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Chapter 7

Distributive Lattices with Quantifier:
Topological Representation

NicK BEZHANISHVILI

Department of Foundations of Mathematics, Thilisi State University

ABSTRACT.

We give a representation of distributive lattices with the existential quantifier in
terms of spectral spaces, which is an alternative to Cignoli’s representation in
terms of Priestley spaces. Then we describe dual spectral spaces of subdirectly
irreducible and simple @Q-distributive lattices and prove that the variety QDist of
Q-distributive lattices does not have the congruence extension property and that
there exist non-surjective epimorphisms in QDist.

7.1 Introduction

Distributive lattices with the existential quantifier, abbreviated as @-dist-
ributive lattices, were first introduced and investigated by Cignoli ([3], [4])
as a natural extension of Halmos’ monadic Boolean algebras [5]. In partic-
ular, Cignoli has proved a representation of @)-distributive lattices in terms
of Priestley spaces. Several other results on @-distributive lattices were
obtained by Petrovich [7]. In this note we will give a representation of Q-
distributive lattices in terms of spectral spaces which serves as an alternative
to Cignoli’s representation. Then we will describe the dual spectral spaces of
subdirectly irreducible and simple @-distributive lattices, and prove that the
variety QDist of QQ-distributive lattices does not have the congruence exten-
sion property and that there exist non-surjective epimorphisms in QDist.

7.2 (-distributive lattices

Definition 1 (See Cignoli [3]) A pair (D,3) is said to be a Q-distributive
lattice, if D is a bounded distributive lattice and 3 is a unary operator on
D satisfying the following conditions for all a,b € D:
1) 30 =05
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2) a < Ja;
3) A(a vV b) =Ja Vv Ib;
4) 3(a A3b) = 3a A 3.

Denote by QDist the variety of all @Q-distributive lattices and corre-
sponding homomorphisms. Dist will denote the variety of all bounded dis-
tributive lattices and bounded distributive homomorphisms.

For every (D, ) € QDist, denote by Dy the set {a € D : Ja = a} of all
fixed-points of 3. It is a routine to check that Dy = {Ja : @ € D} and that Dy
forms a relatively complete sublattice of D, that is the set {b € Dy : a < b}
has the least element, for every a € D, which we denote by In fa. Conversely,
every couple (D, D), where Dy is a relatively complete sublattice of D,
defines an operator C' on D by putting Ca = Infa. Unfortunatelly, C is
not always a quantifier. Actually we have the following

Theorem 2 (See Balbes and Dwinger [1]) For a given distributive lattice
D, there exists a one-to-one correspondence between closure operators on D'
and relatively complete sublattices of D. o

Now we will a little bit extend the previous theorem. Consider a function
h: Dy — D. A function Cp, : D — Dy is said to be the left adjoint to h, if
Cipb < a iff b < ha, for any a € Dy and b € D.

Theorem 3 For a given distributive lattice D, there exists a one-to-one
correspondence between

1) closure operators on D;

2) relatively complete sublattices of D;

3) canonical embeddings h : Dy — D having the left adjoint.

Proof (Sketch) 1) < 2) see Theorem 2.

2) = 3) For a given pair (D, Dy), where Dy is a relatively complete
sublattice of D, define C}, : D — Dq by putting Cp(a) = Infa, for every
a € D. Tt is easy to check that Cj is the left adjoint to the canonical
embeding h : Dy — D.

3) = 2) Suppose Dy is a sublattice of D, and the canonical embedding
h : Dy <= D has the left adjoint function Cj,. Then Infa = Cp(a), for every
a € D, and Dy is a relatively complete sublattice of D.

Now it is a routine to check that this correspondence is one-to-one. g

Now, as a corollary, we characterize those closure operators on D which
serve as quantifiers. Dy C D is said to be a quantifier sublattice of D, if
D, is a relatively complete sublattice of D and a A Infb = Inf(a A b), for
every a € Dy and b € D. C}, is said to satisfy the Frobenius condition, if
Cr(ha Ab) = a A Cyb, for every a € Dy and b € D.

'Recall that an operator C on D is said to be a closure operator, if it satisfies Kura-
towski’s identities C0 = 0, a < Ca, CCa < Ca and C(a Vb) = Ca V Cb.



81\ ESSLLI Student Session 1999

Corollary 4 For a given distributive lattice D, there ezists a one-to-one
correspondence between

1) quantifiers on D;

2) quantifier sublattices of D;

3) canonical embeddings h : Dy — D having the left adjoint satisfying
the Frobenius condition.

Proof. Observe that on the base of Theorem 3 the following three conditions
are mutually equivalent: 3(Ja A b) = Ja A 3b, for every a,b € D, a A Infb=
Inf(a AD), for every a € Dy and b € D, Cp(ha Ab) = a A Cpb, for every
a€ Dgand be D. g

Now we are in a position to extend this correspondence to an equivalence
of the corresponding categories. Denote by CDist the category of distribu-
tive lattices with a closure operator and corresponding homomorphisms. It is
obvious that QDist is a (full) subcategory of CDist. Also denote by Dist?
the category whose objects are (D, Dy) pairs of distributive lattices, where
an injective Dist-homomorphism h : Dy — D has the left adjoint function,
and whose morphisms are pairs of functions (f, fo) : (D, Do) — (D', Dy)
such that f is a Dist-homomorphism, foh = h' o fy and foo C, = Cpr o f.
We denote by Dist? the (full) subcategory of Dist? whose objects satisfy
the Frobenius condition.

Theorem 5 1). CDist is equivalent to Dist?.
2). QDist is equivalent to Dist?.

Proof (Sketch) 1). Define the functors ¢ : CDist — Dist? and % : Dist? —
CDist by putting ¢(D,C) = (D, Dy), where Dy is the set of all fixed-points
of C, and ¢(f) = (f, f |p,), and ¥(D, Dy) = (D, C), where C = ho Cj, and
P(f, fo) = f- Now it is a routine to check that the so-defined functors set
an equivalence between CDist and Dist?.

2) easily follows from 1) and Corollary 4. o

7.3 Topological Representation

Definition 6 (See e.g. Balbes and Dwinger [1] and Johnstone [9]) A topo-
logical space (X, Q) is said to be spectral if

1) (X, Q) is compact and Ty;

2) The set C(X) of all compact-open subsets of (X,Q) is a sublattice of
Q and a base for the topology;

3) (X,Q) is sober, that is any closed set F which is not a closure of a
singleton {x} is a union of two closed sets which differ from F'.

Denote by Spec the category of all spectral spaces and all strongly con-
tinuous maps. Here a map is said to be strongly continuous if an inverse
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image of a compact open set is compact open. Stone’s well-known theorem
now establishes that Dist is dually equivalent to Spec. In particular, every
distributive lattice can be represented as the set C(X) of all compact open
sets of the corresponding spectral space (X, 2)2.

Another representation of distributive lattices can be obtained in terms
of Priestley spaces. Let (X, R) be a partially ordered set. A C X is said to
be an (upper) cone of X, if x € A and zRy imply y € A. A triple (X, Q, R)
is said to be a Priestley space if

1) (X, Q) is a Stone space (that is a 0-dimensional, Hausdorff and com-
pact space);

2) R is a partial order on X satisfying Priestley separation aziom: if
—(zRy), then there exists a clopen (simultaneously closed and open) upper
cone A such that z € A and y ¢ A.

Denote the set of all clopen upper cones of X by CON X. Also denote
by Priest the category of Priestley spaces and monotonous continous maps.
Then Priestley duality establishes that Dist is dually equivalent to Priest.
In particular, every distributive lattice can be represented as the set CON X
of all clopen cones of the corresponding Priestley space (X, Q, R).

Cornish [2] has shown that these two dualities are in fact two sides of
the same coin by establishing that Spec is isomorphic to Priest. Now we
will do the same for the case of Q-distributive lattices.

Call a quadriple (X,Q, R, E) a Cignoli space, if (X,Q, R) is a Priestley
space and F is an equivalence relation on X such that

a) A € CONX = E(A) € CONX. (Here E(A) = Uyea E(z) and
E(z) ={y € X : yEx}.)

b) E(z) is a closed set for any z € X.

Denote by Cign the category of Cignoli spaces and R-monotonous con-

tinous maps f : X1 — X» such that for any A € CON'X,, f71Ey(A) =
El(filA)?’.

Theorem 7 (See Cignoli [3]) QDist is dually equivalent to Cign. o
In particular, every Q)-distributive lattice can be represented as the pair
(CON X, E) for the corresponding Cignoli space (X, Q, R, E).

Denote by Priest? the category whose objects are (X, m,X;) triples,
where X and X are Priestley spaces, 7 : X — X is a Priest-morphism
and 7(A) € CONX, for every A € CONX, and whose morphisms are

*Note that the notion of a spectral space is the same as in Hochster [6] and is widly
used in ring theory. In particular, the dual spaces of rings are exactly the spectral spaces.

31t is worth noting that this last condition is equivalent to the following one on points
of X; and X»: for every x € X; and y € X, if f(z)Ey, then there exists z € X1 such
that xEz and yRf(z).
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(f, fo) : (X, Xp) = (X', X)) pairs, where f : X — X' is a Priest-morphism
and ' o f = foom.

Theorem 8 Cign is equivalent to Priest?.

Proof. First note that for every Cignoli space (X, Q, R, F), the factor-space
(X/E, g, RE) is a Priestley space (follows from Cignoli [3]). Further, define
the functor ¢ : Cign — Priest? by putting ¢(X,Q, R, E) = (X, 7, X/g),
where 7(z) = E(z), and ¢(f) = (f, fo), where fo(E(z)) = E'f(z). It is a
routine to check that ¢ is defined correctly. Now define v : Priest? — Cign
by putting (X, 7, Xo) = (X, E), where xEy iff 7(z) = n(y), and ¥(f, fo) =
f. It is also a routine to check that 1 is defined correctly as well. Now one
can easily check that these functors set an equivalence between Cign and
Priest?. o

Corollary 9 QDist ~ Dist? ~ Cign® ~ (Priest?)?. (Here K denotes
the opposite of the category K.) o

Definition 10 A triple (X,Q, E) is said to be an augmented spectral space
if (X, ) is a spectral space and E is an equivalence relation on X such that
a) A€ C(X)= E(A) € C(X);
b) (X/E,Qr) is a Ty space.

Note that since C(X) forms a base for the topology, a) implies that
FE is an open equivalence relation, but not every open equivalence relation
satisfies a).

Denote by ASpec the category of augmented spectral spaces and strongly
continuous maps f : X; — Xo such that for any A € C(X), f 'E;A =
Elf_lA.

Theorem 11 ASpec is isomorphic to Cign.

Proof. First we recall an equivalence between spectral spaces and Priestly
spaces shown in Cornish [2]. With any spectral space (X, ) is associated
the Priestly space (X,Q%, Rq), where Rq is the specialization order on X
(that is a partial order R defined by putting zRqy iff z € C(y), where
C is the topological closure operator), and a base for the topology Q7 is
the Boolean closure of the set C(X) of all compact open subsets of (X, Q).
Moreover, the set of all clopen cones of (X,Q", Rg) is precisely the set of
all compact open subsets of (X, ). Conversely, with every Priestley space
(X,9, R) is associated the spectral space (X,Q”), where CON X is taken
as a base for 7. Moreover, the set of all compact open subsets of (X, Q7)
is precisely the set of all clopen cones of (X,, R). Spec-morphisms are
precisely Priest-morphisms and vise versa.



Distributive Lattices with Quantifier: Topological Representation: Nick Bezhanishvili/84

In our case it remains to show that if (X, 2, E) is an augmented spectral
space, then (X, Q7, Rq, E) is a Cignoli space, and conversely, if (X,Q, R, E)
is a Cignoli space, then (X,Q7, F) is an augmented spectral space. Indeed,
from the definition of Cignoli spaces, augmented spectral spaces and the
fact that clopen cones are precisely compact open sets of the corresponding
Priestly and spectral spaces it follows directly that A € CONX = E(A) €
CONX is equivalent to A € C(X) = E(A) € C(X). Further, let us show
that if X/ is a Tp—space, then F(z) is closed in (X, Q7). From y ¢ E(z) it
follows that E(y)NE(z) = 0. Since X/ is Ty and E-saturated compact open
sets of X form a base for the topology on X/, there exists a compact open
set U = E(U) such that say E(y) C U and E(z)NU = (. Since U is compact
open, U is a clopen cone in (X, QT). Therefore, there exists a clopen U such
that y € U and E(z) N U = (), and hence E(z) is a closed set. Conversely,
if E(z) is closed for every z € X, then (X/g, Q) is a Top—space. Indeed, as
was mentioned before, for any Cignoli space (X, €, R, E), the factor space
(X/E,9QE, RE) is a Priestly space, and hence (X/g, Q) is a Tp—space (even
a spectral space). Finally, it is a routine to check that ASpec-morphisms
correspond to Cign-morphisms and vice versa. Hence A Spec is isomorphic
to Cign. g

Corollary 12 QDist is dually equivalent to ASpec. o

In particular, every @Q-distributive lattice can be represented as (C(X), F)
for the corresponding augmented spectral space (X, (2, E). It is worth not-
ing that this fact together with the last corollary can be obtained directly
without using Theorem 11.

Denote by Spec? the category whose objects are (X, 7, Xp) triples, where
X and X are spectral spaces, 7 is a Spec-morphism and 7(U) € C(Xj) for
every U € C(X), and whose morphisms are (f, fo) : (X, Xo) — (X', X})
pairs, where f : X — X' is a Spec-morphism and 7’ o f = fy o .

Theorem 13 ASpec is equivalent to Spec?.

Proof is similar to the one of Theorem 8 and rests on the fact that if
(X,Q, E) is an augmented spectral space, then the factor-space (X/g, Qg)
is a spectral space. o

Corollary 14 QDist ~ Dist? ~ ASpec” ~ (Spec?)” ~ Cign” ~
(Priest®)?. o

We will close out this section by mentioning a correspondence between
Halmos’ monadic Boolean algebras and Q-distributive lattices. It is easy to
see that a @-distributive lattice (D, 3) is a monadic Boolean algebra iff D
is a Boolean algebra. From the point of view of Cignoli’s duality it means
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that a Cignoli space is a Halmos space (see Halmos [5]) iff R is a descrete
order. And from the point of view of our duality it means that an augmented
spectral space is a Halmos space iff it is 7T7.

7.4 Serpinski m-spaces

In [3] Cignoli has described the dual spaces of simple and subdirectly ir-
reducible @-distributive lattices in terms of Cignoli spaces. Now we are
going to do it in terms of augmented spectral spaces. As we shall see below,
the dual spaces of several classes of simple and subdirectly irreducible Q-
distributive lattices can be obtained by a generalization of the well known
concept of the Serpinski space.

Recall that a topological space S = (X,Q) is said to be the Serpinski
space, if X = {z,y} and Q = {0, {z}, X }.

For any cardinal m, consider the topological sum S = @, imes S- De-
fine an equivalence relation E on S by identifying the closed points of S.
Denote S/g by mS and call it the Serpinski m-space. Define on the Serpin-
ski m-space an anti-discrete equivalence relation E: zEy for all z,y € mS.
The obtained space denote by (mS, E) and call it the Serpinski m, E-space.

Theorem 15 1) mS is a spectral space.

2) (mS, E) is an augmented spectral space.

3) If m < Ny, then the Q-distributive lattice (C(mS), E) is subdirectly
irreducible.

4) If ¥y < m, then (C(mS), E) is simple.

Proof. 1) Observe that every point of mS is open, except the one which is
closed and will be denoted by £. Also observe that compact open sets of mS
are exactly the finite subsets of mS not containing ¢, and that the closure
of any subset A of mS is AU {{}. Now it is a rather easy exercise to check
that mS is a spectral space.

2) Easily follows from 1).

3) Observe that if m < R, then (), mS—{¢} and mS are the only subsets
of (mS, E) which correspond to the congruences on (C(mS), E). Therefore,
mS — {&} corresponds to the least non-diagonal congruence on (C(mS), E),
and hence (C(mS), E) is subdirectly irreducible.

4) If Rg < m, then mS — {£} does not correspond to a congruence on
(C(mS), E) any more. Hence the only subsets of (mS, E) which correspond
to the congruences on (C(mS), E) are () and the whole mS. Therefore, there
are only two congruences on (C(mS), E), the diagonal and the whole C(m.S).
Thus, (C(mS), E) is simple. g

Unfortunately, all subdirectly irreducible )-distributive lattices can not
be obtained in this way. However, every finite subdirectly irreducible -
distributive lattice can be obtained by means of finite Serpinski n-spaces. For
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every natural numbers n and m, consider the topological sum n.S @ m, where
m denotes, up to homeomorphism, the discrete topological space containing
exactly m points.

Theorem 16 1) A finite Q-distributive lattice (D, 3) is subdirectly irreduci-
ble iff there exist natural n and m such that the dual of (D, 3) is homeomor-
phic to nS @ m.

2) A finite Q-distributive lattice (D,3) is simple iff there exists a natural
m such that the dual of (D,3) is homeomorphic to m.

Proof. 1) Similarly to Theorem 15 we have that (C(nS @ m), E) is sub-
directly irreducible. Conversely, suppose the dual (X, E) of (D,3) is not
homeomorphic to n.S @ m. Denote by X the set of all open points of X.
Observe that any set containing Xy corresponds to a congruence on (D, 3),
and that X — X contains at least two points, say ¢; and &. Then XoU{&;}
and X — {£2} correspond to such congruences #; and 6, on (D,3) that
01 N0y = A, where A denotes the diagonal congruence on (D, 3), and hence
(D, 3) is subdirectly reducible.

2) Obviously (C(m), E) is simple. Conversely, if the dual (X, E) of (D, 3)
is not homeomorphic to m, then Xy # X, and, as follows from 1), (D,3) is
not simple. g

As it is known from Cignoli [4], the variety of Q-distributive lattices is
locally finite. Hence QDist and its every subvariety is generated by finite
Q-distributive lattices. Therefore, the varieties of ()-distibutive lattices are
characterized by means of finite Serpinski n-spaces.

7.5 Surjectiveness of epimorphisms and congru-
ence extension

First note that, similarly to Dist, in QDist also exist epimorphisms which
are not surjective. An example would be any inclusion map ¢ : D — B,
where B is a Boolean algebra generated by its distributive sublattice D,
and 3 is discrete, that is da = a, on both D and B, as well as an example
shown below.

Now we show that, unlike Dist, QDist does not have the congruence
extention property. Indeed, consider the following figure below:

a b Ib
.

Suppose D; is the four element (Q-distributive lattice, where 30 = 0, Ja =
db = J1 = 1, while Dy - the three element @Q-distributive lattice, where
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30 =0, 3b =31 = 1. Obviously D, is a Q-sublattice of D;. (Note that the
dual of D, is homeomorphic to 2, while the dual of Dy is homeomorphic to
S.) Then it is a routine to check that the only congruences on D; are the
diagonal and the whole D?. On the other hand, {(0,0), (b,b),(1,1), (b, 1)}
is a congruence on D, which is not extended to any congruence on Dj.
Therefore, we arrive at the following

Theorem 17 QDist does not have the congruence extension property. o
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