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ABSTRACT. With each superintuitionistic logic (si-logic for sort), we associate its downward
and upward subframizations, and characterize them by means of Zakharyaschev’s canonical
formulas, as well as by embedding si-logics into the extensions of the propositional lax logic
PLL. In an analogous fashion, with each si-logic, we associate its downward and upward
stabilizations, and characterize them by means of stable canonical formulas, as well as by
embedding si-logics into extensions of the intuitionistic S4.

1. INTRODUCTION

Subframe logics form a well-behaved class of normal uni-modal logics (see, e.g., [19, 30, 31,
14]). They are characterized by a class of descriptive frames closed under subframes, which
algebraically correspond to relativizations; all transitive subframe logics have the finite model
property (fmp for short), and a transitive logic is a subframe logic iff it is axiomatized by
subframe formulas (see, e.g., [31], [14, Sec. 11.3]).

Subframe logics form a complete sublattice of the lattice of all normal modal logics. There-
fore, for each modal logic L, there is a greatest subframe logic contained in L, and a least
subframe logic containing L, called the downward and upward subframizations of L. They
were studied by Wolter [30, 31] who characterized the downward and upward subframizations
in terms of relativizations.

Superintuitionistic logics (si-logics for short) are extensions of intuitionistic propositional
calculus IPC. Subframe si-logics have similar properties to transitive subframe logics. They
were studied by Zakharyaschev [33] who proved that they are exactly the si-logics axioma-
tized by (A, —)-formulas.

Another well-behaved class of logics is that of stable logics. Stable si-logics were intro-
duced in [6] and stable modal logics in [8]. Stable logics parallel subframe logics in many
ways. While subframe logics are characterized by a class of descriptive frames closed under
subframes, stable logics are characterized by a class of rooted descriptive frames closed under
relation-preserving images. Transitive subframe logics are those modal logics for which the
fmp can be proved via the selective filtration method, while stable logics are those modal
logics for which the fmp can be proved via the standard filtration method. The same parallel
holds in the intuitionistic setting.

From the point of view of epistemic logic, subframe logics are exactly the logics admitting
epistemic updates (cf. [3, Ch. 2], [15, Sec. 7.4-7.5]), while stable logics are the ones admitting
epistemic abstraction [2].
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From the algebraic perspective, subframe si-logics are characterized by a class of Heyting
algebras closed under (A, —)-subalgebras, while stable si-logics are characterized by a class
of Heyting algebras closed under (A, V, 0, 1)-subalgebras. Subframe si-logics are axiomatized
by subframe formulas, which are obtained from Zakharyaschev’s canonical formulas by delet-
ing the parameter of closed domains. Similarly, stable si-logics are axiomatized by stable
formulas, which are obtained from stable canonical formulas of [6] by deleting the parameter
of closed domains. Both classes of subframe and stable si-logics have the cardinality that of
the continuum [14, 6].

In this paper we observe further analogies between the classes of subframe and stable
si-logics, which come from moving to the realm of intuitionistic modal logic. We show that
subframe si-logics are related to the propositional lax logic PLL [17] and stable si-logics to
IS4, the intuitionistic S4 [27].

As was shown by Goldblatt [21], PLL provides a link between Grothendieck topology
and geometric modality. This in turn gives rise to nuclei on Heyting algebras, which yield
algebraic semantics for PLL. By [10], nuclei on a Heyting algebra A correspond to subframes
of the frame of prime filters of A.

We can translate IPC into PLL via a version of the Godel-Gentzen translation. This yields
two natural embeddings of si-logics into extensions of PLL. Via these embeddings we obtain
a new characterization of subframe si-logics.

Similarly a version of the Godel-McKinsey-Tarski translation yields embeddings of si-logics
into extensions of 1S4. Since rootedness of a frame is captured by the multiple-conclusion rule
pVq/p,q (cf. [8, Thm. 8.6]), we embed stable si-logics into multiple-conclusion consequence
relations extending IS4 + p V ¢/p,q. We show that there are two natural embeddings of
si-logics into extensions of IS4 + p V ¢/p,q, which yield a new characterization of stable
si-logics.

We also investigate the intuitionistic analogues of the operations of downward and upward
subframizations of Wolter [30, 31]. Since in the intuitionistic setting subframes do not corre-
spond to relativizations, but rather to nuclei, a characterization of subframization requires a
different technique. We give such a characterization for si-logics in terms of Zakharyaschev’s
canonical formulas. We also characterize the downward subframization via the embeddings
into PLL. Analogously, we give a characterization of stabilization for si-logics in terms of
stable canonical formulas, and characterize the downward stabilization via the embeddings
into IS4 +p V q/p, q.

In Table 1 we summarize the parallels between subframe and stable si-logics. The table
aims to serve as an orientation to the reader. Whereas the first three rows contain known
results, the last two rows contain the results obtained in this paper.

The paper is organized as follows. In Section 2 we recall the algebraic and relational
semantics of si-logics, and in Section 3 we recall known facts about subframe and stable
si-logics, as well as canonical formulas and stable canonical formulas for si-logics. Section 4
introduces the notion of subframization for si-logics and discusses the connection to Wolter’s
describable operations. We also compute subframizations of many well-known si-logics. In
Section 5 we recall the propositional lax logic PLL and review its algebraic and relational
semantics. In Section 6 we define two embeddings of si-logics into the extensions of PLL
and discuss their properties. Using these embeddings we obtain new characterizations of
subframe si-logics. Section 7 parallels Section 4 for stable si-logics. In Section 8 we define
two embeddings of si-logics into the extensions of intuitionistic S4 and characterize stable
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Subframe logics

Stable logics

in terms of

(Theorem 3.3)

A generating class subframes stable images

is persistent under (Theorem 3.2) (Theorem 3.7)
Corresponding nucleus interior operator

Heyting operator (Section 5) (Definition 8.2 and discussion thereafter)
Axiomatization subframe formulas stable formulas

(Theorem 3.9)

Characterization via
Wolter’s describable
operations

Zakharyaschev’s
canonical formulas
(Theorem 4.4, Remark 4.6)

stable canonical formulas
(Theorem 7.4, Remark 7.6)

Characterized
by translations into

PLL via
nucleic Godel-Gentzen
(Theorem 6.18)

IS4 via
Godel-McKinsey-Tarski
( Theorem 8.11)

TABLE 1. Parallels between subframe and stable si-logics

si-logics via these embeddings. Finally, in Section 9 we summarize the main results of the
paper.

2. SUPERINTUITIONISTIC LOGICS

In this preliminary section we recall algebraic and relational semantics of IPC. We use [28]
and [14] as our basic references.

2.1. Algebraic semantics. Algebraic semantics of IPC is given by Heyting algebras. A
Heyting algebra is a bounded distributive lattice A with an additional binary operation —,
called Heyting implication, that is residual to A; that is, for all a,b,z € A, we have:

r<a—=biff xANa<b.

A wvaluation v on a Heyting algebra A assigns to propositional letters elements of A, and
evaluates the logical connectives A, V, —, = as the corresponding operations of A. Then for a
formula ¢, we have v(p) € A, and ¢ is true in A under v if v(p) = 1. We say that ¢ is valid
in A, and write A = ¢, provided ¢ is true in A under every valuation. A set of formulas I'
is walid in A, written A |=I', provided each ¢ € I' is valid in A.

For a class K of Heyting algebras, ¢ is valid in K, written K |= ¢, provided ¢ is valid in
each A € K; and a set of formulas I' is valid in K, written K = I', provided K [ ¢ for each
pel.

For each si-logic L, let Alg(L) = {A | A |= L} be the class of algebraic models of L. Then
Alg(L) is a variety; that is, it is closed under homomorphic images, subalgebras, and direct
products. By the standard Lindenbaum-Tarski construction, each si-logic L is complete with
respect to Alg(L). Conversely, each variety K of Heyting algebras gives rise to the si-logic
Log(K) :=={¢ | K = ¢}, and we have Log(Alg(L)) = L and Alg(Log(K)) = K (see, e.g.,
[14, Sec. 7.6]).

2.2. Relational semantics. Relational semantics of IPC is given by partial orders (X, <),
called (intuitionistic) Kripke frames. Let § = (X, <) be an intuitionistic Kripke frame. For
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reXandY C X, let

tr={y|z<y}and Y = J{ty|y eV}

We define |x and |Y dually. A subset Y C X is called an upward closed set or an upset if
y € Y implies Ty C Y. Downward closed sets or downsets are defined dually.

Let Up(F) be the set of upsets of §. Then Up(F) is a Heyting algebra with respect to the
operations N, U, —, = where

U—-V:={z|1tenUCV}and -U :=U — 2.

A waluation v on § is a valuation on the Heyting algebra Up(§). For z € X and a formula
@, we write §, x =, ¢ provided x € v(y). We then have:

SNy iff § 2, pand §,7 =, ¥
SxFepVy iff o, por§,okE, 9
S x =y o = 0 iff §,y |, ¢ implies §,y =, ¢ for every y > x.

F1GURE 1. Evaluating formulas

With every Heyting algebra A we can associate the intuitionistic Kripke frame g4 of
prime filters of A ordered by set-theoretic inclusion. Then A embeds in Up(F4) via the map
a:A— Up(Fa) given by

ala) ={z|a € z}.
Therefore, a[A] is a subalgebra of Up(F4). If we define a topology on §4 by letting
B :={aa)\ a(b) | a,b e A}

be a basis for the topology, then §4 becomes a Stone space (zero-dimensional compact
Hausdorff space) such that 1 is closed for each x and U is clopen for each clopen U. Such
spaces are known as Esakia spaces or Esakia frames.

The image «[A] is then exactly the Heyting subalgebra of Up(§4) consisting of clopen
upsets of §4. This yields the Esakia representation for Heyting algebras:

Theorem 2.1. [16] Fach Heyting algebra is isomorphic to the Heyting algebra of clopen
upsets of an Esakia frame.

In fact, Esakia duality establishes that the category of Heyting algebras and Heyting
algebra homomorphisms is dually equivalent to the category of Esakia frames and FEsakia
morphisms (that is, continuous order preserving maps f : X — Y such that 1f(z) = f(Tz)
for each x € X).

Remark 2.2. The category of Esakia frames is isomorphic to the category of intuitionistic
descriptive frames. We recall (see, e.g., [14, Ch. 8]) that a general (intuitionistic) frame is
a tuple § = (X, <,P), where (X, <) is an intuitionistic Kripke frame and P is a Heyting
subalgebra of the upsets of (X, <); a general frame § is descriptive if it is tight (xr £ y
implies there is U € P with z € U and y ¢ U) and compact (if (,.,(U; \ Vi) = @ for
U;,V; € P, then this holds already for some finite subset J of ). The isomorphism is
obtained as follows. For a descriptive frame § = (X, <,P), let 7 be the topology generated
by {U\V | U,V € P}. Then (X, <,7) is an Esakia frame. Conversely, for an Esakia frame
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§ = (X, <,7), let P be the Heyting subalgebra of Up(§) consisting of clopen upsets of §.
Then (X, <,P) is a descriptive frame, and these correspondences are one-to-one. Moreover,
f X — Y is an Esakia morphism iff it is a descriptive frame morphism, thus yielding the
desired isomorphism between the categories of descriptive frames and Esakia frames.

Let A be a Heyting algebra. Then A is subdirectly irreducible (s.i. for short) if A has a
second largest element; that is, there is ¢ ## 1 € A such that b < ¢ for each b # 1. Moreover,
A is well-connected if a Vb = 1 implies a = 1 or b = 1 for all a,b € A. It is easy to see
that every s.i. Heyting algebra is well-connected, and that the two notions coincide for finite
Heyting algebras. An Esakia frame § = (X, <) is rooted if there is z € X such that X = fz,
and it is strongly rooted if it is rooted and the root x is an isolated point. By Esakia duality,
A is well-connected iff §4 is rooted, and A is s.i. iff §4 is strongly rooted. Consequently, if
A is finite, then A is s.i. iff §4 is rooted.

By Esakia duality, homomorphic images of A correspond to generated subframes of the
dual Esakia frame § 4, where a generated subframe is a closed upset of an Esakia frame. By a
point-generated subframe of an Esakia frame § we mean a rooted generated subframe. By the
above, well-connected homomorphic images of A correspond to point-generated subframes
of 3' A-

Since every si-logic L is complete with respect to the s.i. Heyting algebras that validate L,
from the above we deduce that L is complete with respect to the rooted Esakia frames that
validate L.

3. SUBFRAME LOGICS AND STABLE LOGICS

In this section we summarize known facts about subframe and stable si-logics. We also
recall the definition of Zakharyaschev’s canonical formulas for IPC and stable canonical
formulas of [6], and discuss their connection.

3.1. Subframes, subframe logics, and canonical formulas. Let § = (X, <) and & =
(X', <') be Esakia frames. We recall [33, 10] that & is a subframe of § if X' is a closed
subspace of X, <’ is the restriction of <, and for each clopen U of X’, the set J[U is clopen
in X .

Definition 3.1. A si-logic L is called a subframe logic if its class of Esakia frames is closed
under subframes; that is, if § is an L-frame, then so is every subframe of §.

In the following theorem, we summarize the properties of subframe logics that we will
often use throughout the paper. For a proof of the theorem, see for example [14, Section
11.3]. We refer to formulas using only the connectives A and — as (A, —)-formulas.

Theorem 3.2 (Zakharyaschev). For a si-logic L, the following are equivalent:
(i) L is a subframe logic.
(ii) L is characterized by a class of Esakia frames closed under subframes.
(iii) L is axiomatizable by (A, —)-formulas.
Moreover, all subframe logics have the fmp, and they form a complete sublattice of the lattice
of all si-logics.

Next we recall the definition of canonical formulas and subframe formulas for IPC. The
key property of canonical formulas is that they axiomatize all si-logics in a uniform way.
This has the advantage that many properties of logics such as the fmp or decidability can be
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investigated by considering canonical formulas only. We refer the reader to [14] for motivation
and many applications of canonical formulas.

Let $ = (Y, <) be a finite rooted frame and ® a family of upsets of $, called closed
domains. For each x € Y we introduce a new propositional variable p, and define the
canonical formula associated with (£,D) as

8(5,9) = NI(Ap-—=p) = 2] A NN P = 02) =\ 2] = 1,
<y y<Lz de® z¢d Lz yed

where z,y, 2z € Y and r is the root of .

Let § = (X, <) be an Esakia frame. We say that a p-morphism f from a subframe
® = (5, <) of § onto § satisfies the closed domain condition (CDC) for ® provided

r € 1S and f(Tz) € D imply z € S.
The following is an important property of canonical formulas:
. S~ B($H,D) iff there is a p-morphism from a subframe of § onto

(1) satisfying CDC for ©.

If ® = &, then 5(9,D) is denoted by 5($) and is called the subframe formula of $). From

the above we obtain:
(2) § EB($H) iff there is a p-morphism from a subframe of §F onto $.

Theorem 3.3 (Zakharyaschev).
(i) Ewvery si-logic is axiomatizable by canonical formulas.
(ii) A si-logic is a subframe logic iff it is aziomatizable by subframe formulas.

Remark 3.4. The above presentation of canonical formulas follows Jefabek’s account [23,
Sec. 3], which is slightly different from Zakharyaschev’s approach. Namely, our closed do-
mains are upsets rather than antichains. Also, closed domains may be empty, which allows
us to work with subframes rather than cofinal subframes (see [23, Rem. 3.7]).

An algebraic formulation of Zakharyaschev’s canonical formulas was provided in [5] (some
of the ideas can be traced back to [29]). We recall some details since it will enable us to
see most easily the analogy with stable canonical formulas. In order to match Jetabek’s
account, we slightly alter the approach of [5], so that our presentation of the canonical
formula (B, D) combines the formulas 5(B, D, L) and 5(B, D) of [5].

Let B be a finite s.i. Heyting algebra with the second largest element s, let * ¢ B?, and
let D be a subset of B?U {x}. For each a € B, we introduce a new variable p,, set

I'=A{pars <> Da Ay | a,b € B}U
{Pasb <> Pa = pp | @,b € B} U
{Pavb <> pa Vi | (a,b) € D} U
{po < 0| x € D},

and define the canonical formula of (B, D) as

8(B,D) = AT — p,.

It follows from [5] that for any Heyting algebra A, we have: A = (B, D) iff there is
a homomorphic image C' of A and a (A, —)-embedding h : B — C such that h(a V b) =
h(a) V h(b) for all (a,b) € D and h(0) =0 if x € D.
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Roughly speaking, B(B, D) describes fully the (A, —)-structure of B, and the (V,0)-
structure only partially on the declared subset D.

Although the formulas (B, D) and 5($,®) look syntactically quite different, they are
equivalent as discussed in [5, Remark 5.6]. In particular, if B is a finite s.i. Heyting algebra
whose dual is § and D C B2 U {x}, then there is a collection D of upsets of $ such that for
any Esakia frame §, we have:

§ = 6(B,D) it §=B(9,9)

Remark 3.5. From the algebraic and frame-theoretic characterization of canonical formulas
discussed above one may get the impression that (A, —)-subalgebras are dual to subframes.
The correspondence is a bit more subtle, as we will explain in Section 5.

3.2. Stable logics and stable canonical formulas. We recall that a map between Esakia
frames is stable if it is continuous and order preserving, and that an Esakia frame & is a
stable image of an Esakia frame § if there is a stable map from § onto &. It is easy to see
that stable images of rooted frames are rooted.

Definition 3.6. A si-logic L is stable if the class of rooted Esakia frames validating L is
closed under stable images; that is, if § is a rooted L-frame, then so is every stable image of

5.

In analogy with subframe logics, stable logics have the following properties (cf. Theo-
rem 3.2):

Theorem 3.7. For a si-logic L, the following are equivalent:

(i) L is stable.
(i) L is characterized by a class of rooted Esakia frames closed under stable images.
(iii) The rooted L-frames are closed under finite stable images.

Moreover, all stable logics have the fmp, and they form a complete sublattice of the lattice of
all si-logics.

Proof. The equivalence of (i) and (ii) is proved in [9, Thm. 5.3]. It is clear that (i) implies
(iii). To see that (iii) implies (i), let § be a rooted L-frame and let & be a stable image of §.
If & is not an L-frame, then & [~ ¢ for some ¢ € L. By [6, Lem. 3.6], there is a finite stable
image $) of & such that $) [~ ¢. Therefore, ) is a finite stable image of §. By (iii), £ is an
L-frame, contradicting § [~ ¢. Thus, & is an L-frame, and hence L is stable.

That all stable logics have the fmp is shown in [6, Thm. 6.8]. We show that they
form a complete sublattice of the lattice of all si-logics. Let {L; | ¢ € I} be a fam-
ily of stable logics. Then the classes of rooted L;-frames are stable. Therefore, so are
the classes (),c;{§ | & is a rooted Li-frame} and J,.,{§ | § is a rooted L;-frame}. The
intersection (,c,{§ | § is a rooted L;-frame} is exactly the class of all rooted (\/,.,L;)-
frames. Since every si-logic is characterized by its rooted frames, \/,.;L; is characterized
by Nic/AS | § is a rooted L;-frame}. Thus, by (ii), \/,c; L; is stable. The logic A, ,L; is
characterized by (J,.,{§ | § is a rooted L;-frame} (see, e.g., [14, Sec. 4]). Therefore, A, L,
is also stable. 0

i€l

Remark 3.8. Subframe logics have the property that all their frames are closed under
subframes. An analogue of this statement is not true for stable logics as only the rooted
frames are required to be closed under stable images (compare Theorems 3.2 and 3.7). In
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fact, IPC is the only stable logic such that all its frames are closed under stable images (see
[9, Remark 5.6]). This discrepancy between subframe and stable logics will often occur in
this paper.

Stable canonical formulas were introduced in [6] as an alternative to Zakharyaschev’s
canonical formulas. They can most easily be described in algebraic terms. As we pointed out
in Section 3.1, from the algebraic perspective, Zakharyaschev’s canonical formulas encode the
(A, —)-structure of a finite s.i. Heyting algebra B and encode the structure of the “missing”
operations V and 0 only partially on the designated set D C B? U {*}. In contrast, stable
canonical formulas encode the (A, V,0,1)-structure of a finite s.i. Heyting algebra B, and
the structure of the missing operation — partially on a designated subset D C B2,

Given a finite s.i. Heyting algebra B and D C B2, we introduce a new variable p, for each
a € B, set

I'={po < L}U{p & T}U
{Part <> Pa Apy | a,b € B}U
{Pavb <> Pa Vi | a,b € B}U
{Pa—ss > Pa = po | (a,0) € D},
A= {p, — | a,bec B with a £ b},
and define the stable canonical formula of (B, D) as

¥(B,D)= \T = \/ A

By [6, Thm. 3.4], for any Heyting algebra A, we have: A [~ v(B, D) iff there is a well-
connected homomorphic image C' of A and a bounded lattice embedding h : B — C' such
that h(a — b) = h(a) — h(b) for all (a,b) € D.

This can easily be translated into frame-theoretic terms. Let & and $ be Esakia frames,
with $ finite, and let ® be a set of subsets of ). We say that a stable onto map f: ® —
satisfies the stable closed domain condition (SCDC) for ® provided

Tflx)Nd#@ = f(tz]Nd#  for alld € D.

We write v($,D) for the canonical formula (B, D), where B is the dual Heyting algebra
of Hand D ={(U, V) |U\V € D} for upsets U,V of . Then for every Esakia frame § we

have:
5 S Ev(9H,9) iff there are a point-generated subframe & of § and a
) stable onto map f : & — § satisfying SCDC for 2.
Stable canonical formulas of the form (), @) are called stable formulas and are denoted
by v(£)). As follows from the above,

n S~ v($) iff there are a point-generated subframe & of § and a

stable onto map f: & — .
An analogy between stable canonical formulas and Zakharyaschev’s canonical formulas,
as well as between stable formulas and subframe formulas can be seen from the following
theorem (cf. Theorem 3.3).

Theorem 3.9 ([6]).
(i) Every si-logic is axiomatizable by stable canonical formulas.



SUBFRAMIZATION AND STABILIZATION FOR SUPERINTUITIONISTIC LOGICS 9

(i1) A si-logic is stable iff it is aziomatizable by stable formulas.

Remark 3.10. The definition of stable logics (Definition 3.6) is slightly different from [6,
Def. 6.6], but it follows from [9, Thm. 5.3] that the two are equivalent. Similarly, in the
refutation criterion [6, Thm. 3.4] for stable canonical formulas we replaced subdirectly ir-
reducibles algebras by well-connected ones. That this is legitimate can be easily verified.
The reason for this deviation is that we find it more natural to work with rooted frames as
opposed to strongly rooted ones.

4. SUBFRAMIZATION

Let Asups be the class of subframe logics. Since Agyps is a complete sublattice of the lattice
of all si-logics, for each si-logic L, there is a greatest subframe logic contained in L and a
least subframe logic containing L (cf. [30, 31]).

Definition 4.1. For a si-logic L, define the downward subframization of L as
Subfy(L) == \/{L' € Asupr | L' C L}

and the upward subframization of L as
Subfy(L) := A{L' € Asups | L C L'}

We summarize some rather obvious facts about the downward and upward subframizations
that we will use throughout the paper.

Lemma 4.2.
(i) Subf is an interior operator and Subfy is a closure operator on the lattice of si-logics.
(ii) Suby(L) = IPC+ {¢ | ¢ is a (A, —)-formula and L - ¢}.
(iii) Subf (L) = IPC iff for every (A, —)-formula ¢, L+ ¢ iff IPCF .

Proof. (i). Straightforward from the definition.

(ii). By Theorem 3.2, every subframe logic is axiomatizable by (A, —)-formulas. Therefore,
every subframe logic contained in L is axiomatizable by a set of (A, —)-formulas that are
provable in L. Thus, the set {¢ | ¢ is a (A, —)-formula and L F ¢} axiomatizes the largest
subframe logic contained in L.

(iii). Apply (ii). O

We next give a semantic characterization of the downward and upward subframizations of
a si-logic L. Recall that if K is a class of frames, then Log(K) = {¢ | K |= ¢} is the si-logic
of K.

Proposition 4.3. Let L be a si-logic such that L = Log(K) for some class K of Esakia
frames. Then
(i) Subf|(L) =Log ({® | & is a subframe of some § € K}).
(ii) Subfy(L) = Log ({& | & =L for all subframes & of §})
= Log ({§ | § is finite and & [= L for all subframes & of F}).

Proof. (i). Let K’ = {® | & is a subframe of some § € K}. Then K C K’, so Log(K') C
Log(K) = L. Since K’ is closed under subframes, Log(K') is a subframe logic by Theorem
3.2. If L’ is a subframe logic contained in L, then K |= L', so K’ =L’ as L’ is a subframe
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logic. Therefore, L” C Log(K’). Thus, Log(K”) is the largest subframe logic contained in L,
and hence Subf (L) = Log(K").

(ii). Let K’ = {§ | ® =L for all subframes & of §} and K" = {F | § is finite and & =
L for all subframes & of §} . We show that Subf(L) = Log(K’) = Log (K"). It is clear
that K" C K', so Log(K') C Log(K"). It is obvious that both K’ and K” are closed
under subframes, so both Log(K”), Log(K") are subframe logics by Theorem 3.2. Moreover,
K' K" = L imply L C Log(K’), Log(K"). Therefore, Subf+(L) C Log(K"), Log(K"). It is left
to prove that Log(K") C Subf;(L).

Let L” be a subframe logic containing L. If § is a finite frame such that § = L', then since
L’ is a subframe logic, & = L’ for every subframe & of §. But then & =L as L C L', so
§ € K". Therefore, every finite L’-frame is contained in K”. Since L’ is a subframe logic,
it is the logic of its finite frames, so we have Log(K”) C L’. Thus, Log(K") is the smallest
subframe logic containing L, and hence Subf(L) = Log(K"). O

We use Proposition 4.3 and Zakharyaschev’s canonical formulas (see Section 3.1) to give
a syntactic characterization of the downward and upward subframizations of a si-logic L.

Theorem 4.4. Let L =IPC+ {3($,,9;) | i € I} be a si-logic.

(i) Subfy(L) = IPC+{3($) [L+ B(H)}.
(ii) Subfy(L) = IPC + {B(%:) | i € I)}.

Proof. (i). By Theorem 3.3, every subframe logic is axiomatizable by subframe formulas.
Therefore, every subframe logic contained in L is axiomatizable by a set of subframe formulas
that are provable in L. Thus, IPC+{g($)) | L+ 5(9)} is the largest subframe logic contained
in L.

(ii). Let M = IPC+ {B(%;) | i € I}. If § is an M-frame, then § = 3($;) for all ¢ € I.
Therefore, by (1) and (2), § = 8($:,9;) for all i € I. Thus, § is an L-frame, and so L C M.
Since M is axiomatized by subframe formulas, M is a subframe logic by Theorem 3.3. It
remains to show that M is the least subframe logic containing L. If not, then there is a
subframe logic L’ O L and an L'-frame § such that § £ M. Therefore, § = 5($);) for some
i € 1. By (2), $; is a p-morphic image of a subframe & of §. Since L’ is a subframe logic, &
is an L'-frame. Thus, $); is also an L'-frame. But $); = 3($;,D;) by (1) because the identity
map is a p-morphism from $); onto itself that satisfies CDC for any set of closed domains.
Consequently, $); is not an L-frame, which is a contradiction since L’ D L. O

Remark 4.5.

(i) It follows from Theorem 4.4(ii) that if L is a si-logic axiomatized by a set of formulas
', then the upward subframization Subfy(L) of L can be calculated effectively from
I' as follows: First use Zakharyaschev’s theorem to transform I' into an equivalent
set of canonical formulas; then delete the additional parameters ®; in the resulting
canonical formulas; and finally apply Theorem 4.4(ii).

(ii) On the other hand, Theorem 4.4(i) does not provide an effective axiomatization of
the downward subframization Subf| (L) of L. We will come back to this issue at the
end of Section 6.

Remark 4.6. In [30] Wolter studied describable operations on varieties of modal algebras.
This translates to Esakia frames as follows. A map C that associates with each Esakia frame
§ a class C(F) of Esakia frames is describable if there is a map (—)¢ on the set of formulas
of IPC such that for each Esakia frame § and each formula ¢,
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§ e il C(3) = .
As follows from [30, p. 23], if L is the logic of a class K of Esakia frames, then the logic of
C(K) is axiomatized by {¢° | L F ¢}, and the logic of {§ € K | C(F) C K} is axiomatized
by {¢°| LF ¢}
Now let C(F) = {®& | & is a subframe of §F}. Since canonical formulas axiomatize every
si-logic, we restrict our attention to the set of canonical formulas. We show that

(5) § E B8(%H) iff C(3) = B(H,D).

The left to right direction is obvious. For the right to left direction, suppose § (= 5($). Then
there is a subframe & of § which is p-morphically mapped onto . Since $) }£ 5($,D), we
have & [~ 3($,9). Therefore, we found & € C(F) such that & [~ 5($,D).

From (5) we obtain that the map defined by (8($,D))¢ = 5($)) describes the operation C.
Thus, applying Wolter’s result to Proposition 4.3 yields an alternative proof of Theorem 4.4.

We conclude this section by providing the downward and and upward subframizations of
many well-known si-logics. We will utilize known axiomatizations of these logics via canonical
formulas. As in [14, Sec. 9.4], for a finite rooted frame $), we write 5*($)) for the canonical
formula £($), D), where D is the set of all nonempty upsets of £, and we write x($) for the
canonical formula 5($,9), where D is the set of all (including empty) upsets of ). The
formula () is called the frame formula or Jankov-de Jongh formula of $, and S*($)) is
called the negation free frame formula or negation free Jankov-de Jongh formula of .

Following [7], we denote by £ the Rieger-Nishimura ladder (the dual Esakia frame of the
free cyclic Heyting algebra, see Figure 2).

FiGURE 2. The Rieger-Nishimura ladder £

For Esakia frames §i,...,§,, we denote their ordered sum by @, §: [7, Sec. 2.2]. We
consider the following logics:

e The Rieger-Nishimura logic RN, which is the logic of the Rieger-Nishimura ladder
£.

e The Kuznetsov-Gerciu logic KG = (p — q) V(g = r)V((g = 1) = r)V(r — (pVq)),
which is the logic of @, §;, where each §; is a generated subframe of £.

e The Kreisel-Putnam logic KP = IPC+ (-p = qVr) = (-p—q) V (-p —71).

e The Gabbay-de Jongh logics T,,, where T, is the logic of finite trees of branching
<n.
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e The logics BW,, of finite frames of width < n. In particular, BW; is the Godel-
Dummett logic LC =IPC+ (p — q) V (¢ — p) of finite linear frames.

e The logics BTW,, of finite frames of top width < n. In particular, BTW, is the logic
KC of weak excluded middle, which is the logic of finite directed frames.

e Maksimova’s logics ND,, = IPC+ (=p — V.., 7@) = Vicicp, (7P = Gi).

€ DR
BTW, = |PC+B(6,{@})
BW, = IPC+B(6)
T, = |Pc+ﬁﬂ(6)

KG = IPC+B]") + B(U) + B(\})

RN = KG+a )+ x<?> @

12 1/\2
KP = IPC+5( \V {2,{1,2}}) + 5( Q/ {@ {1,2}})
ND, = IPC+ j( \V{@ {1,2}}) + -+ B( '\r{@ {1,....,n}})
TABLE 2. Axiomatizations in terms of canonical formulas (see [7, Thm. 3.13]

and [7, Thm. 4.33] for the axiomatizations of KG and RN, respectively, and see
[14, Table 9.7] for the other cases).

Proposition 4.7.

(i) Subf, ) IPC and Subf(KC) =
ii) Subf;(BTW,,) = IPC and Subf;(BT ) = BW,, for every n > 2.
(iii) Subf, T

(K

(BT
; (T) = IPC and Subfy( n)( BW,, for every n > 2.
iv) Subf,(RN) = KG and Subf,(RN)
) (K
) (N

) = KG + 5(%
v) Subf|(KP) = IPC and Subf+(KP) = BWs.
(vi) Subf (ND,,) = IPC and Subf;(ND,,) = BW, for every n > 2.

Proof. (i). Since KC is axiomatized by B(&*,{@}), it follows from Theorem 4.4(ii) that
Subfy(KC) = IPC+3(%,*) = LC. To calculate the downward subframization of KC, we utilize
Proposition 4.3(i). It is well known that IPC is the logic of all finite frames and that KC is
the logic of all finite directed frames. Moreover, adding a new top to a finite frame § results

in a finite directed frame & containing § as a subframe. Therefore, by Proposition 4.3(i),
Subf | (KC) = IPC.
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(ii). From the axiomatization of BTW,, in Table 1 and Theorem 4.4(ii) it follows that
n+1
——
Subf(BTW,,) = IPC + B(*,*) = BW,,. To see that Subf (BTW,) = IPC observe that
BTW,, C KC and apply (i) and Lemma 4.2(i).
(iii). Tt follows from Table 1 that T, is axiomatized by the negation-free frame formula
n+1 n+1 n+1
——

— —
5%\/) = BN, D), where D is the set of all nonempty upsets of *\_*. Therefore,

+1
—

Subfi(T,) = IPC+ B(%,*) = BW,. To determine the downward subframization, since
T, has the disjunction property [20] and every si-logic with the disjunction property proves
the same disjunction-free formulas as IPC [26, 32], we conclude that T, proves the same
(A, —)-formulas as IPC. Thus, by Lemma 4.2(iii), Subf (T,) = IPC.

(iv). Since KG is a subframe logic contained in RN (see, e.g., [7, Sec. 3]), it follows from
the axiomatization of RN in Table 1 and Theorem 4.4(ii) that the upward subframization of

RN is KG + B(Y) + 5(?) + B(%) Since Y is a subframe of both ? and ki, the latter logic

is equal to KG + ﬁ(y) Therefore, Subf+(RN) = KG + 5(?) To determine the downward

subframization, KG C Subf|(RN) since KG is a subframe logic contained in RN. For the
reverse inclusion, since KG is the logic of its finite rooted frames, by Proposition 4.3(i), it is
sufficient to show that every finite rooted KG-frame is a subframe of the Rieger-Nishimura
ladder £. First note that the subframe of £ obtained by deleting the first £ layers of £ is
isomorphic to £. Using this it is easy to see that every finite generated subframe of £ can
be realized as a subframe of £ at an arbitrary depth, i.e., as a subframe of £ that does not
contain the first k-layers of £ for any k& € N. Therefore, a finite rooted KG-frame @}, i
can be realized as a subframe of £ by embedding §1,...,J, below each other so that the
two subsequent points in £ between the embeddings of §; and §;,1 are skipped.

(v). The axiomatization of KP in Table 1 and Theorem 4.4(ii) yield that Subfy(KP)

is axiomatized by ﬁ('\V) and B(Q/) But '\V is a subframe of @, so Subfy(KP) is
axiomatized by [ (\V), and hence Subf(KP) = BW,. Since KP has the disjunction property,
Subf| (KP) = IPC by the same argument as in (iii).

(vi). Since the 3-fork is a subframe of the n-fork for n > 3, it follows from the axiomati-
zation of ND,, in Table 1 and Theorem 4.4(ii) that Subfy(ND,,) = BW, for n > 2. Since ND,,
has the disjunction property, Subf|(ND,,) = IPC by the same argument as in (iii). O

5. SUBFRAME LOGICS AND LAX LOGICS

In this section we recall the correspondence between subframes and nuclei on Heyting
algebras from [10] that leads to a correspondence between nuclear Heyting algebras and S-
frames. We show how S-frames provide a new semantics for the intuitionistic modal logic
PLL and compare our semantics to those of [21] and [17].

We start by recalling that a nucleus on a Heyting algebra A is a unary function j : A — A
satisfying a < ja, jja < ja, and j(aAb) = jaAjb. It is well known (see, e.g., [10, pg. 88] and
the references therein) that nuclei on A correspond to localizations of A, where a localization
of Ais a triple (L,i,[) such that the Heyting algebra L is a (A, 1)-subalgebra of A and the
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inclusion i : L. — A has a left exact left adjoint [ : A — L; that is, [ is a (A, 1)-homomorphism
that is left adjoint of ¢ (meaning that [(a) < b iff @ <i(b) for all a € A and b € L). This in
particular implies that [ also preserves Heyting implication.

The one-to-one correspondence between nuclei on A and localizations of A is obtained as
follows. Given a nucleus j : A — A, we have that the fixpoints A; := {a € A | a = ja} form a
(A, 1)-subalgebra of A and the inclusion A; < A has j as a left exact left adjoint. Conversely,
given a localization (L,7,1) of A, we have that i o[ is a nucleus on A. Moreover, the two
correspondences are inverse to each other. This is parallel to the one-to-one correspondence
between local operators and subtopoi in an elementary topos [25, pg. 201, A.4.4.8].

The fixpoints A; form a Heyting algebra with respect to the operations a Aj b = a A b,
a—;b=a—b,aV;b=j(aVb),and 0, = jO. The Heyting algebra A; is a (A, —)-subalgebra
of A, but in general A; is not a Heyting subalgebra of A.

As was observed in [10, Sec. 5], subframes of an Esakia frame § correspond to nuclei on
the dual Heyting algebra A of clopen upsets of §. If = (5, <) is a subframe of § = (X, <),
then j given by

(6) JU = X\ [(S\ U)

is a nucleus on A, and every nucleus on A is obtained this way. Moreover, the dual Esakia
frame of A; is isomorphic to &. This motivates the following definition.

Definition 5.1.
(i) A nuclear algebra is a pair (A, j) consisting of a Heyting algebra A and a nucleus j
on A.
(ii) An S-frame is a pair (§, ®) consisting of an Esakia frame § and a subframe & of §.

Remark 5.2.
(i) Nuclear algebras are also called local algebras (see, e.g., [21]).
(ii) In the definition of an S-frame, “S” stands for subframe.

Remark 5.3. The one-to-one correspondence between nuclear Heyting algebras and S-
frames can also be seen via classical arguments from residuation theory. This is spelled
out in [24, Thm. 6.5.5].

Throughout the paper we will use the following notational convention.
Notation 5.4. For an S-frame (§, ®), we always assume that § = (X, <) and & = (5, <).

We next recall the definition of the intuitionistic modal logic PLL and explain how nuclear
Heyting algebras and S-frames serve as adequate semantics for it. Let Lipc be the propo-
sitional language of IPC and let Lp | be obtained by enriching Lipc with an extra modal
operator O.

Definition 5.5. The propositional lax logic (PLL) is the least set of formulas of Lp | con-
taining (the axioms of) IPC, the axioms

O(p = q) = (Op = Og), p — Op, OOp — Op,
and being closed under the rules of substitution, modus ponens, and
© = Y/Op — OY.
We refer to the modality O as the laz modality.
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By interpreting O as the nucleus j, nuclear Heyting algebras provide semantics for PLL.
This semantics is sound and complete since the defining axioms of O match the defining
axioms of nuclei, as was already pointed out by Goldblatt [21].

Proposition 5.6 (Goldblatt). PLL is sound and complete with respect to nuclear Heyting
algebras.

Esakia duality coupled with the one-to-one correspondence between nuclei on Heyting
algebras and subframes of Esakia frames yields a one-to-one correspondence between nuclear
algebras and S-frames. Thus, S-frames provide sound and complete semantics for PLL. In
more detail, if (§,®) is an S-frame, then as in the case of IPC, a valuation v on (F,®)
interprets propositional letters as clopen upsets of § and intuitionistic connectives as the
corresponding operations of the Heyting algebra of clopen upsets of §. In addition, the lax
modality O is interpreted as the nucleus j given by (6).

It is easy to verify that (6) translates into the following semantics on points extending the
clauses of Figure 1. If v is a valuation on (§,®) and x € X, then

(7) rE, Opiff y =, @ for all y € tx N S.

We will use the same notations as in the intuitionistic case; e.g., we write (A,j) | ¢
provided v(p) = 1 for each valuation v on (4, j), and we write (§, ®) = ¢ provided = |=, ¢
for each € X and each valuation v on (§, ®). The multiple usage of = should not lead to
ambiguity since in each case it should be clear from the context what we are referring to.

As an immediate corollary of the above, we obtain:

Corollary 5.7. PLL is sound and complete with respect to S-frames.

The semantics via S-frames and nuclear Heyting algebras is closely related to the frame-
based semantics of PLL developed by Goldblatt [21] and Fairtlough and Mendler [17] (see
also [11]). We explain the precise connections.

We recall that a Goldblatt frame is a tuple § = (X, <, R), where (X, <) is a partially or-
dered set and R is a binary relation on X such that (i) x < yRz implies xRz, (ii) x Ry implies
x <y, and (iii) xRy implies xRz Ry for some z € X. The language of PLL is interpreted
in a Goldblatt frame § by interpreting propositional letters as upsets of §, intuitionistic
connectives as the corresponding operations of the Heyting algebra of upsets of §, and O as
the nucleus jr given by

(8) jrU = X \ R™(X \ U).

Thus, every Goldblatt frame § can be turned into a nuclear Heyting algebra that validates
the same formulas as §. However, not every nuclear Heyting algebra can be obtained in
this way. This constitutes a similar discrepancy as the one between intuitionistic Kripke
frames and Heyting algebras. Due to the one-to-one correspondence between nuclear Heyting
algebras and S-frames, S-frames can be thought of as a “descriptive version” of Goldblatt
frames. As discussed in [10], an S-frame (§, ®) can be turned into a Goldblatt frame by
forgetting the topology on X and defining a relation R on X by zRy iff + < s < y for
some s € S. Using that R[x] = T(Tx N S), we see that jrU = jU for each clopen upset U
of §. The Goldblatt frames obtained in this way satisfy the additional condition that xRy
iff (32 € X)(#Rz and z < z < y) which does not hold in all Goldblatt frames (see [10,
Rem. 24]). Thus, not every Goldblatt frame underlies an S-frame.
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We also recall that an FM-frame (Fairtlough-Mendler frame) is a tuple § = (X, <, <, F)
such that <, < are partial orders on X, z < y implies x < y, and F' is an <-upset of X. The
language of PLL is interpreted in an FM-frame slightly differently than in a Goldblatt frame.
Instead of working with the Heyting algebra of all upsets of §, we work with the Heyting
algebra of the upsets of § containing F'. Therefore, propositional letters are interpreted as
upsets of § containing F', intuitionistic connectives as the corresponding operations in this
relativized Heyting algebra, and O is interpreted as the nucleus j<< given by

9) je<xU={r e X |Vy(r <y=3Fz(y<zand z € U))}.

If (F,®) is an S-frame, then define §y = (X*, <*, <*, F*) as follows. Set X* = X U {m},
where m ¢ X. Let <* extend < so that m is the maximum of X*. Set F* = {m} and
define z <*yiff x =y or z € X\ S and y = m. It is straightforward to verify that §p is
an FM-frame. Moreover, if for a clopen upset U of §, we let U* = U U {m}, then U* is an
upset of Fg and j<<(U*) = (JU)*.

Clearly not every FM-frame is of the form § for some S-frame (§, ®). For example, if in
the FM-frame (X, <, <, F') the upset F consists of more than one point, then (X, <, <, F)
is not of the form §y. However, the FM-frames §j are sufficient for representing nuclear
Heyting algebras.

6. SUPERINTUITIONISTIC LOGICS AND LAX LOGICS

In this section we define a translation 7 from Ljp¢ into Lp . which gives rise to two embed-
dings from the lattice of si-logics into the lattice of extensions of PLL. We will study some
elementary properties of these embeddings and show that they provide us with new charac-
terizations of subframe logics. As we explained in Remark 4.5, the upward subframization
of a si-logic L = IPC + I" can be calculated effectively from I'. In this section we show how
to calculate the downward subframization of L by utilizing the translation 7.

Definition 6.1. Define a translation 7 : Lipc — LpL by

T(p) = Op for a propositional letter p,
7(L) =01,

T AY) =7(p) AT(V),

T(p =) =7(p) = T(¥),

T(p V) =0(1(p) VT(¥)).

Remark 6.2. The translation 7 is a version of the Gédel-Gentzen translation (see, e.g., [18]).
It has been pointed out by Aczel [1] that every lax modality which is definable within IPC (for
example, the double negation) provides a translation from IPC to itself. The translation 7 can
be seen as a generalization of this, where the lax modality is not necessarily definable within
IPC. It is used in [12, Sec. 3.2.2] to explain verificationist interpretation of intuitionistic logic
in terms of nuclei.

Recall that by Notation 5.4, given an S-frame (§, ®), we always assume that § = (X, <)
and & = (9, <).

Lemma 6.3. Let v be a valuation on an S-frame (