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Abstract. With each superintuitionistic logic (si-logic for sort), we associate its downward
and upward subframizations, and characterize them by means of Zakharyaschev’s canonical
formulas, as well as by embedding si-logics into the extensions of the propositional lax logic
PLL. In an analogous fashion, with each si-logic, we associate its downward and upward
stabilizations, and characterize them by means of stable canonical formulas, as well as by
embedding si-logics into extensions of the intuitionistic S4.

1. Introduction

Subframe logics form a well-behaved class of normal uni-modal logics (see, e.g., [19, 30, 31,
14]). They are characterized by a class of descriptive frames closed under subframes, which
algebraically correspond to relativizations; all transitive subframe logics have the finite model
property (fmp for short), and a transitive logic is a subframe logic iff it is axiomatized by
subframe formulas (see, e.g., [31], [14, Sec. 11.3]).

Subframe logics form a complete sublattice of the lattice of all normal modal logics. There-
fore, for each modal logic L, there is a greatest subframe logic contained in L, and a least
subframe logic containing L, called the downward and upward subframizations of L. They
were studied by Wolter [30, 31] who characterized the downward and upward subframizations
in terms of relativizations.

Superintuitionistic logics (si-logics for short) are extensions of intuitionistic propositional
calculus IPC. Subframe si-logics have similar properties to transitive subframe logics. They
were studied by Zakharyaschev [33] who proved that they are exactly the si-logics axioma-
tized by (∧,→)-formulas.

Another well-behaved class of logics is that of stable logics. Stable si-logics were intro-
duced in [6] and stable modal logics in [8]. Stable logics parallel subframe logics in many
ways. While subframe logics are characterized by a class of descriptive frames closed under
subframes, stable logics are characterized by a class of rooted descriptive frames closed under
relation-preserving images. Transitive subframe logics are those modal logics for which the
fmp can be proved via the selective filtration method, while stable logics are those modal
logics for which the fmp can be proved via the standard filtration method. The same parallel
holds in the intuitionistic setting.

From the point of view of epistemic logic, subframe logics are exactly the logics admitting
epistemic updates (cf. [3, Ch. 2], [15, Sec. 7.4–7.5]), while stable logics are the ones admitting
epistemic abstraction [2].
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From the algebraic perspective, subframe si-logics are characterized by a class of Heyting
algebras closed under (∧,→)-subalgebras, while stable si-logics are characterized by a class
of Heyting algebras closed under (∧,∨, 0, 1)-subalgebras. Subframe si-logics are axiomatized
by subframe formulas, which are obtained from Zakharyaschev’s canonical formulas by delet-
ing the parameter of closed domains. Similarly, stable si-logics are axiomatized by stable
formulas, which are obtained from stable canonical formulas of [6] by deleting the parameter
of closed domains. Both classes of subframe and stable si-logics have the cardinality that of
the continuum [14, 6].

In this paper we observe further analogies between the classes of subframe and stable
si-logics, which come from moving to the realm of intuitionistic modal logic. We show that
subframe si-logics are related to the propositional lax logic PLL [17] and stable si-logics to
IS4, the intuitionistic S4 [27].

As was shown by Goldblatt [21], PLL provides a link between Grothendieck topology
and geometric modality. This in turn gives rise to nuclei on Heyting algebras, which yield
algebraic semantics for PLL. By [10], nuclei on a Heyting algebra A correspond to subframes
of the frame of prime filters of A.

We can translate IPC into PLL via a version of the Gödel-Gentzen translation. This yields
two natural embeddings of si-logics into extensions of PLL. Via these embeddings we obtain
a new characterization of subframe si-logics.

Similarly a version of the Gödel-McKinsey-Tarski translation yields embeddings of si-logics
into extensions of IS4. Since rootedness of a frame is captured by the multiple-conclusion rule
p∨ q/p, q (cf. [8, Thm. 8.6]), we embed stable si-logics into multiple-conclusion consequence
relations extending IS4 + p ∨ q/p, q. We show that there are two natural embeddings of
si-logics into extensions of IS4 + p ∨ q/p, q, which yield a new characterization of stable
si-logics.

We also investigate the intuitionistic analogues of the operations of downward and upward
subframizations of Wolter [30, 31]. Since in the intuitionistic setting subframes do not corre-
spond to relativizations, but rather to nuclei, a characterization of subframization requires a
different technique. We give such a characterization for si-logics in terms of Zakharyaschev’s
canonical formulas. We also characterize the downward subframization via the embeddings
into PLL. Analogously, we give a characterization of stabilization for si-logics in terms of
stable canonical formulas, and characterize the downward stabilization via the embeddings
into IS4 + p ∨ q/p, q.

In Table 1 we summarize the parallels between subframe and stable si-logics. The table
aims to serve as an orientation to the reader. Whereas the first three rows contain known
results, the last two rows contain the results obtained in this paper.

The paper is organized as follows. In Section 2 we recall the algebraic and relational
semantics of si-logics, and in Section 3 we recall known facts about subframe and stable
si-logics, as well as canonical formulas and stable canonical formulas for si-logics. Section 4
introduces the notion of subframization for si-logics and discusses the connection to Wolter’s
describable operations. We also compute subframizations of many well-known si-logics. In
Section 5 we recall the propositional lax logic PLL and review its algebraic and relational
semantics. In Section 6 we define two embeddings of si-logics into the extensions of PLL
and discuss their properties. Using these embeddings we obtain new characterizations of
subframe si-logics. Section 7 parallels Section 4 for stable si-logics. In Section 8 we define
two embeddings of si-logics into the extensions of intuitionistic S4 and characterize stable
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Subframe logics Stable logics
A generating class
is persistent under

subframes
(Theorem 3.2)

stable images
(Theorem 3.7)

Corresponding
Heyting operator

nucleus
(Section 5)

interior operator
(Definition 8.2 and discussion thereafter)

Axiomatization
in terms of

subframe formulas
(Theorem 3.3)

stable formulas
(Theorem 3.9)

Characterization via
Wolter’s describable

operations

Zakharyaschev’s
canonical formulas

(Theorem 4.4, Remark 4.6)

stable canonical formulas
(Theorem 7.4, Remark 7.6)

Characterized
by translations into

PLL via
nucleic Gödel-Gentzen

(Theorem 6.18)

IS4 via
Gödel-McKinsey-Tarski

( Theorem 8.11)

Table 1. Parallels between subframe and stable si-logics

si-logics via these embeddings. Finally, in Section 9 we summarize the main results of the
paper.

2. Superintuitionistic logics

In this preliminary section we recall algebraic and relational semantics of IPC. We use [28]
and [14] as our basic references.

2.1. Algebraic semantics. Algebraic semantics of IPC is given by Heyting algebras. A
Heyting algebra is a bounded distributive lattice A with an additional binary operation →,
called Heyting implication, that is residual to ∧; that is, for all a, b, x ∈ A, we have:

x ≤ a→ b iff x ∧ a ≤ b.

A valuation v on a Heyting algebra A assigns to propositional letters elements of A, and
evaluates the logical connectives ∧,∨,→,¬ as the corresponding operations of A. Then for a
formula ϕ, we have v(ϕ) ∈ A, and ϕ is true in A under v if v(ϕ) = 1. We say that ϕ is valid
in A, and write A |= ϕ, provided ϕ is true in A under every valuation. A set of formulas Γ
is valid in A, written A |= Γ, provided each ϕ ∈ Γ is valid in A.

For a class K of Heyting algebras, ϕ is valid in K, written K |= ϕ, provided ϕ is valid in
each A ∈ K; and a set of formulas Γ is valid in K, written K |= Γ, provided K |= ϕ for each
ϕ ∈ Γ.

For each si-logic L, let Alg(L) = {A | A |= L} be the class of algebraic models of L. Then
Alg(L) is a variety ; that is, it is closed under homomorphic images, subalgebras, and direct
products. By the standard Lindenbaum-Tarski construction, each si-logic L is complete with
respect to Alg(L). Conversely, each variety K of Heyting algebras gives rise to the si-logic
Log(K) := {ϕ | K |= ϕ}, and we have Log(Alg(L)) = L and Alg(Log(K)) = K (see, e.g.,
[14, Sec. 7.6]).

2.2. Relational semantics. Relational semantics of IPC is given by partial orders (X,≤),
called (intuitionistic) Kripke frames. Let F = (X,≤) be an intuitionistic Kripke frame. For
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x ∈ X and Y ⊆ X, let

↑x = {y | x ≤ y} and ↑Y =
⋃
{↑y | y ∈ Y }.

We define ↓x and ↓Y dually. A subset Y ⊆ X is called an upward closed set or an upset if
y ∈ Y implies ↑y ⊆ Y . Downward closed sets or downsets are defined dually.

Let Up(F) be the set of upsets of F. Then Up(F) is a Heyting algebra with respect to the
operations ∩,∪,→,¬ where

U → V := {x | ↑x ∩ U ⊆ V } and ¬U := U → ∅.
A valuation v on F is a valuation on the Heyting algebra Up(F). For x ∈ X and a formula
ϕ, we write F, x |=v ϕ provided x ∈ v(ϕ). We then have:

F, x |=v ϕ ∧ ψ iff F, x |=v ϕ and F, x |=v ψ

F, x |=v ϕ ∨ ψ iff F, x |=v ϕ or F, x |=v ψ

F, x |=v ϕ→ ψ iff F, y |=v ϕ implies F, y |=v ψ for every y ≥ x.

Figure 1. Evaluating formulas

With every Heyting algebra A we can associate the intuitionistic Kripke frame FA of
prime filters of A ordered by set-theoretic inclusion. Then A embeds in Up(FA) via the map
α : A→ Up(FA) given by

α(a) = {x | a ∈ x}.
Therefore, α[A] is a subalgebra of Up(FA). If we define a topology on FA by letting

B := {α(a) \ α(b) | a, b ∈ A}
be a basis for the topology, then FA becomes a Stone space (zero-dimensional compact
Hausdorff space) such that ↑x is closed for each x and ↓U is clopen for each clopen U . Such
spaces are known as Esakia spaces or Esakia frames.

The image α[A] is then exactly the Heyting subalgebra of Up(FA) consisting of clopen
upsets of FA. This yields the Esakia representation for Heyting algebras:

Theorem 2.1. [16] Each Heyting algebra is isomorphic to the Heyting algebra of clopen
upsets of an Esakia frame.

In fact, Esakia duality establishes that the category of Heyting algebras and Heyting
algebra homomorphisms is dually equivalent to the category of Esakia frames and Esakia
morphisms (that is, continuous order preserving maps f : X → Y such that ↑f(x) = f(↑x)
for each x ∈ X).

Remark 2.2. The category of Esakia frames is isomorphic to the category of intuitionistic
descriptive frames. We recall (see, e.g., [14, Ch. 8]) that a general (intuitionistic) frame is
a tuple F = (X,≤,P), where (X,≤) is an intuitionistic Kripke frame and P is a Heyting
subalgebra of the upsets of (X,≤); a general frame F is descriptive if it is tight (x 6≤ y
implies there is U ∈ P with x ∈ U and y /∈ U) and compact (if

⋂
i∈I(Ui \ Vi) = ∅ for

Ui, Vi ∈ P , then this holds already for some finite subset J of I). The isomorphism is
obtained as follows. For a descriptive frame F = (X,≤,P), let τ be the topology generated
by {U \ V | U, V ∈ P}. Then (X,≤, τ) is an Esakia frame. Conversely, for an Esakia frame
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F = (X,≤, τ), let P be the Heyting subalgebra of Up(F) consisting of clopen upsets of F.
Then (X,≤,P) is a descriptive frame, and these correspondences are one-to-one. Moreover,
f : X → Y is an Esakia morphism iff it is a descriptive frame morphism, thus yielding the
desired isomorphism between the categories of descriptive frames and Esakia frames.

Let A be a Heyting algebra. Then A is subdirectly irreducible (s.i. for short) if A has a
second largest element; that is, there is c 6= 1 ∈ A such that b ≤ c for each b 6= 1. Moreover,
A is well-connected if a ∨ b = 1 implies a = 1 or b = 1 for all a, b ∈ A. It is easy to see
that every s.i. Heyting algebra is well-connected, and that the two notions coincide for finite
Heyting algebras. An Esakia frame F = (X,≤) is rooted if there is x ∈ X such that X = ↑x,
and it is strongly rooted if it is rooted and the root x is an isolated point. By Esakia duality,
A is well-connected iff FA is rooted, and A is s.i. iff FA is strongly rooted. Consequently, if
A is finite, then A is s.i. iff FA is rooted.

By Esakia duality, homomorphic images of A correspond to generated subframes of the
dual Esakia frame FA, where a generated subframe is a closed upset of an Esakia frame. By a
point-generated subframe of an Esakia frame F we mean a rooted generated subframe. By the
above, well-connected homomorphic images of A correspond to point-generated subframes
of FA.

Since every si-logic L is complete with respect to the s.i. Heyting algebras that validate L,
from the above we deduce that L is complete with respect to the rooted Esakia frames that
validate L.

3. Subframe logics and stable logics

In this section we summarize known facts about subframe and stable si-logics. We also
recall the definition of Zakharyaschev’s canonical formulas for IPC and stable canonical
formulas of [6], and discuss their connection.

3.1. Subframes, subframe logics, and canonical formulas. Let F = (X,≤) and G =
(X ′,≤′) be Esakia frames. We recall [33, 10] that G is a subframe of F if X ′ is a closed
subspace of X, ≤′ is the restriction of ≤, and for each clopen U of X ′, the set ↓U is clopen
in X .

Definition 3.1. A si-logic L is called a subframe logic if its class of Esakia frames is closed
under subframes; that is, if F is an L-frame, then so is every subframe of F.

In the following theorem, we summarize the properties of subframe logics that we will
often use throughout the paper. For a proof of the theorem, see for example [14, Section
11.3]. We refer to formulas using only the connectives ∧ and → as (∧,→)-formulas.

Theorem 3.2 (Zakharyaschev). For a si-logic L, the following are equivalent:

(i) L is a subframe logic.
(ii) L is characterized by a class of Esakia frames closed under subframes.

(iii) L is axiomatizable by (∧,→)-formulas.

Moreover, all subframe logics have the fmp, and they form a complete sublattice of the lattice
of all si-logics.

Next we recall the definition of canonical formulas and subframe formulas for IPC. The
key property of canonical formulas is that they axiomatize all si-logics in a uniform way.
This has the advantage that many properties of logics such as the fmp or decidability can be
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investigated by considering canonical formulas only. We refer the reader to [14] for motivation
and many applications of canonical formulas.

Let H = (Y,≤) be a finite rooted frame and D a family of upsets of H, called closed
domains. For each x ∈ Y we introduce a new propositional variable px and define the
canonical formula associated with (H,D) as

β(H,D) =
∧
x≤y

[(
∧
y 6≤z

pz → py)→ px] ∧
∧
d∈D

[
∧
x 6∈d

(
∧
x 6≤z

pz → px)→
∨
y∈d

py]→ pr,

where x, y, z ∈ Y and r is the root of H.
Let F = (X,≤) be an Esakia frame. We say that a p-morphism f from a subframe

G = (S,≤) of F onto H satisfies the closed domain condition (CDC) for D provided

x ∈ ↑S and f(↑x) ∈ D imply x ∈ S.
The following is an important property of canonical formulas:

(1)
F 6|= β(H,D) iff there is a p-morphism from a subframe of F onto H

satisfying CDC for D.

If D = ∅, then β(H,D) is denoted by β(H) and is called the subframe formula of H. From
the above we obtain:

(2) F 6|= β(H) iff there is a p-morphism from a subframe of F onto H.

Theorem 3.3 (Zakharyaschev).
(i) Every si-logic is axiomatizable by canonical formulas.

(ii) A si-logic is a subframe logic iff it is axiomatizable by subframe formulas.

Remark 3.4. The above presentation of canonical formulas follows Jeřábek’s account [23,
Sec. 3], which is slightly different from Zakharyaschev’s approach. Namely, our closed do-
mains are upsets rather than antichains. Also, closed domains may be empty, which allows
us to work with subframes rather than cofinal subframes (see [23, Rem. 3.7]).

An algebraic formulation of Zakharyaschev’s canonical formulas was provided in [5] (some
of the ideas can be traced back to [29]). We recall some details since it will enable us to
see most easily the analogy with stable canonical formulas. In order to match Jeřábek’s
account, we slightly alter the approach of [5], so that our presentation of the canonical
formula β(B,D) combines the formulas β(B,D,⊥) and β(B,D) of [5].

Let B be a finite s.i. Heyting algebra with the second largest element s, let ∗ /∈ B2, and
let D be a subset of B2 ∪ {∗}. For each a ∈ B, we introduce a new variable pa, set

Γ = {pa∧b ↔ pa ∧ pb | a, b ∈ B}∪
{pa→b ↔ pa → pb | a, b ∈ B}∪
{pa∨b ↔ pa ∨ pb | (a, b) ∈ D}∪
{p0 ↔ 0 | ∗ ∈ D},

and define the canonical formula of (B,D) as

β(B,D) =
∧

Γ→ ps.

It follows from [5] that for any Heyting algebra A, we have: A 6|= β(B,D) iff there is
a homomorphic image C of A and a (∧,→)-embedding h : B → C such that h(a ∨ b) =
h(a) ∨ h(b) for all (a, b) ∈ D and h(0) = 0 if ∗ ∈ D.
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Roughly speaking, β(B,D) describes fully the (∧,→)-structure of B, and the (∨, 0)-
structure only partially on the declared subset D.

Although the formulas β(B,D) and β(H,D) look syntactically quite different, they are
equivalent as discussed in [5, Remark 5.6]. In particular, if B is a finite s.i. Heyting algebra
whose dual is H and D ⊆ B2 ∪ {∗}, then there is a collection D of upsets of H such that for
any Esakia frame F, we have:

F |= β(B,D) iff F |= β(H,D).

Remark 3.5. From the algebraic and frame-theoretic characterization of canonical formulas
discussed above one may get the impression that (∧,→)-subalgebras are dual to subframes.
The correspondence is a bit more subtle, as we will explain in Section 5.

3.2. Stable logics and stable canonical formulas. We recall that a map between Esakia
frames is stable if it is continuous and order preserving, and that an Esakia frame G is a
stable image of an Esakia frame F if there is a stable map from F onto G. It is easy to see
that stable images of rooted frames are rooted.

Definition 3.6. A si-logic L is stable if the class of rooted Esakia frames validating L is
closed under stable images; that is, if F is a rooted L-frame, then so is every stable image of
F.

In analogy with subframe logics, stable logics have the following properties (cf. Theo-
rem 3.2):

Theorem 3.7. For a si-logic L, the following are equivalent:

(i) L is stable.
(ii) L is characterized by a class of rooted Esakia frames closed under stable images.

(iii) The rooted L-frames are closed under finite stable images.

Moreover, all stable logics have the fmp, and they form a complete sublattice of the lattice of
all si-logics.

Proof. The equivalence of (i) and (ii) is proved in [9, Thm. 5.3]. It is clear that (i) implies
(iii). To see that (iii) implies (i), let F be a rooted L-frame and let G be a stable image of F.
If G is not an L-frame, then G 6|= ϕ for some ϕ ∈ L. By [6, Lem. 3.6], there is a finite stable
image H of G such that H 6|= ϕ. Therefore, H is a finite stable image of F. By (iii), H is an
L-frame, contradicting H 6|= ϕ. Thus, G is an L-frame, and hence L is stable.

That all stable logics have the fmp is shown in [6, Thm. 6.8]. We show that they
form a complete sublattice of the lattice of all si-logics. Let {Li | i ∈ I} be a fam-
ily of stable logics. Then the classes of rooted Li-frames are stable. Therefore, so are
the classes

⋂
i∈I{F | F is a rooted Li-frame} and

⋃
i∈I{F | F is a rooted Li-frame}. The

intersection
⋂

i∈I{F | F is a rooted Li-frame} is exactly the class of all rooted (
∨

i∈I Li)-
frames. Since every si-logic is characterized by its rooted frames,

∨
i∈I Li is characterized

by
⋂

i∈I{F | F is a rooted Li-frame}. Thus, by (ii),
∨

i∈I Li is stable. The logic
∧

i∈I Li is
characterized by

⋃
i∈I{F | F is a rooted Li-frame} (see, e.g., [14, Sec. 4]). Therefore,

∧
i∈I Li

is also stable. �

Remark 3.8. Subframe logics have the property that all their frames are closed under
subframes. An analogue of this statement is not true for stable logics as only the rooted
frames are required to be closed under stable images (compare Theorems 3.2 and 3.7). In
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fact, IPC is the only stable logic such that all its frames are closed under stable images (see
[9, Remark 5.6]). This discrepancy between subframe and stable logics will often occur in
this paper.

Stable canonical formulas were introduced in [6] as an alternative to Zakharyaschev’s
canonical formulas. They can most easily be described in algebraic terms. As we pointed out
in Section 3.1, from the algebraic perspective, Zakharyaschev’s canonical formulas encode the
(∧,→)-structure of a finite s.i. Heyting algebra B and encode the structure of the “missing”
operations ∨ and 0 only partially on the designated set D ⊆ B2 ∪ {∗}. In contrast, stable
canonical formulas encode the (∧,∨, 0, 1)-structure of a finite s.i. Heyting algebra B, and
the structure of the missing operation → partially on a designated subset D ⊆ B2.

Given a finite s.i. Heyting algebra B and D ⊆ B2, we introduce a new variable pa for each
a ∈ B, set

Γ = {p0 ↔ ⊥} ∪ {p1 ↔ >}∪
{pa∧b ↔ pa ∧ pb | a, b ∈ B}∪
{pa∨b ↔ pa ∨ pb | a, b ∈ B}∪
{pa→b ↔ pa → pb | (a, b) ∈ D},

∆ = {pa → pb | a, b ∈ B with a 6≤ b},
and define the stable canonical formula of (B,D) as

γ(B,D) =
∧

Γ→
∨

∆.

By [6, Thm. 3.4], for any Heyting algebra A, we have: A 6|= γ(B,D) iff there is a well-
connected homomorphic image C of A and a bounded lattice embedding h : B → C such
that h(a→ b) = h(a)→ h(b) for all (a, b) ∈ D.

This can easily be translated into frame-theoretic terms. Let G and H be Esakia frames,
with H finite, and let D be a set of subsets of H. We say that a stable onto map f : G→ H
satisfies the stable closed domain condition (SCDC) for D provided

↑f(x) ∩ d 6= ∅ ⇒ f [↑x] ∩ d 6= ∅ for all d ∈ D.

We write γ(H,D) for the canonical formula γ(B,D), where B is the dual Heyting algebra
of H and D = {(U, V ) | U \ V ∈ D} for upsets U, V of H. Then for every Esakia frame F we
have:

(3)
F 6|= γ(H,D) iff there are a point-generated subframe G of F and a

stable onto map f : G→ H satisfying SCDC for D.

Stable canonical formulas of the form γ(H,∅) are called stable formulas and are denoted
by γ(H). As follows from the above,

(4)
F 6|= γ(H) iff there are a point-generated subframe G of F and a

stable onto map f : G→ H.

An analogy between stable canonical formulas and Zakharyaschev’s canonical formulas,
as well as between stable formulas and subframe formulas can be seen from the following
theorem (cf. Theorem 3.3).

Theorem 3.9 ([6]).
(i) Every si-logic is axiomatizable by stable canonical formulas.
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(ii) A si-logic is stable iff it is axiomatizable by stable formulas.

Remark 3.10. The definition of stable logics (Definition 3.6) is slightly different from [6,
Def. 6.6], but it follows from [9, Thm. 5.3] that the two are equivalent. Similarly, in the
refutation criterion [6, Thm. 3.4] for stable canonical formulas we replaced subdirectly ir-
reducibles algebras by well-connected ones. That this is legitimate can be easily verified.
The reason for this deviation is that we find it more natural to work with rooted frames as
opposed to strongly rooted ones.

4. Subframization

Let ΛSubf be the class of subframe logics. Since ΛSubf is a complete sublattice of the lattice
of all si-logics, for each si-logic L, there is a greatest subframe logic contained in L and a
least subframe logic containing L (cf. [30, 31]).

Definition 4.1. For a si-logic L, define the downward subframization of L as

Subf↓(L) :=
∨
{L′ ∈ ΛSubf | L′ ⊆ L}

and the upward subframization of L as

Subf↑(L) :=
∧
{L′ ∈ ΛSubf | L ⊆ L′}.

We summarize some rather obvious facts about the downward and upward subframizations
that we will use throughout the paper.

Lemma 4.2.
(i) Subf↓ is an interior operator and Subf↑ is a closure operator on the lattice of si-logics.
(ii) Sub↓(L) = IPC + {ϕ | ϕ is a (∧,→)-formula and L ` ϕ}.

(iii) Subf↓(L) = IPC iff for every (∧,→)-formula ϕ, L ` ϕ iff IPC ` ϕ.

Proof. (i). Straightforward from the definition.
(ii). By Theorem 3.2, every subframe logic is axiomatizable by (∧,→)-formulas. Therefore,

every subframe logic contained in L is axiomatizable by a set of (∧,→)-formulas that are
provable in L. Thus, the set {ϕ | ϕ is a (∧,→)-formula and L ` ϕ} axiomatizes the largest
subframe logic contained in L.

(iii). Apply (ii). �

We next give a semantic characterization of the downward and upward subframizations of
a si-logic L. Recall that if K is a class of frames, then Log(K) = {ϕ | K |= ϕ} is the si-logic
of K.

Proposition 4.3. Let L be a si-logic such that L = Log(K) for some class K of Esakia
frames. Then

(i) Subf↓(L) = Log ({G | G is a subframe of some F ∈ K}).
(ii) Subf↑(L) = Log ({F | G |= L for all subframes G of F})

= Log ({F | F is finite and G |= L for all subframes G of F}) .

Proof. (i). Let K ′ = {G | G is a subframe of some F ∈ K}. Then K ⊆ K ′, so Log(K ′) ⊆
Log(K) = L. Since K ′ is closed under subframes, Log(K ′) is a subframe logic by Theorem
3.2. If L′ is a subframe logic contained in L, then K |= L′, so K ′ |= L′ as L′ is a subframe
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logic. Therefore, L′ ⊆ Log(K ′). Thus, Log(K ′) is the largest subframe logic contained in L,
and hence Subf↓(L) = Log(K ′).

(ii). Let K ′ = {F | G |= L for all subframes G of F} and K ′′ = {F | F is finite and G |=
L for all subframes G of F} . We show that Subf↑(L) = Log(K ′) = Log (K ′′). It is clear
that K ′′ ⊆ K ′, so Log(K ′) ⊆ Log(K ′′). It is obvious that both K ′ and K ′′ are closed
under subframes, so both Log(K ′), Log(K ′′) are subframe logics by Theorem 3.2. Moreover,
K ′, K ′′ |= L imply L ⊆ Log(K ′), Log(K ′′). Therefore, Subf↑(L) ⊆ Log(K ′), Log(K ′′). It is left
to prove that Log(K ′′) ⊆ Subf↑(L).

Let L′ be a subframe logic containing L. If F is a finite frame such that F |= L′, then since
L′ is a subframe logic, G |= L′ for every subframe G of F. But then G |= L as L ⊆ L′, so
F ∈ K ′′. Therefore, every finite L′-frame is contained in K ′′. Since L′ is a subframe logic,
it is the logic of its finite frames, so we have Log(K ′′) ⊆ L′. Thus, Log(K ′′) is the smallest
subframe logic containing L, and hence Subf↑(L) = Log(K ′′). �

We use Proposition 4.3 and Zakharyaschev’s canonical formulas (see Section 3.1) to give
a syntactic characterization of the downward and upward subframizations of a si-logic L.

Theorem 4.4. Let L = IPC + {β(Hi,Di) | i ∈ I} be a si-logic.

(i) Subf↓(L) = IPC + {β(H) | L ` β(H)}.
(ii) Subf↑(L) = IPC + {β(Hi) | i ∈ I)}.

Proof. (i). By Theorem 3.3, every subframe logic is axiomatizable by subframe formulas.
Therefore, every subframe logic contained in L is axiomatizable by a set of subframe formulas
that are provable in L. Thus, IPC+{β(H) | L ` β(H)} is the largest subframe logic contained
in L.

(ii). Let M = IPC + {β(Hi) | i ∈ I}. If F is an M-frame, then F |= β(Hi) for all i ∈ I.
Therefore, by (1) and (2), F |= β(Hi,Di) for all i ∈ I. Thus, F is an L-frame, and so L ⊆ M.
Since M is axiomatized by subframe formulas, M is a subframe logic by Theorem 3.3. It
remains to show that M is the least subframe logic containing L. If not, then there is a
subframe logic L′ ⊇ L and an L′-frame F such that F 6|= M. Therefore, F 6|= β(Hi) for some
i ∈ I. By (2), Hi is a p-morphic image of a subframe G of F. Since L′ is a subframe logic, G
is an L′-frame. Thus, Hi is also an L′-frame. But Hi 6|= β(Hi,Di) by (1) because the identity
map is a p-morphism from Hi onto itself that satisfies CDC for any set of closed domains.
Consequently, Hi is not an L-frame, which is a contradiction since L′ ⊇ L. �

Remark 4.5.
(i) It follows from Theorem 4.4(ii) that if L is a si-logic axiomatized by a set of formulas

Γ, then the upward subframization Subf↑(L) of L can be calculated effectively from
Γ as follows: First use Zakharyaschev’s theorem to transform Γ into an equivalent
set of canonical formulas; then delete the additional parameters Di in the resulting
canonical formulas; and finally apply Theorem 4.4(ii).

(ii) On the other hand, Theorem 4.4(i) does not provide an effective axiomatization of
the downward subframization Subf↓(L) of L. We will come back to this issue at the
end of Section 6.

Remark 4.6. In [30] Wolter studied describable operations on varieties of modal algebras.
This translates to Esakia frames as follows. A map C that associates with each Esakia frame
F a class C(F) of Esakia frames is describable if there is a map (−)c on the set of formulas
of IPC such that for each Esakia frame F and each formula ϕ,
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F |= ϕc iff C(F) |= ϕ.

As follows from [30, p. 23], if L is the logic of a class K of Esakia frames, then the logic of
C(K) is axiomatized by {ϕc | L ` ϕc}, and the logic of {F ∈ K | C(F) ⊆ K} is axiomatized
by {ϕc | L ` ϕ}.

Now let C(F) = {G | G is a subframe of F}. Since canonical formulas axiomatize every
si-logic, we restrict our attention to the set of canonical formulas. We show that

(5) F |= β(H) iff C(F) |= β(H,D).

The left to right direction is obvious. For the right to left direction, suppose F 6|= β(H). Then
there is a subframe G of F which is p-morphically mapped onto H. Since H 6|= β(H,D), we
have G 6|= β(H,D). Therefore, we found G ∈ C(F) such that G 6|= β(H,D).

From (5) we obtain that the map defined by (β(H,D))c = β(H) describes the operation C.
Thus, applying Wolter’s result to Proposition 4.3 yields an alternative proof of Theorem 4.4.

We conclude this section by providing the downward and and upward subframizations of
many well-known si-logics. We will utilize known axiomatizations of these logics via canonical
formulas. As in [14, Sec. 9.4], for a finite rooted frame H, we write β](H) for the canonical
formula β(H,D), where D is the set of all nonempty upsets of H, and we write χ(H) for the
canonical formula β(H,D), where D is the set of all (including empty) upsets of H. The
formula χ(H) is called the frame formula or Jankov-de Jongh formula of H, and β](H) is
called the negation free frame formula or negation free Jankov-de Jongh formula of H.

Following [7], we denote by L the Rieger-Nishimura ladder (the dual Esakia frame of the
free cyclic Heyting algebra, see Figure 2).

Figure 2. The Rieger-Nishimura ladder L

For Esakia frames F1, . . . ,Fn, we denote their ordered sum by
⊕n

i=1 Fi [7, Sec. 2.2]. We
consider the following logics:

• The Rieger-Nishimura logic RN, which is the logic of the Rieger-Nishimura ladder
L.
• The Kuznetsov-Gerciu logic KG = (p→ q)∨(q → r)∨((q → r)→ r)∨(r → (p∨q)),

which is the logic of
⊕n

i=1 Fi, where each Fi is a generated subframe of L.
• The Kreisel-Putnam logic KP = IPC + (¬p→ q ∨ r)→ (¬p→ q) ∨ (¬p→ r).
• The Gabbay-de Jongh logics Tn, where Tn is the logic of finite trees of branching
≤ n.
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• The logics BWn of finite frames of width ≤ n. In particular, BW1 is the Gödel-
Dummett logic LC = IPC + (p→ q) ∨ (q → p) of finite linear frames.
• The logics BTWn of finite frames of top width ≤ n. In particular, BTW1 is the logic
KC of weak excluded middle, which is the logic of finite directed frames.
• Maksimova’s logics NDn = IPC + (¬p→

∨
1≤i≤n ¬qi)→

∨
1≤i≤n(¬p→ ¬qi).

KC = IPC + β( , {∅})
LC = IPC + β( )

BTWn = IPC + β(

n+ 1

, {∅})

BWn = IPC + β(

n+ 1

)

Tn = IPC + β](

n+ 1

)

KG = IPC + β( ) + β( ) + β( )

RN = KG + χ( ) + χ( ) + χ( )

KP = IPC + β(
1 2

, {∅, {1, 2}}) + β(
1 2

, {∅, {1, 2}})

NDn = IPC + β(
1 2

, {∅, {1, 2}}) + · · ·+ β(
1 n

, {∅, {1, . . . , n}})

Table 2. Axiomatizations in terms of canonical formulas (see [7, Thm. 3.13]
and [7, Thm. 4.33] for the axiomatizations of KG and RN, respectively, and see
[14, Table 9.7] for the other cases).

Proposition 4.7.
(i) Subf↓(KC) = IPC and Subf↑(KC) = LC.

(ii) Subf↓(BTWn) = IPC and Subf↑(BTWn) = BWn for every n ≥ 2.
(iii) Subf↓(Tn) = IPC and Subf↑(Tn) = BWn for every n ≥ 2.

(iv) Subf↓(RN) = KG and Subf↑(RN) = KG + β( ).

(v) Subf↓(KP) = IPC and Subf↑(KP) = BW2.
(vi) Subf↓(NDn) = IPC and Subf↑(NDn) = BW2 for every n ≥ 2.

Proof. (i). Since KC is axiomatized by β( , {∅}), it follows from Theorem 4.4(ii) that
Subf↑(KC) = IPC+β( ) = LC. To calculate the downward subframization of KC, we utilize
Proposition 4.3(i). It is well known that IPC is the logic of all finite frames and that KC is
the logic of all finite directed frames. Moreover, adding a new top to a finite frame F results
in a finite directed frame G containing F as a subframe. Therefore, by Proposition 4.3(i),
Subf↓(KC) = IPC.
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(ii). From the axiomatization of BTWn in Table 1 and Theorem 4.4(ii) it follows that

Subf↑(BTWn) = IPC + β(

n+ 1

) = BWn. To see that Subf↓(BTWn) = IPC observe that

BTWn ⊆ KC and apply (i) and Lemma 4.2(i).
(iii). It follows from Table 1 that Tn is axiomatized by the negation-free frame formula

β](

n+ 1

) = β(

n+ 1

,D), where D is the set of all nonempty upsets of

n+ 1

. Therefore,

Subf↑(Tn) = IPC + β(

n+ 1

) = BWn. To determine the downward subframization, since

Tn has the disjunction property [20] and every si-logic with the disjunction property proves
the same disjunction-free formulas as IPC [26, 32], we conclude that Tn proves the same
(∧,→)-formulas as IPC. Thus, by Lemma 4.2(iii), Subf↓(Tn) = IPC.

(iv). Since KG is a subframe logic contained in RN (see, e.g., [7, Sec. 3]), it follows from
the axiomatization of RN in Table 1 and Theorem 4.4(ii) that the upward subframization of

RN is KG + β( ) + β( ) + β( ). Since is a subframe of both and , the latter logic

is equal to KG + β( ). Therefore, Subf↑(RN) = KG + β( ). To determine the downward

subframization, KG ⊆ Subf↓(RN) since KG is a subframe logic contained in RN. For the
reverse inclusion, since KG is the logic of its finite rooted frames, by Proposition 4.3(i), it is
sufficient to show that every finite rooted KG-frame is a subframe of the Rieger-Nishimura
ladder L. First note that the subframe of L obtained by deleting the first k layers of L is
isomorphic to L. Using this it is easy to see that every finite generated subframe of L can
be realized as a subframe of L at an arbitrary depth, i.e., as a subframe of L that does not
contain the first k-layers of L for any k ∈ N. Therefore, a finite rooted KG-frame

⊕n
i=1 Fi

can be realized as a subframe of L by embedding F1, . . . ,Fn below each other so that the
two subsequent points in L between the embeddings of Fi and Fi+1 are skipped.

(v). The axiomatization of KP in Table 1 and Theorem 4.4(ii) yield that Subf↑(KP)

is axiomatized by β( ) and β( ). But is a subframe of , so Subf↑(KP) is

axiomatized by β( ), and hence Subf↑(KP) = BW2. Since KP has the disjunction property,

Subf↓(KP) = IPC by the same argument as in (iii).
(vi). Since the 3-fork is a subframe of the n-fork for n ≥ 3, it follows from the axiomati-

zation of NDn in Table 1 and Theorem 4.4(ii) that Subf↑(NDn) = BW2 for n ≥ 2. Since NDn

has the disjunction property, Subf↓(NDn) = IPC by the same argument as in (iii). �

5. Subframe logics and lax logics

In this section we recall the correspondence between subframes and nuclei on Heyting
algebras from [10] that leads to a correspondence between nuclear Heyting algebras and S-
frames. We show how S-frames provide a new semantics for the intuitionistic modal logic
PLL and compare our semantics to those of [21] and [17].

We start by recalling that a nucleus on a Heyting algebra A is a unary function j : A→ A
satisfying a ≤ ja, jja ≤ ja, and j(a∧b) = ja∧jb. It is well known (see, e.g., [10, pg. 88] and
the references therein) that nuclei on A correspond to localizations of A, where a localization
of A is a triple (L, i, l) such that the Heyting algebra L is a (∧, 1)-subalgebra of A and the
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inclusion i : L→ A has a left exact left adjoint l : A→ L; that is, l is a (∧, 1)-homomorphism
that is left adjoint of i (meaning that l(a) ≤ b iff a ≤ i(b) for all a ∈ A and b ∈ L). This in
particular implies that l also preserves Heyting implication.

The one-to-one correspondence between nuclei on A and localizations of A is obtained as
follows. Given a nucleus j : A→ A, we have that the fixpoints Aj := {a ∈ A | a = ja} form a
(∧, 1)-subalgebra of A and the inclusion Aj ↪→ A has j as a left exact left adjoint. Conversely,
given a localization (L, i, l) of A, we have that i ◦ l is a nucleus on A. Moreover, the two
correspondences are inverse to each other. This is parallel to the one-to-one correspondence
between local operators and subtopoi in an elementary topos [25, pg. 201, A.4.4.8].

The fixpoints Aj form a Heyting algebra with respect to the operations a ∧j b = a ∧ b,
a→j b = a→ b, a∨jb = j(a∨b), and 0j = j0. The Heyting algebra Aj is a (∧,→)-subalgebra
of A, but in general Aj is not a Heyting subalgebra of A.

As was observed in [10, Sec. 5], subframes of an Esakia frame F correspond to nuclei on
the dual Heyting algebra A of clopen upsets of F. If G = (S,≤) is a subframe of F = (X,≤),
then j given by

(6) jU = X \ ↓(S \ U)

is a nucleus on A, and every nucleus on A is obtained this way. Moreover, the dual Esakia
frame of Aj is isomorphic to G. This motivates the following definition.

Definition 5.1.
(i) A nuclear algebra is a pair (A, j) consisting of a Heyting algebra A and a nucleus j

on A.
(ii) An S-frame is a pair (F,G) consisting of an Esakia frame F and a subframe G of F.

Remark 5.2.
(i) Nuclear algebras are also called local algebras (see, e.g., [21]).

(ii) In the definition of an S-frame, “S” stands for subframe.

Remark 5.3. The one-to-one correspondence between nuclear Heyting algebras and S-
frames can also be seen via classical arguments from residuation theory. This is spelled
out in [24, Thm. 6.5.5].

Throughout the paper we will use the following notational convention.

Notation 5.4. For an S-frame (F,G), we always assume that F = (X,≤) and G = (S,≤).

We next recall the definition of the intuitionistic modal logic PLL and explain how nuclear
Heyting algebras and S-frames serve as adequate semantics for it. Let LIPC be the propo-
sitional language of IPC and let LPLL be obtained by enriching LIPC with an extra modal
operator #.

Definition 5.5. The propositional lax logic (PLL) is the least set of formulas of LPLL con-
taining (the axioms of) IPC, the axioms

#(p→ q)→ (#p→ #q), p→ #p, ##p→ #p,

and being closed under the rules of substitution, modus ponens, and

ϕ→ ψ/#ϕ→ #ψ.

We refer to the modality # as the lax modality.
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By interpreting # as the nucleus j, nuclear Heyting algebras provide semantics for PLL.
This semantics is sound and complete since the defining axioms of # match the defining
axioms of nuclei, as was already pointed out by Goldblatt [21].

Proposition 5.6 (Goldblatt). PLL is sound and complete with respect to nuclear Heyting
algebras.

Esakia duality coupled with the one-to-one correspondence between nuclei on Heyting
algebras and subframes of Esakia frames yields a one-to-one correspondence between nuclear
algebras and S-frames. Thus, S-frames provide sound and complete semantics for PLL. In
more detail, if (F,G) is an S-frame, then as in the case of IPC, a valuation v on (F,G)
interprets propositional letters as clopen upsets of F and intuitionistic connectives as the
corresponding operations of the Heyting algebra of clopen upsets of F. In addition, the lax
modality # is interpreted as the nucleus j given by (6).

It is easy to verify that (6) translates into the following semantics on points extending the
clauses of Figure 1. If v is a valuation on (F,G) and x ∈ X, then

(7) x |=v #ϕ iff y |=v ϕ for all y ∈ ↑x ∩ S.

We will use the same notations as in the intuitionistic case; e.g., we write (A, j) |= ϕ
provided v(ϕ) = 1 for each valuation v on (A, j), and we write (F,G) |= ϕ provided x |=v ϕ
for each x ∈ X and each valuation v on (F,G). The multiple usage of |= should not lead to
ambiguity since in each case it should be clear from the context what we are referring to.

As an immediate corollary of the above, we obtain:

Corollary 5.7. PLL is sound and complete with respect to S-frames.

The semantics via S-frames and nuclear Heyting algebras is closely related to the frame-
based semantics of PLL developed by Goldblatt [21] and Fairtlough and Mendler [17] (see
also [11]). We explain the precise connections.

We recall that a Goldblatt frame is a tuple F = (X,≤, R), where (X,≤) is a partially or-
dered set and R is a binary relation on X such that (i) x ≤ yRz implies xRz, (ii) xRy implies
x ≤ y, and (iii) xRy implies xRzRy for some z ∈ X. The language of PLL is interpreted
in a Goldblatt frame F by interpreting propositional letters as upsets of F, intuitionistic
connectives as the corresponding operations of the Heyting algebra of upsets of F, and # as
the nucleus jR given by

(8) jRU = X \R−1(X \ U).

Thus, every Goldblatt frame F can be turned into a nuclear Heyting algebra that validates
the same formulas as F. However, not every nuclear Heyting algebra can be obtained in
this way. This constitutes a similar discrepancy as the one between intuitionistic Kripke
frames and Heyting algebras. Due to the one-to-one correspondence between nuclear Heyting
algebras and S-frames, S-frames can be thought of as a “descriptive version” of Goldblatt
frames. As discussed in [10], an S-frame (F,G) can be turned into a Goldblatt frame by
forgetting the topology on X and defining a relation R on X by xRy iff x ≤ s ≤ y for
some s ∈ S. Using that R[x] = ↑(↑x ∩ S), we see that jRU = jU for each clopen upset U
of F. The Goldblatt frames obtained in this way satisfy the additional condition that xRy
iff (∃z ∈ X)(zRz and x ≤ z ≤ y) which does not hold in all Goldblatt frames (see [10,
Rem. 24]). Thus, not every Goldblatt frame underlies an S-frame.
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We also recall that an FM-frame (Fairtlough-Mendler frame) is a tuple F = (X,≤,�, F )
such that ≤,� are partial orders on X, x � y implies x ≤ y, and F is an ≤-upset of X. The
language of PLL is interpreted in an FM-frame slightly differently than in a Goldblatt frame.
Instead of working with the Heyting algebra of all upsets of F, we work with the Heyting
algebra of the upsets of F containing F . Therefore, propositional letters are interpreted as
upsets of F containing F , intuitionistic connectives as the corresponding operations in this
relativized Heyting algebra, and # is interpreted as the nucleus j≤� given by

(9) j≤�U = {x ∈ X | ∀y(x ≤ y ⇒ ∃z(y � z and z ∈ U))}.

If (F,G) is an S-frame, then define F∗G = (X∗,≤∗,�∗, F ∗) as follows. Set X∗ = X ∪ {m},
where m /∈ X. Let ≤∗ extend ≤ so that m is the maximum of X∗. Set F ∗ = {m} and
define x �∗ y iff x = y or x ∈ X \ S and y = m. It is straightforward to verify that F∗G is
an FM-frame. Moreover, if for a clopen upset U of F, we let U∗ = U ∪ {m}, then U∗ is an
upset of F∗G and j≤�(U∗) = (jU)∗.

Clearly not every FM-frame is of the form F∗G for some S-frame (F,G). For example, if in
the FM-frame (X,≤,�, F ) the upset F consists of more than one point, then (X,≤,�, F )
is not of the form F∗G. However, the FM-frames F∗G are sufficient for representing nuclear
Heyting algebras.

6. Superintuitionistic logics and lax logics

In this section we define a translation τ from LIPC into LPLL which gives rise to two embed-
dings from the lattice of si-logics into the lattice of extensions of PLL. We will study some
elementary properties of these embeddings and show that they provide us with new charac-
terizations of subframe logics. As we explained in Remark 4.5, the upward subframization
of a si-logic L = IPC + Γ can be calculated effectively from Γ. In this section we show how
to calculate the downward subframization of L by utilizing the translation τ .

Definition 6.1. Define a translation τ : LIPC → LPLL by

• τ(p) = #p for a propositional letter p,
• τ(⊥) = #⊥,
• τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ),
• τ(ϕ→ ψ) = τ(ϕ)→ τ(ψ),
• τ(ϕ ∨ ψ) = #(τ(ϕ) ∨ τ(ψ)).

Remark 6.2. The translation τ is a version of the Gödel-Gentzen translation (see, e.g., [18]).
It has been pointed out by Aczel [1] that every lax modality which is definable within IPC (for
example, the double negation) provides a translation from IPC to itself. The translation τ can
be seen as a generalization of this, where the lax modality is not necessarily definable within
IPC. It is used in [12, Sec. 3.2.2] to explain verificationist interpretation of intuitionistic logic
in terms of nuclei.

Recall that by Notation 5.4, given an S-frame (F,G), we always assume that F = (X,≤)
and G = (S,≤).

Lemma 6.3. Let v be a valuation on an S-frame (F,G). Define a valuation vG on G by
vG(p) = v(p) ∩ S. For every ϕ ∈ LIPC and x ∈ X,

x |=v τ(ϕ) iff y |=vG ϕ for all y ∈ ↑x ∩ S.
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Proof. The proof is by induction on the complexity of ϕ ∈ LIPC.
If ϕ = p, then τ(ϕ) = #p. Therefore, by (7) and the definition of vG,

x |=v #p iff y |=v p for all y ∈ ↑x ∩ S
iff y |=vG p for all y ∈ ↑x ∩ S.

If ϕ = ⊥, then τ(ϕ) = #⊥. Therefore, x |=v #⊥ iff ↑x ∩ S = ∅. Thus, x |=v #⊥ iff
y |=vG ⊥ for all y ∈ ↑x ∩ S.

If ϕ = ψ ∧ χ, then τ(ψ ∧ χ) = τ(ψ) ∧ τ(χ). Therefore,

x |=v τ(ψ ∧ χ) iff x |=v τ(ψ) and x |=v τ(χ)

iff y |=vG ψ and y |=vG χ for all y ∈ ↑x ∩ S
iff y |=vG ψ ∧ χ for all y ∈ ↑x ∩ S.

If ϕ = ψ → χ, then τ(ψ → χ) = τ(ψ)→ τ(χ). Therefore,

x |=v τ(ψ)→ τ(χ) iff z |=v τ(ψ) implies z |=v τ(χ) for all z ≥ x

iff (w |=vG ψ implies w |=vG χ for all w ∈ ↑z ∩ S) for all z ≥ x

iff (w |=vG ψ implies w |=vG χ) for all w ∈ ↑x ∩ S.

If ϕ = ψ ∨ χ, then τ(ψ ∨ χ) = #(τ(ψ) ∨ τ(χ)). Therefore,

x |=v #(τ(ψ) ∨ τ(χ)) iff y |=v τ(ψ) ∨ τ(χ) for all y ∈ ↑x ∩ S
iff y |=v τ(ψ) or y |=v τ(χ) for all y ∈ ↑x ∩ S
iff (z |=vG ψ or z |=vG χ for all z ∈ ↑y ∩ S) for all y ∈ ↑x ∩ S
iff z |=vG ψ ∨ χ for all z ∈ ↑x ∩ S.

�

Lemma 6.4. Let ϕ ∈ LIPC and (F,G) be an S-frame.

(i) (F,G) |= ϕ iff F |= ϕ.
(ii) (F,G) |= τ(ϕ) iff G |= ϕ.

Proof. (i). This is obvious since ϕ contains no occurrences of #.
(ii). For the right to left direction, suppose v is a valuation on (F,G) that refutes τ(ϕ).

Define a valuation v′ on G by v′(p) = v(p) ∩ S. By Lemma 6.3, v′ refutes ϕ on G. For the
left to right direction, suppose v′ is a valuation on G that refutes ϕ. Define a valuation v on
F by v(p) = X \↓(S \v′(p)). Then v′(p) = v(p)∩S for every propositional letter p. Applying
Lemma 6.3 again yields that v refutes τ(ϕ) on (F,G). �

Remark 6.5. An algebraic reformulation of Lemma 6.4 is as follows. If ϕ ∈ LIPC and (A, j)
is a nuclear Heyting algebra, then

(i) (A, j) |= ϕ iff A |= ϕ.
(ii) (A, j) |= τ(ϕ) iff Aj |= ϕ.

We call a set M of formulas of LPLL a lax logic if PLL ⊆ M and M is closed under the
rules of substitution, modus ponens, and ϕ→ ψ/#ϕ→ #ψ. As in the case of si-logics, lax
logics form a complete lattice. Each lax logic M is sound and complete with respect to the
variety Alg(M) := {(A, j) | (A, j) |= M} of nuclear algebras, as well as with respect to the
corresponding class of S-frames.
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Definition 6.6. Let L be a si-logic and let M be a lax logic.

(i) We say that L is the intuitionistic fragment of M if for all ϕ ∈ LIPC,

ϕ ∈ L iff ϕ ∈ M.

(ii) We say that L is the lax fragment of M if for all ϕ ∈ LIPC,

ϕ ∈ L iff τ(ϕ) ∈ M.

Definition 6.7. For a lax logic M, we define

ρ1(M) = {ϕ ∈ LIPC | ϕ ∈ M},
ρ2(M) = {ϕ ∈ LIPC | τ(ϕ) ∈ M}.

Lemma 6.8. Let M be a lax logic.

(i) ρ1(M) is the intuitionistic fragment of M and

ρ1(M) = Log ({F | (F,G) |= M for some subframe G of F}) .
(ii) ρ2(M) is the lax fragment of M and

ρ2(M) = Log ({G | (F,G) |= M}) .

Proof. We only show (ii) as (i) is proved similarly but uses Lemma 6.4(i) instead of Lemma 6.4(ii).
For ϕ ∈ LIPC, using Lemma 6.4(ii), we have

τ(ϕ) ∈ M ⇔ (F,G) |= τ(ϕ) for all (F,G) |= M
⇔ G |= ϕ for all (F,G) |= M
⇔ ϕ ∈ Log ({G | (F,G) |= M}) .

Therefore, ρ2(M) = Log ({G | (F,G) |= M}), and so ρ2(M) is the lax fragment of M. �

Remark 6.9. An algebraic reformulation of Lemma 6.8 is as follows:

(i) ρ1(M) = Log ({A | (A, j) |= M for some nucleus j on A}).
(ii) ρ2(M) = Log ({Aj | (A, j) |= M}) .

Definition 6.10. For a si-logic L, we define

σ1(L) =PLL + {ϕ | ϕ ∈ L},
σ2(L) =PLL + {τ(ϕ) | ϕ ∈ L}.

Lemma 6.11. Let L be a si-logic.

(i) σ1(L) = Log ({(F,G) | F |= L}).
(ii) σ2(L) = Log ({(F,G) | G |= L}).

Proof. We only show (ii) as (i) is proved similarly but uses Lemma 6.4(i) instead of Lemma
6.4(ii). Suppose (F,G) is an S-frame. By Lemma 6.4(ii), G |= L iff (F,G) |= {τ(ϕ) | ϕ ∈ L}.
Thus, σ2(L) = Log ({(F,G) | G |= L}). �

Remark 6.12. In algebraic terms, Lemma 6.11 can be expressed as follows:

(i) σ1(L) = Log ({(A, j) | A |= L}).
(ii) σ2(L) = Log ({(A, j) | Aj |= L}).

Lemma 6.13. Let L be a si-logic.

(i) L = ρ1σ1(L). In fact, σ1(L) is the least element of ρ−11 (L).
(ii) L = ρ2σ2(L). In fact, σ2(L) is the least element of ρ−12 (L).
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Proof. (i). Let ϕ ∈ LIPC. Then ϕ ∈ L implies ϕ ∈ σ1(L), which implies ϕ ∈ ρ1σ1(L).
Therefore, L ⊆ ρ1σ1(L). If ϕ /∈ L, then there is an L-frame F such that F 6|= ϕ. Consider
the S-frame (F,F). By Lemma 6.11(i), (F,F) |= σ1(L), and by Lemma 6.4(i), (F,F) 6|= ϕ.
Thus, ϕ 6∈ σ1(L), and so by Lemma 6.8(i), ϕ 6∈ ρ1σ1(L). This shows that L = ρ1σ1(L). If
M ∈ ρ−11 (L), then for every ϕ ∈ LIPC, we have ϕ ∈ L iff ϕ ∈ M. Consequently, σ1(L) ⊆ M,
and hence σ1(L) is the least element of ρ−11 (L).

(ii). Let ϕ ∈ LIPC. Then ϕ ∈ L implies τ(ϕ) ∈ σ2(L), which implies ϕ ∈ ρ2σ2(L). Therefore,
L ⊆ ρ2σ2(L). If ϕ /∈ L, then there is an L-frame F such that F 6|= ϕ. By Lemma 6.11(ii), the
S-frame (F,F) is a σ2(L)-frame, and by Lemma 6.4(ii), (F,F) 6|= τ(ϕ). Thus, ϕ 6∈ σ2(L), and
so by Lemma 6.8(ii), ϕ 6∈ ρ2σ2(L). This shows that L = ρ2σ2(L). If M ∈ ρ−12 (L), then for
every ϕ ∈ LIPC, we have ϕ ∈ L iff τ(ϕ) ∈ M. Consequently, σ2(L) ⊆ M, and hence σ2(L) is
the least element of ρ−12 (L). �

As follows from Lemma 6.13, for a si-logic L, both ρ−11 (L) and ρ−12 (L) have least elements,
but they may not have largest elements. To see this we require the following lemmas.

Lemma 6.14. Let (F,G) be an S-frame.

(i) (F,G) |= #p↔ p iff F = G.
(ii) (F,G) |= #p iff G = ∅.

Proof. (i). First suppose that F = G. Then it is clear that (F,G) |= #p↔ p. Next suppose
that F 6= G. Let x ∈ X \ S. Then x /∈ ↑x ∩ S, so x /∈ ↑(↑x ∩ S). Therefore, since ↑(↑x ∩ S)
is a closed upset of X, there is a clopen upset U of X with ↑(↑x∩ S) ⊆ U and x 6∈ U . Let v
be a valuation on (F,G) such that v(p) = U . Clearly x 6|=v p. On the other hand, x |=v #p
by (7). Thus, (F,G) 6|= #p↔ p.

(ii). If G = ∅, then it is clear that (F,G) |= #p. If G 6= ∅, then let v be a valuation on
(F,G) such that v(p) = ∅. For x ∈ S, we then have x 6|=v #p, so (F,G) 6|= #p. �

For ψ ∈ LPLL, let ψ− be the formula obtained from ψ by deleting all occurrences of the
# modality and let ψ∗ be the formula obtained from ψ by replacing all subformulas of the
form #χ with >. Clearly ψ−, ψ∗ ∈ LIPC. Both ψ− and ψ∗ were considered in [17, Sec. 2].

Lemma 6.15. Let M be a lax logic.

(i) If #p↔ p ∈ M, then ψ ∈ M iff ψ− ∈ M for every formula ψ ∈ LPLL.
(ii) If #p ∈ M, then ψ ∈ M iff ψ∗ ∈ M for every formula ψ ∈ LPLL.

Proof. (i). Suppose that #p↔ p ∈ M and let ψ ∈ LPLL. By Lemma 6.14(i), M is the logic of
the class of S-frames of the shape (F,F). For (F,F), a valuation v on F, and x ∈ F, we have
x |=v #ϕ iff x |=v ϕ. Therefore, induction on ψ yields (F,F) |= ψ iff (F,F) |= ψ−. Thus,
ψ ∈ M iff ψ− ∈ M.

(ii). Suppose #p ∈ M and let ψ ∈ LPLL. By Lemma 6.14(ii), M is the logic of the class of
S-frames of the shape (F,∅). For (F,∅), a valuation v on F, and x ∈ F, we have x |=v #ϕ.
Therefore, induction on ψ yields (F,∅) |= ψ iff (F,∅) |= ψ∗. Thus, ψ ∈ M iff ψ∗ ∈ M. �

Lemma 6.16. Let L be a si-logic.

(i) σ1(L) + #p↔ p is a maximal element of both ρ−11 (L) and ρ−12 (L).
(ii) σ1(L) + #p is a maximal element of ρ−11 (L).

Proof. (i). Let M = σ1(L) + #p ↔ p. First we show that M is a maximal element of
ρ−11 (L). By Lemma 6.14(i), an S-frame (F,G) validates M iff F is an L-frame and F = G.
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Therefore, by Lemma 6.8(i), ρ1(M) = L, so M ∈ ρ−11 (L). To see that M is maximal in ρ−11 (L),
suppose that M ⊆ M′ ∈ ρ−11 (L). We show that M = M′. Let ψ ∈ LPLL. If ψ 6∈ M, then
by Lemma 6.15(i), ψ− 6∈ M, and so ψ− 6∈ L as ψ− ∈ LIPC. Since ρ1(M

′) = L, we see that
ψ− 6∈ M′. Because M ⊆ M′, we have #p ↔ p ∈ M′, so ψ 6∈ M′ by Lemma 6.15(i). Thus,
M = M′, and hence M is maximal in ρ−11 (L).

Next we show that M is a maximal element of ρ−12 (L). By Lemma 6.8(ii), ρ2(M) = L,
so M ∈ ρ−12 (L). Suppose M ⊆ M′ ∈ ρ−12 (L). We show that M = M′. Let ψ ∈ LPLL. If
ψ 6∈ M, then ψ− 6∈ M by Lemma 6.15(i). Therefore, τ(ψ−) 6∈ M because (τ(ψ−))− = ψ−.
Thus, ψ− 6∈ L, and so τ(ψ−) 6∈ M′. Since M ⊆ M′, we have #p ↔ p ∈ M′, and hence
ψ− = (τ(ψ−))− 6∈ M′ by Lemma 6.15(i). Consequently, ψ 6∈ M′, and so M = M′, which yields
that M is maximal in ρ−12 (L).

(ii). Let M = σ1(L) + #p. By Lemma 6.14(ii), an S-frame (F,G) validates M iff F is an
L-frame and G = ∅. Therefore, by Lemma 6.8(i), ρ1(M) = L, so M ∈ ρ−11 (L). To see that M
is maximal in ρ−11 (L), suppose that M ⊆ M′ ∈ ρ−11 (L). We show that M = M′. Let ψ ∈ LPLL.
If ψ 6∈ M, then by Lemma 6.15(ii), ψ∗ 6∈ M, and so ψ∗ 6∈ L as ψ∗ ∈ LIPC. Since ρ1(M

′) = L,
we see that ψ∗ 6∈ M′. Because M ⊆ M′, we have #p ∈ M′, so ψ 6∈ M′ by Lemma 6.15(ii).
Thus, M = M′, and hence M is maximal in ρ−11 (L). �

Proposition 6.17.
(i) If L is a consistent si-logic, then ρ−11 (L) does not have a largest element.

(ii) If KC 6⊆ L, then ρ−12 (L) does not have a largest element.

Proof. (i). Let L be a consistent si-logic. Then a singleton frame {x} is an L-frame. Therefore,
σ1(L) + #p↔ p and σ1(L) + #p are different since the S-frame ({x},∅) validates σ1(L) + #p
but refutes σ1(L)+#p↔ p. Thus, by Lemma 6.16, ρ−11 (L) has at least two maximal elements,
and hence does not have a largest element.

(ii). Let L be a si-logic with KC 6⊆ L. Suppose that L = IPC + Γ, and set M = σ1(KC) +
{τ(γ) | γ ∈ Γ}. By Lemmas 6.11(i) and 6.4(ii), an S-frame (F,G) validates M iff F is a
KC-frame and G is an L-frame. Therefore, by Lemma 6.8(ii), L ⊆ ρ2(M). To see the reverse
inclusion, suppose that ϕ 6∈ L. Then there is an L-frame G with G 6|= ϕ. Let F be the Esakia
frame obtained from G by adding a new isolated top node t. Algebraically this corresponds
to adding a new bottom element to the Heyting algebra of clopen upsets of G. Clearly
F is a KC-frame. Since G is clopen in F, we have that G is a subframe of F. Therefore,
(F,G) is an S-frame which validates M but refutes τ(ϕ) by Lemma 6.4(ii). Thus, ϕ 6∈ ρ2(M).
Consequently, L = ρ2(M), and so M ∈ ρ−12 (L). On the other hand, since KC 6⊆ L, there is an
L-frame H that is not a KC-frame. By Lemmas 6.4 and 6.14, (H,H) |= σ1(L) + #p↔ p but
(H,H) 6|= M. This shows that M 6⊆ σ1(L) +#p↔ p. If ρ−12 (L) were to have a largest element,
it would have to be σ1(L) + #p ↔ p since this is a maximal element of ρ−12 (L) by Lemma
6.16(i). Because M is not contained in σ1(L) + #p ↔ p, we conclude that ρ−12 (L) does not
have a largest element. �

Figure 2 illustrates the mappings σ1 and ρ1, where CPC is the classical propositional
calculus and Fml is the inconsistent logic. The picture is similar for σ2 and ρ2. We next give
a new characterization of subframe si-logics.

Theorem 6.18. For a si-logic L, the following are equivalent:

(i) L is a subframe logic.
(ii) σ2(L) ⊆ σ1(L).
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(iii) σ2(L) + {ϕ | ϕ ∈ L} = σ1(L).
(iv) ρ2σ1(L) = L.
(v) σ1(L) is closed under the rule ϕ/τ(ϕ) for every ϕ ∈ LIPC.

Proof. (i)⇒(ii). Suppose (F,G) is an S-frame such that (F,G) |= σ1(L). By Lemma 6.11(i),
F |= L. Since L is a subframe logic, G |= L. Therefore, by Lemma 6.11(ii), (F,G) |= σ2(L).
Thus, σ2(L) ⊆ σ1(L).

(ii)⇒(iii). This is obvious.
(iii)⇒(iv). By Lemmas 6.13(ii) and 6.8(ii), L = ρ2σ2(L) = Log({G | (F,G) |= σ2(L)}) and

ρ2σ1(L) = Log({G | (F,G) |= σ1(L)}). Therefore, it is sufficient to show that {G | (F,G) |=
σ2(L)} = {G | (F,G) |= σ1(L)}. The inclusion ⊇ is immediate from (iii). For the reverse
inclusion, suppose that (F,G) |= σ2(L). By Lemma 6.11(ii), G |= L, so (G,G) |= σ1(L) by
Lemma 6.11(i). Thus, G ∈ {G | (F,G) |= σ1(L)}.

(iv)⇒(v). Suppose that there is ϕ ∈ LIPC such that ϕ ∈ σ1(L) but τ(ϕ) 6∈ σ1(L). Then
there is an S-frame (F,G) with (F,G) |= σ1(L) and (F,G) 6|= τ(ϕ). By Lemma 6.8(ii),
(F,G) |= σ1(L) implies G |= ρ2σ1(L) = L, and by Lemma 6.4(ii), (F,G) 6|= τ(ϕ) implies
G 6|= ϕ. Therefore, ϕ 6∈ L, contradicting ϕ ∈ σ1(L).

(v)⇒(i). Let F be an L-frame and G be a subframe of F. By Lemma 6.11(i), (F,G) |=
σ1(L). By (v), (F,G) |= τ(ϕ) for each ϕ ∈ LIPC such that ϕ ∈ σ1(L). Therefore, (F,G) |=
τ(ϕ) for each ϕ ∈ L. Thus, G |= L by Lemma 6.4(ii), and we conclude that L is a subframe
logic. �

Remark 6.19. Theorem 6.18 resembles [31, Prop. 3.4], which characterizes subframe modal
logics in terms of relativizations of modal formulas. Relativization is a syntactic operation
on modal formulas, thus an operation definable within the modal language. Subframes in the
intuitionistic case cannot be characterized via relativizations. We can, nevertheless, obtain
an approximation of the relativization via the map τ , which moves us to the setting of the
intuitionistic modal logic PLL.

Remark 6.20. In general, σ1(L) 6⊆ σ2(L). In fact, for any consistent si-logic L, from σ1(L) ⊆
σ2(L) it follows that L = IPC. To see this, suppose L 6= IPC. Then there is a finite frame F
that refutes L. Pick a point in F and let G be the subframe of F consisting of this point.
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Clearly G is an L-frame. Therefore, by Lemma 6.11(ii), (F,G) |= σ2(L). On the other hand,
by Lemma 6.11(i), (F,G) 6|= σ1(L). Thus, σ1(L) 6⊆ σ2(L).

As a consequence of Theorem 6.18, we obtain the following characterization of the down-
ward subframization of a si-logic.

Theorem 6.21. Let L be a si-logic. Then Subf↓(L) = ρ2σ1(L).

Proof. Let G be an Esakia frame. By Lemma 6.8(ii), G |= ρ2σ1(L) iff there is an Esakia
frame F such that (F,G) |= σ1(L). By Lemma 6.11(i), (F,G) |= σ1(L) iff F |= L. Therefore,
G |= ρ2σ1(L) iff G is a subframe of some F |= L. Thus, by Proposition 4.3(i), ρ2σ1(L) =
Subf↓(L). �

Remark 6.22.
(i) Let L be a si-logic and ϕ ∈ LIPC. By Theorem 6.21, ϕ ∈ Subf↓(L) iff τ(ϕ) ∈ σ1(L).

Therefore, if σ1(L) is decidable, then so is Subf↓(L).
(ii) In contrast to Theorem 6.21, for every si-logic L, we have ρ1σ2(L) = IPC. Indeed,

suppose L is a si-logic and F is an Esakia frame. By Lemma 6.8(i), F |= ρ1σ2(L) iff
there is a subframe G of F such that (F,G) |= σ2(L). By Lemma 6.11(ii), (F,G) |=
σ2(L) iff G |= L. Therefore, F |= ρ1σ2(L) iff G |= L for some subframe G of F. Now,
every frame contains the empty frame as a subframe and since the empty frame is
an L-frame, we conclude that every frame validates ρ1σ2(L). Thus, ρ1σ2(L) = IPC.

Remark 6.23. We recall that a subframe G of an Esakia frame F is cofinal provided it
contains the maximum of F. Cofinal subframes of an Esakia frame F correspond to dense
nuclei on the Heyting algebra of clopen upsets of F, where we recall that a nucleus j is
dense if j0 = 0. Since being a dense nucleus can be expressed by adding #¬⊥ to PLL,
the correspondence between subframe logics and extensions of PLL discussed in this section
extends to the correspondence between cofinal subframe logics and extensions of PLL+#¬⊥.

7. Stabilization

In this section we aim to mirror the results of Sections 4 and 5 to the setting of stable
logics. We will define the concept of stabilization, which is an analogue of subframization
for stable logics. As we discussed in Section 3.2, when working with stable logics, we work
with rooted Esakia frames. This is in contrast with subframe logics, and requires slight
modifications of some of the characterizations by restricting to rooted Esakia frames only.
This will have no major effect on the proofs.

Let ΛStab be the class of all stable logics. By Theorem 3.7, ΛStab is a complete sublattice
of the lattice of all si-logics.

Definition 7.1. For a si-logic L, define the downward stabilization of L as

Stab↓(L) :=
∨
{L′ ∈ ΛStab | L′ ⊆ L}

and the upward stabilization of L as

Stab↑(L) :=
∧
{L′ ∈ ΛStab | L ⊆ L′}.

The following lemma is obvious.

Lemma 7.2. Stab↓ is an interior operator and Stab↑ is a closure operator on the lattice of
all si-logics.



SUBFRAMIZATION AND STABILIZATION FOR SUPERINTUITIONISTIC LOGICS 23

We next give a semantic characterization of downward and upward stabilizations (cf. Propo-
sition 4.3).

Proposition 7.3. Let L be a si-logic such that L = Log(K) for some class K of rooted Esakia
frames. Then

(i) Stab↓(L) = Log ({G | G is a stable image of F ∈ K}).
(ii) Stab↑(L) = Log ({F | F is rooted and G |= L for every stable image G of F })

= Log ({F | F is finite rooted and G |= L for every stable image G of F }) .

Proof. (i). Let K ′ = {G | G is a stable image of F ∈ K}. Then K ′ is a class of rooted
Esakia frames closed under stable images, so Log(K ′) is a stable logic by Theorem 3.7. Since
K ⊆ K ′, we have Log(K ′) ⊆ L. Let L′ be a stable logic contained in L. Then the class K ′′

of rooted L′-frames contains K and is closed under stable images. Therefore, K ′ ⊆ K ′′, and
so L′ ⊆ Log(K ′). Thus, Log(K ′) is the largest stable logic contained in L.

(ii). Let K ′ = {F | F is rooted and G |= L for every stable image G of F } and K ′′ = {F |
F is finite rooted and G |= L for every stable image G of F }. We show that Stab↑(L) =
Log(K ′) = Log(K ′′). It is clear that K ′′ ⊆ K ′, so Log(K ′) ⊆ Log(K ′′). It is obvious that
both K ′ and K ′′ are closed under stable images, so Log(K ′), Log(K ′′) are stable logics by The-
orem 3.7. Since K ′, K ′′ are contained in the class of rooted L-frames, L ⊆ Log(K ′), Log(K ′′).
Therefore, Stab↑(L) ⊆ Log(K ′), Log(K ′′). It is left to prove that Log(K ′′) ⊆ Stab↑(L).

Let L′ be a stable logic extending L, and let F be a finite rooted L′-frame. Since L′ is
stable, all stable images of F are L′-frames, and hence also L-frames. Therefore, F ∈ K ′′.
Since L′ is stable, L′ is the logic of its finite rooted frames. Thus, Log(K ′′) ⊆ L′, so Log(K ′′)
is the least stable extension of L, and hence Stab↑(L) = Log(K ′′). �

For an axiomatization of Stab↓(L) and Stab↑(L), we use stable canonical formulas (cf. The-
orem 4.4).

Theorem 7.4. Let L = IPC + {γ(Hi,Di) | i ∈ I} be a si-logic.

(i) Stab↓(L) = IPC + {γ(H) | L ` γ(H)}.
(ii) Stab↑(L) = IPC + {γ(Hi) | i ∈ I}.

Proof. (i). By [6, Thm. 6.11], IPC + {γ(H) | L ` γ(H)} is a stable logic, and clearly it is the
largest stable logic contained in L. Therefore, Stab↓(L) = IPC + {γ(H) | L ` γ(H)}.

(ii). Let M = IPC+{γ(Hi) | i ∈ I} and let G be a rooted M-frame. Then G |= γ(Hi) for all
i ∈ I. Therefore, by the semantic criterion of Section 3.2, G |= γ(Hi,Di) for all i ∈ I. Thus,
G is an L-frame, and so L ⊆ M. Since M is axiomatized by stable formulas, M is a stable
logic. Suppose L′ is a stable extension of L, and G is a rooted L′-frame. If G 6|= γ(Hi) for
some i ∈ I, then Hi is a stable image of some point-generated subframe H of G. Therefore,
Hi is an L′-frame. But Hi is not an L-frame, which contradicts to L′ being an extension of L.
Thus, G |= γ(Hi) for all i ∈ I, and so M ⊆ L′. Consequently, M is the least stable extension
of L, and hence Stab↑(L) = M. �

Remark 7.5. If a si-logic L is axiomatized by a set of formulas Γ, then Stab↑(L) can be cal-
culated effectively from Γ as follows: First use [6, Cor. 3.9] to transform Γ into an equivalent
set of stable canonical formulas; then delete the additional parameters Di in the resulting
canonical formulas; and finally apply Theorem 7.4(ii). On the other hand, applying Theo-
rem 7.4(i) does not provide an effective axiomatization of Stab↓(L). We will come back to
this issue at the end of Section 8.
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Remark 7.6. By restricting Wolter’s describable operations (cf. Remark 4.6) to the class
of rooted Esakia frames, we can obtain an alternative proof of Theorem 7.4. For a rooted
Esakia frame G, let C(G) = {H | H is a stable image of G}. We show that

(10) G |= γ(F) iff C(G) |= γ(F,D).

For the left to right direction, suppose C(G) 6|= γ(F,D). Then there is a stable image H of
G such that H 6|= γ(F,D). Then there is a finite stable image H′ of H such that H′ 6|= γ(F,D)
(see, e.g., [6, Lem. 3.6]). By (3) of Section 3, there is a point-generated upset H′′ of H′ and
a stable map from H′′ onto F satisfying SCDC for D. Since H′ is finite, F is a stable image
of H′ (see [6, Lem. 6.1]). So F is a stable image of G. As G is rooted, this implies that
G 6|= γ(F) by (4) of Section 3.

For the right to left direction, suppose G 6|= γ(F). Since G is rooted, it follows from [9,
Prop. 5.1] that F is a stable image of G. Therefore, F ∈ C(G). Thus, since F 6|= γ(F,D), we
conclude that C(G) 6|= γ(F,D).

Set (γ(F,D))c = γ(F). Because every si-logic is characterized by its rooted Esakia frames,
Wolter’s result applied to Proposition 7.3 yields an alternative proof of Theorem 7.4.

We conclude this section by giving several examples of downward and upward stabilizations
of si-logics. In addition to the si-logics from Section 4, we consider the following si-logics.

• The logics BDn of finite rooted frames of depth ≤ n.
• The logics BCn of finite rooted frames of cardinality ≤ n.

Proposition 7.7.
(i) Stab↓(BDn) = IPC and Stab↑(BDn) = BCn for all n ≥ 2.

(ii) If L is consistent and has the disjunction property, then Stab↓(L) = IPC.
(iii) Stab↓(Tn) = IPC and Stab↑(Tn) = BWn for all n ≥ 2.

Proof. (i). First we show that Stab↓(BDn) = IPC for all n ≥ 2. Since BDn ⊆ BD2 for all
n ≥ 2, it suffices to show that Stab↓(BD2) = IPC. Let F be a finite rooted frame. Suppose
F has at most n+ 1 elements, and Fn is the n-fork shown in Figure 3. Mapping the root of
Fn to the root of F and the top nodes of Fn surjectively onto the other nodes of F defines a
stable map from Fn onto F. Since Fn is a BD2-frame, by Proposition 7.3(i), F |= Stab↓(BD2)
for every finite rooted frame F. Thus, Stab↓(BD2) = IPC.

Next we show that Stab↑(BDn) = BCn for all n ≥ 2. Suppose F is a finite rooted frame.
If F has no more than n elements, then every stable image of F also has no more than n
elements. Therefore, every stable image of F is a BCn-frame. On the other hand, if F has
at least n + 1 elements, then we can define a stable map from F on the (n + 1)-chain Cn+1

(see Figure 3) as follows: Map the root r of F to the root of Cn+1; map the immediate
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successors of r on top of each other; continue this process with the immediate successors of
the immediate successors of r, and so on; if you run out of points in Cn+1, then map the
remaining points to the top node of Cn+1. Since Cn+1 is not a BDn-frame, F has a stable
image refuting BDn. Thus, by Proposition 7.3(ii), Stab↑(BDn) = BCn.

(ii). Suppose L is consistent and has the disjunction property. By [14, Thm. 15.5], if
F1,F2 are rooted L-frames, then their disjoint union F1 tF2 is a generated subframe of some
rooted L-frame. This implies that for every n, there is a rooted L-frame F containing at least
n maximal points. To see this, since L is consistent, the one-point frame F1 is an L-frame.
Therefore, F1 t F1 is a generated subframe of some rooted L-frame F2. Clearly F2 has at
least 2 maximal points. By the same argument, F2 t F2 is a generated subframe of some
rooted L-frame F3 that has at least 4 maximal points. Continuing this process yields a rooted
L-frame F with at least n maximal points, say {x1, x2, . . . xn}. We show that the n-fork Fn

is a stable image of F. Separate x1, . . . , xn by disjoint clopen upsets U1, . . . , Un with xi ∈ Ui

for 1 ≤ i ≤ n, and define a map f : F→ Fn by

f(x) =

{
xi if x ∈ Ui for some i ∈ I,
r otherwise,

where r is the root of Fn. It is straightforward to see that f is an onto stable map. Thus,
Stab↓(L) ⊆ BD2. Now apply (i) to conclude that Stab↓(L) = IPC.

(iii). Since Tn is consistent and has the disjunction property for all n ≥ 2, by (ii),
Stab↓(Tn) = IPC for all n ≥ 2.

Next we show that Stab↑(Tn) = BWn for all n ≥ 2. Let K = {F | F is finite rooted and
G |= Tn for every stable image G of F}. By Proposition 7.3(ii), Stab↑(Tn) = Log(K). Let
K ′ be the class of finite rooted frames of width ≤ n. We show that K = K ′. Let F be
finite and rooted. If F ∈ K ′, i.e. F is of width ≤ n, then so are all its stable images (see [6,
Thm. 7.3(2)]). Since width ≤ n implies branching ≤ n, every stable image of F vaildates
Tn, so F ∈ K. Therefore, K ′ ⊆ K. Conversely, if F has width greater than n, then by [6,
Thm. 7.5(3)], either the (n + 1)-fork or the (n + 1)-fork with top (see Figure 3) is a stable
image of F. Since neither of these is a Tn-frame, F /∈ K. Thus, K = K ′, and as BWn is the
logic of K ′, we conclude that Stab↑(Tn) = BWn. �

8. Stable logics and intuitionistic S4

As we saw in Section 6, there is a close connection between subframe logics and extensions
of the lax logic PLL. In this section we show that there is a close connection between stable
logics and extensions of IS4. More precisely, we show that there are two natural embeddings
of si-logics into multiple-conclusion consequence relations extending IS4 + p ∨ q/p, q, which
yield a new characterization of stable logics.

Recall that in Section 6, we embedded si-logics into logics extending PLL. In this section
we work with multi-conclusion consequence relations as opposed to logics. This is due to
the fact that stability of a si-logic ensures that the class of its rooted frames is stable and
being a rooted frame, while cannot be captured by formulas, is captured by the multiple-
conclusion disjunction rule p∨q/p, q meaning that a frame is rooted exactly when it validates
the disjunction rule.

Definition 8.1. ([27]) Intuitionistic S4 (IS4) is the least set of formulas of the propositional
modal language containing IPC, the axioms 2p → p, 2p → 22p, 2(p → q) → (2p → 2q),
and closed under substitution, modus ponens, and necessitation.
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Algebraic semantics of IS4 is provided by interior Heyting algebras.

Definition 8.2. ([27]) An interior Heyting algebra is a pair (A,2), where A is a Heyting
algebra and 2 is an interior operator on A; that is, 2 is a unary function on A satisfying
2a ≤ a, 2a ≤ 22a, 2(a ∧ b) = 2a ∧2b, and 21 = 1.

Like the fixpoints of a nuclear algebra, the 2-fixpoints A2 := {a ∈ A | 2a = a} of an
interior Heyting algebra (A,2) also form a Heyting algebra. But unlike the fixpoints of a
nuclear algebra, the 2-fixpoints form a bounded sublattice of A, so the join, meet, 0, and 1
in A2 are the same as in A.

The implication in A2 is calculated as a →2 b = 2(a → b). In fact, interior Heyting
algebras correspond to pairs (A,A0) of Heyting algebras such that A0 is a bounded sublattice
of A and the embedding A0 � A has a right adjoint. Similarly to the case of nuclear algebras,
this correspondence is obtained as follows: If (A,2) is an interior Heyting algebra, then A2
is a Heyting algebra and the embedding A2 ↪→ A has 2 as a right adjoint; conversely, given
such a pair (A,A0), we have that the right adjoint to the inclusion A0 ↪→ A is an interior
operator on A; and these correspondences are inverse to each other (see, e.g., [13, Thm. 2.7]).

Given such a pair (A,A0), let F = (X,≤) be the Esakia frame of A and G = (Y,≤)
the Esakia frame of A0. Since the embedding A0 � A is a bounded lattice morphism, the
dual map π : X → Y is an onto stable map. Moreover, the right adjoint 2 : A → A0 of
the embedding A0 � A is dually described as follows: if U is a clopen upset of F, then
2U = Y \ ↓π(X \ U). Therefore, for each clopen U in X, we have that ↓π(U) is a clopen
subset of Y . Thus, interior Heyting algebras correspond to pairs of Esakia frames (F,G)
and an onto stable map between them satisfying ↓π(U) is clopen in G for each clopen U in
F (for monadic Heyting algebras this correspondence is discussed in detail in [4], and can be
adjusted easily to our case as in [24, Thm. 6.6.4]). This yields the following definition.

Definition 8.3. An St-frame (stable frame) is a pair (F,G) such that F = (X,≤) and
G = (Y,≤) are Esakia frames and π : X → Y is an onto stable map satisfying ↓π(U) is
clopen in Y for each clopen U in X.

The correspondence between interior Heyting algebras and St-frames allows us to interpret
formulas of IS4 in St-frames. Let (F,G) be an St-frame, where F = (X,≤) and G = (Y,≤).
We interpret propositional letters as clopen upsets of F and intuitionistic connectives as
the corresponding operations in the Heyting algebra of clopen upsets of F. In addition,
2 is interpreted as the corresponding unary function on the clopen upsets of F; that is,
2U = π−1(Y \ ↓π(X \ U)). Therefore, if v is a valuation on (F,G) and x ∈ X, then
x 6∈ 2v(ϕ) iff π(x) ∈ ↓π(X \v(ϕ)), which happens iff there is z ∈ X \v(ϕ) with π(x) ≤ π(z).
Thus,

x |=v 2ϕ iff z |=v ϕ for all z ∈ X with π(x) ≤ π(z).

We utilize the Gödel-McKinsey-Tarski translation to translate a formula ϕ of IPC into the
formula t(ϕ) of IS4 as follows:

• t(p) = 2p for a propositional letter p,
• t(⊥) = 2⊥,
• t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ),
• t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ),
• t(ϕ→ ψ) = 2(t(ϕ)→ t(ψ)).
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A straightforward induction shows that for every ϕ ∈ LIPC and every interior Heyting
algebra (A,2), we have:

(i) (A,2) |= ϕ iff A |= ϕ.
(ii) (A,2) |= t(ϕ) iff A2 |= ϕ.

Translating this into dual terms yields the following lemma.

Lemma 8.4. For every ϕ ∈ LIPC and every St-frame (F,G) :

(i) (F,G) |= ϕ iff F |= ϕ.
(ii) (F,G) |= t(ϕ) iff G |= ϕ.

We recall (see, e.g., [23, 22, 9]) that a multiple-conclusion rule is an expression of the form
Γ/∆, where Γ and ∆ are finite sets of formulas. A multiple-conclusion consequence relation
over IS4 is a set S of multiple-conclusion rules such that

• ϕ/ϕ ∈ S.
• ϕ, ϕ→ ψ/ψ ∈ S.
• ϕ/2ϕ ∈ S.
• /ϕ ∈ S for each theorem ϕ of IS4.
• If Γ/∆ ∈ S, then Γ,Γ′/∆,∆′ ∈ S.
• If Γ/∆, ϕ ∈ S and Γ, ϕ/∆ ∈ S, then Γ/∆ ∈ S.
• If Γ/∆ ∈ S and s is a substitution, then s(Γ)/s(∆) ∈ S.

Let SIS4 be the (multiple-conclusion) consequence relation over IS4 that in addition con-
tains the disjunction rule p∨ q/p, q. If Γ is a set of multiple-conclusion rules, by SIS4 + Γ we
denote the least consequence relation extending SIS4 containing Γ.

Let (A,2) be an interior Heyting algebra. A multiple-conclusion rule Γ/∆ is valid on
(A,2) (written: (A,2) |= Γ/∆) if for every valuation v on A, from v(γ) = 1 for every γ ∈ Γ
it follows that v(δ) = 1 for some δ ∈ ∆. If K is a class of interior Heyting algebras, then we
write K |= Γ/∆ if (A,2) |= Γ/∆ for each (A,2) ∈ K.

An interior Heyting algebra (A,2) is called well-connected if the underlying Heyting al-
gebra A is well-connected (that is, a ∨ b = 1 implies a = 1 or b = 1 for all a, b ∈ A). It is
easy to see that an interior Heyting algebra (A,2) validates the disjunction rule p ∨ q/p, q
iff it is well-connected.

Dually well-connected interior Heyting algebras correspond to rooted St-frames, where an
St-frame (F,G) is rooted provided F is a rooted Esakia frame (note that in that case G is
also rooted).

Every multiple-conclusion consequence relation S extending SIS4 is sound and complete
with respect to the class of well-connected interior Heyting algebras validating every rule in S
(resp. with respect to rooted St-frames validating S). For a class K of well-connected interior
Heyting algebras (resp. rooted St-frames), let Con(K) be the set of multiple-conclusion rules
that are valid in K. Then Con(K) is a multiple-conclusion consequence relation extending
SIS4.

Definition 8.5. Let L be a si-logic and S a multiple-conclusion consequence relation ex-
tending SIS4.

(i) We say that L is the intuitionistic fragment of S if for all formulas ϕ ∈ LIPC,

ϕ ∈ L iff /ϕ ∈ S.
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(ii) We say that L is the stable fragment of S if for all formulas ϕ ∈ LIPC,

ϕ ∈ L iff /t(ϕ) ∈ S.

For a multiple-conclusion consequence relation S extending SIS4, we define

ζ1(S) = {ϕ ∈ LIPC | /ϕ ∈ S},
ζ2(S) = {ϕ ∈ LIPC | /t(ϕ) ∈ S}.

Lemma 8.6. Let S be a multiple-conclusion consequence relation extending SIS4.

(i) ζ1(S) is the intuitionistic fragment of S and

ζ1(S) = Log ({F | ∃G : (F,G) is an St-frame and (F,G) |= S}) .

(ii) ζ2(S) is the stable fragment of S and

ζ2(S) = Log ({G | ∃F : (F,G) is an St-frame and (F,G) |= S}) .

Proof. (i). For ϕ ∈ LIPC, we have

ϕ ∈ Log ({F | ∃G : (F,G) is an St-frame and (F,G) |= S})
⇔ F |= ϕ for all (F,G) |= S
⇔ F |= /ϕ for all (F,G) |= S
⇔ (F,G) |= /ϕ for all (F,G) |= S
⇔ /ϕ ∈ S
⇔ ϕ ∈ ζ1(S).

Therefore, ζ1(S) = Log ({F | ∃G : (F,G) is an St-frame and (F,G) |= S}). Thus, ζ1(S) is a
si-logic, and so it is the intuitionistic fragment of S.

(ii). For ϕ ∈ LIPC, we have

ϕ ∈ Log ({G | ∃F : (F,G) is an St-frame and (F,G) |= S})
⇔ G |= ϕ for all (F,G) |= S
⇔ G |= /ϕ for all (F,G) |= S
⇔ (F,G) |= /t(ϕ) for all (F,G) |= S
⇔ /t(ϕ) ∈ S
⇔ ϕ ∈ ζ2(S).

Therefore, ζ2(S) = Log ({G | ∃F : (F,G) is an St-frame and (F,G) |= S}). Thus, ζ2(S) is a
si-logic, and so it is the stable fragment of S. �

Conversely, for a si-logic L, define:

η1(L) =SIS4 + {/ϕ | ϕ ∈ L},
η2(L) =SIS4 + {/t(ϕ) | ϕ ∈ L}.

Lemma 8.7. For every si-logic L, we have:

(i) η1(L) = Con ({(F,G) | F is a rooted L-frame}),
(ii) η2(L) = Con ({(F,G) | G is a rooted L-frame)}.
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Proof. We prove (ii), the proof of (i) is similar. For an St-frame (F,G) we have G |= L
iff (F,G) |= {t(ϕ) | ϕ ∈ L}, which happens iff (F,G) |= {/t(ϕ) | ϕ ∈ L}. Thus, η2(L) =
Con ({(F,G) | G is a rooted L-frame}). �

Lemma 8.8. Let L be a si-logic.

(i) L = ζ1η1(L), and η1(L) is the least multiple-conclusion consequence relation in ζ−11 (L).
(ii) L = ζ2η2(L), and η2(L) is the least multiple-conclusion consequence relation in

ζ2
−1(L).

Proof. (i). Let ϕ ∈ LIPC. Then ϕ ∈ L implies /ϕ ∈ η1(L), which implies ϕ ∈ ζ1η1(L).
Therefore, L ⊆ ζ1η1(L). If ϕ /∈ L, then there is a rooted L-frame F such that F 6|= ϕ. Consider
the St-frame (F,F), where π is the identity map. Then (F,F) 6|= /ϕ, and (F,F) |= η1(L) by
Lemma 8.7(i). Therefore, by Lemma 8.6(i), ϕ 6∈ ζ1η1(L). This shows that L = ζ1η1(L). If
S ∈ ζ−11 (L), then for every ϕ ∈ LIPC, we have ϕ ∈ L iff /ϕ ∈ S. Thus, η1(L) ⊆ S, and hence
η1(L) is the least element of ζ−11 (L).

(ii). Let ϕ ∈ LIPC. Then ϕ ∈ L implies /t(ϕ) ∈ η2(L), which implies ϕ ∈ ζ2η2(L).
Therefore, L ⊆ ζ2η2(L). If ϕ /∈ L, then there is a rooted L-frame F such that F 6|= ϕ. Then
(F,F) 6|= /t(ϕ), and (F,F) is a η2(L)-frame by Lemma 8.7(ii). Thus, by Lemma 8.6(ii),
ϕ 6∈ ζ2η2(L). This shows that L = ζ2η2(L). If S ∈ ζ−12 (L), then for every ϕ ∈ LIPC, we
have ϕ ∈ L iff /t(ϕ) ∈ S. Consequently, η2(L) ⊆ S, and hence η2(L) is the least element of
ζ−12 (L). �

As follows from Lemma 8.8, for a si-logic L, both ζ−11 (L) and ζ−12 (L) have least elements,
but they may not have largest elements. To see this we require the following lemma.

Lemma 8.9. Let (F,G) be an St-frame. Then (F,G) |= /2p↔ p iff π is an isomorphism.

Proof. Let F = (X,≤) and G = (Y,≤). First suppose that π is an isomorphism. Then it is
clear that (F,G) |= 2p ↔ p. Next suppose that π is not an isomorphism. Then there are
x 6≤ y with π(x) ≤ π(y). Let U be a clopen upset of F, with x ∈ U but y 6∈ U . Define a
valuation v on (F,G) with v(p) = U . Then x |=v p but x 6|=v 2p. Thus, (F,G) 6|= 2p↔ p. �

For ψ ∈ LIS4, let ψ− be the formula obtained from ψ by deleting all occurrences of
2. Similarly to Lemma 6.15, we can show that for every multiple-conclusion consequence
relation S extending SIS4, if /2p↔ p ∈ S, then /ψ ∈ S iff /ψ− ∈ S. From this we can infer,
as in Lemma 6.16, that η1(L) + /2p ↔ p is maximal in both ζ−11 (L) and ζ−12 (L). On the
other hand, neither of ζ−11 (L) and ζ−12 (L) has to have a largest element, as the next example
shows.

Example 8.10. Let γ abbreviate (p → q) ∨ (q → p) and let S = η1(BD2) + /t(γ). By
Lemma 8.4, an St-frame (F,G) is an S-frame iff F is a BD2-frame and G is an LC-frame.

(i) We show that ζ1(S) = BD2. By Lemma 8.6(i), BD2 ⊆ ζ1(S). Conversely, suppose
ϕ 6∈ BD2. Then there is a finite rooted BD2-frame F refuting ϕ. Let n = |F| and let
G be the n-chain. As we saw in the proof of Proposition 7.7(i), G is a stable image
of F. Therefore, (F,G) is an S-frame refuting ϕ. Thus, ζ1(S) = BD2. On the other
hand, S 6⊆ η1(BD2) + /2p ↔ p because ( , ) validates η1(BD2) + /2p ↔ p but

refutes S. Consequently, ζ−11 (BD2) does not have a largest element.
(ii) We show that ζ2(S) = LC. By Lemma 8.6(ii), LC ⊆ ζ2(S). Conversely, suppose

ϕ 6∈ LC. Then there is a finite chain G refuting ϕ. Let n = |G|. As follows from
the proof of Proposition 7.7(i), G is a stable image of the (n− 1)-fork F. Therefore,
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(F,G) is an S-frame and (F,G) 6|= t(ϕ). Thus, ϕ 6∈ ζ2(S). On the other hand,

S 6⊆ η1(LC) + 2p ↔ p because ( , ) satisfies η1(LC) + /2p ↔ p but refutes S.

Consequently, ζ−12 (LC) does not have a largest element.

We will use the above correspondence between si-logics and multiple-conclusion conse-
quence relations extending SIS4 to provide another characterization of stable logics.

Theorem 8.11. For a si-logic L, the following are equivalent.

(i) L is a stable logic.
(ii) η2(L) ⊆ η1(L).

(iii) η2(L) + {/ϕ | ϕ ∈ L} = η1(L).
(iv) ζ2η1(L) = L.
(v) For every ϕ ∈ LIPC, from /ϕ ∈ η1(L) it follows that /t(ϕ) ∈ η1(L).

Proof. (i)⇒(ii). Suppose that (F,G) |= η1(L). By Lemma 8.7(i), F |= L. Since L is a stable
logic, G |= L. Therefore, by Lemma 8.7(ii), (F,G) |= η2(L). Thus, η2(L) ⊆ η1(L).

(ii)⇒(iii). This is obvious.
(iii)⇒(iv). By Lemmas 8.8(ii) and 8.6(ii), L = ζ2η2(L) = Log({G | (F,G) |= η2(L)}) and

ζ2η1(L) = Log({G | (F,G) |= η1(L)}). Therefore, it is sufficient to show that {G | (F,G) |=
η2(L)} = {G | (F,G) |= η1(L)}. The inclusion ⊇ is immediate from (iii). For the reverse
inclusion, suppose that (F,G) |= η2(L). By Lemma 8.7(ii), G |= L, so (G,G) |= η1(L) by
Lemma 8.7(i). Thus, G ∈ {G | (F,G) |= η1(L)}.

(iv)⇒(v). Suppose that there is ϕ ∈ LIPC such that /ϕ ∈ η1(L) but /t(ϕ) 6∈ η1(L). Then
there is an St-frame (F,G) with (F,G) |= η1(L) and (F,G) 6|= t(ϕ). By Lemma 8.6(ii),
(F,G) |= η1(L) implies G |= ζ2η1(L) = L. Also, (F,G) 6|= t(ϕ) implies G 6|= ϕ. Therefore,
ϕ 6∈ L, contradicting /ϕ ∈ η1(L).

(v)⇒(i). Suppose that F is a rooted L-frame and G is a stable image of F. Then (F,G) is
an St-frame, and by Lemma 8.7(i), (F,G) |= η1(L). By (v), (F,G) |= t(ϕ) for each ϕ ∈ LIPC

such that /ϕ ∈ η1(L). Therefore, (F,G) |= t(ϕ) for each ϕ ∈ L. Thus, G |= L, and we
conclude that L is a stable logic. �

Theorem 8.12. Let L be a si-logic. Then Stab↓(L) = ζ2η1(L).

Proof. By Lemma 8.6(ii),

ζ2η1(L) = Log ({G | ∃F : (F,G) is an St-frame and F |= L}) .

Let
K = {G | ∃F : (F,G) is an St-frame and F |= L},
K ′ = {G | G is a stable image of a rooted L-frame F}.

By Proposition 7.3(i), Stab↓(L) = Log(K ′). Clearly K ⊆ K ′, so Stab↓(L) = Log(K ′) ⊆
Log(K) = ζ2η1(L). Suppose that ϕ 6∈ Stab↓(L). Then there is G ∈ K ′ refuting ϕ. Therefore,
there is an L-frame F such that G is a stable image of F. Applying [6, Lem. 3.6] yields a
finite stable image G′ of G refuting ϕ. Since G′ is finite, (F,G′) is an St-frame (because the
topological condition of Definition 8.3 trivializes), so G′ ∈ K. Thus, ϕ 6∈ ζ2η1(L). �

Remark 8.13.
(i) Let L be a si-logic and ϕ ∈ LIPC. By Theorem 8.12, ϕ ∈ Stab↓(L) iff t(ϕ) ∈ SIS4+{/ϕ |

ϕ ∈ L}. In particular, if SIS4 + {/ϕ | ϕ ∈ L} is decidable, then so is Stab↓(L).
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(ii) In contrast to Theorem 8.12, if L is consistent, then ζ1η2(L) = IPC. Indeed, suppose
F is a nonempty rooted Esakia frame. Let G be the one-point frame. Then (F,G)
is an St-frame. Since L is consistent, G is an L-frame, so (F,G) |= η2(L) by Lemma
8.7(ii), and hence F |= ζ1η2(L) by Lemma 8.6(i). Thus, ζ1η2(L) = IPC.

Remark 8.14. We recall [9] that a stable map f : F→ G between Esakia frames is cofinal
stable provided max ↑f(x) = f (max ↑x), where maxU is the set of maximal points of U . A
si-logic L is cofinal stable provided its rooted frames are closed under cofinal stable images
(that is, if F is a rooted L-frame, then so is every cofinal stable image of F). It follows
from [9] that cofinal stable images of an Esakia frame F correspond to pseudocomplemented
sublattices (that is, bounded sublattices preserving ¬) of the dual Heyting algebra A of
F. Since being a pseudocomplemented sublattice is expressed by adding 2¬2p ↔ ¬2p to
SIS4, the correspondence between stable logics and multiple-conclusion consequence relations
extending SIS4 discussed in this section extends to the correspondence between cofinal stable
logics and multiple-conclusion consequence relations extending SIS4 + /2¬2p↔ ¬2p.

9. Conclusions

In this paper we aimed to highlight and strenghten the parallels between the classes of
subframe and stable si-logics. The most notable known parallels between the two classes can
be summarized as follows. For a subframe si-logic L the class of its Esakia frames is closed
under (not necessarily generated) subframes, while a stable si-logic has the property that
the class of its rooted Esakia frames is closed under stable (not necessarily p-morphic) im-
ages. Algebraically subframes and stable images correspond to nuclei and interior operators
on Heyting algebras, respectively. Subframe logics admit an axiomatization via subframe
formulas, whereas stable logics via stable formulas.

To this we add a characterization of the upward subframization via Zakharyaschev’s canon-
ical formulas, and a characterization of upward stabilization via stable canonical formulas.
We also characterize subframe logics and subframizations via embedding si-logics into the
extensions of the propositional lax logic PLL, and we characterize stable logics and stabiliza-
tions via embedding si-logics into the extensions of the intuitionistic S4.

For an overview and precise references to the above correspondences we refer the reader
to Table 1 in the introduction of the paper. Whereas there are many parallels between the
classes of subframe logics and stable logics, we once more emphasize that there are also
subtle differences in the behavior of the classes. These differences are mostly due to the
fact that subframe logics have the property that the class of all their frames is closed under
subframes, whereas for stable logics, only the rooted ones are closed under stable images.
Accordingly, Table 1 should be read with appropriate care.
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[2] A. Baltag, N. Bezhanishvili, J. Ilin, and A. Özgün. Logic, rationality, and interaction - 6th international
workshop, LORI 2017, sapporo, japan, september 11-14, 2017, proceedings. In A. Baltag, J. Selig-
man, and T. Yamada, editors, Logic, Rationality, and Interaction - 6th International Workshop, LORI
2017, Sapporo, Japan, September 11-14, 2017, Proceedings, volume 10455 of Lecture Notes in Computer
Science, pages 181–194. Springer, 2017.

[3] J. van Benthem. Exploring logical dynamics. Studies in Logic, Language and Information. CSLI Publi-
cations, Stanford, CA; FoLLI: European Association for Logic, Language and Information, Amsterdam,
1996.

[4] G. Bezhanishvili. Varieties of monadic Heyting algebras. II. Duality theory. Studia Logica, 62(1):21–48,
1999.

[5] G. Bezhanishvili and N. Bezhanishvili. An algebraic approach to canonical formulas: Intuitionistic case.
Review of Symbolic Logic, 2(3):517–549, 2009.

[6] G. Bezhanishvili and N. Bezhanishvili. Locally finite reducts of Heyting algebras and canonical formulas.
Notre Dame J. Form. Log., 58(1):21–45, 2017.

[7] G. Bezhanishvili, N. Bezhanishvili, and D. de Jongh. The Kuznetsov-Gerčiu and Rieger-Nishimura
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