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Abstract

We propose a new topological semantics for evidence, evidence-based justifications, belief,
and knowledge. Resting on the assumption that an agent’s rational belief is based on the
available evidence, we try to unveil the concrete relationship between an agent’s evidence,
belief, and knowledge via a rich formal framework afforded by topologically interpreted
modal logics. We prove soundness, completeness, decidability, and the finite model property
for the associated logics, and apply this setting to analyze key epistemological issues such
as “no false lemma” Gettier examples, misleading defeaters, undefeated justification versus
undefeated belief, as well as the defeasibility theories of knowledge.1

Keywords. evidence, justified belief, knowledge, epistemic logic, topological spaces, com-
pleteness, decidability.

1 Introduction

Pioneered by Hintikka (1962), the mainstream approach to epistemic logic is based on the formal
ground of relational possible worlds semantics, which provides a relatively simple and flexible
way of modeling knowledge and belief. However, this approach is lacking any ingredients to
talk about the evidential nature of knowledge or justified belief. One way to correct this is
to generalize the standard relational setting to a topological one. Indeed, topological spaces
emerge naturally as information structures that can provide a deeper insight into the evidence-
based justification of knowledge and belief. For instance, topological notions such as open,
closed, dense, and nowhere dense sets qualitatively and naturally encode notions such as mea-
surement/observation, closeness, smallness, largeness, and consistency, all of which will recur
with an epistemic interpretation in this work. Moreover, topological spaces come equipped with
well-studied basic operators such as the interior and closure operators which—alone or in com-
bination with each other—succinctly interpret different epistemic modalities, providing a better
understanding of their axiomatic properties.

In this paper, we propose a topological semantics for various notions of evidence, evidence-
based justification, belief, and knowledge, and explore the relationship between these epistemic
notions. This work builds on the models for evidence, belief, and evidence-management proposed

1Prior work: A shorter version of this paper was published in 2016 in the Proceedings of the 23rd International
Workshop on Logic, Language, Information, and Computation (WoLLIC 2016), under the title “Justified Belief
and the Topology of Evidence” (Baltag et al., 2016). The current version differs primarily in that it includes the
full proofs that were previously omitted (found in Section 6), an extended comparison to van Benthem and Pacuit
(2011) (Section 4), and an extensive discussion on the defeasibility theories of knowledge (Section 5). Moreover,
both the introduction and conclusion have been substantially revised and extended. (Özgün, 2017, Chapter 5)
was developed based on an earlier version of this paper.
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by van Benthem and Pacuit (2011); van Benthem et al. (2012, 2014), by adopting a topological
perspective on these notions. The focus is on notions of belief and knowledge for a rational agent
who is in possession of some (possibly false, possibly mutually contradictory) pieces of ‘evidence’.

A central underlying assumption that we share with van Benthem and Pacuit (2011) is that
an agent’s rational beliefs and knowledge are not to be taken as primitive, unjustified concepts,
but they are based on, and derived from, a more fundamental notion of ‘evidence’. However, we
should stress that this later notion is to be understood here in a wide, inclusive sense: it is not
limited to factive evidence, but it may include false or misleading information that nevertheless
“looks” to the agent like good enough evidence; also, in addition to acquired evidence (obtained
via, e.g., direct observation, measurements, testimony from others, as well as logical inference),
this notion includes prior defaults or biases, as well as any type of a priori knowledge. As such,
we will use the term basic evidence to cover all the primitive pieces of (soft, fallible) information
available to the subject. On top of these, we will also consider derived evidential constructs,
that can be built or inferred from the basic ones, and for which we introduce a fine-grained scale
of technical terms (combined evidence, arguments and justifications), that will be explained in
more detail below. Each of them can be fallible or factive (true in the actual world), and even
when true it can still be misleading (in a technical sense, to be formally defined later).

As already mentioned, the notions justified belief and knowledge we propose are higher-level
concepts, definable in terms of the above evidential notions. Before going into details, it may be
useful to briefly summarize the relationships between our topological conception and the main
positions in Epistemology. First, our setting is not necessarily committed to an evidentialist epis-
temology : while all beliefs and knowledge are justified in terms of the above evidential constructs,
we already noted that our ‘evidence’ is mainly a technical term, that may subsume defaults, bi-
ases and a priori knowledge. Second, although beliefs and knowledge are derived notions that
are justified in terms of evidence, which may suggest some foundationalist overtones, our setting
differs in some important respects from the standard foundationalist position. Our distinction
between basic and non-basic ‘evidence’ does not lead to a distinction between basic and non-
basic beliefs: our “basic” evidence pieces are not necessarily believed, indeed it may well happen
that none of them is believed. Moreover, it may even happen that no (combined) evidence is
believed either. Some of our evidential “arguments” (namely, the ones we call “justifications”)
will actually be believed, and other beliefs can be inferred from them. But these evidential jus-
tifications are typically not ‘basic’ or primitive in any reasonable sense. Third, we will see that
the fundamental feature of our doxastic justifications is their overall consistency with every other
available evidence. Our view on justified belief may therefore be said to be essentially coherentist
in spirit, in that belief is justified if it is entailed by an argument that coheres with the agent’s
overall evidential system. On the other hand, unlike in typical coherentism, our theory does not
reject the existence of primary, non-inferential forms of evidence such as perceptual evidence or
the fact that they can play an important role in our justification system.2 At the same time, we
do not accept such evidence as ‘self-justified’ (or non-inferentially justified) via e.g. perceptual
experience: in our setting, only coherence with all other evidence provides doxastic justifica-
tion. Basic evidence (even perceptual evidence) is not inherently justified, and is not necessarily
believed in our framework, unless it coheres with the whole justification system. Fourth, our no-
tion of justified belief fits well with Stalnaker’s view on belief as subjective certainty (Stalnaker,
2006): indeed, our notion satisfies Stalnakers axiom Bϕ → BKϕ, that equates belief with the
“feeling of knowledge”. Fifth, our proposed concept of knowledge combines the above-mentioned
coherentist view with a strong reliabilist flavor: in our setting, knowledge is “correctly justified
belief”, where a justification is correct when it doesn’t involve any false evidence or arguments
(in addition to not contradicting any other evidence). Such correct justifications provide a re-

2We thank an anonymous reviewer for bringing this point to our attention.
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liable process to tracking the truth. This theory of knowledge may at first sound very close to
Clark’s “no false lemma” conception (Clark, 1963), but it is subtly different, because our notion
of justification is different (requiring coherence with the evidential system). In this sense, our
proposal combines features of reliabilism and coherentism. Finally, our topological theory of
knowledge can be seen as a sophisticated ‘weakened’ version of defeasibility theory (Lehrer and
Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), one that is able to successfully address some of
the objections and counterexamples to the defeasibility conception of knowledge, by requiring
that the underlying justification remain undefeated by any new non-misleading evidence (though
it can be defeated by true but misleading evidence).

It is also important to point out the epistemological issues and conceptions that our proposal
does not address. Since in this paper we focus on modelling the evidential basis of knowledge
and belief, we chose to keep things simple by sticking with the idealized setting of possible-worlds
semantics (while only replacing the relational setting with a topological one to deal with evi-
dence). As a consequence, our semantics automatically enforces closure of belief and knowledge
under logical entailment. In its current form, our topological theory of knowledge is thus incom-
patible with the epistemological conceptions that deny the closure of knowledge under known
entailment3, e.g. the sensitivity account (Nozick, 1981), the safety account (Sosa, 1999), the
causal accounts (Goldman, 1967; Dretske, 2014, 2016), etc. Another consequence is that our
setting runs into the well-known problem of logical omniscience, thus being able to represent
only highly idealized reasoners who know/believe all logical and known/believed consequences of
what they know/believe. These problems can be fixed. The proposed framework can be easily
modified to avoid closure e.g., by requiring belief and knowledge to be exactly one of the evidence
pieces (in the spirit of non-monotonic neighbourhood logics, see, e.g., (Chellas, 1980, Chapter 7))
or by employing tools from awareness (Fagin and Halpern, 1987) and topic-sensitive epistemic
logics (Berto and Hawke, 2018; Hawke et al., 2020; Özgün and Berto, 2021). See, e.g., Siemers
(2021) for a topic-sensitive, hyperintensional version of our proposal where only restricted closure
principles for evidence, knowledge, and belief hold. Such a modified variant of our setting can
successfully deal with logical non-omniscience, as well as with the genuine cases of non-closure.4

However, all known solutions dilute the simplicity and the extensional-semantical nature of our
current topological approach by adding in-build hyperintensional features that come with their
own complications. Since in many contexts closure under known entailment does not pose any
problems, we choose to present here only the purely semantic core of our proposal, in order to
avoid unnecessary complications and to better convey the essence of our topological theory of
knowledge in a transparent and simple manner.

3We thank an anonymous referee for pointing to us this limitation.
4It seems to us that all such genuine cases of non-closure (in which one is really not warranted to believe/know

some consequence of a current belief) involve some subtle shift in topic or context from the premise to the
conclusion. E.g. Nozick’s example of non-closure involves the shift between a day-to-day context or topic in “I
have hands” to a wider, more inquisitive or ‘philosophical’, topic in “I am not a brain in a vat”. By making
this topic-sensitivity explicit, the hyperintensional version in Siemers (2021) can maintain the closure of belief-
knowledge as long as the same topic is maintained.

In other, less genuine cases of non-closure (such as the famous Red Barn example), it seems to us that the
culprit is a “purist” assumption of a single source of justification for knowledge (be it perceptual evidence,
sensitivity, safety, etc). The problem disappears if one admits that logical inference is itself an independent source
of knowledge, on a par with the others, and that a full justification of our beliefs may involve a mixture of such
sources. E.g., I know that there is a red barn in front of me, because I see a red barn (and my perceptual
experience is sensitive to the truth of its claim, since in my country all red barns are genuine); this evidential
warrant is not transmitted to the statement “there is a barn in front of me” (since there exist fake barns, so my
belief in barns does not track the truth); however, I do know that there is a barn, by a mixed justification that
involves both sensitivity and deduction (e.g. seeing a red barn and inferring the existence of a barn). So in these
cases, it is intuitive to maintain closure, while giving up the “purist” request for a single source of justification.
And indeed, our approach combines evidence and logical inference as sources of knowledge and belief.
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1.1 Our proposal in more detail

We will now provide a more detailed overview of the epistemic notions studied in this paper,
introduce the modalities we consider, and explain where our work stands in the relevant literature.

As already mentioned, we adopt a possible-worlds semantics, but replace the standard re-
lational setting with a topological one. The basic pieces of evidence possessed by an agent are
represented simply as nonempty sets of possible worlds. Our topological evidence models will
thus come with a designated family of such sets. A combined evidence (or just evidence, for
short) is any nonempty intersection of finitely many pieces of evidence. Note that this notion of
evidence is not necessarily factive5, since the pieces of evidence are possibly false and, moreover,
possibly inconsistent with each other. The family of (combined) evidence sets forms a topological
basis that generates what we call the evidential topology. This is the smallest topology in which
all the basic pieces of evidence are open, and it will play an important role in our setting.

For some of these evidential notions, we consider the associated modal operators, e.g. “having
(a piece of) basic evidence for a proposition P” (operator already proposed by van Benthem and
Pacuit (2011)), “having (combined) evidence for P”, “having a (piece of) factive evidence for P”
and “having (combined) factive evidence for P”. Table 1 below lists the corresponding evidence
modalities together with their intended readings.6

E0ϕ the agent has a basic (piece of) evidence for ϕ
Eϕ the agent has a (combined) evidence for ϕ
20ϕ the agent has a factive basic (piece of) evidence for ϕ
2ϕ the agent has factive (combined) evidence for ϕ

Table 1: Evidence modalities and their intended readings.

In fact, the modality 2ϕ, capturing the concept of “having factive evidence for ϕ”, coincides
with the topological interior operator in the evidential topology. We therefore use the interior
semantics of McKinsey and Tarski (1944) to interpret a notion of factive evidence. We also show
that the two factive variants of evidence-possession operators (20 and 2) are more expressive
than the non-factive ones (E0 and E): when interacting with the global modality, the two factive
evidence modalities 20ϕ and 2ϕ can define the non-factive variants E0ϕ and Eϕ, respectively,
as well as many other doxastic/epistemic operators (as shown in Proposition 6).

Our semantics for justification and justified belief is obtained by extending, generalizing, and,
to an extent, streamlining the evidence-model framework for belief introduced by van Benthem
and Pacuit (2011). The main idea of that setting was that the rational agent tries to form
consistent beliefs, by looking at all strongest finitely-consistent collections of evidence, and she
believes whatever is entailed by all of them.7 The consistency of that notion of belief crucially
depends on the existence of some such “strongest” evidence, which is of course granted in the

5Factive evidence is true in the actual world. In epistemology it is common to reserve the term “evidence” for
factive evidence. But we follow here the more liberal usage of this term in (van Benthem and Pacuit, 2011), which
agrees with the common understanding in day to day life, e.g. when talking about “uncertain evidence”, “fake
evidence”, “misleading evidence” etc.

6The Greek letter ϕ should be taken as a metavariable for a well-defined sentence in the associated modal
language. For the purposes of this introductory section, we need only the intended readings of the listed modal
epistemic operators. The recursive definitions of the modal languages employed are given in Section 6.

7To be sure, this is still vague since we have not yet specified what a “strongest finitely-consistent collections
of evidence” means (we return to formalize these notions in Section 3.1.1), however, this much precision should
be sufficient to explain the rough idea behind the definition of belief in (van Benthem and Pacuit, 2011) and the
notion of justified belief we propose in this paper.
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finite case (whenever the agent has finitely many pieces of basic evidence) as well as in some
infinite cases, but it can fail in other cases. As a result, as already noted in (van Benthem et al.,
2014), this can lead to inconsistent beliefs in the general infinite case, contrary to the spirit of
the original proposal.8

One way to obtain our semantics for evidence-based belief is by, in a sense, weakening the
definition from (van Benthem and Pacuit, 2011). According to this revised definition, a propo-
sition P is believed if P is entailed by all sufficiently strong finitely-consistent collections of
evidence. This notion of belief is equivalent to the one of van Benthem and Pacuit (2011) when
the collection of basic pieces of evidence is finite, but the two diverge in the infinite case. Indeed,
our semantics always ensures consistency of belief, even when the available pieces of evidence
are mutually inconsistent, thus fulfilling the project of rationally grounding consistent beliefs on
(possibly) inconsistent collections of evidence.

Moreover, our revised definition throws a new light on this notion of belief (even in the case
when it is equivalent to the older notion), by connecting it to topology and to a notion of justi-
fication. First, this concept of belief is very natural from a topological perspective: the revised
definition is equivalent to saying that P is believed iff it is true in “almost all” epistemically
possible states, where “almost all” is interpreted topologically as “all except for a nowhere-dense
set”. Second, in order to analyze justified belief, we need some additional evidential notions. An
argument consists of one or more (combined) evidence sets supporting the same proposition P :
in essence, it is a way to provide one or more evidential paths towards a (common) conclusion. A
justification is an argument that is not contradicted by any other available (combined) evidence;
equivalently, a justification is an argument that is not defeated by any other argument (based on
the same body of evidence). This is the promised ‘coherentist’ notion of doxastic justification,
requiring consistency with all the pieces of evidence possessed by the agent. Our revised defi-
nition turns out to be equivalent to requiring that P is believed iff there is some evidence-based
justification for P . In this sense, our belief is an evidentially-justified belief.

This topological definition of belief can be easily generalized to conditional beliefs. Table 2
below lists the belief modalities we study in this paper.

Bϕ the agent has justified belief in ϕ
Bϕψ the agent believes that ψ conditionally on ϕ

Table 2: Belief modalities and their intended readings.

Moving on to knowledge, there are a number of different notions one may consider. First, there
is the ‘infallible’ knowledge, absolutely certain and absolutely indefeasible, akin to van Benthem’s
concept of hard information (van Benthem, 2007). This is the standard concept of knowledge
used in Computer Science and Game Theory applications, and formalized within the modal
epistemic logic S5, based on Kripke models endowed with equivalence relations (or equivalently,
on Aumann’s partitional models (Aumann, 1999)). In our single-agent setting, this can be simply
defined as the global modality (quantifying universally over all epistemically possible states). For
good reasons, most epistemologists do not take this to be a good formalization of our intuitive
sense of knowledge. There are very few propositions that can be ‘known’ in this infallible way
(apart from logical tautologies, or maybe also things known by introspection). Most facts in
science or real life are unknown in this sense. It is therefore more interesting to look at notions

8Another, purely technical drawback of the setting in (van Benthem and Pacuit, 2011) is that the corresponding
doxastic logic does not have the finite model property (see van Benthem et al., 2012, Corollary 2.7 or van Benthem
et al., 2014, Corollary 1).
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of knowledge that are less-than-absolutely-certain, so-called defeasible knowledge. As shown by
the famous Gettier counterexamples (Gettier, 1963), simply adding factivity to justified belief
cannot yield knowledge. True justified belief may be extremely fragile (i.e., it can be too easily
lost), and it is consistent with having ‘wrong’ (unreliable) justifications for an accidentally true
conclusion.

The notion of defeasible knowledge we propose in this paper is formally defined by saying
that “P is (fallibly) known iff there is a factive justification for P”. Knowledge in this conception
is correctly justified belief, but with the proviso that the ‘justification’ is taken in the above-
mentioned holistic sense (requiring it to be, not only evidence-based, but coherent with every
other available evidence). As shown in Section 5, this concept of knowledge finds its place in
the post-Gettier literature as being stronger than the one characterized by the “no false lemma”
of Clark (1963) and weaker than the one described by the defeasibility theory of knowledge
championed by Lehrer and Paxson (1969); Lehrer (1990); Klein (1971, 1981). In our framework,
we consider modal operators for both infallible knowledge and defeasible knowledge, but our
main focus will be on the latter notion. See Table 3 below for the corresponding knowledge
modalities and their readings.

[∀]ϕ the agent infallibly knows that ϕ
Kϕ the agent fallibly (or defeasibly) knows that ϕ

Table 3: Knowledge modalities and their intended readings.

Yet another path leading to our proposal in this paper goes via our earlier work (Özgün,
2013; Baltag et al., 2013, 2019b) on a topological semantics for the doxastic-epistemic axioms
of Stalnaker (2006). These axioms are meant to capture a notion of fallible knowledge, in close
interaction with a notion of strong belief defined as subjective certainty. The main principle
specific to this system was that “believing implies believing that you know”, captured by the
axiom Bϕ→ BKϕ. The topological semantics that was proposed for these concepts in (Özgün,
2013; Baltag et al., 2013, 2019b) was overly restrictive, being limited to the rather unfamiliar class
of extremally disconnected and hereditarily extremally disconnected topologies. In the current
work, we show that these notions can be interpreted on arbitrary topological spaces without
changing their logic. To that end, our definitions of belief and knowledge can be seen as the
natural generalizations of the notions in (Özgün, 2013; Baltag et al., 2013, 2019b) to arbitrary
topologies.

1.2 Overview of this paper

Section 2 introduces the required topological preliminaries. In Section 3, we introduce the evi-
dence models of van Benthem and Pacuit (2011) as well as our topological evidence models, and
provide semantics for the notions of basic, combined, and factive evidence. We moreover present
topological definitions for argument and justification.

In Section 4, we introduce our topological semantics for (justified) belief, while comparing our
setting to that of van Benthem and Pacuit (2011). We then generalize our semantics of (plain)
belief to conditional beliefs.

In Section 5, we propose our topological formalization of fallible knowledge, and use it to
analyze various issues in the post-Gettier epistemology literature, such as “no false lemma”
Gettier examples, stability/defeasibility theories of knowledge, objections based on misleading
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vs. genuine defeaters, undefeated justification versus undefeated belief, the epistemic role of belief
dynamics, etc.

Finally, Section 6 presents all our technical results. We completely axiomatize the various re-
sulting logics of evidence, knowledge, and belief, and prove decidability and finite model property
results. Our technically most challenging result is the completeness of the richest logic containing
the two factive evidence modalities 20ϕ and 2ϕ, as well as the global modality [∀]ϕ. This logic
can define all the modal operators mentioned above. While the other proofs are more or less
routine, the proof of this result involves a nontrivial combination of known methods (Section
6.5).

The paper is organized in such a way that the reader who is interested only in the conceptual
contributions can read up to Section 6.

2 Topological Preliminaries

In this section, we introduce the topological concepts that will be used throughout the paper. We
refer to (Dugundji, 1965; Engelking, 1989) for a thorough introduction to topology. The reader
who has introductory level knowledge of topology should feel free to skip this section.

Definition 1 (Topological Space). A topological space is a pair (X, τ), where X is a nonempty
set and τ is a family of subsets of X such that X, ∅ ∈ τ, and τ is closed under finite intersections
and arbitrary unions.

The set X is a space; the family τ is called a topology on X. The elements of τ are called
open sets (or opens) in the space. If for some x ∈ X and an open U ⊆ X we have x ∈ U , we say
that U is an open neighborhood of x. A set C ⊆ X is called a closed set if it is the complement
of an open set, i.e., it is of the form X \ U for some U ∈ τ . We let τ̄ = {X \ U | U ∈ τ} denote
the family of all closed sets of (X, τ).

A point x is called an interior point of a set A ⊆ X if there is an open neighbourhood U of
x such that U ⊆ A. The set of all interior points of A is called the interior of A and is denoted
by Int(A). Then, for any A ⊆ X, Int(A) is an open set and is indeed the largest open subset of
A, that is

Int(A) =
⋃
{U ∈ τ | U ⊆ A}.

Dually, for any x ∈ X, x belongs to the closure of A, denoted by Cl(A), if and only if U ∩A 6= ∅
for each open neighborhood U of x. It is not hard to see that Cl(A) is the smallest closed set
containing A, that is

Cl(A) =
⋂
{C ∈ τ̄ | A ⊆ C},

and that Cl(A) = X \ Int(X \A) for all A ⊆ X. It is well known that the interior Int and the
closure Cl operators of a topological space (X, τ) satisfy the following properties (the so-called
Kuratowski axioms) for any A,B ⊆ X (see, e.g., Engelking, 1989, pp. 14-15):

(I1) Int(X) = X (C1) Cl(∅) = ∅
(I2) Int(A) ⊆ A (C2) A ⊆ Cl(A)
(I3) Int(A ∩B) = Int(A) ∩ Int(B) (C3) Cl(A ∪B) = Cl(A) ∪ Cl(B)
(I4) Int(Int(A)) = Int(A) (C4) Cl(Cl(A)) = Cl(A)

A set A ⊆ X is called dense in X if Cl(A) = X and it is called nowhere dense if Int(Cl(A)) =
∅. More generally, for any A,B ⊆ X, A is called dense in B if B ⊆ Cl(A ∩B).
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Definition 2 (Topological Basis). A family B ⊆ τ is called a basis for a topological space (X, τ)
if every non-empty open subset of X can be written as a union of elements of B.

We call the elements of B basic opens. We can give an equivalent definition of an interior
point by referring only to a basis B for a topological space (X, τ): for any A ⊆ X, x ∈ Int(A) if
and only if there is an open set U ∈ B such that x ∈ U and U ⊆ A.

Given any family Σ = {Aα | α ∈ I} of subsets of X, there exists a unique, smallest topology
τ(Σ) with Σ ⊆ τ(Σ) (Dugundji, 1965, Theorem 3.1, p. 65). The family τ(Σ) consists of ∅, X,
all finite intersections of the Aα, and all arbitrary unions of these finite intersections. Σ is called
a subbasis for τ(Σ), and τ(Σ) is said to be generated by Σ. The set of finite intersections of
members of Σ forms a basis for τ(Σ).

Lemma 1. For any two topological space (X, τ) and (X, τ ′) and A ⊆ X, if τ ⊆ τ ′ then Intτ (A) ⊆
Intτ ′(A), where Intτ and Intτ ′ are the interior operators of τ and τ ′, respectively.

3 Evidence, Argument, and Justification

In this section, we present the (uniform) evidence models of van Benthem and Pacuit (2011)
as well as our topological version, and provide the formal semantics of the evidence modalities
given in Table 1. In this topological framework, we introduce and study the technical notions of
combined evidence, strongest evidence, strong enough evidence, (evidence-based) argument and
justification.

3.1 Evidence à la van Benthem and Pacuit

Definition 3 (Evidence Models). An evidence model is a tuple M = (X, E0, V ), where

• X is a nonempty set of possible worlds (or states),

• E0 ⊆ P(X) is a family of sets called basic evidence sets (or pieces of evidence), satisfying
X ∈ E0 and ∅ 6∈ E0, and

• V : Prop→ P(X) is a valuation function.9

The evidence models presented in (van Benthem and Pacuit, 2011; van Benthem et al., 2014)
are more general, covering cases in which evidence depends on the actual world, i.e., in which
each state may be assigned a different set of neighbourhoods. In this paper, however, we stick
with the special case of uniform models (given in Definition 3), which corresponds to working
with agents who are evidence-introspective (more on this below). Since we never consider the
more general case and focus only on the topological extension of their uniform evidence models,
we simply use the term evidence model exclusively for the uniform evidence models.

Note that evidence models are not necessarily based on topological spaces, i.e., E0 is not
defined to be a topology (it may not even constitute a topological basis). However, every topology
τ constitutes a basic evidence set.10 In fact, the family E0 is almost an arbitrary nonempty
collection of subsets of a given domain, carefully designed to capture certain aspects of the
type of evidence that is intended to be formalized. First of all, the subset E0 represents the

9Prop is a countable set of propositional variables from which we will recursively define the epistemic languages
of interest.

10As an even more special case, we can think of Grove/Lewis Sphere spaces (Lewis, 1973; Grove, 1988). These
are topological spaces in which the open sets are nested, i.e. for every U,U ′ ∈ τ , we have either U ⊆ U ′ or U ′ ⊆ U
(see, e.g., Example 1).
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set of evidence the agent has acquired about the actual situation11 directly via, e.g., testimony,
measurement, approximation, computation, or experiment. It is the collection of evidence the
agent has gathered so far, and it is all our rational, idealized agent has to form her beliefs and
knowledge. The collection of evidence the agent possesses is uniform across the states, i.e., the
set of evidence the agent has does not depend on the actual state. This corresponds to working
with an evidence-introspective agent, that is, the agent is absolutely sure about what evidence
she has and what it does and does not entail.

The two properties of E0, namely, X ∈ E0 and ∅ 6∈ E0 impose the following constraints,
respectively:

• Tautologies are always evidence, and

• Contradictions never constitute direct evidence.

Unlike the common practice in epistemology, where the term “evidence” is generally reserved
for factive evidence, we follow here the more liberal use of the term adopted by van Benthem
and Pacuit, that includes fallible information coming from a possibly unreliable source: a piece
of evidence in E0 does not have to contain the actual state. This more realistic view on evidence
agrees with the common usage in day to day life, e.g. when talking about “uncertain evidence”,
“fake evidence”, “misleading evidence”. Moreover, in this setting the pieces of ‘evidence’ may
be mutually inconsistent: the intersection of evidence pieces may be empty. Indeed, the agent
might be collecting evidence from different sources that may or may not be reliable. However, no
quantitative measure of reliability or qualitative reliability order is assumed to be given on the
elements of E0. Under these assumptions, a rational agent will have to take into account (though
not necessarily believe) every piece of available evidence, and somehow put these pieces together
in a finite and consistent manner. This leads us to the notions of combined evidence and body
of evidence, concepts that will play a crucial role in the formation of consistent beliefs based on
fallible evidence.

3.1.1 Bodies of evidence, Evidential Support, and Evidential Strength

We call a collection of evidence pieces F ⊆ E0 consistent if
⋂
F 6= ∅, and inconsistent otherwise.

To state our definitions, we use the notation A ⊆fin B to say that A is a finite subset of B.

Definition 4 ((Finite) Body of Evidence). Given an evidence model M = (X, E0, V ), a body
of evidence is a nonempty family F ⊆ E0 of evidence pieces such that every nonempty finite
subfamily is consistent. More formally, a nonempty family F ⊆ E0 is a body of evidence if

(∀F ′ ⊆fin F )(F ′ 6= ∅ implies
⋂
F ′ 6= ∅).

A finite body of evidence F ⊆fin E0 is therefore simply a finite set of mutually consistent pieces
of evidence, that is, F ⊆fin E0 such that

⋂
F 6= ∅.

Therefore, a body of evidence is simply a collection of evidence pieces that has the finite
intersection property, and that represents the agent’s ability of putting evidence pieces together
in a finitely consistent way.

Given an evidence model M = (X, E0, V ), we denote by

F := {F ⊆ E0 | (∀F ′ ⊆fin F )(F ′ 6= ∅ implies
⋂
F ′ 6= ∅)}

11Standardly, as in the relational semantics, the actual situation is represented by a state x of X called the
actual state or the real world.
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the family of all bodies of evidence over M, and by

Ffin := {F ⊆fin E0 |
⋂
F 6= ∅}

the family of all finite bodies of evidence. Both the interpretation of evidence-based belief of van
Benthem and Pacuit (2011) and our proposal for justified belief, as well as the notion of defeasible
knowledge we study in a later section crucially rely on the notion of body of evidence. But, in
order to be able to talk about these evidence-based informational attitudes, we first need to
specify what it means for a proposition to be supported by a body of evidence.

Remark 1. Throughout Sections 3-5, we use the following conventions to ease the presenta-
tion. Given an evidence model M = (X, E0, V ) (or, a topo-e-model M = (X, E0, τ, V ) defined
later), we call any subset P ⊆ X a proposition. We say a proposition P ⊆ X is true at x if
x ∈ P . The Boolean connectives, ¬, ∧, ∨, →, on propositions are defined standardly as set
operations: for any P,Q ⊆ X, we define ¬P := X\P , P ∧ Q := P ∩ Q, P ∨ Q := P ∪ Q and
P → Q := (X\P ) ∪ Q. Moreover, the Boolean constants > and ⊥ are given as > := X and
⊥ := ∅. Following this convention, we define the semantics of the modal operators for evidence,
belief, and knowledge introduced in Tables 1-3 as set operators from P(X) to P(X) (and for the
binary modality of conditional belief, from P(X)×P(X) to P(X)). These set operators give rise
to the interpretations of the corresponding modalities of the full language L (given in Section 6)
in a standard way.

Definition 5 (Evidential Support). Given an evidence model M=(X, E0, V ) and a proposition
P ⊆ X, a body of evidence F supports P if P is true in every state satisfying all the evidence in
F , i.e., if

⋂
F ⊆ P .

It is easy to see that a body of evidence F is inconsistent iff it supports every proposition
(since ∅ ⊆ P , for all P ). The strength order between bodies of evidence is given by inclusion:
F ⊆ F ′ means that F ′ is at least as strong as F . Note that stronger bodies of evidence support
more propositions: if F ⊆ F ′ then every proposition supported by F is also supported by F ′. A
body of evidence is maximal (or, strongest) if it is a maximal element of the poset (F ,⊆), i.e., if
it is not a proper subset of any other such body. We denote by

Max⊆F := {F ∈ F | (∀F ′ ∈ F)(F ⊆ F ′ ⇒ F = F ′)}

the family of all maximal bodies of evidence of a given evidence model. By Zorn’s Lemma, every
body of evidence can be strengthened to a maximal body of evidence, i.e.,

∀F ∈ F ∃F ′ ∈Max⊆F(F ⊆ F ′).

Therefore, in particular, every evidence model has at least one maximal body of evidence, that
is, Max⊆F 6= ∅.

In fact, for finite bodies of evidence, the notions of evidential support and strength can be
represented in a more concise way via the notion of combined evidence, which, to anticipate
further, is represented by basic open sets of the evidential topology generated from E0 (see
Section 3.2).

3.1.2 Combined Evidence and Evidential Basis

Definition 6 (Combined Evidence). Given an evidence model M = (X, E0, V ), a combined
evidence (or just evidence, for short) is any nonempty intersection of finitely many basic evidence
pieces. In other words, a nonempty subset e ⊆ X is a combined evidence if e =

⋂
F , for some

F ∈ Ffin.

10



A combined evidence therefore is just a repackaging of a finite body of evidence in terms of
its intersection. We denote by

E := {
⋂
F | F ∈ Ffin}

the family of all (combined) evidence, which in fact constitutes a topological basis over X. We
will return to the topological versions of evidence models in Section 3.2.

The definitions evidential support and strength are adapted for the elements of E in an obvious
way. A (combined) evidence e ∈ E supports a proposition P ⊆ X if e ⊆ P . In this case, we
also say that e is evidence for P . The natural strength order between combined evidence sets
therefore is given by the reverse inclusion: e ⊇ e′ means that e′ is at least as strong as e. This
is both to fit with the strength order on bodies of evidence (since F ⊆ F ′ implies

⋂
F ⊇

⋂
F ′),

and to ensure that stronger evidence supports more propositions (since, if e ⊇ e′, then every
proposition supported by e is supported by e′).

Recall that E0 represents the collection of evidence pieces that are directly observed by the
agent. The elements of the derived set E therefore serve as indirect evidence which is obtained
by combining finitely many pieces of direct evidence together in a consistent way. This does not
mean that all of this evidence is necessarily true. We say that some (basic or combined) evidence
e ∈ E is factive evidence at state x ∈ X whenever it is true at x, i.e., if x ∈ e. Similarly, a body
of evidence F is factive if all the pieces of evidence in F are factive, i.e., if x ∈

⋂
F .

Having presented the primary semantic concepts used in the representation of (basic and
combined) evidence, we proceed with our topological setting.

3.2 Evidence in Topological Evidence Models

For any nonempty set X and any family Σ of subsets of X, we can construct a topology on this
domain by simply closing Σ under finite intersections and arbitrary unions (recall the definition of
subbasis given in Section 2). Therefore, every evidence model M = (X, E0, V ) can be associated
with an evidential topology that is generated by the set of basic evidence pieces E0, or equivalently,
by the family of all combined evidence E . In this section, we introduce our topological evidence
models, and provide topological formalizations of our notions of argument and justification. We
moreover give the semantics for the modalities E0ϕ and Eϕ denoting possession of basic and
combined evidence, respectively, as well as for their factive versions 20ϕ and 2ϕ.

Definition 7 (Topological Evidence Model). A topological evidence model (or, in short, a topo-
e-model) is a tuple M = (X, E0, τ, V ), where (X, E0, V ) is an evidence model and τ = τE is the
topology generated by the family of combined evidence E (or equivalently, by the family of basic
evidence sets E0), which is called the evidential topology.

The families E0 and E obviously generate the same topology: E is the closure of E0 under
nonempty finite intersections. We denote the evidential topology by τE only because the family
E of combined evidence forms a basis of this topology (and we omit the subscript E when it is
contextually clear). Since any family E0 ⊆ P(X) generates a topology over X, topo-e-models are
just another way to present the evidence models described in Definition 3. We use this special
terminology to stress our focus on the induced topological structures, and to avoid ambiguities,
since our definition of belief in topo-e-models will be different from the notion of belief in evidence
models defined in (van Benthem and Pacuit, 2011).

Arguments. Given a topo-e-model M = (X, E0, τ, V ) and a proposition P ⊆ X, an argument
for P is a union U =

⋃
E ′ of some nonempty family of (combined) evidence E ′ ⊆ E , each

separately supporting P (i.e., e ⊆ P for all e ∈ E ′, or equivalently, U ⊆ P ). Epistemologically,

11
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direct evidence combined evidence argument

Figure 1: From E0 to τE ; from direct evidence to argument.

an argument for P provides multiple evidential paths e ∈ E ′ to support the common conclusion
P . Topologically, an argument for P is the same as a nonempty open subset of P : a set of states
U is an argument for P iff U ∈ τ and U ⊆ P . Therefore, the open Int(P ) forms the weakest
(most general) argument for P , since it is the largest open subset of P . (See Figure 1 for the
construction of τE from E0 and the notions corresponding to their elements.)

Justifications. A justification for P is an argument U for P that is consistent with every
(combined) evidence (i.e., U ∩ e 6= ∅ for all e ∈ E , that is, U ∩ U ′ 6= ∅ for all U ′ ∈ τ \ {∅}).
Justifications are thus defined to be arguments that are undefeated (i.e., whose negations are not
supported) by any available evidence or any other argument based on the evidence. Topologically,
a justification for P is just a dense open subset of P : a set of states U is a justification for P iff
U ∈ τ such that U ⊆ P and Cl(U) = X. As for evidence, an argument or a justification U for
P is said to be factive (or “correct”) if it is true in the actual world x, i.e., if x ∈ U .

The fact that arguments are open in the generated topology encodes the principle that any
argument should be evidence-based : whenever an argument is correct, then it is supported by
some factive evidence. To anticipate further: in our setting, justifications will form the basis of
belief, while correct justifications will form the basis of fallible (defeasible) knowledge. But before
moving to justified belief and fallible knowledge, we introduce a stronger, irrevocable form of
knowledge that is captured by the global modality.

Infallible Knowledge: possessing hard information. We use [∀] for the so-called global
modality, which associates to every proposition P ⊆ X, some other proposition [∀]P , given by
putting:

[∀]P =

{
X if P = X
∅ otherwise.

In other words, [∀]P is true (at any state) iff P is true at all states. In this setting, [∀]P is
interpreted as “absolutely certain, infallible knowledge”, defined as truth in all the worlds that
are consistent with the agent’s information.12 This is a limit notion capturing a very strong form
of knowledge encompassing all epistemic possibilities. It is irrevocable, i.e., it cannot be lost or
weakened by any information gathered later. In this respect, [∀]P could be best described as
possession of hard information. Its dual [∃]P := ¬[∀]¬P expresses the fact that P is consistent
with (all) the agent’s hard information.13

12In a multi-agent model, some worlds might be consistent with one agent’s information, while being ruled
out by another agent’s information. Therefore, in a multi-agent setting, [∀i] will only quantify over all the states
in agent i’s current information cell (according to a partition Πi of the state space reflecting agent i’s hard
information).

13We ask the reader not to confuse ∀ and [∀]: while we use the former to abbreviate “for all” in the metalanguage,
the latter is the global modality operating on propositions. Similarly for ∃ and [∃]: the former abbreviates “there
exists” in the metalanguage and the latter is the existential modality defined as ¬[∀]¬.
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The notion of infallible knowledge [∀]ϕ is not very widely applicable, and the thesis that all
knowledge is infallible has been harshly criticized by many epistemologists (see, e.g., Hintikka,
1962). However, having the global modality as an operator in our framework is useful for both
conceptual and technical reasons: while it formalizes the intuitive notion of hard evidence, and it
distinguishes it from “softer” types of information such as fallible knowledge, the global modal-
ity adds to the expressive power of modal languages. In particular, when combined with the
evidential modalities 20ϕ and 2ϕ introduced below, it will allow us to define as abbreviations
all the other epistemic and doxastic operators considered in this paper (see Proposition 6).

Having Basic Evidence for a Proposition. For every proposition P ⊆ X, we can define
another proposition E0P by putting:14

E0P =

{
X if ∃e ∈ E0 (e ⊆ P )
∅ otherwise.

The modal sentence E0P therefore captures possession of basic (direct) evidence for the propo-
sition P , thus reads as “the agent has basic evidence for P”. In other words, E0P states that P
is supported by some basic piece of evidence. Additionally, we introduce a factive version of this
proposition, 20P , that is read as “the agent has factive basic evidence for P”, and is given by

20P = {x ∈ X | ∃e ∈ E0 (x ∈ e and e ⊆ P )}.

Having (Combined) Evidence for a Proposition. The above notions of evidence posses-
sion based on having basic evidence for a propositions can be generalized to having (combined)
evidence for a proposition. This way, we obtain two other evidence operators: EP , meaning
that “the agent has (combined) evidence for P”, and 2P , meaning that “the agent has factive
(combined) evidence for P”. More precisely, EP and 2P are given as follows:

EP =

{
X if ∃e ∈ E (e ⊆ P )
∅ otherwise

2P = {x ∈ X | ∃e ∈ E (x ∈ e and e ⊆ P )}.

Since E is a basis of the evidential topology τE , we have that the agent has evidence for a propo-
sition P iff she has an argument for P . So EP can also be interpreted as “having an argument
for P”. Similarly, 2P can be interpreted as “having a correct argument for P”. Moreover, 2
operator for having combined factive evidence coincides with the topological interior operator:

Int(P ) = 2P,

where Int is the interior operator of the evidential topology τE .

4 Justified Belief

In this section, we propose a topological semantics for a notion of evidence-based justified belief.
One way to do this is by modifying the belief definition proposed by van Benthem and Pacuit
(2011) based on evidence models, so we start by recapitulate their proposal. While the two def-
initions are equivalent on evidence models carrying a finite collection of evidence pieces E0, our

14Van Benthem and Pacuit (2011) denote this by 2P and it is denoted by [E]P in (van Benthem et al., 2014).
We use E0P for this notion, since we reserve the notation EP for having combined evidence for P , and 2P for
having combined factive evidence for P .
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Figure 2: M = (N, E0, V )

notion is better behaved in general, since it is always consistent, and in fact it satisfies the axioms
of the standard doxastic logic KD45 on all topo-e-models. We then provide several equivalent
characterizations of the proposed notion of belief, in particular one in terms of evidential jus-
tification and others in purely topological terms. We also generalize this setting to conditional
beliefs.

4.1 Belief à la van Benthem and Pacuit

Given an evidence model, van Benthem and Pacuit (2011) define belief by putting, for any
proposition P :

P is believed iff every maximal (i.e., strongest) body of evidence supports P .

We denote this notion by Bel. More formally, given an evidence model M = (X, E0, V ) and a
proposition P ⊆ X,

BelP holds (at any state) iff (∀F ∈Max⊆F)(
⋂
F ⊆ P ).15

However, as can be seen directly from the above definition, Bel is inconsistent on evidence models
whose every maximal body of evidence is inconsistent.

Example 1. Consider the evidence model M = (N, E0, V ), where the state space is the set N of
natural numbers, V (p) = ∅, and the basic evidence family is E0 = {[n,∞) | n ∈ N} (see Figure
2). The only maximal body of evidence in E0 is E0 itself. However,

⋂
E0 = ∅. So Bel⊥ holds in

M.

This phenomenon happens only in (some cases of) infinite models, so it is not due to the
inherent mutual inconsistency of the available evidence. At a high level, the source of the problem
seems to be the tension between the way the agent combines her evidence pieces and the way
she forms her beliefs based her evidence: while she puts her evidence pieces together in a finitely
consistent way, having consistent beliefs requires possibly infinite collections to have nonempty
intersections. More precisely, even though it is guaranteed by definition that every finite subfamily
of a maximal body of evidence is consistent, the whole maximal body of evidence may actually
be inconsistent. Therefore, in order to avoid this problem, we could instead focus on maximal

15In the finite case and many other (but not all) cases, this definition is equivalent to treating plausibility
models as a special case of evidence models where the plausibility relation is given by the evidential plausibility
order vE defined as

x vE y iff (∀e ∈ E0)(x ∈ e implies y ∈ e) (equivalently, (∀e ∈ E)(x ∈ e implies y ∈ e)),

and applying the standard semantics of belief on plausibility models as “truth in all the most plausible states”. The
relation between evidence models and plausibility models, as well as the connection between the notions of belief
defined on these structures are subtle. We refer to (van Benthem and Pacuit, 2011, Section 5) and (van Benthem
et al., 2014, Section 3) for details.
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finite bodies of evidence as blocks of evidence forming beliefs: these are, by definition, guaranteed
to be always consistent. However, this solution inevitably restricts the class of evidence models
we can work with, simply because an infinite evidence model might not have any maximal finite
body of evidence. To illustrate this, we can think of the evidence model presented in Example
1: the set of basic evidence E0 is the only maximal body of evidence in (N, E0, V ), and it is
infinite. Therefore, in order to eventually be able to provide a belief logic of all evidence models
that formalizes a notion of consistent belief, further adjustments in the definition of Bel are
warranted. To this end, we propose to “weaken” the above definition, by focusing on the finite
bodies of evidence that are “strong enough” (instead of the “strongest” such bodies).

4.2 Justified Belief: our proposal

It seems to us that the intended goal (only partially fulfilled) of the above-mentioned definition
of belief was to ensure that the agents are able to form consistent beliefs based on the (possibly
false and possibly mutually contradictory) available evidence. We think this to be a natural
requirement for idealized rational agents, and so we consider doxastic inconsistency to be a bug,
not a feature, of the above framework. Hence, we now propose a notion that produces in a
natural way—with no need for further restrictions—only consistent beliefs, and that also agrees
with the one in (van Benthem and Pacuit, 2011) in the finite case (and other cases specified
below).

The intuition behind our proposal is that a proposition P is believed iff it is supported by all
“sufficiently strong” evidence. We therefore say that P is believed, and write BP , iff every finite
body of evidence can be strengthened to some finite body of evidence which supports P . More
formally, given an evidence model M = (X, E0, V ) and a proposition P ⊆ X,

BP holds (at any state) iff ∀F ∈ Ffin∃F ′ ∈ Ffin(F ⊆ F ′ and
⋂
F ′ ⊆ P ).

The notion of belief B (like Bel) is a “global” notion, which depends only on the agent’s evidence,
not on the actual world, so it is either true in all possible worlds, or false in all possible worlds.
We therefore have

BP :=

{
X if ∀F ∈ Ffin∃F ′ ∈ Ffin(F ⊆ F ′ and

⋂
F ′ ⊆ P )

∅ otherwise.

This reflects the assumption that beliefs are internal (and fully transparent) to the agent (Baltag
et al., 2008).

It is easy to see that, unlike Bel, our notion of belief B is always consistent (i.e., B⊥ =
B∅ = ∅), since no finite body of evidence has an empty intersection. Moreover, it satisfies the
axioms of the standard doxastic logic KD45 (see Section 6.3). As shown in Example 2, our notion
of belief B and Bel are in general incompatible (even in cases when Bel is consistent). On the
other hand, these two notions coincide on a restricted class of evidence models (see Proposition
1).

Example 2. The models below show that B and Bel are in general not comparable. More pre-
cisely, the first model illustrates that BP does not imply BelP and the second model shows that
BelP does not imply BP even when Bel is consistent.

Consider the evidence model M = (N ∪ {♠}, E0, V ), where N is the set of natural numbers,
V (p) = ∅, and the set of basic evidence is E0 = {ei | i ∈ N}∪{{n} | n ∈ N} where ei = [i,∞)∪{♠}
(see Figure 3).
We then have that

Max⊆(F) = {{ei | i ∈ N}} ∪ {{ei | i ≤ n} ∪ {{m}} | n,m ∈ N with m ≥ n}.
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Figure 3: M = (N ∪ {♠}, E0, V )

Therefore, for any F∈Max⊆(F), we have⋂
F =

{
{♠} if F = {ei | i ∈ N},
{m} if F = {ei | i ≤ n} ∪ {{m}} with m ≥ n.

We thus obtain that
⋃
F∈Max⊆(F)

⋂
F = N ∪ {♠}. This means that Bel(N ∪ {♠}) = Bel>

holds in M, and moreover, N∪{♠} is the only proposition that is believed according to the belief
definition of van Benthem and Pacuit (2011). Thus, in particular, Bel(N) = ∅, hence, Bel(N)
does not hold in M (i.e., no state in N ∪ {♠} makes Bel(N) true). On the other hand, we have
F ∈ Ffin iff F = {ei | i ∈ I}, or F = {ei | i ∈ I}∪{{m}} for some I ⊆fin N and m ≥ max(I),
where max(I) is the greatest natural number in I. Therefore, for every F ∈ Ffin, we have⋂

F =

{
[max(I),∞) ∪ {♠} if F = {ei | i ∈ I},
{m} if F = {ei | i ∈ I} ∪ {{m}} for m ≥ max(I).

This implies that, any finite body F of the form {ei | i ∈ I}∪{{m}} already supports N. Moreover,
if F = {ei | i ∈ I}, there exists a stronger finite body F ′ of the form F ′ = {ei | i ∈ I} ∪ {{m}}
for some m ≥ max(I) that supports N. We therefore have that B(N) holds in M. Hence, in
general, BP does not imply BelP .

Now consider the evidence model M′ = (N∪{♠}, E ′0, V ) based on the same domain as M, and
where V (p) = ∅ and the basic evidence family E ′0 = {[n,∞) ∪ {♠} | n ∈ N} (see Figure 4). The

. . . . . . ♠1 2 3 4

Figure 4: M′ = (N ∪ {♠}, E ′0, V )

only maximal body of evidence in E ′0 is E ′0 itself, and
⋂
E ′0 = {♠}. Therefore, we have ¬Bel⊥

true in M′, i.e., Bel is consistent in M′. Moreover, in particular, Bel{♠} is true in M. On the
other hand, for all finite bodies F ∈ Ffin, we have {♠} (

⋂
F , implying that ¬B{♠} is true in

M′. Therefore, even when Bel is consistent, BelP does not imply BP .

There are special cases where Bel and B do coincide. First of all, B coincides with Bel on
the evidence models with finite basic evidence sets E0. More generally, Bel and B coincide on all
maximally compact evidence models: the ones in which every body of evidence is equivalent to
a finite body of evidence. More formally, an evidence model M = (X, E0, V ) is called maximally
compact if it satisfies the property

∀F ∈ F∃F ′ ∈ Ffin(
⋂
F =

⋂
F ′) (MC)
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Proposition 1. For all maximally compact evidence models M=(X, E0, V ) and P ⊆ X, we have
BelP = BP .

Proof. Let M = (X, E0, V ) be a maximally compact evidence model and P ⊆ X.
(⊆) Suppose BelP holds in M, i.e., suppose that for all F ∈Max⊆F , we have

⋂
F ⊆ P . Now

let F ′ ∈ Ffin. By Zorn’s Lemma, F ′ can be extended to a maximal body of evidence F ′′ ∈ F .
Note that, since F ′′ extends F ′, i.e., F ′ ⊆ F ′′, we have

⋂
F ′′ ⊆

⋂
F ′. Since M is maximally

compact, there is F0 ∈ Ffin such that
⋂
F ′′ =

⋂
F0. Now consider the family of evidence

F0 ∪ F ′. Since
⋂
F0 =

⋂
F ′′ ⊆

⋂
F ′, we have

⋂
(F0 ∪ F ′) =

⋂
F0 ∩

⋂
F ′ =

⋂
F0 6= ∅. Therefore,

the family of evidence F0∪F ′ is a finite body of evidence, i.e., F0∪F ′ ∈ Ffin. Obviously, F0∪F ′
extends F ′, i.e., F ′ ⊆ F0 ∪ F ′. Moreover, since BelP holds in M, we have that

⋂
F ′′ ⊆ P . We

then obtain
⋂

(F0 ∪ F ′) =
⋂
F0 =

⋂
F ′′ ⊆ P . We have therefore proven that the finite body of

evidence F0 ∪ F ′ extends F ′ and it entails P . As F ′ has been chosen arbitrarily from Ffin, we
conclude that BP holds in M.

(⊇) Suppose BP holds in M, i.e., suppose that for all F ∈ Ffin, there exists F ′ ∈ Ffin such
that F ⊆ F ′ and

⋂
F ′ ⊆ P . Let F ′′ ∈ Max⊆F . Then, since M is maximally compact, there

exists F0 ∈ Ffin such that
⋂
F ′′ =

⋂
F0. Moreover, since BP holds in M, there exists F1 ∈ Ffin

such that F0 ⊆ F1 and
⋂
F1 ⊆ P . Besides, since

⋂
F1 ⊆

⋂
F0 =

⋂
F ′′ and F ′′ is maximal, we

in fact have F1 ⊆ F ′′ (otherwise, there exists e ∈ E0 such that e ∈ F1 but e 6∈ F ′′. Therefore,
as
⋂
F1 ⊆

⋂
F ′′, we would have

⋂
F1 ⊆

⋂
(F ′′ ∪ {e}), and thus

⋂
(F ′′ ∪ {e}) 6= ∅, contradicting

maximality of F ′′.) Therefore,
⋂
F ′′ ⊆

⋂
F1, and thus,

⋂
F1 =

⋂
F ′′. Then, together with⋂

F1 ⊆ P , we obtain
⋂
F ′′ ⊆ P . As F ′′ has been chosen arbitrarily from Max⊆F , we conclude

that BelP holds in M.

Another important feature of our belief definition is that B is a purely topological notion,
as stated in the following proposition, which, in turn, constitutes a justification for our use of
topo-e-models rather than working with only evidence models.

Proposition 2. In every topo-e-model M = (X, E0, τ, V ), the following are equivalent, for any
proposition P ⊆ X:

1. BP holds (at any state)
(i.e., ∀F ∈ Ffin∃F ′ ∈ Ffin(F ⊆ F ′ and

⋂
F ′ ⊆ P ));

2. every evidence can be strengthened to some evidence supporting P
(i.e., ∀e ∈ E ∃e′ ∈ E(e′ ⊆ e ∩ P ));

3. every argument (for anything) can be strengthened to an argument for P (i.e., ∀U ∈ τ \
{∅} ∃U ′ ∈ τ \ {∅}(U ′ ⊆ U ∩ P ));

4. there is a justification for P , i.e., there is some argument for P which is consistent with
any available evidence
(i.e., ∃U ∈ τ(U ⊆ P and ∀e ∈ E(U ∩ e 6= ∅)));

5. P includes some dense open set
(i.e., ∃U ∈ τ(U ⊆ P and Cl(U) = X));

6. Int(P ) is dense in τ (i.e., Cl(Int(P )) = X), or equivalently, X \P is nowhere dense (i.e.,
Int(Cl(X\P )) = ∅);

7. [∀]32P holds (at any state) (i.e., [∀]32P = X), or equivalently, [∀]32P 6= ∅.
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Proof. The equivalence of (1), (2) and (3) is easy, and follows directly from the definitions of
combined evidence and argument. The equivalence of (5) and (6) is also straightforward (recall
that Int(P ) is the largest open contained in P ). The equivalence of (4) and (5) simply follows
from the definitions of arguments and dense sets. For the equivalence of (6) and (7), recall that
[∀] is the global modality, 2 is interior, and 3 is closure. For the equivalence of (3) and (4):

(3)⇒(4): Suppose that (3) holds and consider the open set Int(P ). We will show that Int(P )
is a justification for P , i.e., Int(P )∩ e 6= ∅ for all e ∈ E . Let e ∈ E . By (3), since e ∈ E ⊆ τ\{∅},
there exists U0 ∈ τ\{∅} such that U0 ⊆ e ∩ P . We then have Int(U0) ⊆ Int(e ∩ P ) = Int(e) ∩
Int(P ). Therefore, since U0 and e are open sets, we obtain U0 ⊆ e ∩ Int(P ). As U0 6= ∅, we
conclude that e ∩ Int(P ) 6= ∅.

(4)⇒(3): Suppose that (4) holds, i.e., suppose that there exists U0 ∈ τ such that (a) U0 ⊆ P
and (b) U0 ∩ e 6= ∅ for all e ∈ E . Let U ∈ τ with U 6= ∅. Now consider the open set U ∩ U0.
Since E is a basis of τ , there exists e ∈ E such that e ⊆ U . Therefore, by (b), the intersection
U ∩ U0 6= ∅, thus, U ∩ U0 ∈ τ\{∅}. By (a), we also have U ∩ U0 ⊆ U ∩ P .

Proposition 2 deserves a closer look. First, it describes the topological properties of our
notion of belief. Second, it states that our belief is the same as “justified” belief, but more specif-
ically one whose justification is an evidence-based argument that consistent with every available
evidence. The equivalence of (1), (2), and (3) shows that we can define BP in equivalent ways
by using only basic evidence pieces (i.e., the elements of E0), or by using only combined evidence
(i.e., the elements of E), or by using only the open sets of the generated evidential topology
τ . Proposition 2.4 proves that our definition of belief indeed gives us a conception of evidentially
justified belief. The requirement that any justification of a believed proposition must be open in
the evidential topology means that the justification is ultimately based on the available evidence;
while the requirement that the justification is dense (in the same topology) means that all the
agent’s beliefs must be consistent with every piece of evidence. Therefore, believed propositions,
according to our definition, are those for which there is some evidential justification that is con-
sistent with every available (basic or combined) evidence. Moreover, whenever a proposition
P is believed, there exists a weakest (most general) justification for P , namely the open set
Int(P ). Items (5) and (6) provide topological reformulations of the above items. In particular,
Proposition 2.6 shows that our proposal is very natural from a topological perspective: it is
equivalent to saying that P is believed iff the complement of P is nowhere dense. Since nowhere
dense sets are one of the topological concepts of “small” or “negligible” sets, this amounts to
believing propositions iff they are true in almost all epistemically-possible worlds, where “almost
all” spelled out topologically as “everywhere but a nowhere dense part of the model”. Finally,
Proposition 2.7 tells us that belief is definable in terms of the operators [∀] and 2.

4.3 Conditional Belief on Topo-e-models

The belief semantics given in Section 4.2 can be generalized to conditional beliefs BQP by rel-
ativizing the plain belief definition BP to the given condition Q. The current setting requires
a careful treatment of the aforementioned relativization (as recognized already in van Benthem
and Pacuit, 2011) since some of the agent’s evidence might be inconsistent with the condition
Q. While evaluating beliefs under the assumption that the given condition Q is true, one should
focus only on the evidence that is consistent with Q by neglecting the evidence pieces that are
disjoint with Q. Therefore, in order to define conditional beliefs, we need a relativized version of
the notion of consistent (bodies of) evidence.

Given an evidence model M = (X, E0, V ), for any subsets Q,A ⊆ X, we say that A is Q-
consistent iff Q∩A 6= ∅. Moreover, a body of evidence F is called Q-consistent iff

⋂
F∩Q 6= ∅. We

can then define conditional beliefs based on these notions of conditional consistency. We say that
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P is believed given Q, and write BQP , iff every finite Q-consistent body of evidence can be
strengthened to some finite Q-consistent body of evidence supporting the proposition Q→ P .

An analogue of Proposition 2 providing different characterizations can also be proven for
conditional belief:

Proposition 3. In every topo-e-model M = (X, E0, τ, V ), the following are equivalent, for any
two propositions P,Q ⊆ X with Q 6= ∅:

1. BQP holds (at any state)
(i.e., ∀F ∈ Ffin(

⋂
F ∩Q 6= ∅ ⇒ ∃F ′ ∈ Ffin(

⋂
F ′∩Q 6= ∅ and

⋂
F ′ ⊆

⋂
F ∩ (Q→ P ))));

2. every Q-consistent evidence can be strengthened to some Q-consistent evidence supporting
Q→ P
(i.e., ∀e ∈ E(e ∩Q 6= ∅ ⇒ ∃e′ ∈ E(e′ ∩Q 6= ∅ and e′ ⊆ e ∩ (Q→ P ))));

3. every Q-consistent argument can be strengthened to a Q-consistent argument for Q→ P
(i.e., ∀U ∈ τ(U ∩Q 6= ∅ ⇒ ∃U ′ ∈ τ(U ′ ∩Q 6= ∅ and U ′ ⊆ U ∩ (Q→ P ))));

4. there is some Q-consistent argument for Q→ P whose intersection with any Q-consistent
evidence is Q-consistent
(i.e., ∃U ∈ τ(U ∩Q 6= ∅ and U ⊆ Q→ P and ∀e ∈ E(e ∩Q 6= ∅ ⇒ (U ∩ e) ∩Q 6= ∅)));

5. Q→ P includes some Q-consistent open set which is dense in Q
(i.e., ∃U ∈ τ(U ∩Q 6= ∅ and U ⊆ Q→ P and Q ⊆ Cl(U ∩Q)));

6. Int(Q→ P ) is dense in Q
(i.e., Q ⊆ Cl(Q ∩ Int(Q→ P )));

7. [∀](Q→ 3(Q∧2(Q→ P ))) holds (at any state ) (i.e., [∀](Q→ 3(Q∧2(Q→ P ))) = X),
or equivalently, [∀](Q→ 3(Q ∧2(Q→ P ))) 6= ∅.

Proof. The equivalence of (1), (2), (3) is easy and directly follows from the semantics of BQP ,
and the definitions of Q-consistent evidence and Q-consistent argument. For the equivalence
between (5) and (6), consider the weakest argument Int(Q → P ) for Q → P as the relevant
open set. And, for the equivalence of (6) and (7), recall that [∀] is the universal quantifier, 2 is
interior, and 3 is closure. We here show only the equivalence of (3) and (4), and between (4)
and (5) in details.

(3)⇒(4): Suppose that (3) holds and consider the weakest argument Int(Q→ P ) for Q→ P .
Since X ∈ E and X is Q-consistent, by (3), there exists a stronger U ∈ τ such that U ∩ Q 6= ∅
and U ⊆ Q→ P . Since Int(Q→ P ) is the largest open with Int(Q→ P ) ⊆ Q→ P , we obtain
U ⊆ Int(Q → P ) ⊆ Q → P for any such U , therefore, Int(Q → P ) is also Q-consistent. Let
e ∈ E be such that e ∩ Q 6= ∅. Therefore, since E ⊆ τ , by (3), there exists U ′ ∈ τ such that
U ′ ∩Q 6= ∅ and U ′ ⊆ e ∩ (Q→ P ). By the previous argument, we know that U ′ ⊆ Int(Q→ P ),
thus, U ′ ⊆ e ∩ Int(Q→ P ) 6= ∅. And, since U ′ is Q-consistent, the result follows.

(4)⇒(3): Suppose that (4) holds, i.e., suppose that there is U0 ∈ τ such that (a) U0 ∩Q 6= ∅,
(b) U0 ⊆ Q → P and (c) for all e ∈ E with e ∩ Q 6= ∅, we have (U0 ∩ e) ∩ Q 6= ∅. Let U ∈ τ
be such that U ∩ Q 6= ∅ and consider the open set U ∩ U0. Since U ∩ Q 6= ∅ and E is a basis
for τ , there exists e0 ∈ E such that e0 ⊆ U and e0 ∩ Q 6= ∅. Therefore, by (c), we have that
(U0 ∩ e0) ∩Q 6= ∅, thus, the open set U0 ∩ e0 is Q-consistent. Moreover, since U0 ⊆ Q→ P and
e0 ⊆ U , we obtain U0 ∩ e0 ⊆ U ∩ (Q→ P ).

(4)⇔(5): For the left-to-right direction, suppose (4) holds as in the above case, and toward
showing Q ⊆ Cl(U0 ∩Q), let x ∈ Q and e ∈ E such that x ∈ e. Therefore, e is Q-consistent, i.e.,
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e ∩ Q 6= ∅. Then, by (4), we obtain (U0 ∩ e) ∩ Q 6= ∅, implying that x ∈ Cl(U0 ∩ Q). For the
right-to-left direction, suppose (5) holds with U0 the witness and let e ∈ E be such that e∩Q 6= ∅.
This means that there is y ∈ e ∩ Q, thus, y ∈ Q. Then, by (5), y ∈ Cl(U0 ∩ Q). Therefore, as
y ∈ e ∈ E , we conclude (U0 ∩Q) ∩ e 6= ∅.

5 Knowledge

As already mentioned, the notion of infallible knowledge—represented by the global modality [∀]
introduced in Section 3.2—has a very limited scope: there are very few things we could know in
this strong sense, maybe, say, only logical-mathematical tautologies. We now proceed to define
a weaker and thus more widely applicable notion of knowledge, which better approximates the
common usage of the word.

More concretely, the concept of (fallible) knowledge we propose is based on factive justifica-
tions. Formally, given a topo-e-model M = (X, E0, τ, V ), we set

KP = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ P and Cl(U) = X)}.

In other words: KP holds at a world x iff P includes a dense open neighborhood of x. Similarly
to the cases for belief and conditional beliefs (recall Propositions 2 and 3), we can provide several
equivalent definitions of KP on topo-e-models as follow.

Proposition 4. Let M = (X, E0, τ, V ) be a topo-e-model and x ∈ X be the actual world. The
following are equivalent for all P ⊆ X:

1. KP holds at x in M
(i.e., ∃U ∈ τ (x ∈ U ⊆ P and Cl(U) = X));

2. there is some factive justification for P at x, i.e., there is some factive argument for P at
x which is consistent with any available evidence
(i.e., ∃U ∈ τ(x ∈ U ⊆ P and ∀e ∈ E(U ∩ e 6= ∅)));

3. Int(P ) contains the actual state and is dense in τ
(i.e., x ∈ Int(P ) and Cl(Int(P )) = X);

4. 2P ∧BP holds at x.

Proof. The proof is similar to the proof of Proposition 2. For the equivalence of (1) and (2),
recall that E constitutes a basis for τ . The equivalence of (2) and (3) is also straightforward
(recall that Int(P ) is the largest open set contained in P ). For the equivalence of (3) and (4),
see Proposition 2.6 and recall that 2 is interpreted as the interior operator.

Therefore, as the equivalence of items 1 and 2 of Proposition 4 shows, our proposal equates
“knowledge” with correctly justified belief: belief based on true justifications. We will see that
our ‘coherentist’ notion of justification makes this notion subtly different from the influential
“no false lemma” account of knowledge. But first, we should note that our proposal does not
simply boil down to “justified true belief”. This would clearly be vulnerable to Gettier-type
counterexamples (Gettier, 1963). To better explain the distinction, we illustrate in the example
below the proposed semantics for justified belief and knowledge, as well as the connection between
the two notions.
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Example 3. Consider the topo-e-model M = ([0, 1], E0, τ, V ), where E0 = {(a, b) ∩ [0, 1] | a, b ∈
R, a < b} and V (p) = ∅. The generated topology τ is the standard topology of open intervals
restricted to [0, 1]. Let P = [0, 1] \ { 1

n | n ∈ N} be the proposition stating that “the actual state
is not of the form 1

n , for any n ∈ N” (see Figure 5). Since the complement ¬P = [0, 1]\P =
{ 1
n | n ∈ N} is nowhere dense (i.e., Int(Cl(¬P )) = Int(¬P ) = ∅), the agent believes P , and e.g.
U =

⋃
n≥1( 1

n+1 ,
1
n ) is a justification for P , that is, U is a dense open subset of P . This belief is

true at world 0 ∈ P . But this true belief is not known at 0: no justification for P is true at 0,
since P does not include any open neighborhood of 0, so 0 6∈ Int(P ) and hence 0 6∈ KP . This
shows that KP 6= P ∧BP . Moreover, P is known in all the other states x ∈ P \ {0}, since

∀x ∈ P\{0} ∃ε > 0(x ∈ (x− ε, x+ ε) ⊆ P ),

therefore x ∈ Int(P ).

1
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Figure 5: ([0, 1], τ)

A brief note on Stalnaker’s epistemic-doxastic system (Stalnaker, 2006): it is easy to see
that K together with justified belief B satisfies Stalnaker’s Full Belief principle BP = BKP
(see Table 5 for the complete list of his axioms). These operators in fact satisfy all the axioms
and rules of the system Stalnaker’s logic of knowledge and belief on all topo-e-models, thus,
on all topological spaces, not only on the restricted class of extremally disconnected spaces. We
prove the soundness and completeness of Stalnaker’s system with respect to all topo-e-models in
Section 6.4.

One interesting property of this weaker type of knowledge is it being defeasible in the light of
new information, even when the new information is true. In contrast, the usual assumption in
epistemic logic is that knowledge acquisition is monotonic. As a result, logicians typically assume
that knowledge is irrevocable: once acquired, it cannot be defeated by any further evidence
gathered later. In our setting, the only irrevocable knowledge is the absolutely certain one (true
in all epistemically-possible worlds), captured by the operator [∀]. Clearly, K is not irrevocable.

5.1 Knowledge is defeasible

Gettier (1963)—with his famous counterexamples against the account of knowledge as justified
true belief—triggered an extensive discussion in epistemology that is concerned with understand-
ing what knowledge is, and in particular, with identifying the exact properties and conditions
that render a piece of justified true belief knowledge. Epistemologists have made various proposals
such as, among others, the no false lemma (Clark, 1963), the defeasibility analysis of knowledge
(Lehrer and Paxson, 1969; Lehrer, 1990; Klein, 1971, 1981), the sensitivity account (Nozick,
1981), the safety account (Sosa, 1999), and the contextualist account (DeRose, 2009).16 While
there is still very little agreement as to which proposal gives a satisfactory solution to the Get-
tier challenge, the extent of the post-Gettier literature at the very least shows that the relation
between justified belief and knowledge is very delicate, and it is not an easy task, if possible,
to identify a unique notion of knowledge that can deal with all kinds of intuitive counterex-
amples. However, as Rott states, one can accept that all these proposals “capture important

16For an overview of responses to the Gettier challenge and a detailed discussion, we refer the reader to (Rott,
2004; Ichikawa and Steup, 2013).

21



intuitions that can in some way or other be regarded as relevant to the question whether or not
a given belief constitutes a piece of knowledge” (Rott, 2004, p. 469).

In this section, we argue that the conception of knowledge captured by our modality K is
stronger than Clark’s “no false lemma” (Clark, 1963), and very close to (though subtly different
from) the so-called defeasibility theory of knowledge held by Lehrer and Paxson (1969); Lehrer
(1990); Klein (1971, 1981). But providing an extensive philosophical comparison with all the
aforementioned theories of knowledge is way beyond the scope of this paper, so we leave this
task for future work.

Clark’s influential “no false lemma” proposal requires a correct “justification”—one that
doesn’t use any falsehood—for a piece of belief to constitute knowledge (Clark, 1963). While
this may sound very similar to our definition of knowledge K, our proposal imposes a stronger
implicit requirement than Clark’s, since our concept of justification requires consistency with all
the available (combined) evidence. In our terminology, Clark only requires a factive argument
for P . So Clark’s approach is local, assessing a knowledge claim based only on the truth of the
evidence pieces (and the correctness of the inferences) that are used to justify it. In contrast, our
proposed notion of knowledge inherits the ‘holistic’ character of our proposed concept of belief:
to count as justifications, evidential arguments first need to be checked against all (the other
arguments that can be constructed from the agent’s) current evidence. So a knowledge claim is
assessed by checking both the truth of the underlying argument and its consistency with all of
the agent’s acceptance system.

On the other hand, the defeasibility theory of knowledge, roughly speaking, defines knowledge
as undefeated justified belief: justified belief that cannot be defeated by any factive evidence that
might be gathered later (though it may be defeated by false evidence). In its simplest version,
called by Rott (2004) stable belief theory or stability theory of knowledge, it says that the agent
knows P if only if

1. P is true

2. she believes that P , and

3. her belief in P cannot be defeated by new factive information.

In other words, given a true proposition P , the agent knows P iff the belief in P is stable for
true information. The stable belief theory has been challenged for being too weak to characterize
knowledge: the agent may keep her (true) belief stable, while continuously adopting newer
justifications. Each of these justifications is wrong and can be defeated, but the belief itself
remains undefeated. A more developed version of defeasibility theory, as held by Lehrer and
others, insists that, in order to know P , not only the belief in P has to stay stable, but also its
justification (i.e. what we call here “an argument for P”) should be undefeated. More precisely,
according to this strong version of defeasibility theory, the agent knows P if and only if

1. P is true

2. she believes that P ,

3. her belief in P cannot be defeated by new factive information, and

4. her ‘justification’ (=argument, in our sense) is undefeated by new factive information.

In this sense, for the agent to know P there must exist an argument for P that is believed
conditional on every true evidence. Clearly, this implies that the belief in P is stable, but the
converse fails. As already observed, the problem is that, when confronted with various new
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pieces of evidence, the agent might keep switching between different justifications (for believing
P ), thus, she may keep believing in P conditional on any such new true evidence without actually
having any good, robust justification (i.e., one that remains itself undefeated by all true evidence)
(see Example 5). To have knowledge, we thus need a stable justification.17

However, the above interpretations of both the stability and the defeasibility theory were
also attacked as being too strong : if we allow as potential defeaters all factive propositions
(i.e. all sets of worlds P containing the actual world), then there are intuitive examples showing
that knowledge KP can be defeated (Klein, 1980, 1981). Here is such an example discussed
by Klein (1981), a leading proponent of the defeasibility theory. Loretta filled in her federal
taxes, following very carefully all the required procedures on the forms, doing all the calculations
and double checking everything. Based on this evidence, she correctly believes that she owes
$500, and she seems perfectly justified to believe this. So it seems obvious that she knows
this. But suppose now that, being aware of her own fallibility, she asks her accountant to check
her return. The accountant finds no errors (when there are in fact some errors in her calculation,
yet not affecting the correct result that she owes $500), and so he sends her his reply reading
“Your return contains no errors”; but he inadvertently leaves out the word “no”. If Loretta would
learn the true fact that the accountant’s letter actually reads “Your return contains errors”, she
would lose her true belief that she owed $500. So it seems that there exist defeaters that are true
but “misleading”. We formalize this counterexample in Example 4 and show that our knowledge
K is neither stable nor indefeasible. In order to make the formalization more succinct, we first
introduce an operation of evidence addition and some notation.

Definition 8 (Evidence added topo-e-model). Given a topo-e-model M = (X, E0, τ, V ) and a
nonempty P ⊆ X, we can define a P -added topo-e-model M+P as M+P = (X, E+P

0 , τ+P , V ),
where E+P

0 = E0 ∪ {P} and τ+P is the topology generated by E+P
0 .

It is easy to see that M+P is a topo-e-model, since ∅ 6∈ E+P
0 and X ∈ E+P

0 , and τ+P is the
evidential topology generated by E+P

0 . Moreover, the set of combined evidence E+P of M+P can
be described as

E+P = E ∪ {e ∩ P | e ∈ E with e ∩ P 6= ∅},

which clearly constitutes a basis for τ+P .

Example 4. Consider the model M = (X, E0, τ, V ), where X = {x1, x2, x3}, V (p) = ∅,
E0 = {X,O1, O2}, O1 = {x1, x2}, O2 = {x2, x3} (see Figure 6). The resulting set of com-
bined evidence is E = {X,O1, O2, {x2}}. Assume that the actual world is x1. Then O1 is known,
since x1 ∈ Int(O1) = O1 and Cl(O1) = X. Now consider the model M+O3 = (X, E+O3

0 , τ+O3 , V )
obtained by adding the new evidence O3 = {x1, x3} (as in Definition 8). We have E+O3

0 =
{X,O1, O2, O3}, so E+O3 = {X,O1, O2, O3, {x1}, {x2}, {x3}}. Note that the new evidence is
true (x1 ∈ O3). However, O1 is not even believed in M+O3 anymore, since O1 ∩ {x3} = ∅, so
O1 is no longer dense in τ+O3 . Therefore, O1 is no longer known after the true evidence O3 was
added.

Klein’s story corresponds to taking O1 to represent Loretta’s direct evidence (based on care-
ful calculations) that she owes $500, O2 to represent her prior evidence (either based on past
experience, or just being one of Loretta’s default assumptions) that the accountant doesn’t make

17Lehrer uses the metaphor of an Ultra-Justification Game (Lehrer, 1990), according to which ‘knowledge’ is
based on arguments that survive a game between the Believer and an omniscient truth-telling Critic, who tries to
defeat the argument by using both the Believer’s current “justification system” and any new true evidence (see
Fiutek, 2013, Section 5.2 for a formalization of Lehrer’s ultra-justification game).
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Figure 6: From M to M+O3 .

mistakes in his replies to her, and O3 the potential new evidence provided by the letter. In con-
clusion, our notion of knowledge is incompatible with the above-mentioned strong interpretations
of both stability and defeasibility theory, thus confirming the objections raised against them.

Klein’s solution is that one should exclude such misleading defeaters, which may “unfairly”
defeat a good justification. But how can we distinguish them from genuine defeaters? Klein’s
diagnosis, in Foley’s more succinct formulation, is that “a defeater is misleading if it justifies a
falsehood in the process of defeating the justification for the target belief” (Foley, 2012, p. 96). In
the example, the falsehood is that the accountant had discovered errors in Loretta’s tax return.
It seems that the new evidence O3 (the existence of the letter as actually written) supports this
falsehood, but how? According to us, it is the combination O2∩O3 of the new (true) evidence O3

with the old (false) evidence O2 that supports the new falsehood: the true fact (about the letter
saying what it says) entails a falsehood only if it is taken in conjunction with Loretta’s prior
evidence (or blind trust) that the accountant cannot make mistakes. So intuitively, misleading
defeaters are the ones which may lead to new false conclusions when combined with some of the
old evidence.

5.2 Misleading evidence and weakly indefeasible knowledge

We proceed now to formalize the distinction between misleading and genuine (i.e., nonmisleading)
defeaters. Given a topo-e-model M = (X, E0, τ, V ), a state x ∈ X and a proposition Q ⊆ X,

• Q is misleading at x ∈ X with respect to E if evidence-addition with Q produces some false
new evidence;

equivalently, and more formally, if there is some e ∈ E+Q \E such that x 6∈ e, i.e., if there is some
e ∈ E such that x 6∈ (e∩Q) and (e∩Q) 6∈ E ∪ {∅}. A proposition Q ⊆ X is called nonmisleading
if Q is not misleading. It is easy to see that old evidence e ∈ E is by definition nonmisleading
with respect to E (i.e., each e ∈ E is nonmisleading with respect to E), and new nonmisleading
evidence must be true (i.e., if Q ⊆ X is nonmisleading at x and Q 6∈ E , then x ∈ Q).

We are now in the position to formulate precisely the weakened versions of both stability and
defeasibility theories that we are looking for. The weak stability theory will stipulate that the
agent knows P if and only if

1. P is true

2. she believes that P ,
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3. her belief in P cannot be defeated by any nonmisleading evidence.

On the other hand, the weak defeasibility theory requires that there exists some justification
(argument) for P that is undefeated by every nonmisleading proposition. More precisely, the
weak defeasibility theory strengthens the above described weak stability theory by the following
“stable justification” clause:

4. her belief in its justification is undefeated by any nonmisleading evidence.

Finally, we also provide a third formulation, which one might call epistemic coherence theory,
saying that P is known iff there exists some justification (argument) for P which is consistent
with every nonmisleading proposition. While our proposed notion of knowledge is stronger than
the one described by the weak stability theory, as illustrated by Example 5, it coincides with the
ones defined by the weak defeasibility and epistemic coherence theories (see Proposition 5). In
particular, the following counterexample shows that weak stability is (only a necessary, but) not
a sufficient condition for knowledge K:

Example 5. Consider the model M = (X, E0, τ, V ), where X = {x0, x1, x2}, V (p) = ∅,
E0 = {X,O1, O2} with O1 = {x1}, O2 = {x1, x2} (see Figure 7). The resulting set of com-
bined evidence is E = E0. Assume that the actual world is x0 and let P = {x0, x1}. Then,
P is believed in M (since its interior Int(P ) = {x1} is dense in τ) but it is not known
(since x0 6∈ Int(P ) = {x1}). However, we can show that P is believed in M+Q for any non-
misleading Q at x0. For this, note that the family of nonmisleading propositions (at x0) is
E ∪ {P, {x0}} = {X,O1, O2, P, {x0}}. It is easy to see that for each set Q in this family, BP
holds in M+Q.

x2

x1
x0 O1

O2P

Figure 7: M = (X, E0, V ): The continuous ellipses represent the currently available pieces of
evidence, while the dashed ones represent the other nonmisleading propositions.

One should stress that our counterexample agrees with the position taken by most proponents
of the defeasibility theory: stability of (justified) belief is not enough for knowledge. Intuitively,
what happens in the above example is that, although the agent continues to believe P given
any nonmisleading evidence, her justification keeps changing. For example, while the only jus-
tification for believing P in M is O1, the evidence O1 is no longer dense in model M+{x0},
therefore, cannot constitute a justification for P in M+{x0}. On the other hand, another argu-
ment in M+{x0}, namely {x0, x1} forms a justification for P in M+{x0}, thus P is still believed
in M+{x0}, but, based on a different justification. Therefore, there is no uniform justification for
P that works for every nonmisleading evidence Q.

The next result shows that our notion of knowledge exactly matches the weakened version of
defeasibility theory, as well as the epistemic coherence formulation:

Proposition 5. Let M = (X, E0, τ, V ) be a topo-e-model and x ∈ X be the actual world. The
following are equivalent for all P ⊆ X:
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1. KP holds at x in M.

2. There is an argument (justification) for P that cannot be defeated by any nonmisleading
proposition; i.e. ∃U ∈ τ \{∅} such that U ⊆ P and BU holds in M+Q for all nonmisleading
Q ⊆ X (at x with respect to E).

3. There is an argument (justification) for P that is consistent with every nonmisleading
proposition; i.e. ∃U ∈ τ \{∅} such that U ⊆ P and U ∩Q 6= ∅ for all nonmisleading Q ⊆ X
(at x with respect to E).

Proof. (1) ⇒ (2): Suppose x ∈ KP . This means, by Proposition 4.3, that x ∈ Int(P ) and
Cl(Int(P )) = X. Now consider the argument Int(P ). Obviously Int(P ) ∈ τ\{∅} and Int(P ) ⊆
P . Let Q be a nonmisleading proposition at x with respect to E , and Cl+Q and Int+Q denote the
closure and the interior operators of τ+Q, respectively. We only need to show that Int+Q(Int(P ))
is dense in (X, τ+Q), i.e., that for all e ∈ E+Q, we have e ∩ Int+Q(Int(P )) 6= ∅. Let e ∈ E+Q.
Then, by the definition of E+Q, we have two cases: (1) e ∈ E , or (2) e 6∈ E but e = e′ ∩ Q for
some e′ ∈ E . Since Q is nonmisleading, the latter case entails that x ∈ e. If e ∈ E , we have
e ∩ Int+Q(Int(P )) 6= ∅ since Int(P ) ⊆ Int+Q(Int(P )) (by Lemma 1) and Int(P ) is dense in
(X, τ). If e 6∈ E and e = e′ ∩ Q for some e′ ∈ E with x ∈ e, we obtain x ∈ e ∩ Int+Q(Int(P ))
since x ∈ Int(P ) ⊆ Int+Q(Int(P )), thus, e ∩ Int+Q(Int(P )) 6= ∅. Therefore, Int+Q(Int(P )) is
dense in (X, τ+Q), i.e., B(Int(P )) holds in M+Q.

(2) ⇒ (3): Suppose that (2) holds, i.e., there is a U ∈ τ \ {∅} such that U ⊆ P and
Cl+Q(Int+Q(U)) = X for all nonmisleading Q ⊆ X (at x with respect to E). Let Q be nonmis-
leading at x with respect to E . Since Cl+Q(Int+Q(U)) = X, we have that e∩ Int+Q(U) 6= ∅ for
all e ∈ E+Q. As Q is nonmisleading at x, we in particular have ∅ 6= Q = Q ∩X ∈ E+Q (by the
definition of E+Q and the fact that X ∈ E). Hence, it follows from (2) that Q ∩ Int+Q(U) 6= ∅.
Since Int+Q(U) ⊆ U , we obtain U ∩Q 6= ∅.

(3) ⇒ (1): Assume that U ∈ τ\{∅} is such that U ⊆ P and U ∩ Q 6= ∅ holds for all
nonmisleading Q (at x with respect to E). Clearly, this implies that U is consistent with all
e ∈ E , i.e., that e ∩ U 6= ∅ (since available evidence is by definition nonmisleading), so U is
a justification for P (i.e., X = Cl(U) = Cl(Int(P ))). So, to show that KP holds at x, it is
enough to show that x ∈ Int(P ). For this, take the proposition Q = {x}, which obviously is
nonmisleading at x, hence by (3) we must have U ∩ {x} 6= ∅, i.e. x ∈ U . Then, x ∈ U ∈ τ and
U ⊆ P give us x ∈ Int(P ), as desired.

6 Logics for evidence, justified belief and knowledge

This section constitutes the technical heart of the paper and is devoted to our results concerning
soundness, completeness, decidability, and the finite model property for several logics of evidence,
belief, and knowledge (Sections 6.3-6.5). In order to keep this section self-contained and fix some
notation, we first recapitulate, in a concise way, the formal syntax and semantics for the notions
presented in the previous sections.

6.1 Logics for evidence, justified belief, and knowledge

Syntax. The full language L of evidence, belief, and knowledge we consider is defined recur-
sively by the grammar

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | E0ϕ | Eϕ | 20ϕ | 2ϕ | Bϕ | Bϕϕ | Kϕ | [∀]ϕ
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where p ∈ Prop. We employ the usual abbreviations for propositional connectives >, ⊥, ∨, →,
↔, and for the dual modalities B̂, K̂, Ê etc. except that some of them have special abbrevia-
tions: [∃]ϕ := ¬[∀]¬ϕ and 3ϕ := ¬2¬ϕ. We will follow the usual rules for the elimination of
the parentheses. Several fragments of the language L is of particular interest: LB the fragment
having the belief modality B as the only modality; LK having only the knowledge modality K;
and some bimodal fragments such as LKB having only operators K and B; L[∀]K having only
operators [∀] and K; and the trimodal fragment L[∀]202 having only the modalities [∀], 20, and
2.

Semantics. We interpret the language L on topo-e-models in an obvious way, following the
definitions of the corresponding operators provided in previous sections.

Definition 9 (Topo-e-Semantics for L). Given a topo-e-model M = (X, E0, τ, V ), we extend the
valuation map V to an interpretation map [[.]]M : L → P(X) recursively as follows:18

[[p]]M = V (p)
[[¬ϕ]]M = X \ [[ϕ]]M

[[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

[[E0ϕ]]M = {x ∈ X | ∃e ∈ E0(e ⊆ [[ϕ]]M)}
[[Eϕ]]M = {x ∈ X | ∃e ∈ E (e ⊆ [[ϕ]]M)}
[[20ϕ]]M = {x ∈ X | ∃e ∈ E0 (x ∈ e and e ⊆ [[ϕ]]M)}
[[2ϕ]]M = {x ∈ X | ∃U ∈ τ (x ∈ U and U ⊆ [[ϕ]]M)}
[[Bϕ]]M = {x ∈ X | ∃U ∈ τ (U ⊆ [[ϕ]]M and Cl(U) = X)}
[[Bθϕ]]M = {x ∈ X | ∃U ∈ τ (∅ 6= U ∩ [[θ]]M ⊆ [[ϕ]]M and Cl(U ∩ [[θ]])

M ⊇ [[θ]]M)}
[[Kϕ]]M = {x ∈ X | ∃U ∈ τ (x ∈ U ⊆ [[ϕ]]M and Cl(U) = X)}
[[[∀]ϕ]]M = {x ∈ X | [[ϕ]]M = X}

We omit the superscript M when the model is contextually clear. Given a Γ ⊆ L and
ϕ ∈ L, we say that ϕ is a logical consequence of Γ, denoted by Γ |= ϕ, iff for all topo-e-models
M = (X, E0, τ, V ) and all x ∈ X: if x ∈ [[ψ]] for all ψ ∈ Γ, then x ∈ [[ϕ]]. As a special case,
validity, |= ϕ, is truth at all worlds of all topo-e-models. ϕ is called invalid, denoted by 6|= ϕ,
if it is not a validity, that is, if there is a topo-e-model M = (X, E0, τ, V ) and a possible world
x ∈ X such that x 6∈ [[ϕ]]. We say that a formula ϕ is valid in a topo-e-model M = (X, E0, τ, V ),
denoted by M |= ϕ, if [[ϕ]] = X. Soundness and completeness with respect to topo-e-models are
defined standardly (see, e.g., Blackburn et al., 2001, Chapter 4.1).

It is not hard to see that the above defined semantics for the modalities of L corresponds
exactly to the semantic operators given in Sections 3-5: e.g. [[[∀]ϕ]] = [∀][[ϕ]], [[2ϕ]] = 2[[ϕ]] =
Int([[ϕ]]), etc. Moreover, while all modalities except for E0 and 20 capture topological properties
of topo-e-models, i.e., they can be interpreted directly in (X, τ, V ), a topo-model, the expressivity
of the full language goes beyond the purely topological properties: the meaning of E0 and 20

does not only depend on the evidential topology, but also depends on the basic evidence set
E0. From the point of expressivity, the most important fragment of L is the trimodal language
L[∀]202 since it is equally expressive as the full language L with respect to the topo-e-models:

18We remind the reader not to confuse ∃ and [∃]: while we use the former to abbreviate “there exists” in the
metalanguage, the latter is the existential modality defined as ¬[∀]¬ in the object language L. Similarly for ∀
and [∀]: the former abbreviates “for all” in the metalanguage and the latter is the global modality in the object
language L.
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Proposition 6. The following equivalences are valid:

1 . Bϕ↔ [∀]32ϕ 4 . Kϕ↔ 2ϕ ∧ [∀]32ϕ
2 . Eϕ↔ [∃]2ϕ 5 . Bθϕ↔ [∀](θ → 3(θ ∧2(θ → ϕ)))
3 . E0ϕ↔ [∃]20ϕ

Proof. The proof follows easily from the semantics clauses of the modalities given in Definition
9.

Therefore, all the other modalities of L can be defined in L[∀]202. For this reason, instead
of focusing on the full language L, we present soundness, completeness, and decidability results
for the factive evidence fragment L[∀]202: its importance comes from its expressive power. We
moreover provide sound and complete axiomatizations for the pure doxatic fragment LB , the pure
epistemic fragments LK and L[∀]K , and finally for the epistemic-doxastic fragment LKB . As the
semantics of [∀], B, and K can be defined only based on the evidential topology (without referring
to E0), we will state the corresponding soundness and completeness results simply with respect
to topo-models19. Notions of validity in a topo-model, validity, soundness, and completeness wrt
topo-models are defined standardly, similarly to those for topo-e-models. For L[∀]202, we need
the complete structure of the topo-e-models as the semantics of 20 depends on the basic evidence
set E0 and cannot be recovered purely topologically.

Before moving on to the technical results, we briefly recall the following standard terminology
of Hilbert-style axiom systems and set some notation. Given a logic L defined by a finitary
Hilbert-style axiom system, an L-derivation/proof is a finite sequence of formulas such that each
element of the sequence is either an axiom of L, or obtained from the previous formulas in
the sequence by one of the inference rules. A formula ϕ is called L-provable, or, equivalently, a
theorem of L, if it is the last formula of some L-proof. In this case, we write `L ϕ (or, equivalently,
ϕ ∈ L). For any set of formulas Γ and any formula ϕ, we write Γ `L ϕ if there exist finitely many
formulas ϕ1, . . . , ϕn ∈ Γ such that `L ϕ1 ∧ · · · ∧ϕn → ϕ. We say that Γ is L-consistent if Γ 6`L ⊥,
and L-inconsistent otherwise. A formula ϕ is consistent with Γ if Γ ∪ {ϕ} is L-consistent (or,
equivalently, if Γ 6`L ¬ϕ). Finally, a set of formulas Γ is maximally consistent if it is L-consistent
and any set of formulas properly containing Γ is L-inconsistent, i.e. Γ cannot be extended to
another L-consistent set. We drop mention of the logic L when it is clear from the context.

For the axiomatizations of the well-known normal unimodal logics, we refer to (Blackburn
et al., 2001, Chapter 4). Here we use the standard naming conventions for these logics and
the relevant axioms, and add the axiomatized operator as a subscript to their names: e.g., the
normal modal logic KD45 for B is denoted by KD45B , S5 for [∀] by S5[∀], and axiom (.2) for K
by (.2K). We provide the axioms of our multi-modal logics in tables in the relevant sections.
Finally, L+(ϕ) denotes the smallest modal logic containing L and ϕ, i.e., L+(ϕ) is the smallest
set of formulas (in the corresponding language) that contains L and ϕ, and is closed under the
inference rules of L.

6.2 The knowledge fragments LK and L[∀]K: S4.2K and L[∀]K

In this section, we focus on the two knowledge fragments LK and L[∀]K , and provide sound and
complete axiomatizations for the associated logics. While the fragment having only the modality
K leads to the familiar system S4.2K , the full knowledge fragment having both K and [∀] gives
us the axiomatization L[∀]K presented below, in Table 4.

19A topo-model is a tuple (X, τ, V ), where (X, τ) is a topological space and V : Prop → P(X) is a standardly
defined valuation function. The semantic clauses of the language L minus the components E0 and 20 in topo-
models are as given in Definition 9.
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The soundness results, as usual, are shown by proving that all axioms are validities and
that all derivation rules preserve validities. These proofs are elementary for most axioms and
derivation rules, we here show only the relatively trickier cases. For completeness of both S4.2K
and L[∀]K , we rely on their completeness wrt Kripke models and the connection between their
Kripke models and topo-models explained in Section 6.2.1.

6.2.1 Soundness and Completeness of S4.2K

The relatively harder case in the soundness proof of S4.2K is the normality axiom (KK) for the
knowledge modality K, whose validity follows from the following lemma and the fact that the
interior operator commutes with finite intersections (see Section 2).

Lemma 2. Given a topological space (X, τ) and any two subsets U1, U2 ⊆ X, if U1 is open dense
and U2 is dense, then U1 ∩ U2 is dense.

Proof. Let (X, τ) be a topological space and U1, U2 ⊆ X. Suppose U1 is an open dense and U2

is a dense set in (X, τ). Since U1 is open and dense we have that W ∩U1 is open and non-empty
for any non-empty open set W . Thus, since U2 is dense, we also have that (W ∩ U1) ∩ U2 6= ∅.
Therefore, W ∩ (U1 ∩ U2) 6= ∅ for any nonempty W ∈ τ , i.e., U1 ∩ U2 is dense as well.

For completeness, we rely on the completeness of S4.2K wrt its Kripke models and their
connection to topological models.

Connection between S4.2-frames and topological spaces. Let (X,R) be a transitive Kripke
frame. A nonempty subset C ⊆ X is called cluster if (1) for each x, y ∈ C we have xRy, and
(2) there is no D ⊆ X such that C ( D and D satisfies (1). A point x ∈ X is called a maximal
point if there is no y ∈ X such that xRy and ¬(yRx). We call a cluster a final cluster if all its
points are maximal. It is not hard to see that for any final cluster C of (X,R) and any x ∈ C, we
have R(x) = C. A transitive Kripke frame (X,R) is called cofinal if it has a unique final cluster
C such that for each x ∈ X and y ∈ C we have xRy.

Lemma 3. S4.2K is sound and complete with respect to the class of reflexive and transitive
cofinal frames.

Proof. See, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5).

As well-known, given a reflexive and transitive Kripke frame (X,R), we can construct an
Alexandroff space20 (X, τR) by defining τR to be the set of all upsets21 of (X,R) (see, e.g., van
Benthem and Bezhanishvili, 2007, Section 2).

Lemma 4. For every reflexive transitive cofinal frame (X,R) and nonempty U ∈ τR, we have
Cl(U) = X in (X, τR).

Proof. Let (X,R) be a reflexive and transitive cofinal frame and let C ⊆ X denote its final
cluster. By construction, C ∈ τR and moreover C ⊆ U , for all nonempty U ∈ τR. Therefore,
for every nonempty U, V ∈ τR, we have V ∩ U ⊇ C 6= ∅. Hence, Cl(U) = X for any nonempty
U ∈ τR.

20A topological space (X, τ) is an Alexandroff space if τ is closed under arbitrary intersections, i.e.,
⋂
A ∈ τ

for all A ⊆ τ .
21 A ⊆ X is called an upset of (X,R) if for each x, y ∈ X, xRy and x ∈ A imply y ∈ A.
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Given a reflexive and transitive Kripke modelM = (X,R, V ), let B(M) = (X, τR, V ) denote
the corresponding topo-model (where τR is the set of all upsets of (X,R)). For any formula ϕ in
the relevant object language, ‖ϕ‖M denotes the set of worlds inM = (X,R, V ) that make ϕ true
with respect to the standard Kripke semantics (where [∀] is interpreted as the global modality).

Proposition 7. For every reflexive and transitive cofinal Kripke model M = (X,R, V ) and all
ϕ ∈ L[∀]K ,

‖ϕ‖M = [[ϕ]]B(M),

where B(M) = (X, τR, V ).

Proof. The proof follows by subformula induction on ϕ; cases for the propositional variables, the
Boolean connectives and the modality [∀] are elementary. So assume inductively that the result
holds for ψ; we must show that it holds also for ϕ := Kψ. LetM = (X,R, V ) be a reflexive and
transitive cofinal Kripke model and x ∈ X.

(⊆) Suppose x ∈ ‖Kψ‖M. This implies that x ∈ R(x) ⊆ ‖ψ‖M. By induction hypothesis,
we obtain R(x) ⊆ [[ψ]]B(M). Since x ∈ R(x) ∈ τR, we have x ∈ Int([[ψ]]B(M)). Then, by Lemma
4, Cl(Int([[ψ]]B(M))) = X. Therefore, x ∈ [[Kψ]]B(M).

(⊇) Suppose x ∈ [[Kψ]]B(M). This means, by the topological semantics of K, that x ∈
Int([[ψ]]B(M)) and that Cl(Int([[ψ]]B(M))) = X. Then, by induction hypothesis, x ∈ Int(‖ψ‖M)
and Cl(Int(‖ψ‖M)) = X. The former implies that there is an open set U ∈ τR such that
x ∈ U ⊆ ‖ψ‖M. In particular, since R(x) is the smallest open neighbourhood of x, we obtain
R(x) ⊆ ‖ψ‖M. Therefore, x ∈ ‖Kψ‖M.

Theorem 1. S4.2K is sound and complete with respect to the class of all topo-models.

Proof. For completeness, let ϕ ∈ LK such that ϕ 6∈ S4.2K . Then, by Lemma 3, there exists a
Kripke modelM = (X,R, V ) based on the reflexive and transitive cofinal frame (X,R) such that
‖ϕ‖M 6= X. Thus, by Propositition 7, we have [[ϕ]]B(M) 6= X, where B(M) = (X, τR, V ) is the
corresponding topo-model.

6.2.2 Soundness and Completeness of L[∀]K :

The full knowledge fragment L[∀]K having both K and [∀] yields the axiomatic system L[∀]K
given in Table 4 below.

(CPL) all classical propositional tautologies and (MP)
(S5[∀]) all S5 axioms and rules for the modality [∀]
(S4K) all S4 axioms and rules for the modality K
(Ax1) [∀]ϕ→ Kϕ

(Ax2) [∃]Kϕ→ [∀]K̂ϕ

Table 4: The axiomatization of L[∀]K .

Theorem 2. L[∀]K is sound and complete with respect to the class of all topo-models.

Proof. Soundness is easy to see, we here only prove that the axiom ([∃]Kϕ→ [∀]K̂ϕ) is valid in all
topo-models. Let M = (X, τ, V ) be a topo-model, ϕ ∈ L[∀]K , and x ∈ X such that x ∈ [[[∃]Kϕ]].
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This means that there exist y ∈ X such that y ∈ Int([[ϕ]]) and Cl(Int([[ϕ]])) = X. Note that for
any z ∈ X,

z ∈ [[K̂ϕ]] iff z 6∈ Int([[¬ϕ]]) or Cl(Int([[¬ϕ]])) 6= X,

(see Proposition 4-.3). Therefore, in order to show [[K̂ϕ]] = X, it suffices to show that
Cl(Int([[¬ϕ]])) 6= X. Since y ∈ Int([[ϕ]]), we know that Int(Cl([[ϕ]])) 6= ∅ (as Int([[ϕ]]) ⊆
Int(Cl([[ϕ]]))). Hence, Cl(Int([[¬ϕ]])) 6= X. We therefore obtain that [[K̂ϕ]] = X, hence, [∀]K̂ϕ
holds everywhere in M.

For completeness, we use a well-known Kripke completeness result for the logic obtained by
extending S4.2K with the universal modality [∀]. More precisely, it has been shown in (Goranko
and Passy, 1992) that the modal system L0[∀]K := S5[∀] +S4.2K +([∀]ϕ→ Kϕ), simply obtained

by replacing (Ax2) in Table 4 by the axiom (.2K):=K̂Kϕ→ KK̂ϕ, is complete with respect to
the class of reflexive and transitive cofinal Kriple frames when K is interpreted as the standard
Kripke modality and [∀] as the global modality. It is not hard to see that the axiom (.2K)
is derivable in L[∀]K (by using Ax1 and Ax2 in Table 4), hence, L[∀]K is stronger than L0[∀]K ,
i.e., that L0[∀]K ⊆ L[∀]K . Let ϕ ∈ L[∀]K such that ϕ 6∈ L[∀]K . Thus, ϕ 6∈ L0[∀]K . Then, by the
relational completeness of L0[∀]K , there exists a reflexive and transitive cofinal Kripke model

M = (X,R, V ) such that ‖ϕ‖M 6= X. Then, by Proposition 7, we obtain [[ϕ]]B(M) 6= X, where
B(M) = (X, τR, V ).

6.3 The belief fragment LB: KD45B

In this section, we prove that the logic of belief on all topo-models is the standard belief system
KD45B , and it moreover has the finite model property with respect to the class of topo-models.

6.3.1 Soundness of KD45B:

Proposition 8. KD45B is sound with respect to the class of all topo-models.

Proof. The soundness, as usual, is shown by proving that all axioms are validities and that all
derivation rules preserve validities. The cases for the axioms (4B) and (5B) and the inference rules
are elementary, whereas the validity of (KB) in the class of all topological spaces follows from
Lemma 2 as follows. Let M = (X, E0, τ, V ) and ϕ,ψ ∈ LB . We need to show that [[B(ϕ ∧ ψ)↔
Bϕ ∧ Bψ]] = X, i.e., that [[B(ϕ ∧ ψ)]] = [[Bϕ ∧ Bψ]]. Let x ∈ B(ϕ ∧ ψ). This implies, by
the semantics of B that [[B(ϕ ∧ ψ)]] = X, i.e., Cl(Int([[ϕ ∧ ψ]])) = X. We therefore obtain that
X = Cl(Int([[ϕ∧ψ]])) = Cl(Int([[ϕ]])∩Int([[ψ]])) ⊆ Cl(Int([[ϕ]]))∩Cl(Int([[ψ]])) = [[Bϕ∧Bψ]]. For
the other direction, suppose x ∈ [[Bϕ ∧Bψ]]. We therefore have x ∈ [[Bϕ]] and x ∈ [[Bψ]]. Then,
by the semantics of B, we obtain that Cl(Int([[ϕ]])) = X and Cl(Int([[ψ]])) = X. This means that
both Int([[ϕ]]) and Int([[ψ]]) are dense in (X, τ). Hence, by Lemma 2, we obtain Cl(Int([[ϕ]]) ∩
Int([[ψ]])) = X. Similarly to the argument above, we then have X = Cl(Int([[ϕ]]) ∩ Int([[ψ]])) =
Cl(Int([[ϕ ∧ ψ]])) = [[B(ϕ ∧ ψ)]].

6.3.2 Completeness of KD45B:

For completeness, we use the following connection between the KD45-Kripke frames and topo-
logical spaces.

Connection between KD45-frames and topological spaces. Recall that KD45-frames are
serial, transitive and Euclidean Kripke frames. Since truth of modal formulas with respect to the
standard relational semantics is preserved under taking generated submodels (see, e.g., Blackburn
et al., 2001, Proposition 2.6), we can use the following simplified relational structures as Kripke
frames of KD45B .
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Definition 10 (Brush/Pin).

• A relational frame (X,R) is called a brush if there exists a nonempty subset C ⊆ X such
that R = X × C;

• A brush is called a pin if |X \ C| = 1.

C

(a) Brush

C

(b) Pin

Figure 8: An example of a brush and of a pin, where the top ellipses illustrate the final clusters
and an arrow relates the state it started from to every element in the cluster.

Clearly, if such a C exists, it is unique and it is the final cluster of the brush. It is easy to see
that every brush is serial, transitive, and Euclidean (see Figure 8). For the proof of the following
lemma see, e.g., (Chagrov and Zakharyaschev, 1997, Chapter 5) and (Blackburn et al., 2001,
Chapters 2, 4).

Lemma 5. KD45B is a sound and complete with respect to the class of brushes, and with respect
to the class of pins. In fact, KD45B is sound and complete with respect to the class of finite pins.

We can build a topological space from a given pin. For any frame (X,R), let R+ denote the
reflexive closure of R, defined as

R+ = R ∪ {(x, x) | x ∈ X}.

Given a pin (X,R), the set τR+ = {R+(x) | x ∈ X} constitutes a topology on X. In fact,
in this special case of pins, we have τR+ = {X, C, ∅} where C is the final unique cluster of
(X,R). Therefore, it is easy to see that (X, τR+) is a topological space.22 In fact, (X, τR+) is a
generalized Sierpiński space where C does not have to be a singleton (see Figure 9).

This construction leads to a natural correspondence between pins and topological spaces for
the language LB . In particular, for any Kripke model M = (W,R, V ) based on a pin, we set
I(M) = (X, τR+ , V ). Moreover, any two such models M and I(M) make the same formulas of
LB true at the same states, as shown in Proposition 9.

Proposition 9. For all ϕ ∈ LB and any Kripke model M = (W,R, V ) based on a pin,

‖ϕ‖M = [[ϕ]]I(M).

Proof. The proof follows by subformula induction on ϕ; cases for the propositional variables and
the Boolean connectives are elementary. So assume inductively that the result holds for ψ; we

22τR+ is in fact an Alexandroff hereditarily extremaly disconnected space. However, these extra properties are
not of interest in this paper.
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C

(a) (X,R)

C

(b) (X, τR+ )

1

0

(c) Sierpiński space

Figure 9: From pins to topological spaces.

must show that it holds also for ϕ := Bψ. Observe that, given a Kripke model M = (W,R, V )
based on a pin (X,R), we have

‖Bψ‖M =

{
X if ‖ψ‖M ⊇ C
∅ otherwise

and, [[Bψ]]I(M) =

{
X if [[ψ]]I(M) ⊇ C
∅ otherwise

where C is the final cluster of (X,R). By induction hypothesis, we have [[ψ]]I(M) = ‖ψ‖M,
therefore, [[Bψ]]I(M) = ‖Bψ‖M.

Theorem 3. KD45B is sound and complete with respect to the class of all topo-models. Moreover,
KD45B has the finite model property.

Proof. Soundness is given in Proposition 8. For completeness, let ϕ ∈ LB such that ϕ 6∈
KD45B . Then, by Lemma 5, there exists a finite pin M = (X,R, V ) with ‖ϕ‖M 6= X. Thus,
by Propositition 9, we have that [[ϕ]]I(M) 6= X, where I(M) = (X, τR+ , V ) is the corresponding
topo-model. Since I(M) = (X, τR+ , V ) is finite, we have also shown that KD45B has the finite
model property.

6.4 The knowledge-belief fragment LKB: Stal revisited

In this section, we show that Stalnaker’s system Stal of knowledge and belief, given in Table 5,
is sound and complete with respect to the class of all topo-models under our proposed semantics
for knowledge and belief.23 As noted in the introduction, in previous work Baltag et al. (2013,
2019b), we provided a topological completeness result for this system for the restricted class of
extremally disconnected spaces. Therefore, we here show that the topological semantics presented
in this paper generalizes the one proposed in Baltag et al. (2013, 2019b) for Stalnaker’s combined
system Stal.

Theorem 4. Stal is sound and complete with respect to the class of all topo-models.

Proof. For soundness, we here only show the validity of the axiom (FB): the validity proofs of
the other axioms are either trivial or follow from the previous results. Let M = (X, τ, V ) be a
topo-model, ϕ ∈ LKB and x ∈ X. Suppose x ∈ [[Bϕ]]. Hence, [[Bϕ]] 6= ∅. This implies, by
the semantics of B, that [[Bϕ]] = Cl(Int([[ϕ]])) = X. Recall that x ∈ [[Kϕ]] iff x ∈ Int([[ϕ]])
and Cl(Int([[ϕ]])) = X. By the assumption, we already know that Cl(Int([[ϕ]])) = X. Thus,

23 What justifies the properties of knowledge and belief stated in Stal may be debatable, though not in the
scope of this paper. We refer to (Bjorndahl and Özgün, 2019) for a topological-based reformulation of Stalnaker’s
system.
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(CPL) all class. prop. taut. and (MP)
(S4K) all S4 axioms and rules for K
(DB) Bϕ→ ¬B¬ϕ Consistency of belief
(sPI) Bϕ→ KBϕ Strong positive introspection
(sNI) ¬Bϕ→ K¬Bϕ Strong negative introspection
(KB) Kϕ→ Bϕ Knowledge implies belief
(FB) Bϕ→ BKϕ Full belief

Table 5: Stalnaker’s knowledge and belief logic Stal.

in this particular case, [[Kϕ]] = Int([[ϕ]]). Therefore, X = Cl(Int([[ϕ]])) = Cl(Int(Int([[ϕ]]))) =
Cl(Int([[Kϕ]])) implying that BKϕ holds everywhere in M.

For completeness, we follow a similar method as in the proof of Theorem 2. Let ϕ ∈ LKB such
that ϕ 6∈ Stal. Then, since `Stal Bϕ↔ K̂Kϕ, there exists a ψ ∈ LK such that `Stal ϕ↔ ψ (this
is obtained by replacing every occurrence of B in ϕ by K̂K). Therefore, ψ 6∈ Stal. Moreover,
since S4.2K ⊆ Stal, we obtain ψ 6∈ S4.2K . Then, by Theorem 1, there exists a topo-model
M = (X, τ, V ) such that [[ψ]] 6= X. Since Stal is sound with respect to all topo-models and
`Stal ϕ↔ ψ, we conclude [[ϕ]] 6= X.

6.5 The factive evidence fragment L[∀]202: Log∀220

The logic Log∀220
of factive evidence is given by the axiom schemas and inference rules in Table

6 over the language L[∀]202.

(CPL) all classical propositional tautologies and (MP)
(S5[∀]) all S5 axioms and rules for the modality [∀]
(S42) all S4 axioms and rules for the modality 2
(420) 20ϕ→ 2020ϕ
Universality (U) [∀]ϕ→ 20ϕ
Factive Evidence (FE) 20ϕ→ 2ϕ
Pullout24 (20ϕ ∧ [∀]ψ)→ 20(ϕ ∧ [∀]ψ)
Monotonicity rule for 20 from ϕ→ ψ, infer 20ϕ→ 20ψ

Table 6: The axiomatization of Log∀220
.

This section presents the proof of Theorem 5 below. Strong completeness and strong fi-
nite model property are defined standardly (see, e.g., Blackburn et al., 2001, Definition 4.10-
Proposition 4.12 and Definition 6.6, respectively).

Theorem 5. The logic Log∀220
of factive evidence is sound and strongly complete with respect

to the class of all topo-models. Moreover, it has the strong finite model property, therefore, it is
decidable.

The proof of Theorem 5 is technically the most challenging result of this paper. The key
difficulty consists in guaranteeing that the natural topology for which 2 acts as interior operator

24This axiom originates in (van Benthem et al., 2012, 2014), where it is stated as an equivalence rather than
an implication. But the converse is provable in our system from the Monotonicity rule for 20, (FE), and S42.
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is exactly the topology generated by the neighborhood family associated to 20. Though the
main steps of the proof may look familiar, involving known methods (a canonical quasi-model
construction, a filtration argument, and then making multiple copies of the worlds to yield a
finite model with the right properties), addressing the above-mentioned difficulty requires a non-
standard application of these methods, as well as a number of additional notions and results, and
a careful treatment of each of the steps. The plan of the proof is as follows. Since the soundness
proof is straightforward, we here focus on completeness and the finite model property (then
decidability follows immediately). We first prove strong completeness of Log∀220

with respect to
a canonical quasi-model. We then continue with proving the strong finite quasi-model property
for Log∀220

via a filtration argument. In the last step, we prove that every finite quasi-model is
equivalent to a finite Alexandroff quasi-model by making multiple copies of the worlds in order
to put the model in the right shape. As Alexandroff quasi-models are modally equivalent to
Alexandroff topo-e-models (Proposition 11), the result follows.

6.5.1 Quasi-model Construction

A quasi-model is a tuple M = (X, E0,≤, V ), where (X, E0, V ) is an evidence model and ≤ is a
preorder such that every e ∈ E0 is an upset of (X,≤) (see footnote 21 to recall the definition of
an upset). Given a preordered set (X,≤), the set Up≤(X) denotes the set of all upsets of (X,≤).
We denote by ↑x = {y ∈ X | x ≤ y} the upset generated by x. We use the same notations as for
topo-e-models, for example, E for the closure of E0 under nonempty finite intersections, and τE
for the topology generated by E .

The semantics for the language L[∀]202 on quasi-models is defined the same way as on topo-
e-models (see Definition 9), except that for 2 we (do not use the topology, but instead we) use
the standard Kripke semantics based on the relation ≤. More precisely, the semantics for the
modalities [∀], 20, and 2 are given by the following clauses:

‖[∀]ϕ‖M = {x ∈ X | ‖ϕ‖M = X}
‖20ϕ‖M = {x ∈ X | ∃e ∈ E0 (x ∈ e and e ⊆ ‖ϕ‖M)}
‖2ϕ‖M = {x ∈ X | ∀y ∈ X(x ≤ y implies y ∈ ‖ϕ‖M)}

We again omit the superscripts for the model when it is clear from the context.
A quasi-model M = (X, E0,≤, V ) is called Alexandroff if the topology τE is Alexandroff and

≤ is the specialization preorder vE on X, where

x vE y iff x ∈ Cl({y}) (i.e., ∀U ∈ τE(x ∈ U implies y ∈ U)).

Proposition 10. For every quasi-model M = (X, E0,≤, V ) the following are equivalent:

1. M is Alexandroff;

2. τE = Up≤(X);

3. for every x ∈ X, ↑x is in τE .

Proof. (1)⇒(3): Suppose M is Alexandroff, i.e., τE is Alexandroff and ≤ = vE . Let x ∈ X.
Then we have: ↑x = {y ∈ X | x ≤ y} = {y ∈ X | x vE y} = {y ∈ X | ∀U ∈ τE(x ∈ U ⇒ y ∈
U)} =

⋂
{U ∈ τE | x ∈ U}. Since τE is an Alexandroff space, we have

⋂
{U ∈ τE | x ∈ U} ∈ τE ,

and hence ↑x =
⋂
{U ∈ τE | x ∈ U} ∈ τE .

(3)⇒(2): It is easy to see that τE ⊆ Up≤(X) (since τE is generated by E0 and every element
of E0 is an upset of (X,≤)). Now let A ∈ Up≤(X). Since A is an upset of (X,≤), we have
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A =
⋃
{↑x | x ∈ A}. Then, by (3) (and τE being closed under arbitrary unions), we obtain

A ∈ τE .
(2)⇒(1): Suppose τE = Up≤(X) and let A ⊆ τE . By (2), every U ∈ A is an upset wrt of

(X,≤), hence,
⋂
A is an upset as well. Therefore, by (2),

⋂
A ∈ τE . This proves that τE is

Alexandroff. (2) also implies that ↑x is the least open neighbourhood of x in τE , i.e., ↑x ⊆ U ,
for all U such that x ∈ U ∈ τE . Therefore, ≤ is included in vE . For the other direction, suppose
x vE y. This implies, in particular, that y ∈ ↑x (since x ∈ ↑x ∈ τE), i.e., x ≤ y.

There is a natural one-to-one correspondence between Alexandroff quasi-models and Alexan-
droff topo-e-models, given by putting, for any Alexandroff quasi-model M = (X, E0,≤, V ),
B(M) = (X, E0, τE , V ). Moreover, M and B(M) satisfy the same formulas of L[∀]202 at the
same points, as shown in Proposition 11 below.

Proposition 11. For all ϕ ∈ L[∀]202 and every Alexandroff quasi-model M = (X, E0,≤, V ), we
have

‖ϕ‖M = [[ϕ]]B(M).

Proof. The proof follows by subformula induction on ϕ; cases for the propositional variables, the
Boolean connectives, and the modalities [∀] and 20 are trivial as the semantics for these cases are
defined exactly the same way in both structures. For the modality 2, recall that it is interpreted
as the interior operator of the topology τE and use Proposition 10.

Therefore, as stated by Proposition 11, Alexandroff quasi-models provide just another pre-
sentation of Alexandroff topo-e-models with respect to the language L[∀]202.

Having introduced the auxiliary notions and facts, we are ready to prove Theorem 5. This
proof goes through three steps:

1. strong completeness for quasi-models;

2. strong finite quasi-model property; and

3. every finite quasi-model is modally equivalent to a finite Alexandroff quasi-model (hence,
to a topo-e-model).

Step 1: Strong Completeness for Quasi-Models. The proof follows via a canonical quasi-
model construction.

Lemma 6 (Lindenbaum’s Lemma). Every Log∀220
-consistent set can be extended to a maximally

consistent one.

Let us now fix a consistent set of sentence Φ0 ⊆ L[∀]202. Our goal is to construct a quasi-
model for Φ0. By Lemma 6, there exists a maximally consistent set T0 such that Φ0 ⊆ T0. For
any two maximally consistent sets T and S of Log∀220

, we put:

T ∼ S iff for all ϕ ∈ L[∀]202 : ([∀]ϕ ∈ T implies ϕ ∈ S) ,

T ≤ S iff for all ϕ ∈ L[∀]202 : (2ϕ ∈ T implies ϕ ∈ S) .

Since [∀] is an S5 modality, ∼ is an equivalence relation. Similarly, as 2 is an S4 modality,
≤ is a preorder. Moreover, since ` [∀]ϕ → 2ϕ (by axioms (U) and (FE) in Table 6), we obtain
that ≤ is included in ∼, i.e., ≤⊆∼.

Definition 11 (Canonical Quasi-Model for T0). The canonical quasi model for T0 is defined as
M = (X, E0,≤, V ), where
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• X = {T ⊆ L[∀]202 | T is a maximally consistent set with T ∼ T0};

• E0 = {2̂0ϕ | ϕ ∈ L[∀]202 with [∃]20ϕ ∈ T0}, where θ̂ := {T ∈ X | θ ∈ T} for any
θ ∈ L[∀]202;

• ≤ is the restriction of the above preorder ≤ to X; and

• V (p) = p̂.

In the following, variables T, S, . . . range over X.

Lemma 7. M = (X, E0,≤, V ) is a quasi-model.

Proof. In order to show that M is a quasi model, we need to show that (1) X ∈ E0 and ∅ 6∈ E0,
(2) ≤ is a preorder, and (3) E0 ⊆ Up≤(X). Note that (2) follows from the fact that 2 is an S4
modality.

(1): Since ` 20> (by Nec[∀] and axiom (U) in Table 6), we have 2̂0> = X. Moreoever, by

axiom (T[∀]), we obtain [∃]20> ∈ T0, hence, 2̂0> = X ∈ E0. And, obviously, ∅ 6∈ E0.
(3): Let e ∈ E0. By the definition of E0, we have e = 2̂0ϕ for some ϕ ∈ L[∀]202 such

that [∃]20ϕ ∈ T0. Now suppose T, S ∈ X with T ∈ 2̂0ϕ (i.e., 20ϕ ∈ T ) and T ≤ S. Note that
` 20ϕ→ 220ϕ (by axioms (420

) and (FE)). Therefore, 220ϕ ∈ T . Since T ≤ S, we then obtain
20ϕ ∈ S, i.e., S ∈ 2̂0ϕ. Thus, as S has been chosen arbitrarily, we conclude that e ∈ Up≤(X).

Lemma 8 (Existence Lemma for [∀]). For every ϕ ∈ L[∀]202, [̂∃]ϕ 6= ∅ iff ϕ̂ 6= ∅.

Proof. (⇒) Suppose [̂∃]ϕ 6= ∅, i.e., there is T ∈ X such that T ∈ [̂∃]ϕ. This means [∃]ϕ ∈ T .
This implies that the set Γ := {[∀]ψ ∈ L[∀]202 | [∀]ψ ∈ T} ∪ {ϕ} is consistent. Otherwise,
there exist finitely many sentences [∀]ψ1, . . . , [∀]ψn ∈ T such that ` ([∀]ψ1 ∧ . . . ∧ [∀]ψn) → ¬ϕ.
But then, since [∀] is an S5-modality, we obtain that ` ([∀]ψ1 ∧ . . . ∧ [∀]ψn) → [∀]¬ϕ. Hence,
as [∀]ψ1 ∧ . . . ∧ [∀]ψn ∈ T , we get [∀]¬ϕ ∈ T , which combined with [∃]ϕ ∈ T , implies that
T is inconsistent, contradicting T being consistent. Therefore, given that Γ is consistent, by
Lindenbaum’s Lemma (Lemma 6), there exists some maximally consistent set S such that Γ ⊆ S.
It is easy to see that this implies ϕ ∈ S and S ∼ T ∼ T0 (i.e., S ∈ X). Therefore, S ∈ ϕ̂ implying
that ϕ̂ 6= ∅.

(⇐) Suppose ϕ̂ 6= ∅, i.e., there is T ∈ X such that T ∈ ϕ̂. Then, since ϕ → [∃]ϕ ∈ T (by

axiom (T[∀])), we obtain [∃]ϕ ∈ T , implying that [̂∃]ϕ 6= ∅.

Lemma 9 (Existence Lemma for 2). For every ϕ ∈ L[∀]202 and T ∈ X, T ∈ 3̂ϕ iff there is
S ∈ ϕ̂ such that T ≤ S.

Proof. (⇒) Assume T ∈ 3̂ϕ, that is, 3ϕ ∈ T . This implies that the set Γ := {2ψ ∈ L[∀]202 |2ψ ∈
T} ∪ {ϕ} is consistent. Otherwise there exist finitely many sentences 2ψ1, . . . ,2ψn ∈ T such
that ` (2ψ1 ∧ . . . ∧ 2ψn) → ¬ϕ. But then, since 2 is an S4-modality, we obtain that `
(2ψ1 ∧ . . . ∧ 2ψn) → 2¬ϕ. Hence, as 2ψ1 ∧ . . . ∧ 2ψn ∈ T , we get 2¬ϕ ∈ T , which combined
with 3ϕ ∈ T , implies that T is inconsistent, contradicting T being consistent. Therefore, given
that Γ is consistent, by Lindenbaum’s Lemma (Lemma 6), there exists some maximally consis-
tent set S such that Γ ⊆ S. It is easy to see that this implies ϕ ∈ S and T ≤ S. Since ≤ is
included in ∼, we also obtain S ∼ T ∼ T0, i.e., S ∈ X. Therefore, S ∈ ϕ̂.

(⇐) Suppose there is S ∈ ϕ̂ such that T ≤ S. Then, by definition of ≤, 3ϕ ∈ T , i.e.,
T ∈ 3̂ϕ.
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Lemma 10 (Existence Lemma for 20). For every ϕ ∈ L[∀]202 and T ∈ X, T ∈ 2̂0ϕ iff there
exist e ∈ E0 such that T ∈ e and e ⊆ ϕ̂.

Proof. (⇒) Suppose T ∈ 2̂0ϕ, i.e. 20ϕ ∈ T . Since T ∼ T0, we get [∃]20ϕ ∈ T0. This means
2̂0ϕ ∈ E0. Taking e := 2̂0ϕ, we get e ∈ E0 and T ∈ e. Moreover, since ` 20ϕ → ϕ, we obtain
e = 2̂0ϕ ⊆ ϕ̂.

(⇐) Suppose there is e ∈ E0 such that T ∈ e and e ⊆ ϕ̂. Then, by the definition of E0, we

obtain that e = 2̂0θ for some θ such that [∃]20θ ∈ T0. Therefore, T ∈ e = 2̂0θ ⊆ ϕ̂. This
implies that the set Γ := {20θ} ∪ {[∀]ψ ∈ L[∀]202 : [∀]ψ ∈ T} ∪ {¬ϕ} is inconsistent. Otherwise,
by Lindenbaum’s Lemma (Lemma 6), there exists a S ∈ X such that 20θ ∈ S and ¬ϕ ∈ S. The

former means that S ∈ 2̂0θ and the latter means (since S is maximal) that S 6∈ ϕ̂. Thus,

S ∈ 2̂0θ\ϕ̂, contradicting the assumption 2̂0θ ⊆ ϕ̂. Therefore, given that Γ is inconsistent,
there exists a finite set {[∀]ψ1, . . . , [∀]ψn} ⊆ Γ such that `

∧
i≤n[∀]ψi → (20θ → ϕ). Since [∀] is

a normal modality and T is maximal,
∧
i≤n[∀]ψi = [∀]γ for some [∀]γ ∈ T . We then have

1. ` [∀]γ → (20θ → ϕ)

2. ` ([∀]γ ∧20θ)→ ϕ (CPL)

3. ` 20([∀]γ ∧20θ)→ 20ϕ (Monotonicity of 20)

4. ` 2020([∀]γ ∧ θ)→ 20ϕ (Pullout axiom, right-to-left)

5. ` 20([∀]γ ∧ θ)→ 20ϕ (since ` 20ϕ↔ 2020ϕ)

6. ` ([∀]γ ∧20θ)→ 20ϕ (Pullout axiom)

Therefore, since [∀]γ,20θ ∈ T , and T is maximal, we obtain 20ϕ ∈ T , i.e., T ∈ 2̂0ϕ.

Lemma 11 (Truth Lemma). For every formula ϕ ∈ L[∀]202, we have

‖ϕ‖M = ϕ̂.

Proof. The proof follows standardly by subformula induction on ϕ, where the inductive step for
each modality uses the corresponding Existence Lemma, as usual.

Proposition 12. Log∀220
is sound and strongly complete for quasi-models.

Proof. Let Φ0 be a Log∀220
-consistent set of formulas. Then, by Lindenbaum’s Lemma (Lemma

6), Φ0 can be extended to a maximally consistent set T0. We can then construct a canonical quasi-
model M = (X, E0,≤, V ) for T0 as in Definition 11, and by Lemma 11, obtain that T0 ∈ ‖ϕ‖M
for all ϕ ∈ Φ0.

Step 2: Strong Finite Quasi-Model Property. In this section, we prove that the logic
Log∀220

has the strong finite quasi-model property. We do so via a filtration argument using the
canonical model described in Definition 11.

Let ϕ0 be a Log∀220
-consistent formula. By Lemma 6, there exist a maximally consistent set

T0 such that ϕ0 ∈ T0. Consider the canonical quasi-modelM = (X, E0,≤, V ) for T0 (as given in
Definition 11). We will use two facts about this model:

1. ‖ϕ‖M = ϕ̂, for all ϕ ∈ L[∀]202; and

2. E0 = {2̂0ϕ | [∃]20ϕ ∈ T0} = {‖20ϕ‖M | [∃]20ϕ ∈ T0}.
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Closure conditions for Σ: Let Σ be a finite set such that: (1) ϕ0 ∈ Σ; (2) Σ is closed under
subformulas; (3) if 20ϕ ∈ Σ then 220ϕ ∈ Σ; (4) Σ is closed under single negations; (5) 20> ∈ Σ.
For T, S ∈ X, put

T ≡Σ S iff for all ψ ∈ Σ (T ∈ ‖ψ‖M iff S ∈ ‖ψ‖M),

and denote by |T | := {S ∈ X | T ≡Σ S} the equivalence class of T modulo ≡Σ. Also, put
Xf = {|T | | T ∈ X}, and more generally put ef = {|T | | T ∈ e} for every e ∈ E0. We now define

a filtration Mf = (Xf , Ef0 ,≤f , V f ) of M through Σ, where

• Xf = {|T | | T ∈ X};

• |T | ≤f |S| iff for all 2ψ ∈ Σ
(
T ∈ ‖2ψ‖M implies S ∈ ‖2ψ‖M

)
;

• Ef0 = {ef | e = 2̂0ψ = ‖20ψ‖M ∈ E0 for some ψ such that 20ψ ∈ Σ};

• V f (p) = {|T | : T ∈ V (p)} for all p ∈ Σ, and V f (p) = ∅ otherwise.

Lemma 12. Mf is a finite quasi-model (of size bounded by a computable function of ϕ0).

Proof. Since Σ is finite, there are only finitely many equivalence classes modulo ≡Σ. Therefore,
Xf is finite. In fact, Xf has at most 2|Σ| states. It is obvious that ≤f is a preorder. Moreover,
since X = ‖20>‖M and 20> ∈ Σ, we have Xf ∈ Ef0 . Also, since e 6= ∅ for all e ∈ E0, we

have each ef ∈ Ef0 nonempty. So we only have to prove that the evidence sets ef are upsets

of (Xf ,≤f ). For this, let ef ∈ Ef0 , |T |, |S| ∈ Xf such that |T | ∈ ef and |T | ≤f |S|. We need

to show that |S| ∈ ef . By the definition of Ef0 , we know that e = 2̂0ψ = ‖20ψ‖M for some
20ψ ∈ Σ. From |T | ∈ ef , it follows that there is some T ′ ≡Σ T such that T ′ ∈ e = ‖20ψ‖M,
and since 20ψ ∈ Σ, we have T ∈ ‖20ψ‖M. Therefore, since ` 20ψ → 220ψ (this is easy to see
from axioms (420) and (FE) stated in Table 6), we have T ∈ ‖220ψ‖M. But 220ψ ∈ Σ (by
the closure assumptions on Σ), so |T | ≤f |S| gives us S ∈ ‖220ψ|‖M. By the axiom (T2), we

obtain S ∈ ‖20ψ‖M = 2̂0ψ = e, hence |S| ∈ ef .

Lemma 13 (Filtration Lemma). For every formula ϕ ∈ Σ, we have ‖ϕ‖Mf

= {|T | | T ∈ ‖ϕ‖M}.

Proof. The proof follows by subformula induction on ϕ ∈ Σ; cases for the propositional variables,
the Boolean connectives, and the modalities [∀]ψ and 2ψ are treated as usual (in the last case
using the filtration property of ≤f that: if T ≤ S than |T | ≤f |S|). We only prove here the
inductive case for ϕ := 20ψ:

(⇒) Let |T | ∈ ‖20ψ‖M
f

. This means that there exists some ef ∈ Ef0 s.t. |T | ∈ ef ⊆
‖ψ‖Mf

. By the definition of Ef0 , there exists some χ ∈ L[∀]202 such that 20χ ∈ Σ and e = 2̂0χ =

‖20χ‖M ∈ E0. From |T | ∈ ef , it follows that there is some T ′ ≡Σ T such that T ′ ∈ e = ‖20χ‖M,
and since 20χ ∈ Σ, we have T ∈ ‖20χ‖M = e. Now let S ∈ e be any element of e. Then, by

the definition of ef and the assumption that ef ⊆ ‖ψ‖Mf

, we obtain |S| ∈ ef ⊆ ‖ψ‖Mf

. So,

|S| ∈ ‖ψ‖Mf

. Therefore, by the induction hypothesis, S ∈ ‖ψ‖M, hence, e ⊆ ‖ψ‖M. Thus, we
have found an evidence set e ∈ E0 such that T ∈ e ⊆ ‖ψ‖M, i.e., shown that T ∈ ‖20ψ‖M.

(⇐) Let T ∈ ‖20ψ‖M. It is easy to see that [∃]20ψ ∈ T (since ` 20ψ → [∃]20ψ), and so also

[∃]20ψ ∈ T0 (since T ∈ X, thus, T ∼ T0). This means that the set e := 2̂0ψ = ‖20ψ‖M ∈ E0 is
an evidence set in the canonical model (see Definition 11), and since 20ψ ∈ Σ, we conclude that

ef ∈ Ef0 . We obviously have T ∈ e, and so |T | ∈ ef . Since ` 20ψ → ψ, we have e = ‖20ψ‖M ⊆
‖ψ‖M, and hence ef ⊆ {|S| | S ∈ ‖ψ‖M} = ‖ψ‖Mf

(by the induction hypothesis). Thus, we

have found ef ∈ Ef0 such that |T | ∈ ef ⊆ ‖ψ‖Mf

, i.e., shown that |T | ∈ ‖20ψ‖M
f

.
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Theorem 6. Log∀220
has strong finite quasi-model property.

Proof. Let ϕ0 be a Log∀220
-consistent formula. Then, by Lindenbaum’s Lemma (Lemma 6), ϕ0

can be extended to a maximally consistent set T0 such that ϕ0 ∈ T0. We can then construct a
canonical quasi-model M = (X, E0,≤, V ) for T0 as in Definition 11, and by Lemma 11 obtain

that T0 ∈ ‖ϕ0‖M. Then, by Lemma 13, we have |T0| ∈ ‖ϕ0‖M
f

, where Mf is the filtration of
M through the finite set Σ that is obtained by closing {ϕ0} under the closure conditions (1)-
(5). By Lemma 12, we know that Mf is a finite model whose size is bounded by 2|Σ|, therefore
we conclude that Log∀220

has the strong finite quasi-model property.

Step 3: Equivalence of Finite Quasi-Models and Finite Alexandroff Quasi-Models.
In this section, we prove that every finite quasi-model is modally equivalent to a finite Alexandroff
quasi-model, and therefore, to a topo-e-model with respect to the language L[∀]202.

Let M = (X, E0,≤, V ) be a finite quasi-model. We form a new structure M̃ = (X̃, Ẽ0, ≤̃, Ṽ ),
by putting:

• X̃ = X × {0, 1};

• Ṽ (p) = V (p)× {0, 1};

• (x, i)≤̃(y, j) iff x ≤ y and i = j;

• Ẽ0 = {ei | e ∈ E0, i ∈ {0, 1}} ∪ {eyi | y ∈ e ∈ E0, i ∈ {0, 1}} ∪ {X̃}, where we used notations

– ei = e× {i} = {(x, i) | x ∈ e}, and

– eyi = ↑y × {i} ∪ e× {1− i} = {(x, i) | y ≤ x} ∪ e1−i.

Lemma 14. M̃ is a finite quasi-model.

Proof. It is easy to see that M̃ is finite, in fact, it is of size 2·|X|. It is guaranteed by definition
that X̃ ∈ Ẽ0 and ∅ 6∈ Ẽ0. To show that every element of Ẽ0 is an upset of (X̃, ≤̃), let ẽ ∈ Ẽ0
and (x, i), (y, j) ∈ X̃ such that (x, i) ∈ ẽ and (x, i)≤̃(y, j). Then, by the definition of ≤̃, we know
that x ≤ y and i = j. We have two cases: if ẽ = e × {i} for some e ∈ E0, then y ∈ e (since
e ∈ Up≤(X), x ∈ e, and x ≤ y), therefore, (y, i) ∈ e × {i} = ẽ. If ẽ = ezk for some z ∈ X and
k ∈ {0, 1}, we again have two cases. If k = 1 − i, then the result follows as in the first case. If
k = i, then ↑z × i ⊆ ẽ. Since (x, i) ∈ ẽ, we obtain that z ≤ x, and thus, z ≤ y (since ≤ is
transitive). We therefore conclude that (y, i) ∈ ↑z × i ⊆ ẽ.

Notation: For any set Ỹ ⊆ X̃, put ỸX := {y ∈ X | (y, i) ∈ Ỹ for some i ∈ {0, 1}} for
the set consisting of first components of all members of Ỹ . It is easy to see that we have
(Ỹ ∪ Z̃)X = ỸX ∪ Z̃X , and X̃X = X.

Lemma 15. If y ∈ e ∈ E0, i ∈ {0, 1}, and ẽ ∈ {ei, eyi }, then we have:

1. ẽX = e;

2. eyi ∩ ei = ↑(y, i), where ↑(y, i) = {x̃ ∈ X̃ | (y, i)≤̃x̃} = {(x, i) | y ≤ x}.

Proof. (1): If ẽ = ei, then ẽX = (e×{i})X = e. If ẽ = eyi , then ẽX = (↑y×{i})X∪(e×{1−i})X =
↑y ∪ e = e (since e ∈ Up≤(X) and y ∈ e, so ↑y ⊆ e).

(2): eyi ∩ ei = (↑y × {i} ∪ e× {1− i}) ∩ (e× {i}) = (↑y ∩ e)× {i} = ↑y × {i} = ↑(y, i) (since
↑y ⊆ e).

Lemma 16. M̃ is an Alexandroff quasi-model (and thus also a topo-e-model).
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Proof. By Proposition 10, it is enough to show that, for every (y, i) ∈ X̃, the upset ↑(y, i) is
open in the topology τẼ generated by Ẽ0: this follows directly from Lemma 15.2.

Lemma 17 (Modal Equivalence Lemma). For all ϕ ∈ L[∀]202, ‖ϕ‖M̃ = ‖ϕ‖M × {0, 1}.

Proof. The proof follows by subformula induction on ϕ; cases for the propositional variables, the
Boolean connectives, and the modalities [∀]ψ and 2ψ are straightforward. We only prove here
the inductive case for ϕ := 20ψ.

(⇒) Suppose that (x, i) ∈ ‖20ψ‖M̃. Then there exists some ẽ ∈ Ẽ0 such that (x, i) ∈ ẽ ⊆
‖ψ‖M̃ = ‖ψ‖M × {0, 1} (we use the induction hypothesis for ψ in the last step). From this, we
obtain that x ∈ ẽX ⊆ (‖ψ‖M × {0, 1})X = ‖ψ‖M. But by the construction of Ẽ0, ẽ ∈ Ẽ0 means
that either ẽ = X̃ or there exist e ∈ E0, y ∈ e and j ∈ {0, 1} such that ẽ ∈ {ej , eyj}. If the former

is the case, we have x ∈ ẽX = X ⊆ ‖ψ‖M. Since X ∈ E0, by the semantics of 20, we obtain
x ∈ ‖20ψ‖M. If the latter is the case, by Lemma 15.1, we have ẽX = e, so we conclude that
x ∈ ẽX = e ⊆ ‖ψ‖M. Therefore, again by the semantics of 20, we have x ∈ ‖20ψ‖M.

(⇐) Suppose that x ∈ ‖20ψ‖M. Then, there exists some e ∈ E0 such that x ∈ e ⊆ ‖ψ‖M. Take

now the set ei = e×{i} ∈ Ẽ0. Clearly, we have (x, i) ∈ ei ⊆ ‖ψ‖M×{i} ⊆ ‖ψ‖M×{0, 1} = ‖ψ‖M̃

(we use the induction hypothesis for ψ in the last step), i.e., we have (x, i) ∈ ‖20ψ‖M̃.

Theorem 7. Every finite quasi-model is modally equivalent to a finite Alexandroff quasi-model,
therefore, to a topo-e-model with respect to the language L[∀]202.

Proof. The proof immediately follows from Lemma 17 and Proposition 11: the same formulas
are satisfied at x in M as at (x, i) in M̃.

Proof of Theorem 5: Theorem 5 (completeness and finite model property for topo-e-models)
is thus obtained as an immediate corollary of Proposition 12, Theorems 6 and 7.

7 Conclusions and Further Directions

We have studied a topological semantics for various notions of evidence, evidence-based justi-
fication, argument, (conditional) belief, and knowledge. We have done so by using topological
structures based on the (uniform) evidence models of van Benthem and Pacuit (2011). Several
soundness, completeness, finite model property, and decidability results concerning the logics of
belief, knowledge, and evidence on all topological (evidence) models have been provided.

This project has been of both technical and conceptual interest. Philosophically speaking, we
have shown that the topological perspective on epistemic logic enables refined representations
of the aforementioned notions, and, in turn, can account for subtle distinctions pertaining to,
e.g., (possibly true, but) misleading and non-misleading evidence. The rich formal framework
afforded by topologically interpreted modal logics allows one to clarify and address some key
issues regarding debates on the relationship between knowledge and belief, defeasibility theories of
knowledge, and Stalnaker’s view on belief as subjective certainty. Mathematically, our framework
takes a significant step toward developing formal systems in which we can talk about evidential
grounds of knowledge and belief, both at the syntactic and semantic level (via evidence modalities
and topological structures, respectively). This, in turn, offers novel modal languages that can
potentially express some properties of a subbasis of a topological space, enriching modal logics of
space that are designed to talk about only topologies or topological bases (more on this below).

Moreover, our topological approach contributes to the evidence setting of van Benthem and
Pacuit (2011); van Benthem et al. (2012, 2014) in many ways. First of all, this topological
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approach gives mathematically more natural meanings to the epistemic/doxastic modalities we
considered by providing a precise match between epistemic and topological notions. The list of
the epistemic notions studied together with their topological counterparts is given in Table 7
below. Besides, our proposal yields a notion of belief that coincides with the one of van Benthem

Epistemology Topology
Basic Evidence Subbasis of a topology (E0)
(Combined) Evidence Basis of a topology (E)
Arguments Open Sets (τE)
Justifications Dense Open Sets
Belief Dense interior (nowhere dense complement)
Knowledge (of P at x) x ∈ Int(P ) and Int(P ) is dense

Table 7: Matching epistemic and topological notions.

and Pacuit (2011) in “good” cases, and that behaves better in general. More precisely, our
justified belief is always consistent, in fact, it satisfies the axioms and rules of the standard belief
system KD45B on all topological spaces (Section 6.3). It moreover admits a natural topological
reading in terms of dense-open sets (or equivalently, in terms of nowhere dense sets) as “truth in
most states of the model”, where “most” refers to “everywhere but a nowhere dense part”. We
have also shown that the logic of evidence models under our proposed semantics has the finite
model property, whereas this was not the case in (van Benthem and Pacuit, 2011; van Benthem
et al., 2012, 2014).

The formalism developed in this paper improves also on our own work (Baltag et al., 2013,
2019b) where another topological semantics for Stalnaker’s epistemic-doxastic system was pro-
posed. While in Baltag et al. (2013, 2019b) we could talk about evidential grounds of knowledge
and belief only on a semantic level, the current setting provides syntactic representations of
evidence, therefore, makes the notion of evidence part of the logic. Moreover, we showed that
knowledge and belief can be interpreted on arbitrary topological spaces (rather than on ex-
tremally disconnected or hereditarily extremally disconnected spaces), without changing their
logic. To this end, the semantics of knowledge and belief proposed in this paper generalizes the
setting of Baltag et al. (2013, 2019b).

In the rest of this section, we name a few directions for future research.

Connection to topological formal learning theory. Various ideas motivating the use of
topological spaces to model epistemic notions and information change guide the research pro-
gram in topological formal learning theory, as initiated by Kevin Kelly and others (Kelly, 1996;
Schulte and Juhl, 1996; Kelly et al., 1995; Baltag et al., 2011; Gierasimczuk et al., 2014; Kelly,
2014; Baltag et al., 2015). The topologically interpreted logics developed in this paper provide
a framework naturally suited to the representation of reasoning about inductive learning from
successful observations and therefore constitute a bridge between modal epistemic/doxastic log-
ics and formal learning theory. Investigations focusing on this connection, aiming at bringing
learning and logic into closer proximity, have already been initiated by some of the co-authors
of this paper and their colleagues (Baltag et al., 2019c, 2020; Vargas Sandoval, 2020).

Another line of inquiry towards this direction involves adding to the semantic structure
a larger set E30 ⊇ E0 of potential evidence, meant to encompass all the evidence that might
be learnt in the future. A formal setting that involves both actual evidence E0 and potential
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evidence E30 ⊇ E0 would combine coherentist justification with predictive learning. A logical
syntax appropriate for this setting could be obtained by extending our language with operators
borrowed from topo-logic (Moss and Parikh, 1992), such as an operator �ϕ, expressing the fact
that ϕ can become true after more evidence is learnt. Inductive learnability of ϕ is then captured
by the formula �Kϕ, where K is our defeasible knowledge (rather than the absolutely certain
knowledge operator of topo-logic).

Multi-agent extensions. Another line of research involves extending our framework to a
multi-agent setting. It is straightforward to generalize our semantics to multiple agents, though
obtaining a completeness result might not be that easy. However, the real interesting challenge
comes when we look at notions of group knowledge, for some group G of agents. For common
knowledge, there are at least two different natural options: (1) the standard Lewis-Aumann con-
cept of the infinite conjunctions of “everybody knows that everybody knows etc.” (Lewis, 1969;
Aumann, 1976), and (2) a stronger concept, based on shared evidence (the intersection

⋂
a∈G Ea0

of the evidence families Ea0 of all agents a ∈ G). The two concepts differ in general. This is
related to Barwise’s older observation on the distinction of concepts of common knowledge in a
topological framework (Barwise, 1988), in contrast to Kripke models, where all the different ver-
sions collapse to the same notion (see also van Benthem and Sarenac, 2004 and Bezhanishvili and
van der Hoek, 2014, Section 12.4.2.5 for a discussion on the different formalizations of common
knowledge on topological spaces). Similarly, in this evidence-based setting, the standard notion of
distributed knowledge does not seem appropriate to capture a group’s epistemic potential. Stan-
dardly, a group of agents G is said to have distributed (implicit) knowledge of ϕ if ϕ is implied by
the knowledge of all individuals in G pooled together (see, e.g., Fagin et al., 1995, Chapter 2 for
a standard treatment of distributed knowledge based on relation models). In our setting though,
a natural way to think about a group’s epistemic potential is to let the agents share all their ev-
idence, and compute their knowledge based on the evidence family obtained by taking the union
EG0 =

⋃
a∈G Ea0 of all the evidence families Ea0 of all agents a in G. This corresponds to moving to

the smallest topology that includes all agents’ evidential topologies τa, which also gives us a nat-
ural way to define a consistent notion of (potential) group belief. However, this setting has some
apparent ‘defects’, that is, some facts known by one individual in the group might be defeated
by another member’s false or misleading evidence, therefore, the individual knowledge of these
facts will be lost after the group members share all their evidence. This is in contrast with the
standard notion of distributed knowledge that is group monotonic: the distributed knowledge of
a larger group always includes the distributed knowledge of any of its subgroups, and so, in par-
ticular, it includes everything known by any member of the group. One option is to simply give
up the dogma that groups are always wiser than their members and retain the evidence-based
model of group knowledge as providing a better representation of the epistemic potential of a
group. Learning from others might not always be epistemically beneficial: it all depends on the
quality of the others’ evidence. There are also ways to avoid this conclusion, pursued by Ramirez
(2015), via natural modifications of our models and by defining knowledge to be undefeated by
any potential evidence that the agent may learn. This way Ramirez (2015) re-establishes group
monotonicity, but showing completeness for the resulting logic possess technical challenges (see
Ramirez, 2015, for details).

Reliability sensitive accounts of evidence. We often have different levels of trust in our
information sources based on, for example, personal experience (thus, with respect to a subjective
measure), statistical results reflecting the truthfulness of our sources, or the given error range
of the measure devices used in an experiment (thus, with respect to a more objective measure).
Receiving information from a variety of sources directs us toward weighing the evidence gathered
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from these sources with respect to their level of reliability in the process of forming belief and
knowledge based on this evidence. The approach proposed in this paper takes every evidence
piece the agent has on a par, thus, is not sufficiently fine-grained to account for the degree of
reliability and credence of the evidence sources. A fruitful formal account of evidence-based
belief and information dynamics capturing such a situation can be constructed by extending the
our qualitative topological models of evidence with a probabilistic component or a preference
ordering representing the degree of reliability of/trust in evidence sources.

Modal logics of space. So far our work on the relationship between topology and modal
logic has been motivated by the search for formal models that help advance our understanding
of the epistemic notions and phenomena in question. The work of relating topology and modal
logic can however be approached from another direction, as has traditionally been the way: the
primary interest lies in spatial structures and building modal logics as tools to reason about them.
Inspired by the celebrated topological completeness results of McKinsey and Tarski (1944) for
the language of basic modal logic, this approach paved the way for a whole new area of spatial
logics, establishing a long standing connection between modal logic and topology (see, e.g., Aiello
et al. (2007); van Benthem and Bezhanishvili (2007) for a survey on this topic). To illustrate,
one can (as is often done) define a topological space from its subbasis and, in the presence of our
basic evidence modalities, study the logics of the subbasis of a particular topological space (see,
e.g., Baltag et al., 2019a; Fernández González, 2018).
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Özgün, A. and Berto, F. (2021). Dynamic hyperintensional belief revision. The Review of
Symbolic Logic, pages 1–46.

Ramirez, A. I. R. (2015). Topological models for group knowledge and belief. Master’s thesis,
ILLC, University of Amsterdam.

Rott, H. (2004). Stability, strength and sensitivity: Converting belief into knowledge. Erkenntnis,
61(2-3):469–493.

Schulte, O. and Juhl, C. (1996). Topology as epistemology. The Monist, 79(1):141–147.

Siemers, M. (2021). Hyperintensional logics for evidence, knowledge and belief. Master’s thesis,
ILLC, University of Amsterdam.

Sosa, E. (1999). How to defeat opposition to moore. Nous, 33:141–153.

Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical Studies, 128(1):169–199.

Vargas Sandoval, A. L. (2020). On the Path to the Truth: Logical & Computational Aspects of
Learning. PhD thesis, University of Amsterdam.

48


	Introduction
	Our proposal in more detail
	Overview of this paper

	Topological Preliminaries
	Evidence, Argument, and Justification
	Evidence à la van Benthem and Pacuit
	Bodies of evidence, Evidential Support, and Evidential Strength
	Combined Evidence and Evidential Basis

	Evidence in Topological Evidence Models

	Justified Belief
	Belief à la van Benthem and Pacuit
	Justified Belief: our proposal
	Conditional Belief on Topo-e-models

	Knowledge
	Knowledge is defeasible
	Misleading evidence and weakly indefeasible knowledge

	Logics for evidence, justified belief and knowledge
	Logics for evidence, justified belief, and knowledge
	The knowledge fragments LK and L[] K: S4.2K and L[]K
	Soundness and Completeness of S4.2K
	Soundness and Completeness of L[]K:

	The belief fragment LB: KD45B
	Soundness of KD45B:
	Completeness of KD45B:

	The knowledge-belief fragment LKB: Stal revisited
	The factive evidence fragment L[]0: Log0
	Quasi-model Construction


	Conclusions and Further Directions

