets,

∅ ⊆ fψ,h(∅) ⊆ f2ψ,h(∅) ⊆ . . .

∅ ⊆ gψ,h(∅) ⊆ g2ψ,h(∅) ⊆ . . .

By the induction hypothesis fψ,h(U) = gψ,h(U), for each U ∈ Op(W). So fnψ,h(∅) =
gnψ,h(∅), for each n ∈ ω. As h is an open assignment, each fnψ,h(∅) is an open set. So
their join is just the union. Thus, fωψ,h(∅) =

⋃
n∈ω f

n
ψ,h(∅) =

⋃
n∈ω g

n
ψ,h(∅) = gωψ,h(∅).

Continuing this process transfinitely we obtain that for each ordinal α we have fαψ,h(∅) =

gαψ,h(∅). This implies that [[µxψ]]
Op(W)
h = [[µxψ]]

P(W )
h .

Note that the above theorem holds only when h is open. In the following we will be
dealing with assignments that in general are not open. For such assignments the above
theorem may not hold as Example 3.9 below shows.

Example 3.9. Consider the interval I = [0, 1] ⊆ R with the subspace topology. Note that
this is an MKH-space. We compute the fixed-point of the modal mu-formula ϕ = µx(p∨x)
on this interval with an assignment h(p) = [12 ,

2
3 ) which is not open. It is easy to see that

the least fixed-point of ϕ, with the set-theoretic semantics is [ 12 ,
2
3 ). In case of open

semantics, the least fixed-point is the interval ( 1
2 ,

2
3 ). So, this example shows that, if the

assignment is not open, then the least fixed-point of a modal mu-formula may not be the
same in set-theoretic and open semantics.

We now show that the semantics of the least fixed-point operator simplifies in the case
of open semantics and open assignments. To this end, we define a new semantics ||ϕ||Fh ,
where F ⊆ P(W ) is complete. It agrees with [[]] on all clauses except for the one for the
fixed-point operator which we define as follows

||µxϕ||Fh =
⋂
{U ∈ F : ||ϕ||F

hUx
⊆ U}.

Lemma 3.10. Let (W,R) be an MKH-space, F ⊆ P(W ) a complete lattice and h such an

assignment that ||ϕ||Fh ∈ F. Then the valuation function defined for modal mu-formulas is

monotone, that is for U, V ∈ F such that U ⊆ V , we have ||ϕ||FhUx ⊆ ||ϕ||
F
hVx

.

Proof. Similar to the proof of Lemma 3.6.

Theorem 3.11. Let (W,R) be an MKH-space, h an arbitrary assignment and F ⊆ P(W )
a complete sublattice. Then

1. For each modal mu-formula ϕ if [[ϕ]]
F
h ∈ F, then

[[ϕ]]
F
h = ||ϕ||Fh (1)

2. For each modal mu-formula ϕ if ||ϕ||Fh ∈ F, then

[[ϕ]]
F
h = ||ϕ||Fh (2)

Proof. (1) We prove the theorem by induction on the complexity of ϕ. Suppose ϕ = µxψ.

Then, by definition [[µxψ]]
F
h =

∧F{U ∈ F : [[ψ]]
F
hUx
⊆ U}. Since [[µxψ]]

F
h ⊆ U for each

pre-fixed point U ∈ F, we have that [[µxψ]]
F
h ⊆

⋂
{U ∈ F : ||ψ||FhUx ⊆ U}. For the converse

inclusion, note that that ||µxψ||Fh ⊆ U implies ||ψ||F
h
||µxψ||
x

⊆ ||ψ||FhUx ⊆ U using Lemma
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3.10. But this implies that ||ψ||F
h
||µxψ||
x

⊆
∧F{U ∈ F : [[ψ]]

F
hUx
⊆ U} = [[µxψ]]

F
h . So ||ψ||Fh is

a pre-fixed point. By our assumption, it also belongs to F. Hence,
⋂
{U ∈ F : ||ψ||FhUx ⊆

U} ⊆ [[µxψ]]
F
h . This finishes the proof of the theorem.

(2) is similar to (1).

Corollary 3.12. Let (W,R) be an MKH-space. If h is an open assignment, then

[[µxϕ]]
Op(W )
h =

⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hUx
⊆ U}.

Proof. The result follows directly form Theorems 3.5 and 3.11.

By Theorem 3.8, open semantics for open assignments coincides with the classical
semantics. However, in this paper, we are more interested in topological semantics of
fixed-point operators. Moreover, we aim at proving an analogue of the Sahlqvist theorem
of [5]. For this purpose, it is essential to pove an analogue of Esakia’s lemma. As we will
show in Section 5.1 Esakia’s lemma fails for the open semantics considered above. We
remedy this by introducing a new topological semantics of fixed-point operators. For this
we will first need to recall form [4] the algebraic semantics and duality for MKH-spaces.

4 Algebraic semantics

A duality between compact Hausdorff spaces and compact regular frames was established
by Isbell [15] (see also [16]). In [4] Isbell duality was extended to a duality between
modal compact Hausdorff spaces and modal compact regular frames. We briefly recall
this duality and later show that the duality extends to the language of positive modal
mu-calculus.

Definition 4.1 (Compact frames). A frame L is a complete lattice that satisfies a ∧∨
S =

∧
{a∧ s | s ∈ S}, where S ⊆ L. It is compact if whenever

∨
S = 1, there is a finite

subset T ⊆ S with
∨
T = 1. A map f : L→M between frames is a frame homomorphism

if it preserves finite meets and arbitrary joins.

Suppose L is a frame. For each a ∈ L there is a largest element of L whose meet with
a is zero, called the pseudocomplement of a and written ¬a. For a, b ∈ L we say a is well
inside b and write a ≺ b if ¬a ∨ b = 1. We say L is regular if a =

∨
{b | b ≺ a} for each

a ∈ L.
Given a topological space X, the collection Op(X) of all open sets of X is a frame.

For a continuous map f : X → Y between spaces, define Ωf = f−1 : Op(Y )→ Op(X). It
can be checked that Ω is a contravariant functor from the category of topological spaces
to the category of frames. Given a frame L, a filter F ⊆ L is called complete if

∨
A ∈ F

implies that there is a ∈ A such that a ∈ F . Te set The set pL of complete filters forms
a topological space with the basis α(a) = {x ∈ pL | a ∈ x} where a ∈ L.

For a frame homomorphism h : L→M , the map ph : pM → pL sending a x ∈ pM to
h−1(x) is well defined and continuous. p is a contravariant functor between the category of
frames and the category of topological spaces. The functors Ω and p give dual equivalence
when we restrict them to appropriate subcategories.

Theorem 4.2 (Isbell). The functors Ω and p provide a dual equivalence between the
category KHaus of compact Hausdorff spaces and continuous maps and the category KRFrm
of compact regular frames and frame homomorphisms.

Definition 4.3 (Modal compact regular frames). A modal compact regular frame
(abbreviated: MKR-frame) is a triple L = (L,2,3) where L is a compact regular frame,
and 2,3 are unary operations on L satisfying the following conditions.
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1. 2 preserves finite meets, so 21 = 1 and 2(a ∧ b) = 2a ∧2b.

2. 3 preserves finite joins, so 30 = 0 and 3(a ∨ b) = 3a ∨3b.

3. 2(a ∨ b) ≤ 2a ∨3b and 2a ∧3b ≤ 3(a ∧ b).
4. 2,3 preserve directed joins, so 3

∨
S =

∨
{3s | s ∈ S},2

∨
S =

∨
{2s | s ∈ S} for

any up-directed S.

For MKR-frames L = (L,2,3) and M = (M,2,3), an MKR-morphism from L to M
is a frame homomorphism h : L → M that satisfies h(2a) = 2h(a) and h(3a) = 3h(a)
for each a ∈ L. Let MKRFrm be the category whose objects are MKR-frames and whose
morphisms are MKR-morphisms.

Definition 4.4 ([4]). For M = (W,R) an MKH-space, ΩM = (Op(W ), [R], 〈R〉). For
a continuous p-morphism f : W → V between MKH-spaces (W,R) and (W ′, R′) define
Ωf : Op(W ′)→ Op(W ) by Ωf = f−1.

Definition 4.5. For L = (L,2,3) an MKR-frame, pL = (W,R) where W = pL and R
is a relation on W defined by PRQ iff a ∈ Q implies 3a ∈ P for all a ∈ L (alternatively,
by 2a ∈ P implies a ∈ Q). For a modal frame homomorphism h : L → M , between
MKR-frames L = (L,2,3) and M = (M,2,3) we define ph : pM → pL as (ph) = h−1.

Theorem 4.6 ([4]). The functors Ω and p defined above, provide a dual equivalence
between MKHaus and MKRFrm

The positive modal mu-formulas in our language can be interpreted over a modal com-
pact regular frame L = (L,2,3). An algebra assignment h is a map from propositional
variables to L. The semantics of propositional connectives are given in a standard way.
The formulas 2ϕ and 3ϕ are interpreted using 2 and 3 in L. Let hax denote the map
which agrees with h on all variables except for x and which maps x to a. The semantics
of µxϕ is given by

[µxϕ]Lh =
∧
{a ∈ L : [ϕ]hax ≤ a}

Using the Knaster-Tarski theorem, it is easy to see that [µxϕ]h is the least fixed-point of
the map given by (a 7→ [ϕ]hax).

The next theorem shows that computing a modal mu-formula ϕ in (W,R) or alge-
braically in its dual frame yields the same result.

Theorem 4.7. Let (W,R) be an MKH-space and (Op(W ),2,3) be the dual MKR-frame.

For each modal mu-formula ϕ and open assignment h, we have [ϕ]
Op(W )
h = [[ϕ]]

Op(W )
h

Proof. The proof is by induction on the complexity of ϕ. For the propositional and modal
cases we refer to the modal Isbell duality in [4, Prop. 3.10]. If ϕ = µxψ(x, p1, . . . , pn), by

induction hypothesis [ψ]Lh = [[ψ]]
Op(W )
h . Let U = {U ∈ Op(W ) : [[ψ]]hUx

⊆ U}. The result

now follows for the fact that
∧

U = Int(
⋂

U), which is true because in Op(W ) the meet
is the interior of the intersection.

We now introduce an alternative semantics for µxϕ as follows.

Definition 4.8. Let (L,2,3) be an MKR-frame and h an assignment. For each modal
formula ϕ we let [ϕ]L

′

h = [ϕ]h and we let

[µxϕ]L
′

h =
∧
{a ∈ L : ∃b ∈ L s.t. a ≺ b and [ϕ]L

′

hbx
≤ a}

We will now define its topological counter-part.

Definition 4.9. Let (W,R) be an MKH-space and h an open assignment. For each modal

formula ϕ we let [[ϕ]]
Op(W )′

h = [[ϕ]]
Op(W )
h and we let

[[µxϕ]]
Op(W )′

h = Int
⋂
{U ∈ Op(W ) : ∃V ∈ Op(W ) s.t. U ⊆ V and [[ϕ]]

Op(W )′

hVx
⊆ U}

10



The next theorem shows that the two new interpretations of the fixed-point operator
coincide for MKH-spaces.

Theorem 4.10. Let (W,R) be an MKH-space and (Op(W ),2,3) be the dual MKR-frame.

For any modal mu-formula ϕ we have [ϕ]
Op(W )′

h = [[ϕ]]
Op(W )′

h

Proof. We prove the theorem by induction on the complexity of ϕ. We only consider the
case ϕ = µxψ. First note that in the frame Op(W ) for U, V ∈ Op(W ) we have U ≺ V iff
U ⊆ V . The rest of the proof follows from duality and the fact that meets in Op(W ) are
the interior of the intersection.

We will use this new algebraic interpretation of the fixed-point operator in the next
section. In particular, we will give yet another (topological) interpretation of the fixed-
point operator. But we will show that in some important cases the topological and
algebraic interpretations of the fixed-point operator coincide.

5 Sahlqvist preservation

In this section, we define Sahlqvist sequents in our language and prove a preservation
result for these sequents using Esakia’s lemma. We begin by introducing an alternative
topological semantics for the fixed-point operator.

5.1 An alternative fixed-point semantics

In case of classical modal logic, Esakia’s lemma shows that in modal spaces the valuation
of a positive formula ϕ on a closed set is equal to the intersection of valuations of ϕ
on clopen sets containing this closed set [12], [23]. This was extended in [5] to positive
modal mu-formulas and descriptive mu-frames. An analogue of Esakia’s lemma for MKH-
spaces and positive modal formulas was proved in [4]. In case of MKH-spaces clopen sets
are replaced by open sets. First, we show that an analogue of Esakia’s lemma does not
hold for the open semantics defined in Section 3. This motivates an introduction of a
new topological semantics for fixed-point operators for which a fixed-point analogue of
Esakia’s lemma will be shown in Section 5.2.

Example 5.1. Consider an MKH-space ([0, 1],≤) and a modal mu-formula µx(p∨x), such
that h(p) = [ 12 , 1]. The least fixed-point of the formula is computed as the intersection
of those open sets U , for which h(p) ∪ U ⊆ U , or [ 12 , 1] ∪ U ⊆ U . This is equal to the
interior of [ 12 , 1], which is ( 1

2 , 1].
Let A = {U ∈ Op(W ) : [12 , 1] ⊆ U}. Then [ 12 , 1] =

⋂
A. Let ϕ = µx(p∨x). If Esakia’s

lemma were true, we would have

[[µx(p ∨ x)]]
Op(W )

h
[ 1
2
,1]

p

=
⋂
{[[µx(p ∨ x)]]

Op(W )

hUp
: U ∈ A}.

It is easy to check that with h′(p) = A ∈ A, the least fixed-point of the formula
µx(p ∨ x) is equal to A itself. The intersection of all the least fixedpoints, or A’s in this
case, is the closed set [ 12 , 1]. So, we have(

1

2
, 1

]
= [[µx(p ∨ x)]]

Op(W )

h
[ 1
2
,1]

p

)
⋂
{[[µx(p ∨ x)]]

Op(W )

hUp
: U ∈ A} =

[
1

2
, 1

]
Therefore, Esakia’s lemma fails for modal mu-formulas for open semantics.

We remedy this by introducing an alternative semantics for fixed-point operator. For
an important class of modal mu-formulas this semantics will coincide with the semantics
introduced in the previous section. We first introduce an alternative notion of a pre-fixed-
point of a modal formula ϕ.
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Definition 5.2. Let (W,R) be an MKH-space and h be an open assignment. The Boolean

and modal operators for the topological semantics [[ϕ]]
Op(W )
h are interpreted in the same

way as in the case of open semantics. Finally, for a formula ϕ with free variable x, we set

[[µxϕ]]
Op(W )
h = Int

(⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hUx
⊆ U}

)
,

where U is the closure of U .

The difference between topological and the open semantics is that the pre-fixed points
in the topological semantics are taken with respect to the closure of a set. Sets U such

that [[ϕ]]
Op(W )

hUx
⊆ U will be called topological pre-fixed points.

Example 5.3. Consider the interval I = [0, 1] with the usual metric topology. We com-
pute the valuation of fixed-point operator according to the topological semantics defined
above. Consider a modal mu-formula µx(p ∨ x) and an open assignment h(p) = ( 1

3 ,
2
3 ).

As we saw in Example 3.2, [[µx(p ∨ x)]]
Op(I)
h = ( 1

3 ,
2
3 ). For the new semantics we have

[[µx(p ∨ x)]]
Op(I)
h = Int

(⋂
{U ∈ Op(I) :

(
1

3
,

2

3

)
∪ U ⊆ U}

)
.

It can be checked that the only open U ⊆ [0, 1] which satisfies ( 1
3 ,

2
3 )∪U ⊆ U , is U = [0, 1].

Now this is a pre-fixed point but not the least fixed-point, in the sense that it is not the
least open pre-fixed point. We have seen earlier in the Example 3.2 that the set ( 1

3 ,
2
3 ) is

the least open pre-fixed point for the formula µx(p ∨ x).

The following lemma shows that the topological semantics [[ϕ]]
Op(W )
h is well-defined.

Lemma 5.4. Let (W,R) be an MKH-space and h an open assignment. Then for each

modal mu formula ϕ [[ϕ]]
Op(W )
h is an open set.

Proof. We want to show that if we restrict ourselves to open assignments, then the open

semantics [[ϕ]]
Op(W )
h is an open set. It is easy to see this for the cases when ϕ is a modal

formula, since the valuation function is the same as in the case of usual semantics. In

the case when ϕ = µxψ, [[ϕ]]
Op(W )
h is still open since we define it to be the interior of

intersection of sets U such that [[ψ]]
Op(W )

hUx
⊆ U .

The following lemma connects the topological semantics with the algebraic semantics
discussed in the previous section.

Lemma 5.5. For an MKH-space (W,R), if F1, . . . , Fn are closed sets and ϕ(x1, . . . , xn)

is a modal formula2, then [[ϕ]]
Op(W )

h
F1,...,Fn
x1,...,xn

is a closed set.

Proof. The above lemma can be proved by induction on complexity of ϕ. For the base
case when ϕ = p,⊥ or >, the lemma follows trivially. If ϕ = ϕ1∨ϕ2 or ϕ1∧ϕ2, the lemma
holds since finite union and intersection of closed sets is closed. If ϕ = 2ψ or ϕ = 3ψ,
the lemma is true because of the conditions on R in Proposition 2.6.

Theorem 5.6. For an MKH-space (W,R), U ⊆ W is a topological pre-fixed of a modal

formula ϕ(x) as defined above iff there exists an open V such that U ⊆ V and [[ϕ]]
Op(W )

hVx
⊆

U .

2ϕ does not have any fixed-point operator
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Proof. Note that ϕ is a modal formula and does not contain any fixed-point operators.
The direction from right to left is easy. If there is an open V such that U ⊆ V , by

monotonicity, [[ϕ]]
Op(W )

hUx
⊆ [[ϕ]]

Op(W )

hVx
⊆ U . For the converse direction, since ϕ(x) is a

modal formula, Esakia’s lemma for positive modal formulas and MKH-spaces ([4, Lemma
7.8]) holds for it. So, we have

[[ϕ]]
Op(W )

hUx
=
⋂
{[[ϕ]]

Op(W )

hV ′
x

: U ⊆ V ′ & V ∈ Op(W )}.

Then, [[ϕ]]
Op(W )

hUx
⊆ U implies that

⋂
{[[ϕ]]

Op(W )

hV ′
x

: U ⊆ V ′ & V ∈ Op(W )} ⊆ U . As ϕ is

a modal formula, [[ϕ]]
Op(W )

hV ′
x

is a closed set using Lemma 5.5. Therefore, by compactness

of W , there is an open V with U ⊆ V such that [[ϕ]]
Op(W )

hVx
⊆ U . But then [[ϕ]]

Op(W )

hVx
⊆

[[ϕ]]
Op(W )

hVx
⊆ U . So, we found V with U ⊆ V such that [[ϕ]]

Op(W )

hVx
⊆ U .

We restrict the syntax of modal mu-formulas so that we only have a modal formula in
the scope of a fixed-point connective.

Definition 5.7 (Shallow modal mu-formula). A shallow modal mu-formula is a modal
mu-formula such that only a modal formula (without fixed-point operators) can occur in
the scope of the least fixed-point operator.

Example 5.8. A simple example of a shallow modal mu-formula is µx(3p∨x). We cannot
have the formula µxµy(3p∨x)∧ (2p∨ y) in our language since the nesting of fixed-point
operators is not allowed by the syntax, but we can have µx(3p ∨ x) ∧ µy(2p ∨ y). To
see more concrete cases, one can check that the computational tree logic (CTL), linear
temporal logic (LTL) and propositional dynamic logic (PDL) have shallow fixed-point
connectives. For example, the iteration diamond 〈α∗〉 of the PDL can be expressed as
the least fixed-point of the modal formula p ∨ 〈α〉x, that is, µx (p ∨ 〈α〉x). We note,
however, that both PDL and CTL do allow for nesting of operators, even if each operator
is “shallow”.

The following theorem connects the topological semantics with the algebraic semantics
discussed in the previous section.

Theorem 5.9. Let (W,R) be an MKH-space. Then for each shallow modal mu-formula

ϕ and an open assignment h we have [[ϕ]]
Op(W )
h = [[ϕ]]

Op(W )′
.

Proof. We prove the lemma by induction on the complexity of the formula ϕ. The only
case that needs to be checked is ϕ = µxψ, where ψ is a modal formula. But then by

Theorem 5.6, and the definitions of [[ϕ]]
Op(W )
h and [[ϕ]]

Op(W )′
, we immediately obtain that

[[µxψ]]
Op(W )
h = [[µxψ]]

Op(W )′
.

Theorem 5.10. Let (W,R) be an MKH-space and h be an open assignment. Then for

each modal µ-formula ϕ(x), [[ϕ]]
Op(W )
h is monotone. That is, for U ⊆ V , s.t. U, V ∈

Op(W )

U ⊆ V implies [[ϕ]]
Op(W )

hUx
⊆ [[ϕ]]

Op(W )

hVx

Proof. We prove the lemma by induction on the complexity of ϕ and show the induction
step only for the case when ϕ = µyψ(y, x). By induction hypothesis, the lemma holds for
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ψ, that is, for all U, V ⊆W and C ∈ Op(W ), we have

U ⊆ V ⇒ [[ψ]]
Op(W )

hC,Uy,x

⊆ [[ψ]]
Op(W )

hC,Vy,x

⇒ If [[ψ]]
Op(W )

hC,Vy,x

⊆ C, then [[ψ]]
Op(W )

hC,Uy,x

⊆ C

⇒ {C : [[ψ]]
Op(W )

hC,Vy,x

⊆ C} ⊆ {C : [[ψ]]
Op(W )

hC,Uy,x

⊆ C}

⇒
⋂
{C : [[ψ]]

Op(W )

hC,Uy,x

⊆ C} ⊆
⋂
{C : [[ψ]]

Op(W )

hC,Vy,x

⊆ C}

⇒ Int

(⋂
{C : [[ψ]]

Op(W )

hC,Uy,x

⊆ C}
)
⊆ Int

(⋂
{C : [[ψ]]

Op(W )

hC,Vy,x

⊆ C}
)

⇒ [[µyψ]]
Op(W )

hUx
⊆ [[µyψ]]

Op(W )

hVx
.

We have already seen in the Example 5.3 that the alternative semantics of the formula
µxϕ does not give the least fixed-point of ϕ. In the following lemma, we show that if h is

an open assignment, then [[µxϕ]]
Op(W )
h , gives a pre-fixed point of ϕ. This is similar to [5],

where the semantics of the least fixed-point operator is the standard semantics, which is
not necessarily the least fixed-point.

Theorem 5.11. The topological semantics for the fixed-point operator [[µxϕ]]
Op(W )
h under

an open assignment h, gives a pre-fixed point of the formula ϕ.

Proof. In order to show that [[µxϕ(x, p1, . . . , pn)}]]Op(W )
h is a pre-fixed point, we need to

show that [[ϕ]]
Op(W )

hSx
⊆ S, where S = Int

(⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hUx
⊆ U}

)
. Let U =

{U ∈ Op(W ) : [[ϕ]]
Op(W )

hUx
⊆ U}. Since S ⊆ U ⊆ U , for all U ∈ U, we have [[ϕ]]

Op(W )

hSx
⊆

[[ϕ]]
OpW )

hUx
⊆ U . So [[ϕ]]

Op(W )

hSx
⊆
⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hUx
⊆ U}. By Lemma 5.4, [[ϕ]]

Op(W )

hSx

is open. So [[ϕ]]
Op(W )

hSx
⊆ Int

(⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hUx

)
= S. Therefore, S is a pre-fixed

point.

5.2 Esakia’s lemma

In this section, we work with only shallow modal mu-formulas. We prove an Esakia’s
lemma for MKH-spaces which will be used later to prove a Sahlqvist theorem for the
shallow modal fixed-point formulas. Let W be any set. Recall that a set F ⊆ P(W ) is
downward directed if for each F, F ′ ∈ F, there exists F ′′ ∈ F such that F ′′ ⊆ F ∩ F ′.

Lemma 5.12. (Esakia’s lemma) Let (W,R) be an MKH-space. Let F, F1, . . . , Fn ⊆W
be closed sets and let A ⊆ Op(W ) be a downward directed family of open sets such that⋂
A = F . Then, for each positive shallow modal µ-formula ϕ(x, x1, . . . , xn), we have

[[ϕ]]
Op(W )

hF,
~F

x,~x

=
⋂
{[[ϕ]]

Op(W )

hC,
~F

x,~x

: C ∈ A}

where ~F = (F1, . . . Fn) and ~x = (x1, . . . , xn).

Proof. Throughout this proof, we adopt the following simplified notation: we use ϕ(F, ~F )

instead of [[ϕ]]
Op(W )

hF,
~F

x,~x

.
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First, note that ϕ(F, ~F ) =
⋂
{ϕ(C, ~F ) : C ∈ A} follows from ϕ(F, ~F ) =

⋂
{ϕ(C, ~F ) :

C ∈ A}, where C is the closure of C, as a result of the following claim.

Claim. ϕ(F, ~F ) =
⋂
{ϕ(C, ~F ) : C ∈ A}, implies ϕ(F, ~F ) =

⋂
{ϕ(C, ~F ) : C ∈ A}.

Proof of Claim. From Lemma 5.10, we have that ϕ is monotone. So, if F ⊆ C ⊆ C,
then ϕ(F, ~F ) ⊆ ϕ(C, ~F ) ⊆ ϕ(C, ~F ), which implies ϕ(F, ~F ) ⊆

⋂
{ϕ(C, ~F ) : C ∈ A} ⊆⋂

{ϕ(C, ~F ) : C ∈ A}. Therefore, if we show ϕ(F, ~F ) =
⋂
{ϕ(C, ~F ) : C ∈ A}, we get

ϕ(F, ~F ) =
⋂
{ϕ(C, ~F ) : C ∈ A}

We show ϕ(F, ~F ) =
⋂
{ϕ(C, ~F ) : C ∈ A} by induction on the complexity of ϕ. For

the cases not involving the fixed-point operator, we refer to the proof of [4, Lemma 7.8].
For the case when ϕ = µxψ(x, y, ~x), we need to show

µxψ(x, F, ~F ) =
⋂
{µxψ(x,C, ~F ) : C ∈ A}

For each C ∈ A, we have F ⊆ C ⊆ C, which implies µxψ(x, F, ~F ) ⊆ µxψ(x,C, ~F ) using

Lemma 5.10. Therefore, µxψ(x, F, ~F ) ⊆
⋂
{µxψ(x,C, ~F ) : C ∈ A}.

For the other direction, suppose w ∈
⋂
{µxψ(x,C, ~F ) : C ∈ A}. This implies that w ∈

µxψ(x,C, ~F ), for each C ∈ A. As a result, w ∈ Int
(⋂
{U ∈ Op(W ) : ψ(U,C, ~F ) ⊆ U}

)
,

using the definition of the alternative semantics for the least fixed-point operator. There-
fore, there exists a neighborhood Uw of w such that Uw ⊆

⋂
{U ∈ Op(W ) : ψ(U,C, ~F ) ⊆

U}. So, for each C ∈ A, and each V ∈ Op(W ) with ψ(V ,C, ~F ) ⊆ V we have Uw ⊆ V .

Assume U ∈ Op(W ) is such that ψ(U,F, ~F ) ⊆ U . By the induction hypothesis,

ψ(U,F, ~F ) =
⋂
{ψ(U,C, ~F ) : C ∈ A}. Hence,

⋂
{ψ(U,C, ~F ) : C ∈ A} ⊆ U . By Lemma

5.5, each ψ(U,C, ~F ) is a closed set. Therefore, as U is open, by compactness, there exist

finitely many C1, . . . , Ck ∈ A such that
⋂k
i=1 ψ(U,Ci, ~F ) ⊆ U . AsA is downward directed,

there exists a C ∈ A such that C ⊆
⋂k
i=1 Ci which implies C ⊆

⋂k
i=1 Ci ⊆

⋂k
i=1 Ci .

Finally, by Lemma 5.10, ψ(U,C, ~F ) ⊆ U which implies Uw ⊆ U . Therefore, it follows

that w ∈ µxψ(x, F, ~F ).

Corollary 5.13. Let (W,R) be an MKH-space, ~F = (F1, . . . , Fn),~G = G1, . . . , Gk ⊆
W be closed sets and ϕ(~x, ~y) be a modal mu-formula, where ~x = (x1, . . . , xn) and ~y =
(y1, . . . , yk). Then,

1. [[ϕ]]
Op(W )

h
F1,...,Fn,

~G

x1,...,xn,~y

=
⋂
{[[ϕ]]

Op(W )

h
C1,...,Cn,

~G

x1,...,xn,~y

: Fi ⊆ Ci ∈ Op(W ), 1 ≤ i ≤ n}.

2. [[ϕ]]
Op(W )

h
F1,...,Fn,

~G

x1,...,xn,~y

=
⋂
{[[ϕ]]

Op(W )

h
C1,...,Cn,

~G

x1,...,xn,~y

: Fi ⊆ Ci ∈ Ai, 1 ≤ i ≤ n}, where Ai ⊆ Op(W ) is

downward directed and
⋂
Ai = Fi, for each 1 ≤ i ≤ n.

Proof. The result follows from Lemma 5.12 by a trivial induction.

Remark 5.14. From the proof of the Esakia’s Lemma, one can see why do we need
to restrict our syntax to shallow modal mu-formulas. In order to use the compactness
property to get a finite intersection, from an infinite intersection, we need the set S =

[[ψ]]
Op(W )

hU,C,
~F

x,y,~x

to be closed. If ψ contains fixed-points, S may not necessarily be a closed set.

To see this let ψ be the formula µx(p ∨ x). We consider the space N of natural
numbers with the discrete topology. The Alexandroff one-point compactification αN of
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N is a compact Hausdorff (and also zero-dimensional) space. This space is obtained by
adding ∞ to N. A set U is open in αN if U ⊆ N or U = V ∪ {∞} for a cofinite subset
V ⊆ N. Let h(p) = {n ∈ N : n is even} ∪ {∞} be a closed valuation. Then it is easy
to check that the evaluation of the formula µx(p ∨ x) under the alternative semantics is
equal to the set Int({n ∈ N : n is even} ∪ {∞}) = {n ∈ N : n is even}. Obviously this is
open but not a closed set. This justifies why we work with shallow modal mu-formulas
ensuring that ψ does not have any fixed-point operators and S is a closed set as a result
of Lemma 5.5. The above example underlines once again the non-standard nature of this
semantics. Note that in the standard semantics the evaluation of the formula µx(p ∨ x)
is equal to the evaluation of the atom p.

5.3 Sahlqvist formulas

In this section, we define a Sahlqvist formula and Sahlqvist sequent in our language. We
then prove a version of Sahlqvist preservation result using the Esakia’s lemma proved
in the previous section for shallow modal fixed-point logic. In fact, with an analogue of
the Esakia’s lemma at hand the proof follows the standard patter of a proof of Sahlqvist
theorem via topological frame see e..g, [23], [14], [5], [13], [4]. Thus, we will only underline
the main steps. The details can be found in any of the above reference.

Definition 5.15. Let (W,R) be an MKH-space and h an assignment. For each formulas

ϕ and ψ we say that ϕ ` is true in W under h if [[ϕ]]
Op(W )
h ⊆ [[ψ]]

Op(W )
h . We say that

ϕ ` ψ is topologically valid in (W,R) and write W |= ϕ ` ψ if [[ϕ]]
Op(W )
h ⊆ [[ψ]]

Op(W )
h for

each open assignment h. We say that ϕ ` ψ is valid in (W,R) and write MW |= ϕ ` ψ
if [[ϕ]]

Op(W )
h ⊆ [[ψ]]

Op(W )
h for each assignment h.

Definition 5.16. (Sahlqvist antecedent) Define 20p = p and 2n+1p = 2np. A boxed
atom is a formula of the form 2n⊥, 2n>, or 2np for some propositional variable p and
n ≥ 0. A Sahlqvist antecedent is obtained from boxed atoms by applying ∧ and 3.

Definition 5.17. (Sahlqvist sequent) A sequent ϕ ` ψ is called a Sahlqvist sequent if
ϕ is a Sahlqvist antecedent and ψ is a shallow modal mu-formula in our language.

Theorem 5.18 (Sahlqvist preservation). Let (W,R) be an MKH-space and ϕ ` ψ be
a Sahlqvist sequent. Then the following are equivalent

1. W |= ϕ ` ψ.
2. MW |= ϕ ` ψ.

Proof. (Sketch) Obviously, (2) implies (1). Now suppose MW 6|= ϕ ` ψ. Then there

exists a set-theoretic assignment f and a point w ∈ W such that w ∈ [[ϕ]]
Op(W )
f and

w /∈ [[ψ]]
Op(W )
f . But since ϕ is Sahlqvist, there is a minimal closed assignment g such that

w ∈ [[ϕ]]
Op(W )
g and w /∈ [[ψ]]

Op(W )
g . By the Esakia lemma there exists an open assignment h

such that w /∈ [[ψ]]
Op(W )
h . Finally, by monotonicity, x ∈ [[ψ]]

Op(W )
h . Thus, W 6|= ϕ ` ψ.

6 Sahlqvist correspondence

The aim of this section is to show that every Sahlqvist sequent is equivalent to a frame
condition, which can be expressed in a first-order language with a least fixed-point op-
erator (LFP). The language LFP [10] has a countably infinite set of variables, a binary
relation symbol R, and a unary predicate P , for each propositional variable p ∈ Prop. A
formula χ in LFP is said to be an LFP-frame condition if it does not contain free variables
or predicate symbols.
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Let M = (W,R) be an MKH-space and h be an open assignment. We interpret
formulas in LFP over (W,R), such that PM = h(p) ∈ Op(W ) for every p ∈ Prop. Let
g be a first-order assignment of variables. The satisfaction of a LFP formula ξ, denoted
by (M, h, g) |= ξ, is defined in a standard way using induction on ξ. For a LFP formula

ξ(v,X), where v is a first-order variable and X is a unary predicate, let hUx denote the
assignment of the variable x to the set U and gwu denote the first-order assignment mapping

variable v to w ∈ W . Let F (U) = {w ∈ W : (M, hUx , g
w
v ) |= ξ(v,X)}. The semantics of

(µ(X, v)ξ(v,X)ϕ))(u), can be defined as follows

(M, h, g) |= (µ(X, v)ξ(v,X))(u) iff g(u) ∈ Int
(⋂
{U ∈ Op(W ) : F (U) ⊆ U}

)
Definition 6.1 (Standard translation). Let u, v be first-order variables. The standard
translation of a modal mu-formula into the language FO + LFP is inductively defined as
follows

• STu(⊥) = ⊥,
• STu(>) = >,
• STu(p) = P (u), where p ∈ Prop ,

• STu(ϕ ∧ ψ) = STu(ϕ) ∧ STu(ψ),

• STu(ϕ ∨ ψ) = STu(ϕ) ∨ STu(ψ),

• STu(3ϕ) = ∃v(R(u, v) ∧ STv(ϕ),

• STu(2ϕ) = ∀v(R(u, v)→ STv(ϕ)),

• STu(µxϕ) = (µ(X, v)STv(ϕ))(u)

• STu(ϕ ` ψ) = STu(ϕ)→ STu(ψ)

Proposition 6.2. Let M = (W,R) be an MKH-space, h be an open assignment and ϕ be
a modal mu-formula. For each w ∈W and a first-order assignment gwu mapping variable
v to w, we have,

1. w ∈ [[ϕ]]
Op(W )
h iff (M, h, gwu ) |= STu(ϕ)

2. ∀h
(
w ∈ [[ϕ]]

Op(W )
h

)
iff (M, gwu ) |= ∀P1 . . . ∀Pn STu(ϕ)

3. ∀h∀w
(
w ∈ [[ϕ]]

Op(W )
h

)
iff M |= ∀P1 . . . ∀Pn∀u STu(ϕ)

Proof. The Proposition easily follows from an induction on complexity of ϕ.

Theorem 6.3. Let (W,R) be an MKH-space and ϕ ` ψ be a Sahlqvist sequent. Then
there is a frame condition χ(ϕ,ψ) in LFP such that

(W,R) |= χ(ϕ,ψ) iff ϕ ` ψ is valid in (W,R)

Proof. We give an algorithm to effectively compute the first order frame correspondent
χ(ϕ,ψ) of ϕ ` ψ.

Step 1 Since ϕ ` ψ is valid in (W,R), ∀w ∈W ,

w ∈ [[ϕ]]
Op(W )
h ⇒ w ∈ [[ψ]]

Op(W )
h

Fix w ∈ W . Let p1, . . . , pn ∈ Prop be the set of propositional variables occurring in
ϕ. We compute the minimal assignment h0(pi), 1 ≤ i ≤ n for each propositional
variables as follows: let β1, . . . , βmi be the boxed atoms in ϕ which contain pi, with
βj = 2djpi, 1 ≤ j ≤ mi and dj ≥ 0. Let R0[w] = {w} and Rn[w] = {w′ ∈ W :
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∃w1, . . . , wn s.t. wRw1R . . . Rwn and wn = w′} for n ≥ 1. The minimal valuation for pi
is equal to h0(pi) = Rd1 [w] ∪ . . . ∪Rdmi [w].

Step 2 Let h0 be the minimal assignment computed in Step 1. The syntactic shape of
the Sahlqvist formula ensures that we have the following equivalence.

Claim. If ϕ is a Sahlqvist antecedent, then

∀h
(
w ∈ [[ϕ]]

Op(W )
h ⇒ w ∈ [[ψ]]

Op(W )
h

)
iff ∀h0

(
w ∈ [[ϕ]]

Op(W )
h0

⇒ w ∈ [[ψ]]
Op(W )
h0

)
(3)

Proof of Claim. The direction from left to right is clear. We prove the converse by con-

traposition. Suppose there exists an arbitrary assignment h such that w ∈ [[ϕ]]
Op(W )
h and

w /∈ [[ψ]]
Op(W )
h . We show that there exists a minimal valuation h0 such that w ∈ [[ϕ]]

Op(W )
h0

and w /∈ [[ψ]]
Op(W )
h0

, using an induction on the complexity of ϕ.

The base case with ϕ = ⊥ is trivial. If ϕ = 2np, it is easy to check that w ∈ [[2np]]
Op(W )
h

if, and only if, w ∈ [[2np]]
Op(W )
h0

, where h0(p) = Rn[w] is the minimal valuation computed

in Step 1. Since ψ is a positive formula and h0(p) ⊆ h(p), it follows that w /∈ [[ψ]]
Op(W )
h0

.
If ϕ = ϕ1 ∧ ϕ2, by induction hypothesis, there exist minimal valuations g0(p) ⊆ h(p)
and k0(p) ⊆ h(p) for ϕ1 and ϕ2 respectively. Let h0(p) = g0(p) ∪ k0(p), which implies

h0(p) ⊆ h(p). Hence, w /∈ [[ψ]]
Op(W )
h0

If ϕ = 3ϕ1, the minimal valuation h0 such that

w ∈ [[ϕ]]
Op(W )
h0

and w /∈ [[ψ]]
Op(W )
h0

, is the same as the minimal valuation for ϕ1.

Step 3 We showed in Step 2 that a Sahlqvist sequent is valid under an arbitrary assign-
ment if and only if it is valid under a minimal assignment. As it is shown below, the
minimal assignment h0 computed in Step 1 is first-order definable. Hence, it ensures that
the frame condition corresponding to a Sahlqvist sequent is in LFP.

Let χ′(ϕ,ψ) = ∀P1 . . . ∀Pn∀u STu(ϕ ` ψ). Suppose h0(pi) = Rd1 [w] ∪ . . . ∪ Rdmi [w]
for pi ∈ Prop. The LFP condition χ(ϕ,ψ) is obtained from χ′(ϕ,ψ) by replacing ∀Pi with
∀zi, where zi is a fresh first order variable, and each atomic formula of the form Pi(v)

with an LFP formula θi = ∃v0, . . . , vn[zi = v ∧
∧n−1
j=0 vjRvj+1 ∧ vn = v], which says ‘there

exists an R-path from zi to v in n steps’.

Claim. The LFP sentence χ(ϕ,ψ) is the frame condition for ϕ ` ψ.

Proof of Claim. The minimal valuation for all the propositional variables in ϕ computed
above are first-order definable. Hence, it follows using Proposition 6.2.3 that χ(ϕ,ψ) is
an LFP frame condition.

The proof of the theorem follows from the claim.

Example 6.4. Consider the sequent 3p ` 23∗p, where 3∗p = µx(p∨3x). The standard
translation of the sequent is given as follows

STu(3p ` 23∗p) =∃v1(R(u, v1) ∧ P (v1))→ ∀v2(R(u, v2)→
µ(X, v3)(P (v3) ∨ ∃v4(R(v3, v4) ∧X(v4)))(v2))

The propositional variable p does not occur in scope of any box in the antecedent.
Hence, the minimal valuation for p is h0(p) = {w}. According to the algorithm in Theorem
6.3, the LFP frame condition χ(3p,23∗p) is obtained by replacing all occurrences of P (vi)
with zi = vi, where zi is a new variable

χ(3p,23∗p) =∀z1∀z2∀u∃v1∀v2(R(u, v1) ∧ (z1 = v1))→ (R(u, v2)→
µ(X, v3)((z2 = v3) ∨ ∃v4(R(v3, v4) ∧X(v4)))(v2))
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a

0 1 2 ∞

Figure 1: Alexandroff compactification of N with an isolated point

Example 6.5. Consider the sequent 32⊥ ` 23∗2⊥, where 3∗2⊥ = µx(2⊥ ∨ 3x).
Since there are no propositional variables in the sequent, its first order correspondence is
obtained from its standard translation by quantifying over the free variable.

χ(32⊥, 23∗2⊥) =∀u∃v1(R(u, v1) ∧ ∀v2(R(v1, v2)→ ⊥))→ ∀v3(R(u, v3)→
µ(X, v4)(∀v5(R(v4, v5)→ ⊥) ∨ ∃v6(R(v4, v6) ∧X(v6)))(v3))

which simplifies to

χ(32⊥, 23∗2⊥) =∀u∃v1(R(u, v1) ∧ ∀v2(¬R(v1, v2)))→ ∀v3(R(u, v3) (4)

→ µ(X, v4)(∀v5(¬R(v4, v5)) ∨ ∃v6(R(v4, v6) ∧X(v6)))(v3))

We now give a semantic interpretation of the sequent. Consider the space of N of natural
numbers with the discrete topology. The Alexandroff one-point compactification of this
space obtained by adding∞ is a compact and Hausdorff space. We further add an isolated
point a to the space after compactification, as seen in Figure 1. Let W = N ∪ {∞, a}
with the topology described above. The relation R = {(n, n − 1) : n ∈ N and n ≥
1} ∪ {∞,∞} ∪ {a, 0} ∪ {a,∞} on W makes (W,R) an MKH-space.

The antecedent 32⊥ of the sequent is valid at points a and 1. The classical semantics
of the formula 3∗2⊥ in the consequent is given as

[[3∗2⊥]]
Op(W )

= Int
(⋂
{U ∈ Op(W ) :

(
{0} ∪R−1(U)

)
⊆ U}

)
For any open U = {0, 1, . . . , k} ∪ {a}, where k ∈ N, R−1(U) = {0, . . . , k, k + 1} ∪ {a}.

Hence, the open sets U which satisfy the condition
(
{0} ∪R−1(U)

)
⊆ U are {0, a} ∪ N

and {0, a,∞} ∪ N. As a result, [[3∗2⊥]]
Op(W )

= {0, a} ∪ N.
In our closure semantics the semantics of 3∗2⊥ is

[[3∗2⊥]]
Op(W )

= Int
(⋂
{U ∈ Op(W ) :

(
{0} ∪R−1(U)

)
⊆ U}

)
The closure of the open set {0, a} ∪ N is {0, a,∞} ∪ N. Therefore, it does not satisfy
the condition

(
{0} ∪R−1(U)

)
⊆ U . The only open set which satisfies the condition is

U = N ∪ {a,∞}. Hence, 3∗2⊥ is valid everywhere in (W,R). As a result, the sequent
32⊥ ` 23∗2⊥ is valid. Therefore, it follows from Theorem 6.3 that the LFP frame
condition χ(32⊥ ` 23∗2⊥) obtained above is valid on (W,R).

7 Conclusion and future work

In this paper, we studied different topological semantics of the least fixed-point operator on
MKH-spaces. We showed that for an open assignment, set-theoretic and open semantics
coincide. We gave an interpretation of the least fixed-point operator on compact regular
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frames and showed that the duality between compact Hausdorff spaces and compact
regular locales extends to the language with the least fixed-point operator. For Sahlqvist
preservation, we introduced a new topological semantics for the least fixed-point operator
as the intersection of topological pre-fixed-points. In the new semantics, we proved that
Esakia’a lemma holds for the class of shallow fixed-point formulas which do not have
any nesting of fixed-point operators. As a consequence of Esakia’s lemma, we obtained
our main preservation result which states that a Sahlqvist sequent in our language is
valid under open assignments on an MKH-space if and only if it is valid under arbitrary
assignments. We also showed that a Sahlqvist sequent is valid in an MKH-space if and
only if the condition expressible in LFP corresponding to the sequent is valid on the space.
Finally, using examples we illustrated that the alternative topological semantics for the
least fixed-point operator is different from the usual semantics over MKH-spaces.

We summarize the different semantics introduced for the least fixed-point operator over
topological spaces in Table 1. In Table 2, we list the results regarding the comparison of
the different fixed-point semantics. Finally, we list our main results in Table 3.

One criticism of the semantics considered in the paper might be that it is specially
tailored for proving Esakia’s lemma and obtaining the Sahlqvist preservation result this
way. Although this might be a valid criticism, we note that the fixed-point operators
considered in the paper are new and topological in nature. These operators often differ
from the classical fixed-point operators and thus enrich the realm and expressivity of
the existing fixed-point operators. We also believe that this point of view opens up a
wider perspective for other (topological) interpretations of fixed-point operators (e.g., via
regular open or closed sets, convex sets, polygons, rectangles, etc.).

We conclude with a few open problems and future directions that can be explored.
An interesting problem is whether our results hold for the greatest fixed-point operator
and formulas with mixed fixed-point operators. Also regular open sets play an important
role in semantics of spatial logics, and are suitable for modal mu-calculus with negation.
Therefore, the fixed-point semantics for regular open sets is an interesting and, for now,
unexplored area that deserves attention.

The completeness of Kozen’s axiomatization [18] over MKH-spaces is another open
problem. In [3] Kozen’s axiomatization was shown to be complete with respect to de-
scriptive mu-frames, or equivalently with respect to modal mu-algebras. In our case, the
algebraic structures which provide the semantics are compact regular frames. These struc-
tures have infinitary operations, while our language has connectives of finite arity. This
leads to a major question on what should be the logical counterpart of these structures.
Does this have to be an infinitary logic or the infinitary operations of compact regular
frames can be encoded in a finitary logic?

Another possible direction is to explore the expressivity results for our language with
fixed-point operator over compact Hausdorff spaces (see eg., [25]). It would be interesting
to find examples of standard topological properties which can be expressed with the
alternative fixed-point semantics and e.g., to find an analogue of the Goldblatt-Thomasson
theorem [6, Section 3.8].
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Pre-
condition

Semantics Reference

F ⊆ P(W )
complete

[[µxϕ]]Fh =
∧F{U ∈ F : [[ϕ]]F

hU
x
⊆ U} Page 5

F ⊆ P(W )
complete

||µxϕ||Fh =
⋂
{U ∈ F : ||ϕ||F

hU
x
⊆ U} Page 8

L frame [µxϕ]Lh =
∧
{a ∈ L : [ϕ]ha

x
≤ a} Page 10

L frame [µxϕ]L
′

h =
∧
{a ∈ L : ∃b ∈ L s.t. a ≺ b and [ϕ]L

′

hb
x
≤

a}
Page 10

h open [[µxϕ]]
Op(W )′

h = Int(
⋂
{U ∈ Op(W ) : ∃V ∈

Op(W ) s.t. U ⊆ V and [[ϕ]]
Op(W )′

hV
x

⊆ U})
Def. 4.9

h open [[µxϕ]]
Op(W )
h = Int

(⋂
{U ∈ Op(W ) : [[ϕ]]

Op(W )

hU
x

⊆ U}
)

Def. 5.2

Table 1: Different fixed-point semantics

Pre-condition Result Reference

h open [[ϕ]]
P(W )
h = [[ϕ]]

Op(W )
h Theorem

3.8

F ⊆ P(W ) complete
sublattice, [[ϕ]]Fh ∈ F

[[ϕ]]Fh = ||ϕ||Fh Theorem
3.11.1

F ⊆ P(W ) complete
sublattice, ||ϕ||Fh ∈ F

[[ϕ]]Fh = ||ϕ||Fh Theorem
3.11.2

h open [ϕ]
Op(W )
h = [[ϕ]]

Op(W )
h Theorem

4.7

h open [ϕ]
Op(W )′

h = [[ϕ]]
Op(W )′

h Theorem
4.10

ϕ shallow, h open [[ϕ]]
Op(W )
h = [[ϕ]]

Op(W )′

h Theorem
5.9

Table 2: Comparing fixed-point semantics
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Pre-condition Result Reference

(W,R) MKH-space,
F, F1, . . . , Fn ⊆ W closed,
~F = (F1, . . . , Fn)

A ⊆ Op(W ) downward
directed family of opens,⋂
A = F ,

[[ϕ]]
Op(W )

hF,~F
x,~x

=
⋂
{[[ϕ]]

Op(W )

hC,~F
x,~x

: C ∈

A}

Esakia’s
lemma
(Lemma
5.12)

ϕ(x, x1, . . . , xn) positive
shallow modal mu-formula

(W,R) MKH-space, ϕ ` ψ
Sahlqvist sequent

W |= ϕ ` ψ if [[ϕ]]
Op(W )
h ⊆

[[ψ]]
Op(W )
h for each assign-

ment h.

W |= ϕ ` ψ iff MW |= ϕ ` ψ Sahlqvist
preservation
theorem (The-
orem 5.18)

MW |= ϕ ` ψ if

[[ϕ]]
Op(W )
h ⊆ [[ψ]]

Op(W )
h for

each open assignment h.

(W,R) MKH-space, ϕ ` ψ
Sahlqvist sequent, χ(ϕ,ψ)
LFP frame-condition

(W,R) |= χ(ϕ,ψ) iff W |= ϕ ` ψ Sahlqvist
correspon-
dence theorem
(Theorem 6.3)

Table 3: Main results
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