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Abstract In this paper we overview the main structures of epistemic and doxas-
tic logic. We start by discussing the most celebrated models for epistemic logic,
i.e., epistemic Kripke structures. These structures provide a very intuitive interpre-
tation of the accessibility relation, based on the notion of information. This also
naturally extends to the multi-agent case. Based on Kripke models, we then look
at systems that add a temporal or a computational component, and those that pro-
vide a ‘grounded’ semantics for knowledge. We also pay special attention to ‘non-
standard semantics’ for knowledge and belief, i.e., semantics that are not based on
an underlying relation on the sets of states. In particular, we discuss here neighbour-
hood semantics and topological semantics. In all of these approaches, we can clearly
point at streams of results that are inspired by work by Johan van Benthem. We are
extremely pleased and honoured to be part of this book dedicated to his work and
influences.

Key words: Epistemic logic, doxastic logic, relational structures, neighbourhood
models, topological semantics

1 Introduction

Epistemic modal logic in a narrow sense studies and formalises reasoning about
knowledge. In a wider sense, it gives a formal account of the informational attitude
that agents may have, and covers notions like knowledge, belief, uncertainty, and
hence incomplete or partial information. As is so often the case in modal logic,
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such formalised notions become really interesting when studied in a broader con-
text. When doing so, epistemic logic in a wider sense in fact relates to most of the
other chapters in this book. What if we add a notion of time or action (Chapter 21):
how does an agent revise its beliefs (cf. Chapter 8), or update its knowledge (Chap-
ter 7)? And even if we fix one of the notions of interest, say knowledge, if there are
many agents, how can we ascribe some level of knowledge to the group, and how
do we represent knowledge of one agent about the knowledge (or ignorance, for that
matter) of another (cf. Section 2.1)? What are reasonable requirements on the inter-
action between knowledge and strategic action (Chapter 15), and how is uncertainty
dealt with in more general, qualitative models of agency (Chapter 12)?

Hintikka, notably through [68], is broadly acknowledged as the father of mod-
ern epistemic modal logic. Indeed, [68] gives an account of knowledge and belief
based on Kripke models. In a nutshell, crucial for this semantics is the notion of a
set of states or worlds, together with a binary relation for each agent, determining
which worlds ‘look the same’, for the agent, or ‘carry the same information’. Many
disciplines realised the importance of the formalisation of knowledge, using Kripke
semantics (or a close relative of it). Examples of such disciplines are Artificial In-
telligence (notably Moore’s [91] on actions and knowledge) philosophy (Hintikka’s
[69]), game theory (see Aumann’s formalisation of common knowledge, [4]. Au-
mann’s survey [5] on interactive epistemology can easily be recast using a Kripke
semantics), and agents (the underlying semantics of the famous BDI approach by
Rao and Georgeff for instance ([96]) is based on Kripke models). For more ref-
erences to those disciplines, we refer to the chapters on the relevant topics in this
book.

Another important aspect of this chapter is to review the neighbourhood and
topological semantics of epistemic and doxastic logic. Topological semantics of
modal logics originates from the ground-laying work of MacKinsey and Tarski [87].
In recent years there has been a surge of interest in this semantics not least because
of its connection to epistemic and doxastic logic. Van Benthem (not surprisingly)
has been in the centre of the recent developments in the area.

In short, the aim of this chapter is to explain some of the most popular seman-
tic structures used to model informational attitudes, and at several places we have
plenty of opportunity to point at van Benthem’s contribution to the field. In fact,
Johan’s work spins over the different semantics of epistemic logic that we discuss
here. It builds bridges between many different areas. Therefore, we cannot think of
a better place for publishing this chapter than a volume dedicated to Johan’s contri-
butions.

The chapter is organised as follows. In Section 2, we briefly introduce a family of
modal epistemic languages that are interpreted on the structures to be discussed. We
also discuss the most popular axiom systems for multi-agent knowledge and belief.
Then, in Section 3, we introduce probably the most celebrated structures for epis-
temic logic, i.e., epistemic Kripke structures. Based on Kripke models, we then add
a temporal or a computational component, and also provide a ‘grounded’ semantics
for knowledge. In Section 4 we consider ‘non-standard’, or ‘generalised’ semantics
for knowledge and belief, i.e., semantics that are not based on an underlying rela-
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tion on the sets of states. In particular, we discuss here neighbourhood semantics
and topological semantics. In Section 5, we conclude.

2 Epistemic Logic: Language and Axiom Systems

Let us first agree on a formal language for reasoning about information of agents.

Definition 1 (A Suite of Modal Epistemic Languages).
We assume a set At = {p,q, p1, . . .} of atomic propositions, a set of agents

Ag = {1, . . . ,m} and a set of modal operators Op. Then we define the language
L(At,Op,Ag) by the following BNF:

ϕ := p | ¬ϕ | (ϕ ∧ϕ) | 2ϕ

where p ∈ At and 2 ∈ Op.

Abbreviations for the connective ∨ (‘disjunction’), → (‘implication’) and ↔
(‘equivalence’) are standard. Moreover the dual 3ϕ of an operator 2ϕ is defined
as ¬2¬ϕ . Typically, the set Op depends on Ag. For instance, the language for
multi-agent epistemic logic is L(At,Op,Ag) with Op = {Ka | a ∈ Ag}, that is, we
have a knowledge operator for every agent. Kaϕ reads ‘agent a knows that ϕ’, so
that Kaϕ ∨Ka¬ϕ would indicate that agent a knows whether ϕ (which should be
contrasted with the ‘propositional’ validity (Kaϕ ∨¬Kaϕ) and the ‘modal’ valid-
ity Ka(ϕ ∨¬ϕ)). The dual of Ka is often written Ma. So for instance Maϕ ∧Maψ ∧
¬Ma(ϕ∧ψ) says that agent a holds both ϕ and ψ to be possible, although he knows
that ϕ and ψ hold not both. For a language in which one wants to study interaction
properties between knowledge and belief, we would have Op = {Ka,Ba | a ∈ Ag}.
A typical interaction property in such a language would be

Kaϕ → Baϕ (1)

but of course not the other way around, since one would like the two notions of
knowledge and belief not to collapse: [76] for instance assume (1) and Baϕ →
KaBaϕ as an axiom, but warn that ‘the interesting formula Baϕ → BaKaϕ is not
included in our system’, the reason for it being that knowledge and belief would
become the same. This lead [72] to study ‘how many’ interaction between the two
notions one can allow before they become the same: the latter study is in fact an
application of correspondence theory, a notion developed by van Benthem in his
PhD thesis [9], to which we will come back later (note also that Chapter 23 in this
volume is dedicated to this topic).

So what then are the properties of knowledge and belief proper, and how do the
two notions differ? To start with the latter question, in modal logic it is often as-
sumed that knowledge is veridical, where belief is not. In other words, knowledge
satisfies Kaϕ → ϕ as a principle, while for belief, it is consistent to say that a be-
lieves certain ϕ , although ϕ is in fact false. Of course, agent a will not consider this



4 Nick Bezhanishvili and Wiebe van der Hoek

a possibility: indeed, in the ‘standard’ logic for belief, we have that Ba(Baϕ → ϕ)
is valid. The axioms Taut and K2 and the inference rules MP and Nec2 form the

Basic modal properties Epistemic and Doxastic properties
Taut all instantiations of propositional tautologies D ¬2ϕ

K2 2(ϕ → ψ)→ (2ϕ →2ψ) T 2ϕ → ϕ

MP From ϕ and ϕ → ψ , infer ψ 4 2ϕ →22ϕ

Nec2 From ϕ , infer 2ϕ 5 ¬2ϕ →2¬2ϕ

Table 1 Basic modal and epistemic and doxastic axioms.

modal logic K. For knowledge, one then often adds veridicality (T), and positive-
(4) and negative introspection (5). For belief, veridicality is usually replaced by the
weaker axiom consistency (D). If there are m agents (i.e., m knowledge operators
K1, . . . ,Km), the axioms of K + {T,4} are referred to as S4m, the axioms of K +
{T,4,5} are referred to as S5m, and we call the agents in the latter case epistemic
agents. The arguably most popular logic for belief K + {D,4,5} is usually denoted
KD45m. In fact, agents that are veridical and negatively introspective must already
be positively introspective (and hence epistemic agents), i.e., K +{T,5} ` 4.

A normal modal logic is a set of formulas L containing all instances of axioms of
K and closed under the rules MP and Nec2. We write L ` ϕ if ϕ is a theorem of L.

2.1 Multi-agent Notions

To speak with van Benthem, One is a lonely number ([11]), and the notions of
knowledge and belief become only more interesting in a multi-agent setting (and,
as [11] also argues, in a dynamic setting, but for this, we refer to Chapter 7). Let
A ⊆ Ag be a set of agents. One can then introduce an operator that says that every-
body in A knows something: EAϕ =

∧
a∈A Kaϕ (instead of EAg, write E). Obviously,

this does not expand the logic’s expressivity, but it does indeed decrease the descrip-
tive complexity ([50]): even in S5m, having the operator EA (if | A |≥ 4) makes the
language more succinct.

One could in a similar way, using disjunctions, define a notion of ‘somebody
knows’. However, arguably a more interesting (and logically stronger) notion is that
of distributed knowledge DAϕ in a group A of ϕ . For instance, if a knows that every
modal logician is interested in epistemic logic, and b knows that van Benthem is a
modal logician, then there is distributed knowledge among a and b that van Benthem
is interested in epistemic logic, even if none of the agents needs to know this.

Arguably the most interesting epistemic group notion is that of common knowl-
edge of a group. Common knowledge of ϕ is supposed to mean that everybody
knows ϕ , and moreover, everybody knows that, and everybody knows . . . . If our
language would allow for infinite formulas, common knowledge would be captured
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Everybody’s and Common Knowledge Distributed Knowledge
E Eϕ ↔∧

a∈Ag Kaϕ D1
∨

a∈Ag Kaϕ → Dϕ

KC C(ϕ → ψ)→ (Cϕ →Cψ) KD D(ϕ → ψ)→ (Dϕ → Dψ)
Mix Cϕ → (ϕ ∧ECϕ) T Dϕ → ϕ

Ind C(ϕ → Eϕ)→ (ϕ →Cϕ) 5 ¬Dϕ → D¬Dϕ

NecC From ϕ , infer Cϕ NecD From ϕ , infer Dϕ

Table 2 Axioms and inference rules for group-, common- and distributed knowledge.

by the infinite conjunction

Eϕ ∧EEϕ ∧EEEϕ ∧ . . . (2)

Phrased negatively, ϕ is not common knowledge as long as somebody considers it
possible that somebody considers it possible that . . . somebody considers it possible
that ϕ is false. Common knowledge explains why social laws (like a green traffic
light) work: when approaching a green light, I not only know that I have preference,
but I also know that you know this, and that you know that I know it, etc. In games,
common knowledge of rationality explains why certain strategies can be singled out
as being in equilibrium (see Chapter 15). The axioms for common knowledge are
KC,Mix,Ind and inference rule NecC from Table 2. If Lm is a logic with m operators
Ka, then adding the axioms E,KC,Mix,Ind and rule NC is denoted by LC

m. Similarly
for LD

m for L with the axioms for distributed knowledge added. Sometimes, the axiom
Ind is replaced by the inference rule

From ϕ → E(ψ ∧Cϕ) infer ϕ →Cψ (RInd)

Axioms and inference rules for the epistemic group notions discussed here are given
in Table 2. They are usually added to S5m. Notions of common belief and distributed
belief also exist: for those, one usually adds slightly weaker axioms.

As for instance explained by van Benthem in [13], we can define common knowl-
edge Cϕ also as a fixed point of the following operator:

ϕ ∧Ex (3)

A fixed point ψ of this operator satisfies ψ = ϕ∧Eψ = ϕ∧E(ϕ∧Eψ) . . . in which
one recognises the Mix axiom. Moreover, the Ind axiom states we have a greatest
fixed point, which can be obtained by iterated application of the operator to >,
giving ϕ ∧E>, ϕ ∧E(ϕ ∧E>), ϕ ∧E(ϕ ∧E(ϕ ∧E>)), etc., see Section 3.1 for
more details.

Common knowledge is obviously the strongest epistemic notion discussed here,
while distributed knowledge is the weakest (see (4)). As a consequence, common
knowledge will be typically obtained for ‘weak’ formulas ϕ only (even if everybody
in a group knows that Santa Claus does not exist, this does not have to be common
knowledge), while distributed knowledge may pertain to ‘strong’ statements (no
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matter how large the group is, there is distributed knowledge about the fact whether
there are two members sharing their birthday). In terms of [47], common knowledge
is what ‘any fool’ knows, while distributed knowledge characterises what the ‘wise
man’ knows. It is not difficult to see that when one adds the principles of Table 2 to
S5m, both the wise man and the fool are epistemic agents.

Cϕ ⇒ Eϕ ⇒ Kaϕ ⇒ Dϕ ⇒ ϕ (4)

2.2 Knowledge and Time

One of the most prominent themes in van Benthem’s work in the last two decades is
that of dynamics. There is a complete chapter (Chapter 7) in this volume dedicated
to Dynamic Epistemic Logic. A simple setting to study dynamics of epistemics is
obtained by combining temporal and epistemic logic (temporal logic is the subject
of Chapter 21). Popular temporal models of agency are linear time models or else
trees. For both, one can use Linear Time Logic (LTL) to reason about them. In the
latter case, properties of the tree are those true on all of its branches (in CTL, one
can quantify over branches as well). In LTL, one uses operators for gϕ (‘in the next
state’), (‘always in the future’), ♦ (‘some time in the future’) and U (where
ϕ U ψ denotes ‘ϕ holds until ψ is true’). When we want to refer to the memory
of the agents, also past-time operators are used, allowing for wϕ (‘in the previous
moment’), (‘always in the past’) and � (‘some time in the past’).

Some axioms for linear temporal time logic with future operators are given in
Table 3. Let us call the logic consisting of them LT L. The future operators ‘some
time’ and ‘always’ can be defined as ♦ϕ = ¬ϕ U ϕ and ϕ = ¬♦¬ϕ , respec-
tively. Axiom T2 says that gis functional (this is the←-direction, saying there is
at most one next state) and serial (the→-direction, saying there is at least one next
state). T3 defines until: ‘ϕ until ψ’ is equivalent to saying that ‘either ¬ψ , or ϕ

holds while in the next state, ϕ until ψ’. The rule RT explains how ¬(ϕ U ψ) can
be inferred, and this rule is reminiscent of the induction rule (RInd) for common
knowledge (cf. [47, Theorem 8.1.1(e)]).

Next Next and Until
K f f(ϕ → ψ)→ ( fϕ → fψ)
T2 f¬ϕ ↔¬ fϕ T3 ϕ U ψ ↔ ψ ∨ (ϕ ∧ f(ϕ U ψ))

Nec fFrom ϕ , infer fϕ RT From ϕ ′→¬ψ ∧ fϕ , infer ϕ ′→¬(ϕ U ψ)

Table 3 Axioms and inference rules for linear temporal logic with next and until.

Similarly to common knowledge, the until operator also allows a fixed point def-
inition as the least fixed point of ψ ∨ (ϕ ∧3x). As always, things become more
interesting when we look at properties that relate the modalities (for knowledge and
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time in this case) that we have. Typical mix properties for knowledge and time are
then for instance

Ka
gϕ → gKaϕ & gKaϕ → Ka

gϕ (perfect recall (PR) & no surprise (NS))

NS is sometimes called no learning: it expresses that everything that one will know
in the next state, is currently already known to hold next. Readers interested in these
notions should also consult Chapter 21 by Goranko and Pacuit in this volume.

3 Relational Epistemic Structures for Knowledge

We now present a semantics for our formal language, based on Kripke models.

3.1 Kripke Models

Definition 2 (Kripke models and epistemic models). A Kripke model M for
L(At,Op,Ag) is a tuple 〈S,R,V 〉 where S is a set of states, or worlds, R associates
each 2 ∈ Op with an accessibility relation R(2)⊆ S×S. Rather than (s, t) ∈ R(2)
we write sR2t. Finally, V assigns to each atom p∈At a set of states V (p)⊆ S: those
are the states in M where p is true. A tuple 〈S,R〉 is called a frame. For M = 〈S,R,V 〉,
we will sloppily write s ∈M for s ∈ S. Truth of ϕ in a pair M,s (with s ∈M) is then
defined as follows:

M,s |= p iff s ∈V (p)
M,s |= ϕ ∧ψ iff M,s |= ϕ and M,s |= ψ

M,s |= ¬ϕ iff not M,s |= ϕ

M,s |= 2ϕ iff for all t such that sR2t,M, t |= ϕ

For F = 〈S,R〉, the notion F |= ϕ is defined as ∀V,∀s,〈S,R,V 〉,s |= ϕ . In that case,
we say that ϕ is valid in F . We write F |= L, if F |= ϕ for each ϕ ∈ L. If there exists
s ∈ S and a valuation V , such that 〈S,R,V 〉,s |= ϕ , then we say that ϕ is satisfiable
in F . If Γ is a set of formulas, we say Γ is satisfiable in F if there is s ∈ S and a
valuation V , such that 〈S,R,V 〉,s |= ϕ for each ϕ ∈ Γ . Validity of ϕ on a model M
is defined as M,s |= ϕ for all s ∈M. The class of all Kripke models 〈S,R,V 〉 with m
accessibility relations R(2) is denoted Km.

Let C be some class of models. If M |= ϕ for each M ∈ C, then we say that ϕ

is valid in C, and write C |= ϕ . Examples of classes of models are Km (all Kripke
models with m relations), S4m (models with m relations, all being reflexive and
transitive),KD45m (all relations being serial, transitive and Euclidean) and S5m (all
relations are equivalence relations). Also, Um is the class of models where all m
relations are the universal relation. If Cm is class of models for m agents, CC

m is the
class obtained by adding a relation RC, which is the transitive closure of the union
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of the m relations. Likewise, CD
m has a relation RD which is the intersection of the

relations in the model.
If Op contains one modal operator for each agent, we often write Ra rather than

for instance RKa or RBa . When all the operators are epistemic operators Ka, we write
∼a for RKa , and we assume that ∼a is an equivalence relation. A model with such
relations is called an epistemic model, and will be denoted M = 〈S,∼,V 〉. A pair M,s
is also called a pointed Kripke model or pointed epistemic model. So S5m represents
the class of all epistemic models.

In epistemic models, the interpretation of s∼a t is that ‘states s and t look similar
for a’, or ‘in s and t, agent a has the same information’, or, ‘given state s, agent a
considers it possible that the state is t’. These informal readings make it plausible
that ∼a is an equivalence relation indeed.

An extremely simple multi-agent scenario involving two agents a and b and one
atom p is given in Figure 1. The pointed model M1,s1 models a situation where
it is given that “p, but a and b don’t know it”. Let us denote this scenario by σ .
Alternative models for the same scenario are given in Figure 2. In our representation
of such a model, states in which p is true are denoted with a thick circle, and a line
between two states labeled with an agent means that the two states are similar for
that agent— we omit reflexive arrows which are supposed to be present in all states.

Fig. 1 A simple two-agent
one-atom scenario

p
M1

a b

s1

We already mentioned van Benthem’s pioneering work in Correspondence The-
ory [9, 25]. This theory establishes a formal connection between first-order proper-
ties of the accessibility relation on the one hand, and axioms or formula schemes, on
the other. For instance, the axiom T corresponds to reflexivity, 4 to transitivity and
5 corresponds to the underlying accessibility relation being Euclidean. Since a re-
lation that is reflexive, transitive and Euclidean is an equivalence relation, this then
helps us establish that the logic S5m is sound and complete wrt epistemic models
(the doxastic logic KD45m is sound and complete wrt models where the accessi-
bility relations RBa are serial, transitive and Euclidean). See also Section 3.2, in
particular Theorem 2.

By way of illustration of a proof of correspondence, let us follow [12] to show
the correspondence between 4 and transitivity.

Fact 1 (Fact 1.1 [12]) F,s |= 2p→22p iff F’s accessibility relation R is transitive
at the point s: i.e., F,s |= ∀yz((sRy & yRz)⇒ sRz).

Proof. If the relation is transitive, 2p→ 22p clearly holds under every valuation.
Conversely, let F,s |= 2p→22p. It means that this axiom holds for every valuation
V , so in particular when V (p) = {y | sRy}. For this V , the antecedent of the model
formula holds at s, and hence so does 22p. By definition of V , this implies that R
is transitive.
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Fig. 2 Four ‘different’ models
Mi,si for p∧¬Ka p∧¬Kb p.
States where p is true have a
thick circle

M2

M3

a, b

a, b

M4

a

s2

s3

s4

b aa

b aa bM5

s5

Given an epistemic model 〈S,∼,V 〉, it turns out that the group epistemic notions
E,C and D can all be interpreted as modal operators with respect to some binary
relation that is defined in terms of the individual relations ∼a. More precisely, the
operator E is the necessity operator for the relation ∼E= ∪a∈Ag ∼a: in order for
Eϕ to be true at M,s, the formula ϕ needs to be true in all successors of s, no
matter which agent we choose.1 In Figure 1 for instance, we have M1,s1 |= EMa¬p
(both a and b know that a considers a ¬p-state possible) while M1,s1 |= ¬EMa p
(since b considers it possible that a knows ¬p). One can also use correspondence
theory to see that D can be interpreted as the modal operator for a relation ∼D, with
∼D ⊆ ∩a∈Ag ∼a. At the end of Section 3.2, we will argue that for completeness, one
can even replace the ‘⊆’ by ‘=’. In terms of Figure 1 again, we have M1,s1 |= Dp.

For common knowledge, the corresponding property is not first order definable,
but van Benthem explains in [12] how it corresponds with a property in First-Order
Logic with Least Fixed Points, see also [18].

We briefly recall the semantics of modal µ-calculus (e.g., [35]), skipping some
well-known details. The formulas of modal µ-calculus are modal formulas extended
with the formulas of type µxϕ and νxϕ for ϕ positive in x (i.e., if each occurrence of
x is under the scope of an even number of negations). Let 〈S,R〉 be a Kripke frame.
For each modal µ-formula ϕ and a valuation V , we define the semantics [[ϕ]]V of ϕ

by induction on the complexity of ϕ . If ϕ is a propositional variable, a constant, or
is of the form ψ ∧ χ , ψ ∨ χ , ¬ψ , 2ψ or 3ψ , then the semantics of ϕ is defined as
above. For each valuation V , we denote by VU

x a new valuation such that VU
x (x) = U

and VU
x (y) = V (y) for each propositional variable y 6= x and U ∈ P(S).

Let ϕ be positive in x, then

[[µxϕ]]V =
⋂
{U ∈ P(S) : [[ϕ]]VU

x
⊆U}. (5)

[[νxϕ]]V =
⋃
{U ∈ P(S) : [[ϕ]]VU

x
⊇U}. (6)

1 For easy of readability, we give the group notions with A = Ag: cases for A⊆ Ag are similar.
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We will skip the index V if it is clear from the context. Note that [[µxϕ]]V and
[[νxϕ]]V are, respectively, the least and greatest fixed points of the map fϕ,V :
P(S)→P(S) defined by fϕ,V (U) = [[ϕ]]VU

x
. That ϕ is positive in x guarantees that

fϕ,V is monotone. Therefore, by the celebrated Knaster-Tarski theorem these fixed
points exist and are computed as in (5) and (6). The least and greatest fixed points
can also be reached by iterating the map fϕ,V . In particular, for an ordinal α we let
f 0
ϕ,V ( /0) = /0, f α

ϕ,V ( /0) = fϕ,V ( f β

ϕ,V ( /0)) if α = β +1, and f α
ϕ,V ( /0) =

⋃
β<α f β

ϕ,V ( /0), if

α is a limit ordinal, and we let f 0
ϕ,V (S) = S, f α

ϕ,V (S) = fϕ,V ( f β

ϕ,V (S)) if α = β + 1,
and f α

ϕ,V (S) =
⋂

β<α f β (S), if α is a limit ordinal. Then [[µxϕ]]V = f α
ϕ,V ( /0), for some

ordinal α such that f α+1
ϕ,V ( /0) = f α

ϕ,V ( /0) and [[νxϕ]]V = f α
ϕ,V (S), for some ordinal α

such that f α+1
ϕ,V (S) = f α

ϕ,V (S).
Thus, we have two different ways of computing fixed point operators resulting

in the same semantics. As we will see in the next section this is no longer the case
in topological semantics. Now we have all the formal machinery for giving a fixed
point definition of common knowledge. We let

Cϕ = νx(ϕ ∧Ex). (7)

A fixed point formula µxϕ (νxϕ) is called constructive if the least (greatest) fixed
point can be reached after countably many iterations of fϕ,V . [49] gave a syntac-
tic description of all continuous fixed point formulas that form a sub-fragment of all
constructive formulas. Using this description it is easy to see that Cϕ is in the contin-
uous and hence in the constructive fragment of all fixed point formulas. Therefore,
in order to compute common knowledge we need only countably infinite iterations.

It is easy to see that Cϕ expresses the reflexive transitive closure, i.e., ‘some
ϕ-world is reachable in finitely many ∼E -steps’ ([12, Example 6]). Next we will
compute common knowledge following our fixed point definition in some of the
models shown in Figure 2 In M1 we have V (p) = {s1}. So if ϕ = p∧2ax∧2bx,
then

f 0
ϕ,V (S) = [[ϕ]]V S

x
= V (p)∩ [[2ax]]V S

x
∩ [[2bx]]V S

x
= {s1}∩S∩S = {s1}.

Then

f 1
ϕ,V (S) = {s1}∩ [[2ax]]

V
f 0
ϕ,V (S)

x

∩ [[2bx]]
V

f 0
ϕ,V (S)

x
= {s1}∩ [[2ax]]

V
{s1}
x
∩ [[2ax]]

V
{s1}
x

= {s1}∩ /0∩ /0 = /0.

Finally, observe that fϕ,V ( /0) = /0. So we reached the least fixed point and [[Cp]] =
[[νxϕ]] = /0.

Now consider the second model and the formula σ = ¬Ka p∧¬Kb p. It is easy to
see that in M2 we have [[σ ]]V = S. Let ϕ = σ ∧2ax∧2bx. Then f 0

ϕ,V (S) = [[ϕ]]V S
x

=
[[σ ]]V ∩ [[2ax]]V S

x
∩ [[2b]]V S

x
= S∩ S∩ S = S. This means that S is the greatest fixed
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point of fϕ,V . So [[Cσ ]] = [[νxϕ]] = S. We leave it up to the reader to compute com-
mon knowledge of various formulas in other models depicted in Figure 2.

Note that M1,s1 |= Eϕ ↔ Cϕ , but also that M4,s4 |= E¬Kb p∧¬C¬Kb p. The
pointed epistemic model M2,s2 not only models the scenario σ : p∧¬Ka p∧¬Kb p
but also that this is common knowledge: M2,s2 |= Cσ . It is the only pointed model
Mi,si (i≤ 5) with this property.

Correspondence properties make modal logic a flexible tool to model epistemic
and doxastic logics: once one has decided on the desired properties of the informa-
tional attitude, like negative introspection, the Kripke models obtained need just to
satisfy an additional property, like Euclideaness. It also helps provide a neat anal-
ysis of informational group notions. There are also some drawbacks using Kripke
models for knowledge and belief: we will come back to this in Section 4.1.

3.2 Completeness

In this section we briefly recall soundness and completeness of some important
modal logics. Let L be a (normal) modal logic defined in Section 2. Recall that a
(normal) modal logic L is called sound wrt a class K of Kripke frames if F |= L
for each F ∈ K. Logic L is called complete wrt K if for each formula ϕ , if ϕ is
L-consistent (i.e., L∪{ϕ} 6` ⊥), then there is F ∈ K such that ϕ is satisfied in F .
A frame F is called an L-frame if F |= L. It is easy to see that if L is sound and
complete wrt some class K, then it is sound and complete wrt the class of all L-
frames. L is called strongly complete wrt a class K of Kripke frames if for each set
of formulas Γ , if Γ is L-consistent (i.e., L∪Γ 6` ⊥), then there is F ∈ K such that Γ

is satisfied in F .
Recall also that a transitive frame F = 〈S,R〉, is called rooted if there exists s∈ S,

called a root, such that for each s′ ∈ S with s′ 6= s we have sRs′. It is well known that
if a logic is sound a complete, then it is sound and complete wrt a class of rooted
L-frames.

A standard method for proving completeness of modal logics is via the canonical
model construction. We briefly review it here. In the next section we explain how
this construction is generalised to the topological setting. All the details can be found
in any modal logic textbook, e.g., [33] or [37].

Given a logic L, one considers the set SC of all maximal L-consistent sets of
formulas. A relation RC on SC is defined in the following way: for each Γ ,∆ ∈ SC,
Γ RC

2∆ if for each formula ϕ we have 2ϕ ∈ Γ implies ϕ ∈ ∆ . Finally, the valuation
VC on SC is defined by Γ ∈VC(p) if p ∈ Γ . The model MC = 〈SC,RC,VC〉 is called
the canonical model of L. Then one proves the Truth Lemma stating that for each
formula ϕ and Γ ∈ SC:

MC,Γ |= ϕ iff ϕ ∈ Γ .

Now suppose ϕ is L-consistent. Then by the Lindenbaum Lemma (see, e.g., [33],
[37]), {ϕ} can be extended to a maximal consistent set Γ . By the Truth Lemma,
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MC ,Γ |= ϕ . Thus, we found a frame 〈SC,RC〉 that satisfies ϕ . In order to finish the
proof we need to show that 〈SC,RC〉 is an L-frame. If the latter is satisfied, then L is
called canonical. Therefore, canonical modal logics are Kripke complete.

It is a classical result of modal logic that if a normal modal logic L is axiomatised
by Sahlqvist formulas, then L is canonical, and hence Kripke complete, see e.g., [33]
or [37]. Together with the Sahlqvist-van Benthem correspondence result discussed
in the previous section, this theorem guarantees that every logic axiomatised by
Sahlqvist formulas is sound and complete wrt a first-order definable class of Kripke
frames. As a result we obtain that epistemic and doxastic logics S4m, S5m, KD45m
are all sound and complete with respect to corresponding classes of Kripke frames
discussed in the previous section.

We now summarise a number of completeness results for epistemic logics in the
following theorem. Proofs and extensions of them can be found in [47, Chapter 3.1],
and [88, Chapter 2] for epistemic logics, in [88, Chapter 1] and [34, Chapter 4] for
normal modal logics in general and in [51] for LT L. The set of models LIN is
the set of all linear orders: think of them as M = 〈N,Succ,V 〉, where x Succ y iff
y = x+1.

Theorem 2. In the following, m ≥ 1. Item 6 presents a logic and a semantics to
which it is sound and complete. All the other items present logics that are strongly
sound and complete with respect to the mentioned semantics:

1 Km and Km 5 S5m and S5m

2 S4m and S4m 6 S5C
m and S5C

m
3 KD45m and KD45m 7 S5D

m and S5D
m

4 S51 and U1 8 LT L and LIN

Note that by (2), when only finite formulas are allowed, we will not be able to
find a strong completeness result for common knowledge: the set {E p,EE p, . . .}∪
{¬Cp} is consistent, but not satisfiable. For logics with distributed knowledge, we
saw that in the canonical model, we only have RC

D ⊆ ∩a∈AgRC
a . To also obtain

the converse, for any two sets Γ and ∆ for which we have Γ (∩a∈AgRC
a ) ∆ , but

not Γ RC
D∆ , one can replace ∆ by n copies ∆1, . . . ,∆n, with Γ RC

i ∆i. Of course, in
the context of for instance S5, one needs to take care that the relations remain an
equivalence relation, but this can be done: for a discussion see for instance [73].

3.3 Expressivity and definability of Epistemic Models

Speaking with van Benthem’s [14, p. 32], one can ask: ‘When are two information
models the same?’ For instance, although all our five pointed models Mi,si verify
the same scenario σ , do they differ in some other sense?

Definition 3 ((Bi-)simulation). Let M = 〈S,∼,V 〉 and M′ = 〈S′ ∼′,V ′〉 be two epis-
temic models. A simulation between M and M′ is a relation R⊆ S×S′ such that
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Harmony If sRs′ then for all p ∈ At, s ∈V (p) iff s′ ∈V ′(p)
Forth For all a ∈ Ag, if s∼a t and sRs′, then for some t ′ ∈ S′, tRt ′ and s′ ∼′a t ′

R is called a bisimulation if it moreover satisfies

Back For all a ∈ Ag, if s′ ∼′a t ′ and sRs′, then for some t ∈ S, tRt ′ and s∼a t

If sRs′ and R is a simulation, we say that M,s simulates M′,s′; if R is a bisimulation,
we say that M,s and M′,s′ are bisimilar.

As an example, note that M1,s1 simulates M3,s3, while M1,s1 and M5,s5 are
bisimilar. Roughly speaking, if M,s simulates M′,s′, then ignorance (i.e., an Ma-
formula) is preserved from M,s to M′,s′, and knowledge is preserved in the other
direction. A bisimulation preserves both.

Lemma 1. [14, Invariance Lemma] Let M and M′ be finite models. Let L = L(At,
Op,Ag), with Op = {Ka | a ∈ Ag}. Then the following are equivalent:

(a) M,s and M′,s′ are bisimilar,
(b) M,s and M′,s′ satisfy the same formulas ϕ ∈ L.

Proof. For (a)⇒ (b) one can follow a standard argument using induction on ϕ . For
the converse, let (b) be given and define xRx′ as x and x′ satisfy the same formulas
from L. Clearly Atoms holds for R, and also, sRs′. To show Forth, suppose xRx′

while x ∼a y for some agent a. Suppose there is no state y′ in S′ with y ∼a y′ for
which yRy′ holds, i.e., for every y′ with y∼a y′ there is a formula χ

x+
y′− true in x, but

false in y′. Let χ be
∧
{y′|y∼ay′} χ

x+
y′−, then M,x |= χ while M′,x′ |= ¬χ , contradicting

xRx′. Back is proven similarly.

This lemma implies that our pointed models M1,s1 and M2,s2 are not bisimilar,
since MaKb¬p is true in the first, but not in the second.

Where the invariance lemma says that ‘bisimulation has exactly the expressive
power of the modal language’ ([10, p. 56]) the following State Definition Lemma
says that every pointed epistemic model can be characterised by an epistemic for-
mula in the language with common knowledge.

Lemma 2. [14, State Definition Lemma] For each finite pointed epistemic model
M,s there is a formula ϕ ∈ L(At,Op,Ag), with Op = {Ka | a ∈ Ag}∪{C} such that
the following are equivalent (where M′ is finite):

(a) M′,s′ |= ϕ ,
(b) M,s is bisimilar to M′,s′.

The conditions in both lemmas are necessary: finite epistemic states are not defin-
able up to simulation in the language with common knowledge, nor is bisimulation
to finite epistemic models definable in the language without common knowledge
([40]).

For later reference, we conclude this section by stating van Benthem’s character-
isation theorem for modal logic. The standard translation STx takes a modal formula
and returns a first-order formula using the clauses STx(p) = Px, it commutes with
the Boolean connectives and stipulates that STx(2ϕ) = ∀y(xR2y⇒ STy(ϕ)).
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Theorem 3 ([25]). The following are equivalent for first-order formulas Φ(x):

1. Φ(x) is invariant under bisimulation,
2. Φ(x) is equivalent to STx(ϕ) for some modal formula ϕ .

3.4 Epistemic Temporal Frames

Van Benthem and Pacuit ([22]) formalise a notion of time using so-called epistemic
temporal frames F = 〈Σ ,H,∼〉, where Σ is a set of events (say, possible moves in a
game) and H is a set of histories. For this chapter, F can be thought of as a finitely
branching rooted tree labeled with events. The histories are then nothing else than
strings of events. Figure 3 (left) provides an example. FrameF in this figure denotes
a game where agent a can first decide to move L or R, after which b can move either
l or r (so Σ = {L,R, l,r}). For epistemic temporal frames, the indistinguishability
relation is defined over histories, in F of Figure 3 for instance, we have L ∼b R
(agent b does not know which move a starts with) and Ll ∼a Rl (if b plays l, agent
a forgets what his own initial move has been).

The semantic counterpart of no surprise (NS) would then say that for all finite his-
tories H,H ′ ∈H and all events e∈ Σ with He,H ′e∈H, if H ∼a H ′, then He∼a H ′e.
The converse of this would guarantee PR. One might be tempted to think that this
converse ensures Ka

gϕ→ gKaϕ , but this is not the case for ϕ that refer to what is
the case now (like, ‘it is 3 am’) or that refer to ignorance (like ‘a does not know that
ψ’), knowledge of such properties may be given up, even (or especially when) pro-
vided with more information (see [47, page 130] for further discussion). A bounded
agent does not have perfect recall, but instead has a finite bound on the number
of preceding events which they can remember. [22] calls an agent synchronised if
H ∼a H ′ can only occur for histories H and H ′ that have the same length (so the
agent would know how many moves have been played, or, more generally, know
the time of the global clock). In F of Figure 3, both agents are synchronised, agent
b does not satisfy no surprise (he cannot distinguish the histories L and R, but if in
both the same action (say l) is performed, he can distinguish the result), while agent
a does not satisfy perfect recall: he cannot distinguish Ll and Rl, although he knew
the difference between L and R.

Following the pioneering [60] of Halpern and Vardi on the complexity of rea-
soning about knowledge and time, van Benthem and Pacuit highlight in [22] how
several choices in the formalism can have quite dramatic consequences for the de-
cidability and computational complexity (of the validity problem) of the underlying
logic. Choices that heavily influence the complexity regard for instance the language
(does it include an operator for common knowledge, do we allow for temporal oper-
ators for the past and for the future?), structural conditions on the underlying event
structure (what if we give up some conditions of an epistemic temporal frame, or
look at forests rather than trees?) and conditions on the reasoning abilities of the
agents (perfect recall, no surprise, synchronisation, bounded agents). Moreover, [22]
marks the start of a research paradigm that compares and links existing approaches
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Fig. 3 An epistemic temporal frame F (left) and an interpreted system I (right).

to epistemic logic (Kripke models, interpreted systems ([47])), and ‘Parikh style’
logic ([95]), time (history based structures ([95]), runs ([47])), and dynamics, in-
cluding PDL-style logic ([63]) and dynamic epistemic logic (see Chapter 7). Van
Benthem further helped clarify the link between interpreted systems, epistemic tem-
poral logic and dynamic epistemic logic in [20].

Chapter in this volume by Goranko and Pacuit presents a more comprehensive
survey of temporal epistemic frameworks. For examples of completeness results
regarding systems for knowledge and time, we refer to Theorem 4. For a general
discussion on completeness and complexity issues for such logics, and further ref-
erences, we refer to van Benthem and Pacuit’s [22].

3.5 Interpreted Systems

In the 1980s, computer scientists became interested in epistemic logic. This line of
research flourished in particular by a stream of publications around Fagin, Halpern,
Moses and Vardi. Their important textbook [47] surveys their work on epistemic
logic over a period of more than ten years. The emphasis in this work is on inter-
preted systems (IS) as an underlying model for their framework, a semantics that
also facilitates reasoning about knowledge during computation runs in a natural
way. The key idea behind IS is two-fold:

• It provides for a so-called grounded semantics of epistemic logic;
• It adds a dynamic and computational component to this through the notions of

run and protocol.

Where in an epistemic model the equivalence relations ∼a are given, in an inter-
preted system they are grounded in the notion of observational equivalence. To be
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more precise (for formal definitions we refer to [47]), let La be a set of possible local
states for agent a. For example, when modeling a distributed computation, such a
local state could provide the value of the variables associated with processor a, or
in a card game it could be the enumeration of cards held by player a. Moreover, let
Le be a set of possible states for the environment. This state could have information
about a global clock, or keep track of whose turn it is in a card game. The set of
global states of an interpreted system with m agents is then G = Le×L1× . . .×Lm.
If s = 〈se,s1, . . . ,sm〉 ∈ G with sa we mean sa (a ∈ {e} ∪Ag). An example of an
interpreted system is I of Figure 3, where the environment is not modelled (it is
constant, say), Lx = {0,1}, Ly = {0,1,2} and Lz = N.

Two global states s = 〈se,s1, . . . ,sm〉 and s′ = 〈s′e,s′1, . . . ,s′m〉 are now defined
to be indistinguishable for agent i, written s ∼I

i s′, if i’s local state is the same in
both, i.e., if si = s′i. This is clearly an equivalence relation, and hence this notion of
interpreted system gives rise to knowledge of veridical and introspective agents. In
the most general case, we will not always consider the full cartesian product G but
some subset J ⊆ G of it. This represents situations where overall constraints of the
system prevent some global states from being part of the model.

A run over J ⊆ G is a function r : N→J . Intuitively, this captures a computa-
tion, or a behaviour of the system. If r(m) = s, then ri(m) = si is the local state of
agent i in run r at time m. A pair (r,m) is called a point. An interpreted system I
is a pair 〈R,V I〉, where R is a set of runs and V I(p) denotes for each propositional
variable p (‘x is 3’, or ‘i holds card diamond 9’) the set of global states in which it is
true. In other words, we assume that the truth of atoms does not depend on ‘where
we are in the run’, but only on the global state (in particular, if a run r visits the same
global state twice, i.e., r(m) = r(m + k), for some m,k ∈ n, then the truth of atoms
is the same in both points). Moreover, to quote [47, page 112], ‘Quite often, in fact,
the truth of a primitive proposition q of interest depends, not on the whole global
state, but only on the component of some particular agent’. In such cases, the val-
uation V I(q) respects the locality of q, which means that, if s ∼i s′, then s ∈ V I(q)
iff s′ ∈ V I(q). In such a case, the fact that i knows the truth of such a property is
common knowledge. To be more precise, suppose that there is a property xi = 0,
which is true exactly when in i’s local state, the variable xi is equal to 0. Then, we
have C(xi = 0→ Ki(xi = 0)).

It is easy to see that an interpreted system I = 〈R,V I〉 gives rise to an epistemic
model MI = 〈S,∼,V 〉, by taking for S all the points generated by R, and where
(r,m)∼i (r′,m′) iff r(m)∼I

i r′(m′) and (r,m) ∈V (p) iff r(m) ∈V I(p) (so, ∼ and V
defined over points (r,m) is determined by ∼I and V I on global states r(m)).

If we now define I,r,m |= ϕ as MI ,r(m) |= ϕ , we have an interpretation for the
individual and group epistemic notions discussed in Section 2.1. For full interpreted
systems, where G is the full cartesian product Le×L1×·· ·×Lm, we have that com-
mon knowledge is constant over all runs. This is so since for every two global states
s = 〈se,s1, . . . ,sm〉 and s′ = 〈s′e,s′1, . . . ,s′m〉 there is a third state t = 〈se,s1,s′2, . . .〉
‘epistemically connecting them’. The notion of a run in an interpreted system also
directly facilitates the interpretation of temporal formulas: we define for instance
I,r,m |= gϕ as I,r,m+1 |= ϕ .
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For our example system I we assume to have propositional atoms like x = 0,
z = 9. We also identify three runs, r0,r1 and r2. In all of them, the variable z is
increased by 1 in each step, where z = 0 in (r0,0) and (r2,0) and z = 1 in (r1,0). In
both r0 and r2, the values of 〈x,y〉 are a clockwise walk through the xy plane: 〈x,y〉
= 〈0,0〉, 〈0,1〉, 〈0,2〉, 〈1,2〉, 〈1,1〉, 〈1,0〉, 〈0,0〉, . . . . In r2, the variables x and y are
both 0 at even places, and both 1 at odd places.

r0 : 〈0,0,0〉 〈0,1,1〉 〈0,2,2〉 〈1,2,3〉 〈1,1,4〉 〈1,0,5〉 〈0,0,6〉 . . .
r1 : 〈0,0,1〉 〈0,1,2〉 〈0,2,3〉 〈1,2,4〉 〈1,1,5〉 〈1,0,6〉 〈0,0,7〉 . . .
r2 : 〈0,0,0〉 〈1,1,1〉 〈0,0,2〉 〈1,1,3〉 〈0,0,4〉 〈1,1,4〉 〈0,0,4〉 . . .

Let I01 consist of the runs r0 and r1 whereas I12 has the runs r1 and r2. We then
have, in I02,r,〈0,0,0〉:

Kxx = 0∧¬Kxy = 0∧E (x = 0↔ Kxx = 0)∧¬Kx
gx = 1∧Kz

gz = 1

In order to semantically characterise perfect recall in an interpreted system, let, for
an agent i, his local-state sequence at the point (r,m) be the sequence of local states
he has seen in run r up to time m, without consecutive repetitions. So, for the run
r0 above, the local state sequence for agent x at time 4 equals 〈01〉, for agent y it
is 〈0,1,2,1〉, and for z it is 〈0,1,2,3,4〉. We now say that i has perfect recall pr if
whenever (r,m) ∼i (r′,m′), then i has the same local-state sequence at (r,m) and
(r′,m′). In the system I02, agent z has perfect recall, but in I01, he has not. To see
the latter, we have (r0,1) = 〈0,1,1〉 ∼z 〈0,0,1〉= (r1,0), whereas the state sequence
for z in (r0,1) is 〈01〉 while in (r1,0) it is 〈1〉. Indeed, it is easy to see that we have
I01,r0,〈0,0,0〉 |= Kz

gy = 1∧¬ gKzy = 1
An interpreted system I = 〈R,V I〉 satisfies sync if agents know what time it is,

i.e., if for all agents i, we have that (r,m)∼i (r′,m′) implies m = m′.

Theorem 4. We have the following (see [47, Chapter 8]).

1. Both S5m + LT L and S5C
m are sound and complete with respect to the set of all

interpreted systems INT m for m agents.
2. Both S5m +LT L and S5C

m are sound and complete with respect to the set of syn-
chronised interpreted systems INT sync

m .
3. S5m + LT L + PR is sound and complete with respect to the set of synchronised

interpreted systems with perfect recall INT sync,pr
m .

The first item of Theorem 4 suggests that the the static, non-temporal validities
of interpreted systems are axiomatised by S5m, and hence that interpreted systems
are in some sense equivalent to Kripke models. This idea was taken up by Lomus-
cio and Ryan in e.g., [82], roughly (the analysis in [82] is appropriately done at
the level of frames, we give here a summary on the level of models) as follows. In
order to link interpreted systems with S5m structures, [82] restricts themselves to
structures (1) without dynamic component (i.e., systems without runs), (2) where
the state space is the full cartesian product G and (3) where the environment is
not modelled in a global state. This leads to a notion of hypercube, which is just
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L1 × ·· · × L2, where Li is as before, as is the agents’ accessibility relation. Call
the set of hypercubes for m agents Hm. From what we have said above, it follows
that in a hypercube H, common knowledge is constant, i.e., for all states s and t,
we have H,s |= Cϕ iff H, t |= Cϕ (if RCsu, then R1〈t1, t2, . . . , tm〉〈t1,u2, . . .um〉 and
R2〈t1,u2, . . .um〉〈u1,u2, . . .um〉, hence RCtu). However, to show that this discrimi-
nates the validities in Hm from those in S5m, one would need a universal modality.
But we also have the following, which shows that hypercubes behave different form
S5m models (recall that distributed knowledge Dϕ is true in a state s if ϕ holds in
all t for which sRDt, where RD =∼1 ∩ . . .∩ ∼m):

Observation 1 Let H ∈H. Let i, j ∈ Ag. Recall that Miϕ = ¬Ki¬ϕ .

1 In H, we have RD is the identity, that is, sRDt iff s = t.
2 For all global sates s1, . . . ,sm, there is a global state s with s∼i si, for all i≤ m.

From these semantic properties, we derive the following validities on hypercubes:

3 Hm |= ϕ ↔ Dϕ

4 Hm |= MiK jϕ → K jMiϕ

However, those validities do not transfer to S5M:

5 S5m 6|= ϕ ↔ Dϕ

6 S5m 6|= MiK jϕ → K jMiϕ

Proof. Item 1 follows from the fact that s = 〈s1, . . . ,sm〉RD〈t1, . . . tm〉 = t iff s1 =
t1& . . .&sm = tm iff s = t. This immediately implies item 3. For item 5, observe
that in M2,s2 of Figure 2 it holds that p∧¬Dp. For item 2, take s = 〈s1

1,s
2
2, . . . ,s

m
m〉

(i.e., take agent 1’s local state from s1, agent 2’s local state from s2, etc). Obviously,
s ∼i si. One can use a correspondence theory argument to show that this implies
item 4 (see e.g., [82, Lemma 9]). For item 6, consider the model M1 in Figure 1. We
extend this model to M′1 as follows: it makes q true in the two right-most states. Then
we have M′1,s1 |= MaKb¬q∧MbKaq, in other words, M′1 6|= ¬Ka¬Kb¬q→ KbMa¬q.

Observation 1 implies that hypercubes, the static part of interpreted systems, are
a special kind of S5m models, which verify some additional properties. In fact, the
following theorem (for which proof we refer to that of [82, Theorem 20]) shows that
Observation 1 in fact sums up everything that separatesHm from S5m:

Theorem 5 (Based on Theorem 20 of [82]). Let HS5m ⊂ S5m be the set of S5m
models M = 〈S,∼,V 〉 that satisfy:

1. ∀st ∈ S s(∼1 ∩·· ·∩ ∼m)t iff s = t
2. ∀s1, . . . ,sm ∈ S∃s ∈ S such that ∀i ∈ Ag s∼i si.

Then the validities (of the language with operators Ki,C and D) in HS5m and Hm
are the same.
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So, the grounded semantics for knowledge, where it is explained where the ac-
cessibility relations come from, when implemented through hypercubes, the static
counterpart of full interpreted systems, has as a consequence that we get the two
additional properties 3 and 4 of Observation 1 for knowledge, as compared to S5m.
Of course, on can give up the condition of full interpreted systems (in which case
property 4 would disappear), or think about different ways of groundedness in the
first place.

Many theories of multi-agent systems, which try to model notions like knowl-
edge, belief, intentions, commitments, obligations and actions of agents are embed-
ded in the philosophical brand of modal logic, in a way that is similar to what we
discuss here for the knowledge of agents. Computational groundedness was put for-
ward (cf. [108]) to make such theories more relevant to practitioners in multi-agent
systems and distributed artificial intelligence in general. It is therefore no surprise
that attempts to make such intentional notions (see also Chapter 12 of this vol-
ume) grounded are not limited to the notion of knowledge only. For instance, Su
and others ([103]) provided a grounded model for the notions of knowledge, belief
and certainty. Roughly, a state in their models has an external and an internal part:
the external part determines what of the system is visible, and what is not visible,
while the internal part specifies for each agent his perception of the visible part of
the environment state and the plausible invisible parts of the invisible part of the
environment stat that the agent thinks possible. Lomuscio and Sergot even use the
notion of interpreted system to show ‘how it can be trivially adapted to provide
a basic grounded formalism for some deontic issues’ ([83, page 3]). Their mod-
els are basically hypercubes, where each local state Li is then partitioned in a set
of green states (allowed states of computation) and red states (disallowed states).
This enables them to define a notion Oiϕ , with the meaning that ‘in all the possible
correctly functioning alternatives of agent i, ϕ is the case’.

4 Generalised Structures for Knowledge

Kripke structures provide a very natural way to model uncertainty and (lack of)
information, and they are conceptually relatively easy. Depending on the kind of
uncertainty one wants to model, one can often employ correspondence theory and, in
a modular way, add additional constraints on the agents’ accessibility relations. But
there is also a criticism using this semantics, going in the other direction even if we
do not impose any additional constraints on those relations, do we not get properties
(of knowledge or belief) that are in fact too strong? This problem is known as the
logical omniscience problem, and neighbourhood semantics is developed partially
with the aim to address this. Finally, there is a stream of topological models for
epistemic languages, which have their own virtues.
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4.1 Neighbourhood Semantics

So what are possible shortcomings of using relational models for knowledge and
belief? First of all, although this is not implied by the semantics, it is almost always
assumed that all agents are equal: their knowledge and beliefs all satisfy the same
properties. Indeed, in S5m we have, for all ϕ , that ` Kaϕ iff ` ϕ iff ` Kbϕ . Van
Benthem and Liu are among the first to take seriously that ‘epistemic agents may
have different powers of observation and reasoning’ ([21]), and allow for a ‘diversity
of logical agents’. Secondly, if one wants to express that the beliefs of agent a are
correct by adding the axiom Baϕ → ϕ to a logical system, this property becomes
globally valid: every agent knows it, it would even become common knowledge,
and in a temporal setting it will hold forever. A first step to address this was made
in [41].

A more fundamental criticism against using normal modal logic to model infor-
mation of agents is known as logical omniscience. No agent is a perfect reasoner, so
no agent will know all tautologies (of S5, or even the weakest normal modal logic
K). This observation questions the intuitive soundness of Nec. Indeed, security pro-
tocols for communication or authentication that use cryptographic keys are based
on the assumption that agents are not able to oversee all the consequences of the
underlying theory (like inferring whether a given number is prime).

A similar criticism is sometimes used against axiom K: whereas an agent apply-
ing K once seems rather innocent, having it as an axiom implies that the agent can
apply it as often as he likes. As an example, suppose that an agent knows what day
of the week is today, and that he also knows which day of the week it is on any
given day, if he would know this about the previous day. This would imply that the
agent knows which day of the week it is on 25 of August 6034! For a weaker notion
like belief such criticisms are even more compelling. It is argued that humans for
instance might well believe ϕ in ‘one frame of mind’ (e.g., ‘I pursuit an academic
career’) and something that is incompatible with it, in another (’I aim to become
rich’). Some formal manifestations of logical omniscience are the axiom K, the va-
lidity 2(ϕ ∧ψ)↔ (2ϕ ∧2ψ), the inference rule Nec and, some argue, the derived
rule Eq: from ϕ ↔ ψ , infer 2ϕ ↔2ψ .

The idea that it should be possible to believe ϕ in one frame of mind and ¬ϕ in
another is one of the motivating requirements that lead to neighbourhood semantics.
Here, rather than states that are considered possible by the agent, we have sets of
states: each such set represents a possible frame of mind the agent can be in.

Definition 4. A neighbourhood model M = 〈S,N,V 〉 where S is a set of states and
N : Op→W → 22S

assigns a neighbourhood N2(s)⊆ 2S to every state s, for every
operator 2 ∈ Op. As before, V (p) ⊆ S is the valuation function of the model. The
pair F = 〈S,N〉 is a neighbourhood frame. Given a model M, defining JϕKM (or
simply JϕK if M is clear) to be JϕK = {s∈ S |M,s |= ϕ}, the relevant truth condition
for modal operators is

M,s |= 2ϕ iff for some T ∈ N2(s),T = JϕK
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In terms of knowledge: ϕ is known at s if the denotation of ϕ in M is one of
the neighbourhoods of s. Neighbourhood models are more general than relational
Kripke models: given M = 〈S,R,V 〉 one can define M = 〈S,N,V 〉 by

N2(s) = {U ⊆ S : R(s)⊆U}.

Then, for any s ∈ S, the models M,s and M,s satisfy the same formulas. The
other direction does not hold: indeed, under neighbourhood semantics, the prop-
erty (2ϕ ∧2ψ)→2(ϕ ∧ψ) is not valid. If a neighbourhood model M = 〈S,N,V 〉
is augmented, there does exist an equivalent relational model for it, where M is aug-
mented if for all s, (1) ∩T∈N2(s)T ∈ N(s), (2) T1∩T2 ∈ N2(s) only if T1,T2 ∈ N2(s),
and (3) If T1 ∈ N2(s) and T1 ⊆ T2, then T2 ∈ N2(s).

One can ‘recover’ epistemic properties like veridicality and introspection in
neighbourhood semantics by putting further constraints on the neighbourhood func-
tion N. Moreover, it is possible to use this semantics for multi-agent logics: the
notion of ‘everybody knows’ for instance is then the modal operator for the neigh-
bourhood function NE =∩a∈AgNa. For common knowledge this can be done as well:
we here follow [81]. It is not difficult to see that

M,s |= KaKbϕ iff {t ∈ S | JϕK ∈ Nb(t)} ∈ Na(s) (8)

In order to manipulate such expressions, it is convenient to define an algebraic op-
erator ◦ on neighbourhoods as follows. Let T ⊆ S.

T ∈ N1 ◦N2(s) iff {t ∈ S | T ∈ N2(t)} ∈ N1(s) (9)

Equation (8) then becomes: M,s |= KaKbϕ iff JϕK ∈ Na ◦Nb(s). In this context, it is
best to interpret common knowledge as the infinite conjunction

Eϕ ∧E(ϕ ∧Eϕ)∧E(ϕ ∧E(ϕ ∧Eϕ)), . . . (10)

In normal modal logic (10) is equivalent to (2), but using a neighbourhood semantics
it is not! Let the special neighbourhood system E be defined by T ∈ E(s) iff s ∈ T .
We then have N ◦ E = E ◦N = N for every N. Keeping in mind (10) define now a
sequence of neighbourhood systems as follows.

N0 = NE and for any ordinal η ,Nη = NE ◦ (
⋂

ζ<η

Nk ∩E) (11)

We now assume that the systems Na in a model M are closed under supersets, i.e.,
T ∈ Na(s) and T ⊇ T ′ implies that T ′ ∈ Na(s). This notion is sometimes also called
monotony, and ‘makes for smoother theory’, quoting van Benthem et al. ([19]). On
such models, we have

Lemma 3. [81, Lemma 5] Let ξ and η be ordinals. If ξ < η , then Nη ⊆ Nξ .

By Lemma 3, for any s ∈ S the sequence Nη(s) is a decreasing sequence of sets.
Hence, there is a smallest ordinal os such that for all η ≥ os, Nη(s) = Nos(s). Now
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take δ = sup{os | s ∈ S}: we have Nη = Nδ for all η ≥ δ . So the neighbourhood
system against which common knowledge is interpreted is NC = Nδ .

This semantics is characterised by an axiomatisation given by [80], summarised
in Table 4.

Common Knowledge for neighbourhood models
E Eϕ ↔∧

a∈Ag Kaϕ FP Cϕ → E(Cϕ ∧ϕ)
Ind From ϕ → Eϕ , infer Eϕ →Cϕ Mon From ϕ → ψ , infer 2ϕ →2ψ 2 6= E

Table 4 The axioms and rules above are added to the propositional Taut and MP

It is also possible to generalise the notion of bisimulation (to behavioural equiv-
alence) to neighbourhood models, as well as to have a suitable notion of standard
translation to a two-sorted first-order language, where the crucial clause for the
translation is STx(2ϕ) = ∃T (xNT ∧∀y(TEy↔ ST y(ϕ))), where xNT iff T ∈ N(x)
and TEy iff y ∈ T . With such an apparatus in place, [62] has been able to prove
a ‘van Benthem-style’ characterisation theorem for modal logic using a neighbour-
hood semantics. For completeness of modal logics wrt neighbourhood semantics we
refer to e.g., [38] and [61]. An example of a logic that is Kripke incomplete, but is
complete wrt neighbourhood frames can be found in [57].

Neighbourhood semantics are a very powerful tool for reasoning about games as
well, if a neighbourhood is interpreted as a set of states a player can enforce. Van
Benthem et al. use this semantics to define their concurrent game logic ([19], and
Chapter 15 of this book). Interestingly, van Benthem and Pacuit ([23]) have given
an interpretation reminiscent of the notion of groundedness (see Section 3.5) to that
of neighbourhoods: rather than using neighbourhoods as a technical device to study
weak modal logics, they ‘concretely’ interpret a neighbourhood as an ‘evidence set’
of an agent who then can reason about the evidence, beliefs and knowledge —and
their dynamics— he entertains.

4.2 Topological Semantics

Next we will discuss topological semantics of epistemic and doxastic logic. Topo-
logical semantics is closely related to Kripke and neighbourhood semantics. As we
will see below, the standard Kripke semantics of S4 corresponds to special (Alexan-
droff) topological spaces. So topological semantics generalises the Kripke semantics
of epistemic logic. On the other hand, topological models coincide with the neigh-
bourhood models of S4. Nevertheless, it is useful to think in topological terms as it
gives us an elegant and, at the same time, powerful mathematical machinery to in-
vestigate non-standard models of epistemic logic. In topological models of intuition-
istic logic, open sets are treated as ‘observable properties’. In domain theory, Scott
domains are special posets equipped with the so-called Scott topology, where points
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are interpreted as ‘pieces of information’ or ‘results of a computation’. Modal (epis-
temic) logic also provides a useful formalism to reason about (topological) spaces
connecting it to the area of spatial logic.

Topological semantics also brings concrete benefits to the semantics of epistemic
logic as observed by van Benthem and Sarenac [24]. (1) Topological products pro-
vide a way of merging the knowledge of two agents with no new information arising.
(2) More importantly, they address Barwise’s criticism of the Kripke semantics as
the two ways of computing common knowledge, discussed in previous sections, no
longer coincide. (3) Topological products also address Barwise’s other criticism of
Kripke semantics about modelling shared epistemic situation. (4) Finally, in some
important cases (i.e., for distributed knowledge) topological interpretations of epis-
temic notions nicely complement the relational interpretations.

4.2.1 Topological spaces: connection with Kripke and neighbourhood frames

A topological space is a pair (X ,τ), where X is a non-empty set and τ ⊆ P(X)
contains X and /0 and is closed under finite intersections and arbitrary unions. Ele-
ments of τ are called open sets. Complements of open sets are called closed sets.
An open set containing x ∈ X is called an open neighbourhood of x. The interior
of a set A ⊆ X is the largest open set contained in A and is denoted by Int(A). The
closure of A is the least closed set containing A and is denoted by A. In other words,
Int(A) =

⋃{U ∈ τ : U ⊆ A} and A =
⋂{F : X \F ∈ τ,A ⊆ F}. It is easy to check

that A = X \ Int(X \A).
A topological space (X ,τ) is called an Alexandroff space if τ is closed under in-

finite intersections. It is easy to see that a topological space is Alexandroff iff every
point has a least open neighbourhood (the intersection of all its open neighbour-
hoods). It is also well known that Alexandroff spaces correspond to reflexive and
transitive Kripke frames. Indeed, given an Alexandroff space (X ,τ) one can define
a reflexive and transitive binary relation Rτ on X by putting xRτ y iff x ∈ {y} (that is,
every open set that contains x also contains y). Conversely, suppose X is a set with a
reflexive and transitive relation R. We say that U ⊆ X is an upset if for each x,y∈ X ,
xRy and x ∈U imply y ∈U . We define τR as the set of all upsets of (X ,R). Then
(X ,τR) is a topological space and R(x) = {y ∈ X : xRy} is the least open neighbour-
hood containing the point x. Thus, (X ,τR) is Alexandroff. It is easy to check that this
correspondence is one-to-one. Therefore, reflexive and transitive Kripke frames can
be seen as particular examples of topological spaces. This connection between re-
flexive and transitive orders and topologies is at the heart of the translation between
the plausibility and evidence models of dynamic epistemic logic, see [23, Sec. 5]
for details.

Now we will quickly review the connection between topological spaces and
neighbourhood frames. Let (X ,N) be a neighbourhood frame satisfying the follow-
ing five conditions:

1. for each x ∈ X we have U ∈ N(x) and U ⊆V imply V ∈ N(x).
2. for each x ∈ X we have U,V ∈ N(x) implies U ∩V ∈ N(x).
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3. for each x ∈ X we have N(x) 6= /0.
4. for each x ∈ X we have U ∈ N(x) implies x ∈U .
5. for each x ∈ X and U ∈ N(x) there exists V ∈ N(x) such that V ⊆U and for each

y ∈V we have V ∈ N(y).

Let (X ,τ) be a topological space. Then a set A is called a neighbourhood of x
if x ∈ A and there is an open neighbourhood U of x (i.e., U ∈ τ with x ∈U) such
that U ⊆ A. Let Nτ(x) = {A : A is a neighbourhood of x}. Then it is easy to check
that (X ,Nτ) is a neighbourhood frame satisfying conditions (1)-(5). Conversely, if
(X ,N) is such that it satisfies (1)-(5) we define a topology τ on X by τN = {U :
U ∈ N(x) for each x ∈ U}. Then (X ,τN) is a topological space. Moreover, it is
not difficult to check that this correspondence is one-to-one. We refer to e.g., [74,
Theorem 2.6] for all the details. We would like to mention that conditions (1)-(5) are
exactly those that correspond to the axioms of the modal logic S4 (see, e.g., [38]).
To be more precise the transitivity axiom (2p→22p) correspondence to condition
(5′) below.

5′ for each x ∈ X and U ∈ N(x) there exists V ∈ N(x) such that for each y ∈ V we
have U ∈ N(y).

But it is easy to show that a neighbourhood frame (X ,N) satisfies (1)-(5′) iff it
satisfies (1)-(5). Thus, topological spaces correspond to neighbourhood frames of
the modal logic S4.

4.2.2 Topological models of epistemic logic

A triple M = (X ,τ,ν) is a topological model if (X ,τ) is a topological space and ν

a map from the propositional variables to P(X). We assume that we work with the
modal language introduced in Definition 1. Truth of a formula ϕ in the model M at
a point x, written as M,x |= ϕ , is defined inductively as follows:

M,x |= p iff x ∈ ν(p)
M,x |= ϕ ∧ψ iff M,x |= ϕ and M,x |= ψ

M,x |= ¬ϕ iff not M,x |= ϕ

M,x |= 2ϕ iff ∃U ∈ τ such that x ∈U and ∀y ∈U M,y |= ϕ .

Let [[ϕ]]ν = {x∈ X : M,x |= ϕ}. We will skip the index if it is clear from the context.
It is easy to see that the last item is equivalent to [[2ϕ]] = Int([[ϕ]]). Moreover, as
3ϕ = ¬2¬ϕ , we have that [[3ϕ]] = [[ϕ]]. A pointwise definition of the semantics
of 3 is as follows:

M,x |= 3ϕ iff ∀U ∈ τ such that x ∈U , ∃y ∈U with M,y |= ϕ .

Note that if (X ,τ) is an Alexandroff space, then the above definition of the semantics
of formulas coincides with the one defined in Section 3.1 for Kripke models. Also if
we view topological models as particular examples of neighbourhood models, then
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the above semantics coincides with the semantics of formulas in neighbourhood
models defined in Section 4.1. The notion of satisfiability and validity of formulas
in topological models as well as topological soundness and completeness of logics
is defined in the same way as in Section 4.1.

Let us look at an example of topological interpretations. Let R be the real line
where a topology τ on R is given by open intervals and their unions. Let also ν(p) =
[0,1) = {r ∈ R : 0≤ r < 1}. We invite the reader to check that

• [[2p]] = (0,1),
• [[3p]] = [0,1],
• [[3p∧3¬p]] = {0,1},
• [[p∧3p∧3¬p]] = {0},
• [[¬p∧3p∧3¬p]] = {1}.

Now we briefly discuss why topological models are of interest from the epis-
temic logic point of view. Topological semantics of modal logic precedes Kripke
semantics and dates back to the 1930s. Already back then topological models were
used to model knowledge in the context of intuitionistic logic (see e.g., [104]). Open
sets can be interpreted as ‘pieces of evidence’, e.g., about location of a point. This
reflects on the Brouwer-Heyting-Kolmogorov semantics, which informally defines
intuitionistic truth as provability and specifies the intuitionistic connectives via op-
erations on proofs. One could extend this reading to modal logic and give epistemic
interpretation to 2a p in a topological model as: there exists a piece of evidence for
agent a (i.e., an open set in a’s topology), which validates the proposition p. We
point out again that in [23] neighbourhood models are used to model the evidence
of agents. Thus, the topological/neighbourhood model setting does not just refine
the analysis of deduction or static attitudes, but also allows for a richer repertoire
of dynamic information-carrying events. As we will see below, topological mod-
els also give a (nice) way to ‘naturally’ merge the knowledge of different agents
(see van Benthem and Sarenac [24] for more discussion on topologies as models of
epistemic logic).

Finally, going a bit beyond epistemic logic, we remark that a related view of con-
necting topology to computer science proved to be very influential. In fact, many
topological concepts provide natural interpretations to important notions of com-
putability theory. For example, data type corresponds to a topological space, piece
of data to a point, semi-decidable property (observable property, affirmable prop-
erty) to an open set, computable function to a continuous map, etc. We refer to
[100, 1, 46, 105] for a thorough investigation of this line of research.

4.2.3 Topo-bisimulations

Similarly to the relational semantics, in order to understand the expressive power
of modal languages on topological models one needs to define the corresponding
notion of a bisimulation. This has been done by van Benthem and Aiello in [2].
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Definition 5. A topological bisimulation or simply a topo-bisimulation between two
topological models M = (X ,τ,ν) and M′ = (X ′,τ ′,ν ′) is a non-empty relation T ⊆
X×X ′ such that if xT x′ then:

Harmony x ∈ ν(p) iff x′ ∈ ν ′(p), for each p ∈ P,
Forth (x ∈U ∈ τ)⇒ (∃U ′ ∈ τ ′) (x′ ∈U ′&(∀y′ ∈U ′)(∃y ∈U)(yTy′))
Back (x′ ∈U ′ ∈ τ ′)⇒ (∃U ∈ τ) (x ∈U&(∀y ∈U)(∃y′ ∈U ′)(yTy′))

In other words T is a bisimulation if T -image and T -inverse image of an open set
is open. Two topological models are topo-bisimilar if there is a topo-bisimulation
between them.

Let us look at some examples. First note that if two topological models are
based on Alexandroff spaces, then a topo-bisimulation is the same as the standard
Kripke bisimulation (Definition 3) between the corresponding reflexive and tran-
sitive Kripke models. Recall that a topology on the real line R is given by open
intervals and their unions. Let W = {s,s−,s+} and let � be the reflexive closure of
{(s,s−),(s,s+)}. Then (W,�) is the so-called 2-fork. Obviously the 2-fork is reflex-
ive and transitive. So it corresponds to an Alexandroff space. It is now an easy ex-
ercise to check that the relation T between R and W defined as: T (0,s), T (r,s−) for
each r ∈R with r < 0 and T (r,s+) for each r ∈R with r > 0, is a topo-bisimulation.
In fact, there is a deeper connection between these two structures. We refer to [3]
and [16] for more details on the connection of the spatial logic of R and the logic of
the 2-fork.

Let Q be the set of rational numbers equipped with the topology induced from
the reals. That is, open sets of Q are intersections of R-open sets with Q. Now it
is easy to check that T ⊆ R×Q defined as: T (z,z) for each z ∈ Z, T (r,q) for each
r ∈ R and q ∈Q with z < r,q < z+1, for each z ∈ Z is a topo-bisimulation.

In the two cases above we assumed that ν(p) = /0 for each p. Now consider
an example where this is not the case. Let R and R′ be two isomorphic copies of
the reals, with v(p) = [0,1] and v′(p) = (0′,1′). Then there is no topo-bisimulation
between (R,ν) and (R′,ν ′) relating 0 to any point r′ ∈ R′. To see this, note that by
the basic case of the topo-bisimulation, r′ ∈ (0′,1′). But then, by the forth condition,
for U ′ = (0′,1′) there exists a neighbourhood U of 0 such that every point in U is
topo-bisimilar to some point in (0′,1′). But this is impossible as each neighbourhood
of 0 contains a point t < 0. Then t cannot be topo-bisimilar to any point in (0′,1′) as
t does not satisfy p. Thus, there is no topo-bisimulation between (R,ν) and (R′,ν ′)
relating 0 to some point in R′.

Similarly to bisimilar Kripke models, topo-bisimilar models satisfy the same
modal formulas. That is, if x ∈ X and x′ ∈ X ′ and xT x′, then M,x |= ϕ iff M′,x′ |= ϕ ,
for each formula ϕ . The converse is true for finite models. The notion of bisimilarity
can also be expressed using games (see e.g., [2]).

The celebrated van Benthem’s characterisation theorem (Theorem 3), states that
on Kripke models modal logic is the bisimulation invariant fragment of first-order
logic. An analogue of this theorem for topo-bisimulations and the language Lt (an
analogue of the first-order language for topological spaces) was proved in [36].
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4.2.4 Topological Completeness

Now we turn to deductive systems and the issues of axiomatisation and topological
completeness. Note that the interior and closure operators satisfy the following well-
known Kuratowski axioms (see e.g., [42]):

1. Int(X) = X , /0 = /0,
2. Int(A∩B) = Int(A)∩ Int(B), A∪B = A∪B.
3. Int(A)⊆ A A⊆ A.

4. Int(A)⊆ Int(Int(A)), A⊆ A.

It is easy to see that the above implies that S4 is sound with respect to topologi-
cal semantics. In fact, 1-4 above are the axioms of S4 translated into topological
terms. For completeness, we need to show that if ϕ is S4-consistent, then there ex-
ists a topological model (X ,τ,ν) satisfying ϕ . As we know (e.g., by the standard
canonical Kripke model argument), if ϕ is S4-consistent, then ϕ is satisfiable in a
Kripke model with a reflexive and transitive relation. As every reflexive and transi-
tive Kripke frame corresponds to an Alexandroff space, the completeness follows.
Van Benthem and his collaborators, however, gave a different, elegant and more
self-contained proof of this result by introducing a topo-canonical model (a topo-
logical analogue of a canonical Kripke model) [3], [15]. We will quickly sketch the
basic idea of this construction.

The topo-canonical model of S4 (in fact, instead of S4 we can consider any logic
L over S4) is a triple MC = (XC ,τC ,νC), where XC is the set of all maximal S4-
consistent sets. Elements of τC are unions of the sets Uϕ = {Γ ∈ XC : 2ϕ ∈ Γ }. In
other words, {Uϕ : ϕ is any formula} forms a basis for τC . Finally, we put Γ ∈ νC(p)
if p ∈ Γ . Then (XC ,τC ,νC) is a topological model. Moreover, the Truth Lemma
holds for this model. That is,

MC ,Γ |= ϕ iff ϕ ∈ Γ .

Now if ϕ is S4-consistent, then by the Lindenbaum Lemma (see, e.g., [33],
[37]) {ϕ} can be extended to a maximal S4-consistent set Γ . By the Truth Lemma,
MC ,Γ |= ϕ , which finishes the proof.

As mentioned above, the topo-canonical model construction can be defined for
any normal modal logic L extending S4. In analogy with the relational case, in the
topological setting too one can define the notion of canonicity. A logic L ⊇ S4 is
called topo-canonical if the topo-canonical model of L is based on a topological
space validating L. Topo-canonical logics have been thoroughly investigated in [31].

So S4 is sound and complete with respect to all topological spaces. However, next
question is whether one can find ‘good’ topological spaces for which S4 is sound and
complete. The classical result of McKinsey and Tarski [87] states that S4 is sound
and complete with respect to any dense-in-itself metrizable separable space. This
includes the real line R, and in general any Euclidean space Rn, the Cantor space
C, the space of rational numbers Q, etc. There is a number of different proofs of
completeness of S4 with respect to these structures, see e.g., [89], [3], [90], [29], [70]
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and [15] for an overview. Here we only give a sketch of the basic idea underlying
most of these proofs. Strong completeness of S4 with respect to any dense-in-itself
metric separable space was recently shown in [79] and [78]. A full axiomatization
of the space of rational numbers Q in the language with topological and temporal
modalities F and P was given in [98]. Recently, [71] gave a full axiomatization of
the real line R in the same language.

As S4 is sound with respect to all topological spaces, it is obviously sound with
respect to each of the topological spaces mentioned above. For completeness, as-
sume that ϕ is S4-consistent. Then as S4 has the finite model property (see e.g.,
[33, 37]) there exists a finite rooted, model M = (W,R,V ), with a root r, such that
R is reflexive and transitive and M,r |= ϕ . Sometimes it is useful to exploit here the
completeness of S4 with respect to other structures, say an infinite binary tree, etc.
As R is reflexive and transitive, (W,R) could be viewed as an Alexandroff space and,
thus, M is a topological model. Now let (X ,τ) be the topological space for which we
want to prove the completeness of S4 (e.g., R, Q, C, etc.). If we manage to define a
valuation ν on X so that M and (X ,τ,ν) are topo-bisimilar, then as topo-bisimilar
points satisfy the same formulas, (X ,τ,ν) will satisfy ϕ . In order to show that such
a valuation and bisimulation exist, it is sufficient to prove that there exists a contin-
uous and open map f : X →W . Recall that f is continuous if the inverse f -image
of an open set is open, and f is open if the direct f -image of an open set is open.
Suppose such a map exists. Then we define ν(p) = f−1(V (p)). Moreover, the graph
of this map will be a topo-bisimulation. Thus, the proof of completeness is reduced
to defining a continuous and open map. This is not an easy task and there are many
different constructions for different topological spaces. We refer to [15], and the ref-
erences therein, for the details on this and on the topological completeness results
obtained via this method.

So far we saw only one (epistemic) logical system associated with topological
semantics - the modal logic S4. In the next section we will discuss few different
ways of obtaining (epistemic) topological logics beyond S4. We want to reiterate
that the ideas and insights of van Benthem were instrumental in advancing these
research directions.

First we briefly discuss topological models with restricted valuations. When eval-
uating formulas in, for example, the real line R, instead of the whole powerset,
one could consider evaluating formulas as intervals and their finite (or countable)
unions. In the real plane one could take (unions) of convex sets, polygons, or rect-
angles. Such evaluations, and corresponding logics have been studied in [107], [3]
and [16], see also [15]. In particular, [16] shows that such restricted valuation can
capture the difference between dimensions of Euclidean spaces. This cannot be done
with standard interpretations as the logic of any Eucledean space is S4. We refer to
[75] for a thorough study of the computational aspects of the logics arising from
Eucledean spaces.
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4.2.5 Topological products

Taking products is a natural way of combining two Kripke complete modal log-
ics [52]. The problem with this is that the resulting logic might become much
more complex than the original ones. For example, the logic S4× S4 is undecid-
able [54], whereas S4 is decidable. Moreover, when taking products of Kripke
frames, the resulting frame always validates the extra axioms of commutativity
(2122 p↔ 2221 p) and Church-Rosser (3122 p→ 2231 p). In [17] van Benthem
and his collaborators defined topological products of topological spaces. We briefly
recall this construction.

Let (X ,τ) and (X ′,τ ′) be topological spaces. Suppose A ⊆ X ×X ′. We say that
A is horizontally open (in short, H-open) if for any (x,x′) ∈ A, there exists U ∈ τ

such that x ∈U and U ×{x′} ⊆ A. Vertically open sets (in short, V-open sets) are
defined similarly. We let τ1 and τ2 denote the collection of all horizontally and
vertically open subsets of X ×X ′, respectively. It is easy to see that τ1 and τ2 are
topologies. Modal operators 21 and 22 in a product model M = (X ×X ′,τ1,τ2,ν)
are interpreted as follows.

M,(x,x′) |= 21ϕ iff ∃U ∈ τ1 such that x ∈U and ∀y ∈U , M,(y,x′) |= ϕ .
M,(x,x′) |= 22ϕ iff ∃U ∈ τ2 such that x′ ∈U and ∀z ∈U , M,(x,z) |= ϕ .

Consider as an example (R×R,τ1,τ2), and let ν(p) = [0,1)×{0}. Then it is easy
to see that

• [[21 p]] = (0,1)×{0},
• [[31 p]] = [0,1]×{0},
• [[22 p]] = /0,
• [[32 p]] = [0,1)×{0}.

This operation can be extended to a notion of a product of two topologically
complete modal logics. Given topologically complete uni-modal logics L and L′,
their topological product is the bi-modal logic of the product frames X ×X ′, where
X is a topological frame for L and X ′ for L′, respectively.

Surprisingly enough, topological products turned out to be very well behaved.
[17] shows that the topological product of S4 with itself is the same as the logic
S4⊗ S4, S4 fusion S4, which is decidable. The fusion is just the smallest bi-modal
logic that contains S4-axioms for both modalities. Thus, no extra axiom is valid
on product topological spaces. The Church-Rosser and commutativity axioms can
be refuted on the product space R×R. Moreover, the logic S4⊗ S4 is sound and
complete with respect to the product space Q×Q. It is still an open question to find
an axiomatisation of the logic of R×R [77].

One could view topological products of epistemic logics as a new and interesting
way of merging the knowledge of two agents [24]. The fact that unlike relational
products, no new axiom is valid in the topological case, shows that when we ‘topo-
logically merge’ (via taking topological products of uni-modal epistemic logics)
the knowledge of two agents, no new information arises. Topological products have
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other nice properties. Recall that in relational semantics the distributed knowledge
of agents (which describes what a group would know if its members decided to
merge their information) is expressed by taking the DA operator – the Box operator
of the intersection of the relations. In topological products one expresses distributed
knowledge by taking the interior of the join of the topologies. By the join of two
topologies we mean the least topology that contains both topologies. We note that
in the topological case the join is not always very interesting e.g., for Q×Q, the
join of horizontal and vertical topologies is just the discrete topology (all sets are
open). We refer to [24] for all the details on this.

However, there is not always an analogy between relational and topological se-
mantics of epistemic logic. In fact, (in some way) topological models provide a
richer landscape for interpreting epistemic logic, than the relational semantics. In
his well-known paper [7] Barwise underlined that a proper analysis of common
knowledge must distinguish the following three approaches:

1. countably infinite iteration of individual knowledge modalities,
2. the fixed point view of common knowledge as ‘equilibrium’,
3. agents having a shared epistemic situation.

The relational semantics of epistemic logic cannot properly distinguish these
three approaches (see Section 3.1), whereas topological semantics (topological
products) suits this purpose perfectly well. Recall that in the Kripke semantics the
approximation of the common knowledge operator stabilises in κ ≤ ω steps. It was
noted by van Benthem and Sarenac [24] that this is no longer the case in topological
semantics, thus addressing Barwise’s criticism.

In topological models common knowledge as equilibrium is expressed by taking
the intersection of topologies. We will quickly sketch this argument. Let τ1 and τ2 be
two topologies. Here we do not need to assume that these topologies are the vertical
and horizontal topologies of a product space. Recall from the previous section that
Cϕ = νx(ϕ ∧21x∧22x). Let ψ = ϕ ∧21x∧22x. Then Cϕ = νxψ . As it was also
discussed in the previous section, [[Cϕ]]V = [[νxψ]]V =

⋃{U ∈P(W ) : U ⊆ [[ψ]]VU
x
}.

Now observe that for each i = 1,2 we have [[2ix]]VU
x

= Intτi(U). Hence, for i = 1,2
we have U ⊆ [[2ix]]VU

x
iff U is τi-open. Thus, U ⊆ [[ψ]]VU

x
iff U ⊆ [[ϕ]]V and U is τ1

and τ2-open. Therefore, [[Cϕ]]V =
⋃{U ⊆ [[ϕ]]V : U ∈ τ1∩ τ2} = Intτ1∩τ2([[ϕ]]). So

topologically the common knowledge corresponds to the interior of the intersection
of the topologies.

It is proved in [24] that the (countably) infinite iterations of the individual knowl-
edge modalities may not be (horizontally or vertically) open. Hence, computing Cϕ

as fixed equilibrium and as countable iterations of ϕ ∧E> in topological models
diverge. This fact captures the difference between (1) and (2) above. A similar ob-
servation was made in [81, Proposition 4] for neighbourhood frames.

In a topological setting one can also analyse a ‘shared situation’ when there is
a new group concept τ that only accepts very strong collective evidence for any
proposition. This corresponds to adding the standard product topology on top of the
horizontal and vertical topologies. Thus, formally speaking, we have three operators,
the horizontal and vertical 21, 22 and also 2 of the standard product topology.
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This again addresses Barwise’s critical comments on common knowledge in the
topological setting by showing that (3) can also differ from (1) and (2). It was proved
in [17] that the logic of such spaces is the ternary modal logic obtained by adding
the axiom 2p→ (21 p∧22 p) to the three dimensional fusion logic S4⊗S4⊗S4.

Next we give an example that illustrates how to compute topologically common
and shared knowledge. This example also shows that these two notions differ. Con-
sider the topological product R×R with horizontal and vertical topologies. Let 2

be interpreted as the interior of the standard product topology. We let ν(p) be the
‘cross’ or the ‘pair of orthogonal bow ties’ depicted in Figure 4.2.5 (we leave it up
to the readers imagination to derive an appropriate name for this valuation). We as-
sume that ν(p) has no boundaries, but the point (0,0) belongs to it. A very similar
example can be found in [15], [17] and [24]. Obviously one could give a formal
mathematical description of ν(p), but we prefer to stick with a picture that provides
sufficient intuition. Then it is easy to check that

• [[21 p]] = [[22 p]] = [[Cp]] = ν(p),
• [[2p]] = ν(p)\{(0,0)}.

Fig. 4 The cross-valuation on the product space

Finally, we note that another epistemic logic S5 also admits topological seman-
tics, but much more exotic one than S4. We say that a topological space is a clopen
space if every closed subset of it is also open. Examples of such spaces are discrete
spaces (every subset is open), and also the spaces with the trivial topology (only the
empty set and the whole space are open). We recall that S5 can be obtained from S4
by adding the axiom p→ 23p or alternatively by adding the axiom 3p→ 23p.
Translating this into topological terms, a topological space (X ,τ) validates S5 iff
A ⊆ Int(A) for each A ⊆ X . This is equivalent to the fact that every closed sub-
set of X is open. This means that S5 is sound with respect to clopen spaces. For
the topological completeness of S5 one can apply Kripke completeness of S5 and
the argument that was used in the topological completeness of S4, see [15] for the
details.
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For the topological completeness of other extensions of S4 such as the logic
S4.Grz we refer to [44] and [30]. Questions on modal definability of (classes) of
topological spaces were studied in [53]. Topological completeness of S4 with the
universal modality with respect to connected spaces was proved in [99] and further
generalised in [29]. Measure-theoretic semantics of this logic can be found in [48].

Another approach (similar in essence, but different in technicalities) to topologi-
cal interpretations of epistemic logic goes via the so-called subset spaces [92]. This
interpretation uses a bimodal language. This led to introducing topologic – the ax-
iomatic system (in this extended language) sound and complete wrt all topological
spaces [55, 56]. Completeness of topologic via canonical model construction was
proved in [39]. We will not discuss this approach here, but will instead refer to
an overview article [94] for all the details and references. Further generalisations
and stronger completeness results for topologic and multi-agent epistemic logics
of subset spaces have been obtained by Heinemann in [64, 65, 67, 66]. However,
Heinemann achieves this by adding more than ‘just’ several knowledge operators
Ki to subset space logic: they are definable from other operators that are added, and
they do not have the S5 properties of knowledge. Only recently, Wang ad Ågotnes
([106]) gave a complete axiomatisation for multi-agent epistemic subset space logic
as a generalisation of the single agent case.

4.2.6 Topological models of doxastic logic

In this section we discuss a different topological semantics of modal logic via the
derived set operator. As we will see below this semantics admits doxastic interpre-
tations, nicely complementing the epistemic semantics of the closure and interior
operators discussed in the previous section. We will again concentrate on the issues
of expressivity (bisimulations) and topo-completeness for this semantics.

Let (X ,τ) be a topological space. We recall that a point x is called a limit point
(limit points are also called accumulation points) of a set A ⊆ X if for each open
neighbourhood U of x we have (U \ {x})∩A 6= /0. A point x ∈ A is called an iso-
lated point of A if x /∈ d(A). Let d(A) denote all limit points of A. This set is called
the derived set and d is called the derived set operator. For each A ⊆ X we let
t(A) = X \ d(X \A). We call t the co-derived set operator. Also recall that there
is a close connection between the derived set operator and the closure operator. In
particular, for each A ⊆ X we have A = A∪ d(A). Thus, the derived set operator
is more expressive than the closure operator, see [26] for a discussion on this. Un-
like the closure operator there may exist elements of A that are not its limit points.
In other words, in general A 6⊆ d(A). To see this, consider the real line R and let
A = [0,1]∪{2}. Then 2 /∈ d(A), but 2 ∈ A.

Let (X ,τ) be an Alexandroff space. That is, τ is the set of all upsets for some
reflexive and transitive relation R. By spelling out the definition of the derived set,
we observe that x ∈ d(A) for some A⊆ X iff there is y ∈ A such that x 6= y and xRy.
So d(A) = {x ∈ X : ∃y ∈ A, such that xRy & x 6= y} (see [45] for more details on the
derived set operator in Alexandroff spaces).
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Let M = (X ,τ,ν) be a topological model. We now define a new semantics for 2

and 3 using the derived set operator. All the Boolean cases are the same as before,
the only difference is in the way the modal operators are interpreted.

M,x |= 2ϕ iff ∃U ∈ τ such that x ∈U and ∀y 6= x with y ∈U , M,y |= ϕ .
M,x |= 3ϕ iff ∀U ∈ τ such that x ∈U , ∃y 6= x with y ∈U and M,y |= ϕ .

We again assume that [[ϕ]]ν = {x∈ X : M,x |= ϕ}, and we skip the index if it is clear
from the context. It is easy to see that [[2ϕ]] = t([[ϕ]]) and [[3ϕ]] = d([[ϕ]]).

In this context too the main questions to ask are what are bisimulations for topo-
logical models with this new interpretation and what kind of completeness results
one can obtain. We first briefly address the bisimulation issue and then move to
completeness and doxastic interpretations. In fact, the notion of a d-bisimulation of
topological models is the same as a topo-bisimulation with the only difference that
in Definition 5 in the forth and back conditions we add y′ 6= x′ and y 6= x. We call
these bisimulations d-bisimulations. The notion of d-bisimilarity is defined sim-
ilarly to topo-bisimilarity. Then one can prove that d-bisimilar points satisfy the
same modal formulas. [26] defines d-morphisms and shows that d-morphisms are
functional d-bisimulations. (d-morphism is a continuous and open map such that the
inverse image of each point is a discrete space in the induced topology. This defini-
tion turned out to be very useful as checking whether a map between two topological
spaces is a d-morphism is relatively easy.)

Fixed point operators have an interesting role to play in topological semantics of
derived set operator as well. For example, consider a simple formula µx2x. We note
again that we interpret fixed point formulas in topological structures in the same way
as in Kripke structures (see Section 3.1). Then µx2x is valid in a topological space
X iff X is scattered. To see this, recall that X is scattered iff every non-empty subsets
U of X has an isolated point. That is, for U ⊆ X ,

U 6= /0⇒U \d(U) 6= /0. (12)

It was noted in Esakia [44] that (a logical formulation) of (12) is equivalent (over
topological spaces and also over transitive Kripke frames) to the Gödel-Löb axiom
(2(2p→ p)→ 2p). Now it is easy to see that (12) is equivalent to the following,
for U ⊆ X ,

U 6= X ⇒ t(U) 6⊆U. (13)

Thus, the only subset U of X such that t(U)⊆U is the whole space X . Therefore,

X =
⋂
{U ⊆ X : t(U)⊆U}=

⋂
{U ⊆ X : [[2x]]VU

x
⊆U}= [[µx2x]]. (14)

So X is scattered iff µx2x is valid in X . As µx2x has no free variables, validity and
satisfiability for this formula are equivalent.

The fact that scatteredness of a space can be captured by fixed point formu-
las is not very surprising as scatteredness is a topological analogue of dual well-
foundedness [44] and it was shown in [12] (see also [18]) that µx2x together with
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the transitivity axiom expresses dual well-foundedness of a Kripke structure. A sim-
ilar observation in algebraic terms (for the so-called diagonalisable algebras) has
been made already in [59].

Now we turn to the issue of soundness and completeness. First recall (see e..g.,
[42]) that the derived and co-derived set operator satisfy the following axioms.

1. t(X) = X , d( /0) = /0,
2. t(S∩T ) = t(S)∩ t(T ), d(S∪T ) = d(S)∪d(T ).
3. A∩ t(A)⊆ t(t(A)) d(d(A))⊆ A∪d(A).

Recall that wK4 is a modal logic obtained form the basic modal logic K by adding to
it the following weak transitivity axiom (p∧2p)→ 22p. The logic wK4 is sound
and complete with respect to Kripke frames with weakly transitive relations, where
the relation is weakly transitive if xRy, yRz and x 6= z imply xRz [45].

The three properties of derived and co-derived set operators listed above imply
that wK4 is sound with respect to topological semantics. In fact, Esakia [45] proved
that wK4 is also complete with respect to all topological spaces. A topological space
(X ,τ) is said to satisfy the TD-separation axiom (is a TD-space, for short) if every
point of X is the intersection of a closed and an open set. In fact, this condition is
equivalent to d(d(A)) ⊆ d(A), for each A ⊆ X [42]. This implies that K4 is sound
with respect to TD-spaces. [45] showed that K4 is also complete with respect to TD-
spaces. For topological d-semantics of the provability logic GL, polymodal prov-
ability logic GLP, the logics of the rationals, real line and Euclidean spaces, as well
as the logics of all T0-spaces, Stone and spectral spaces and many more, we refer to
[44, 45, 43, 97, 85, 84, 86, 70, 8, 26, 27, 28, 15].

We close this section by reviewing topological completeness of the doxastic
modal logic KD45, see [102] and [94]. The fact, mentioned above, that in general
A 6⊆ d(A) yields that the reflexivity axiom p→ 3p (equivalently 2p→ p) is not
sound with respect to this semantics, which makes this semantics suitable for dox-
astic logic. Recall that Kripke frames of KD45 are serial, transitive and Euclidean.
As we saw above, the topological reading of the transitivity axiom gives us TD-
spaces. It is well known that in normal modal logic the seriality axiom 2p→ 3p
is equivalent to 3>. Translating this into the topological terms we obtain the con-
dition d(X) = X . This means that every point of X is a limit point. Such spaces
are called dense-in-itself. Finally, the topological reading of the Euclidean axiom
3p→ 23p results in the condition d(A)⊆ t(d(A)). It is easy to see that a set A is
closed iff d(A)⊆ A. Dualising this, we obtain that a set A is open iff A⊆ t(A). Thus,
d(A)⊆ t(d(A)) is equivalent to d(A) being open.

The above leads to the following definition. A topological space (X ,τ) is called
a DSO-space2 if it is dense-in-itself TD-space such that d(A) is an open set for each
A⊆X . The discussion above shows that KD45 is sound with respect to DSO-spaces.
Next we give an example of a DSO-space. Let (N,τ) be the set N of natural numbers
equipped with the topology τ = { /0, all cofinite sets}. Then it is not hard to check
that for each A⊆ N we have

2 DSO stands for Derived Sets are Open.
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d(A) =

{
/0, if A is finite,
N, if A is infinite.

This implies that (N,τ) is a DSO-space.
Now we turn to the issue of completeness of KD45 with respect to DSO-spaces.

First note that with every weakly transitive frame (X ,R) we can associate a topology
τR of all R-upsets. Observe that this topology will be the same as the topology of all
upsets of the reflexive closure of R. Indeed, A ⊆ X is an upset iff it is an upset for
the reflexive closure of R.

Let (X ,R) be a KD45-frame (that is, serial, Euclidean, transitive). Note that
(X ,τR) defined above, in general, is not a DSO-space. In fact, it is a DSO-space iff
there are no distinct points x,y∈ X such that xRy. To see this, note that if such points
exist, then d({y}) is not an upset: we have x ∈ d({y}), and xRy, but y /∈ d({y}) (use
the definition of d on Alexandroff spaces in the beginning of this section). So {y}
is such that d({y}) is not open. Thus, (X ,R) does not correspond to a DSO-space.
The converse direction is similar. Therefore, we cannot use directly the Kripke com-
pleteness of KD45 for deriving its topological completeness, as we did for S4. Nev-
ertheless, one could still use Kripke completeness of KD45 to obtain topological
completeness. We sketch the proof. All the details can be found in [102] and [94].

Assume that ϕ is KD45-consistent formula. Then, by Kripke completeness of
KD45, there exists a Kripke model (W,R,ν), where R is serial, transitive and Eu-
clidean relation such that (W,R,ν) satisfies ϕ . Now let us take a product of this
frame (seen as the Alexandroff space) with the DSO-space (N,τ) discussed above.
Then one can show that N×W is a DSO-space (with the standard product topol-
ogy). Moreover, the second projection is a d-morphism, and hence its graph is a d-
bisimulation. Here we use the notion of a d-morphism between topological spaces
and Kripke frames [26]. A map between a topological space and Kripke frame is
called a d-morphism if it is continuous and open, the inverse image of an irreflexive
point is a discrete subspace and the inverse image of a reflexive point is a dense-in-
itself subspace. So N×W satisfies ϕ , which proves the completeness of KD45 for
DSO-spaces.

In fact, one can strengthen this result and give an alternative proof of complete-
ness avoiding products. [32] gives a characterisation of rooted KD45 frames. Using
this characterisation it is easy to see that there exists a d-morphism from (N,τ) to
any rooted KD45-frame. This implies that if a formula ϕ is KD45-consistent, then it
is satisfied in the DSO-space (N,τ). Thus, KD45 is sound and complete with respect
to not only all DSO-spaces, but also with respect to just (N,τ).

In spite of the elegance of the derived set semantics for belief, it is also vulnera-
ble to some criticism. One of the main problems is the fact that Int(A) = A∩ t(A).
Therefore, the derived set semantics for belief leads to the identification of knowl-
edge with true belief, which goes against the unanimous opinion of epistemologists,
and the numerous “Gettier-type” counter-arguments [58]. We refer to [6] and [93]
for more details on this. [6] and [93] then propose an alternative topological seman-
tics for belief, where the belief operator is interpreted as the closure of the interior
operator (that is, [[2ϕ]] = Cl(Int[[ϕ]])), and prove that KD45 is complete in this se-
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mantics with respect to extremally disconnected topological spaces. We recall that a
topological space (X ,τ) is extremally disconnected if the closure of every open set
is again open. Also note that every DSO-space is extremally disconnected, but not
vice versa. Therefore, the latter semantics is applicable to a wider class of models
than Steinsvold’s semantics. Moreover, the formalism of [6] and [93] fits well with
Stalnaker’s conception of “strong belief as subjective certainty” [101], embodied in
his axiom Bϕ → BKϕ , which is satisfied in that setting. For more details on this
new semantics of belief, topological belief revision etc., we refer to [6] and [93].

We hope that all these results illustrate that topological spaces provide interesting
and insightful semantics for both epistemic and doxastic modal logic.

5 Conclusion

In this chapter, we have focussed on modal logics for knowledge and belief, espe-
cially their semantics. Starting with epistemic Kripke structures, we showed how
Johan’s results on correspondence theory often makes it possible to build an epis-
temic logic to which one can add a number of appealing axioms. Correspondence
theory then makes it possible to quickly come up with classes of Kripke models
wrt which those logics are sound and complete. Also, using a Kripke model for
knowledge, it is conceptually simple to add relations to such a model that model
time, or some other kind of dynamics. Johan, with his collaborators, has contributed
to this field by showing how several of such dynamic epistemic logics are related.
Their epistemic temporal frames provide a broad class of structures to which one
can related interpreted systems, and logics for updates and revision.

Having a class of structures at hand, natural questions are when two structures are
different, and what can be expressed in that class. Johan’s characterisation theorem
gives an answer for the case of normal modal logics, we have shown in this chapter
how this theorem has been adapted or generalised to other classes of structures.

An important class of structures for epistemic logic is obtained by moving to
a so-called neighbourhood semantics, or the closely related semantics based on a
topology. Those semantics give an alternative and independent view on epistemic
logic. The latter for instance can discriminate three aspects of common knowledge,
which seem to be intertwined under the Kripke semantics.

Johan’s contribution to logics of knowledge and belief is to be found in the tech-
nical results he has provided in the field of modal logic in general and that of epis-
temic logic in particular, but equally important are the themes he has consistently
pursued: knowledge and ignorance are mostly interesting in a multi-agent setting,
they only come to live in a dynamic context, and, while there is a multitude of
schools studying epistemic logic, a close analysis tells us that they have more in
common than even those schools themselves often tend to think!
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