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Abstract. We define Sahlqvist fixed point equations and relativized fixed point

Boolean algebras with operators (relativized fixed point BAOs). We show that every

Sahlqvist fixed point equation is preserved under completions of conjugated relativized
fixed point BAOs. This extends the result of Givant and Venema [8] to the setting of

relativized fixed point BAOs.

1. Introduction

Sahlqvist equations form an important class of equations that are preserved

under canonical extensions of Boolean algebras with operators (BAOs for

short). In [15] Sambin and Vaccaro gave an order-topological proof of this

preservation result, and Jónsson [10] proved it by algebraic means. An es-

sential ingredient of Sambin and Vaccaro’s proof is Esakia’s lemma of [6],

whereas Jónsson’s proof relies on a result by Ribeiro [14]. In [4], analogues

of Sahlqvist’s preservation theorem and of Esakia’s lemma were proved for

modal fixed point logic. Modal fixed point logic is an extension of standard

modal logic with fixed point operators. This formalism is becoming increas-

ingly popular in mainstream computer science applications as it provides a

very expressive and yet decidable tool for reasoning. The current paper can

be seen as a sequel to [4], where Sahlqvist fixed point formulas are defined

and shown to be preserved under canonical extensions of modal fixed point

algebras. Here we prove another preservation result for Sahlqvist fixed point

equations (which are algebraic analogues of Sahlqvist fixed point formulas),

but this time for completions of relativized fixed point BAOs.

Similarly to canonical extensions, completions play an important role in

the theory of BAOs. Dedekind used completions of the rational numbers via

the so-called Dedekind cuts as a way of introducing the real numbers. Mac-

Neille [12] extended this construction to any poset and showed that any poset

can be embedded into a complete lattice. Using the same method, it can be

shown that a completion of a Boolean (Heyting) algebra is again a Boolean

(Heyting) algebra. But a completion of a distributive lattice may not be a dis-

tributive lattice (e.g., [1]). In [13] Monk extended the definition of a comple-

tion to BAOs. Nowadays this construction is called the Dedekind-MacNeille

completion, MacNeille completion or Monk completion. It will probably be

fair to call the completions of BAOs Dedekind-MacNeille-Monk completions



or MacNeille-Monk completions. However, to avoid confusion we will just call

them completions.

Completions of BAOs have been quite well investigated. Monk [13] proved

that every positive equation is preserved under completions. Givant and Ven-

ema [8] extended this result by showing that all Sahlqvist equations are pre-

served under completions of conjugated BAOs (see also [18]). Givant and

Venema also gave an example of a Sahlqvist equation not preserved under

non-conjugated BAOs. Thus, the condition that the BAOs are conjugated

cannot be dropped. Gehrke, Harding, Venema [7] showed that every vari-

ety of lattices with monotone operators (in particular, BAOs) that is closed

under completions is also closed under canonical extensions. In [9] Harding

and Bezhanishvili characterized the varieties of modal algebras closed under

completions.

We extend the result of Givant and Venema to Sahlqvist fixed point equa-

tions and conjugated BAOs with fixed point operators. Our semantics is ‘non-

classical’. For each BAO A we fix a set F of its elements and evaluate fixed

point operators relative to F . In other words, we evaluate the least (great-

est) fixed point operator of a given monotone function f as the meet (join)

of not all pre-fixed points (post-fixed points) of f , but of only those that

belong to F . We call the pair (A,F) a relativized fixed point BAO. Comple-

tions of fixed point BAOs for classical semantics were already investigated by

Santocanale in [16]. In particular, Santocanale showed inter alia that there

exists a conjugated fixed point BAO that does not admit an embedding into

a complete fixed point BAO preserving fixed point formulas, interpreted in

classical semantics. Therefore, fixed point BAOs may not be subalgebras of

their completions, whereas relativized fixed point BAOs are subalgebras of

their completions. Thus, relativized semantics provides a workable notion of

completion for which we can prove positive (preservation) results.

We note that our proof also works for the language without fixed point

operators. Thus, we obtain the result of [8] as a corollary of our main proof.

Our proof seems to be different from the one of [8] and [18] and is similar

to the proofs of [15], [2], and [4], whereas Venema and Givant’s approach is

closer to the approach of [10]. Our proof, however, is also different (and in a

way simpler) than the proofs of [15] and [4], for a few reasons. We work with

conjugated BAOs, not arbitrary BAOs. Also the ‘minimal’ assignment used in

our proof is defined in the original algebra. In the topological terminology of

[15] and [4], this means that it is a ‘clopen’, not just a ‘closed’ assignment. As

a result, we do not need to prove an analogue of the Esakia lemma, which is

necessary in [15] and [4]. Moreover, unlike [4] (where the analogue of the Esakia

lemma is proved only for the language with the least fixed point operator), in

this paper we work with the fixed point language with both least and greatest

fixed point operators.
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The paper is organized as follows: In Section 2 we introduce (relativized)

fixed point BAOs. In Section 3 we recall the main properties of completions

of BAOs and define completions for relativized fixed point BAOs. In Section 4

we define Sahlqvist fixed point equations and prove the main theorem of the

paper that Sahlqvist fixed point equations are preserved under completions of

conjugated fixed point BAOs. Finally, we conclude the paper by listing some

future work in Section 5.
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2. Relativized fixed point BAOs

In this section we recall the language of modal µ-calculus and define fixed

point BAOs. We fix a countably infinite set V of variables (x, y, x0, x1, etc)

and a set L of operator symbols of any arity. The set of fixed point terms is

then defined as the least set such that

• constants ⊥ and > and variables are fixed point terms,

• if t1 and t2 are fixed point terms, then t1 ∧ t2, t1 ∨ t2, ¬t1 are fixed point

terms,

• for each n-ary operator f ∈ L, and fixed point terms t1, . . . , tn, f(t1, . . . ,

tn) is also a fixed point term,

• for each fixed point term γ(x, x1, . . . , xn), where x occurs under the scope

of an even number of negations, µxγ(x, x1, . . . , xn) and νxγ(x, x1, . . . , xn)

are fixed point terms.

A fixed point term that does not contain any µ or ν-operators will be called an

L-term. If γ = µxδ or γ = νxδ′, then we will say that x is a bound variable in

γ. If x does not occur in the scope of any µx or νx, it is called a free variable.

We say that a fixed point term γ(x, x1, . . . xn) is positive in x (negative in x) if

all the free occurrences of the variable x are under the scope of an even (odd)

number of negations.

Let (A,∨,∧,¬, 0, 1) be a Boolean algebra. Recall that a map f : An → A is

called a normal and additive operator if for each i ≤ n and a, b, a1, . . . , an ∈ A
we have

(1) f(a1, . . . , ai−1, 0, ai+1, . . . , an) = 0, (Normality)

(2) f(a1, . . . , ai−1, a ∨ b, ai+1, . . . , an) = f(a1, . . . , ai−1, a, ai+1, . . . , an)

∨ f(a1, . . . , ai−1, b, ai+1, . . . , an) (Additivity)

Recall also that a Boolean algebra with operators (BAO for short) is an

algebra A = (A,∨,∧,¬, 0, 1, fA : f ∈ L), where (A,∨,∧,¬, 0, 1) is a Boolean

algebra and each fA is a normal additive operator. If it is clear from the
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context we will skip the index A. We will often use the shorthand A = (A, f :

f ∈ L) for denoting BAOs. For each n-ary operator symbol f ∈ L and

fixed point terms t1, . . . , tn we let fd(t1, . . . , tn) denote the fixed point term

¬f(¬t1, . . . ,¬tn).

DEFINITION 2.1.

(1) Let A = (A, fA : f ∈ L) be a BAO and F ⊆ A. A map h from variables

to A is called an assignment. We define a (possibly partial) semantics for

fixed point terms by the following inductive definition.

[⊥]Ah,F = 0 and [>]Ah,F = 1,

[x]Ah,F = h(x), where x is a variable,

[γ ∧ δ]Ah,F = [γ]Ah,F ∧ [δ]Ah,F ,

[γ ∨ δ]Ah,F = [γ]Ah,F ∨ [δ]Ah,F ,

[¬γ]Ah,F = ¬[γ]Ah,F ,

[f(γ1, . . . , γn)]Ah,F = fA([γ1]Ah,F , . . . , [γn]Ah,F ), for each n-ary f ∈ L.

For a ∈ A and x a variable, we denote by hax a new assignment such

that hax(x) = a and hax(y) = h(y) for each variable y 6= x.

If γ(x, x1, . . . , xn) is positive in x, then we let

[µxγ(x, x1, . . . , xn)]Ah,F =
∧
{a ∈ F : [γ(x, x1, . . . , xn)]Aha

x,F ≤ a},

if this meet exists; otherwise, the semantics for µxγ(x, x1, . . . , xn) is

undefined, and we let

[νxγ(x, x1, . . . , xn)]Ah,F =
∨
{a ∈ F : [γ(x, x1, . . . , xn)]Aha

x,F ≥ a},

if this join exists; otherwise, the semantics for νxγ(x, x1, . . . , xn) is

undefined.

An element a such that [γ(x, x1, . . . , xn)]Aha
x,F
≤ a (respectively, [γ(x, x1,

. . . , xn)]Aha
x,F
≥ a) will be called a pre-fixed point (resp. post-fixed point)

of γ.

(2) A BAO A is called a fixed point BAO relative to F ⊆ A if [γ]Fh is defined

for any fixed point term γ and any assignment h. The pair (A,F) is then

called a relativized fixed point BAO.

(3) We say that an equation γ = δ, where γ and δ are fixed point terms, is

valid in a fixed point BAO A relative to F ⊆ A if [γ]Fh = [δ]Fh for each

assignment h.

Notation: To simplify the notations instead of [γ(x1, . . . , xn)]Ah,F with h(xi) =

ai, 1 ≤ i ≤ n, we will write γ(a1, . . . , an)AF . We will also skip the indexes A
and F if they are clear from the context.

Examples: Every BAO A is a fixed point BAO relative to any finite F ⊆ A.

Recall that a BAO A = (A, f : f ∈ L) is called complete if A is a complete

Boolean algebra; that is, for each subset S of A the meet
∧
S and the join

∨
S
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exist. It is straightforward to see that every complete BAO A is a fixed point

BAO relative to any F ⊆ A. Locally finite BAOs are other examples of fixed

point BAOs (see [4] for details).

LEMMA 2.2. Let A be a fixed point BAO relative to F ⊆ A, and a1, . . . ,

an ∈ A. Then for each fixed point term γ(x, x1 . . . , xn) that is positive in x,

γ(·, a1, . . . , an)AF is a monotone function. That is, for a, b ∈ A,

a ≤ b implies γ(a, a1, . . . , an)AF ≤ γ(b, a1, . . . , an)AF .

Proof. We will prove the lemma by induction on the complexity of γ. We will

skip the indexes A and F . Our induction hypothesis is: 1) if γ(x, x1 . . . , xn)

is positive in x, then γ(·, a1, . . . , an) is monotone and 2) if γ(x, x1 . . . , xn) is

negative in x, then γ(·, a1, . . . , an) is antitone. The cases γ = ⊥, γ = >, γ is

a variable, γ = δ ∨ δ′, γ = δ ∧ δ′, γ = ¬δ and γ = f(δ1, . . . , δn) are proved as

in standard modal logic (see, e.g., [5, 8]). Now let γ = µyδ(y, x, x1, . . . , xn) be

positive in x and inductively assume the result for δ. Then, by the induction

hypothesis, for each a, b ∈ A with a ≤ b and c ∈ A we have δ(c, a, a1, . . . ,

an) ≤ δ(c, b, a1, . . . , an). So if δ(c, b, a1, . . . , an) ≤ c, then δ(c, a, a1, . . . , an) ≤
c. Therefore, the set {c ∈ F : γ(c, a, a1, . . . , an) ≤ c} contains the set {c ∈ F :

γ(c, b, a1, . . . , an) ≤ c}. But this means that µyδ(y, a, a1, . . . , an) =
∧
{c ∈ F :

δ(c, a, a1, . . . , an) ≤ c} ≤
∧
{c ∈ F : δ(c, b, a1, . . . , an) ≤ c} = µyδ(y, b, a1, . . . ,

an). Therefore, we obtained that γ(a, a1, . . . , an) ≤ γ(b, a1, . . . , an). The cases

of δ negative in x and γ = νyδ(y, x, x1, . . . , xn) are similar. 2

3. Completions and conjugates

In this section we recall the notion of a completion for BAOs and extend

the definition of a completion to fixed point BAOs. We also discuss conjugates

of functions.

Let A and B be Boolean algebras such that A is a subalgebra of B. We say

that A is a dense subalgebra of B if for each 0 < b ∈ B there exists 0 < a ∈ A
such that a ≤ b. It is easy to see that if A is a dense subalgebra of B then for

each b ∈ B we have b =
∨B{a ∈ A : 0 < a ≤ b}.

The MacNeille completion A of a Boolean algebra A is a complete Boolean

algebra A such that A is a dense subalgebra of A and all the joins and meets

that exist in A are preserved in A. In other words, if S ⊆ A is such that∨A
S exists, then

∨A
S =

∨A
S and if T ⊆ A is such that

∧A
T exists, then∧A

T =
∧A

T . The completion of a Boolean algebra always exists and is

unique up to isomorphism (see, e.g., [17]). We assume throughout that the

embedding of A into its MacNeille completion is the identity.

An n-ary map f on a Boolean algebra A is called completely additive in the

i-th coordinate if for each (possibly empty) S ⊆ A such that
∨
S exists in A

and a1, . . . , an ∈ A we have

f(a1, . . . , ai−1,
∨
S, ai+1, . . . , an) =

∨
{f(a1, . . . , ai−1, s, ai+1, . . . , an) : s ∈ S}.
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An n-ary operator f is called completely additive if it is completely additive

in the i-th coordinate for each i ≤ n. A BAO A = (A, f : f ∈ L) is called

completely additive if each f ∈ L is completely additive.

Let A = (A, f : f ∈ L) be a completely additive BAO. Then for each f ∈ L
the (lower) extension of f to the MacNeille completion A of A is defined as:

f(b) =
∨A
{f(a) : a ∈ A, a ≤ b}. (1)

The algebra A = (A, f : f ∈ L) is called the completion of A = (A, f : f ∈ L).

The next two lemmas summarize the important properties of the comple-

tions of BAOs that will be used subsequently. We skip most of the proofs, but

give references where they could be found.

LEMMA 3.1. Let A = (A, f : f ∈ L) be a completely additive BAO. Then

(1) A = (A, f : f ∈ L) is a completely additive BAO.

(2) A as a BAO is a subalgebra of A.

Proof. For the proof of (1) we refer to [13, Theorem 1.2] (see also [8, Lemma

13]). (2) follows from [17, Section 35] and the definition of f for each f ∈ L. 2

Note that an analogue of Lemma 3.1 for fixed point BAOs in classical se-

mantics does not hold [16]. However, we will see next that for relativized fixed

point BAOs, we can prove an analogue of Lemma 3.1. Let (A,F) and (A′,F ′)
be relativized fixed point BAOs. We say that (A,F) is a relativized fixed point

subalgebra (or just a subalgebra, for short) of (A′,F ′) if A is a subalgebra of

A′ in the BAO sense, and for any assignment h in A and any term γ we have

[γ]Ah,F = [γ]A
′

h,F ′ .

LEMMA 3.2. Let A = (A, f : f ∈ L) be a completely additive fixed point

BAO relative to a set F ⊆ A. Let also A = (A, f : f ∈ L) be the completion

of A. Then

(1) (A,F) is a relativized fixed point BAO.

(2) (A,F) is a relativized fixed point subalgebra of (A,F).

Proof. (1) All we need to check is that for each γ(x, x1, . . . , xn) positive in x

and each assignment g in A, the meet
∧
{a ∈ F : [γ(x, x1, . . . , xn)]ga

x
≤ a} and

join
∨
{a ∈ F : [γ(x, x1, . . . , xn)]ga

x
≥ a} exist in A. But this is obvious as A is

a complete BAO.

(2) Let h be any assignment in A. We prove by induction on the complexity

of each term γ that [γ]Ah,F = [γ]Ah,F . By Lemma 3.1(2), we only need to consider

the cases γ = µxδ and γ = νxδ. Let γ = µxδ. Then

[γ]Ah,F =
∧A{a ∈ F : [δ]Aha

x,F
≤ a}

=
∧A{a ∈ F : [δ]Aha

x,F
≤ a}

=
∧A{a ∈ F : [δ]Aha

x,F
≤ a}

= [µxδ]Ah,F
= [γ]Ah,F .
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The first equation above is spelling out the definitions, the second follows from

the induction hypothesis, the third from the fact that completions preserve

existing meets, and the fourth and fifth are again spelling out of the definitions.

The case γ = νxδ is similar. Therefore, (A,F) is a relativized fixed point

subalgebra of (A,F). 2

DEFINITION 3.3. Let A = (A, f : f ∈ L) be a completely additive BAO

that is a fixed point BAO relative to a set F ⊆ A. Let also A = (A, f : f ∈ L)

be the completion of A. We call the relativized fixed point BAO (A,F) the

completion of (A,F).

Let A be a Boolean algebra. For 1 ≤ i ≤ n, a map f−1i : An → A is called

the i-th conjugate of a map f : An → A if for all a, b1, . . . , bn ∈ A we have

a ∧ f(b1, . . . , bn) = 0 iff bi ∧ f−1i (b1, . . . , bi−1, a, bi+1, . . . , bn) = 0. We say that

f is conjugated if it has an i-th conjugate for each i ≤ n. A BAO A is called

conjugated if each operator of A is conjugated. Conjugates are closely related

to residuals (see Claim (1) of Theorem 4.7).

LEMMA 3.4.

(1) Any conjugated n-ary map f on a Boolean algebra A is completely addi-

tive.

(2) If A = (A, f : f ∈ L) is a conjugated BAO, then A = (A, f : f ∈ L) is

also a conjugated BAO.

(3) If A is a conjugated fixed point BAO relative to some set F ⊆ A, then

(A,F) is also a conjugated fixed point BAO relative to F .

Proof. For the proof of (1) we refer to [11, Theorem 1.14] (see also [8, Lemma

19]). For (2), we first observe that by (1), A = (A, f : f ∈ L) is completely

additive and so the completion A = (A, f : f ∈ L) exists. The result now

follows from the fact that if f−1i is the i-th conjugate of f on A, then f−1i is

the i-th conjugate of f on A (see [13, Corollary 1.11] and also [8, Lemma 20]).

(3) follows from (1), (2) and Lemma 3.2(1). 2

4. Main results

In this section we define Sahlqvist fixed point terms and equations and prove

the main theorem of this paper that every Sahlqvist fixed point equation is

preserved under completions of conjugated relativized fixed point BAOs.

DEFINITION 4.1. A fixed point term γ is called positive if it is positive in

each variable, and γ is called negative if ¬γ is positive.

DEFINITION 4.2.

(1) A skeleton is a term α(x1, . . . , xn) made from operators and ∧ only, in

which no variable occurs twice.
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(2) A Sahlqvist fixed point term is a fixed point term of the form α(γi/xi : i =

1, . . . , n), where α(x1, . . . , xn) is a skeleton and the γi are either negative

fixed point terms, or ‘boxed variables’ of the form fd1 . . . f
d
k y for k < ω

and unary f1, . . . , fk ∈ L.

(3) A Sahlqvist fixed point equation is one of the form γ = 0 where γ is a

Sahlqvist fixed point term.

REMARK 4.3. If we drop the fixed point operators, this definition is es-

sentially the same as a standard one from [5], when translated from modal

to algebraic notation. As notation, we let ‘boxed-variables’ denote the set

of all terms of the form fd1 . . . f
d
k y as above, ‘positive’ the set of positive L-

terms, and ‘negative’ the set of negative L-terms. For sets S, T of L-terms

and a set F of function symbols, we let SF denote the closure of S under the

symbols in F , ¬S = {¬γ : γ ∈ S}, S ∧ T = {γ ∧ δ : γ ∈ S, δ ∈ T}, and

S → T = {¬γ ∨ δ : γ ∈ S, δ ∈ T}. Let ⊕,⊗ denote disjunction and conjunc-

tion (∨,∧), respectively, over terms with no variables in common, and write

Ld = {fd : f ∈ L}. Finally, let S be the set of L-terms that are Sahlqvist fixed

point terms, as defined above. Now, phrased algebraically, [5, Definition 3.51]

defines a Sahlqvist formula (in the language without fixed point operators) as

a term in the set

Σ =
(

({>,⊥} ∪ boxed-variables ∪ negative)L∪{∧,∨} → positive
)Ld∪{∧,⊕}

.

Clearly, up to logical equivalence we have

¬Σ =
(

({>,⊥} ∪ boxed-variables ∪ negative)L∪{∧,∨} ∧ negative
)L∪{∨,⊗}

=
(

(boxed-variables ∪ negative)L∪{∧,∨}
)L∪{∨,⊗}

= (boxed-variables ∪ negative)L∪{∧,∨}

=
(
(boxed-variables ∪ negative)L∪{∧}

){∨}
= S{∨}.

It follows that any Sahlqvist formula γ in the sense of [5, Definition 3.51]

is equivalent to a conjunction
∧

i ¬δi where the δi are Sahlqvist fixed point

terms as above (viewed as L-terms), and vice versa. Plainly, γ being valid

corresponds to
∧

i ¬δi = 1 being valid: that is,
∧

i(δi = 0), a conjunction of

(L-equations that are) Sahlqvist fixed point equations as in Definition 4.2.

Also note that Sahlqvist fixed point equations are algebraic analogues of

Sahlqvist fixed point formulas of [4].

DEFINITION 4.4. Let A be a BAO. An L-term α(x1, . . . , xn) is called

conjugated in A if it defines a conjugated function in A.

Next we prove two auxiliary lemmas that will play an important role in the

proof of the main result.

LEMMA 4.5. If A is a conjugated BAO, then every skeleton is conjugated

in A.
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Proof. We prove the result by induction on the complexity of α. The base

case is when α is a variable and is trivial. We remark that ∧ can be treated as

a binary operator since it is self-conjugated, normal, and additive. Let f be an

n-ary conjugated operator and let α1(x11, . . . , x1k1
), . . . , αn(xn1, . . . , xnkn

) be

terms written with ∧ and operators only such that f(α1, . . . , αn) = α and no

variable occurs twice in α. Assume the lemma for all skeletons simpler than

α. We show that α is a conjugated term. Let h be an assignment on A. Let

also a ∈ A and fix a variable xij . Then obviously,

a ∧ [α]h = 0 iff a ∧ f([α1]h, . . . , [αn]h) = 0. (2)

As f is conjugated, there exists a function f−1i such that (2) holds iff

[αi]h ∧ f−1i ([α1]h, . . . , [αi−1]h, a, [αi+1]h, . . . , [αn]h) = 0. (3)

Note that the complexity of each αi is smaller than that of α and no vari-

able occurs twice in any of αi. Therefore, by the induction hypothesis, αi is

conjugated. So there exists a function sij such that (3) holds iff

sij(h(xi1), . . . , h(xij−1), f−1i ([α1]h, . . . , [αi−1]h, a, [αi+1]h, . . . , [αn]h),

h(xij+1), . . . , h(xiki
)) ∧ h(xij) = 0.

(4)

As no variable occurs twice in α, this means that α is conjugated. 2

LEMMA 4.6.

(1) Let A and B be BAOs such that A is a dense subalgebra of B. Let also

α(x1, . . . , xp, y1, . . . , yq) be a conjugated term in B, and b1, . . . , bp, n1,

. . . , nq ∈ B be such that α(b1, . . . , bp, n1, . . . , nq) > 0. Then there are a1,

. . . , ap ∈ A with 0 < ai ≤ bi (for each i ≤ p) and α(a1, . . . , ap, n1, . . . ,

nq) > 0.

(2) Let A be a completely additive BAO and A its completion. Let also

α(x1, . . . , xp, y1, . . . , yq) be a conjugated term in A, and let b1, . . . , bp,

n1, . . . , nq ∈ A be such that α(b1, . . . , bp, n1, . . . , nq) > 0. Then there are

a1, . . . , ap ∈ A with 0 < ai ≤ bi (for each i ≤ p) and α(a1, . . . , ap, n1, . . . ,

nq) > 0.

Proof. (1) By induction on p. If p = 0, there is nothing to prove. Assume the

result for p. We prove it it for p+ 1. As A is dense in B, bp+1 =
∨B{a ∈ A :

0 < a ≤ bp+1}. Since α is conjugated in B, by Lemma 3.4(1) it is completely

additive in B, so

0 < α(b1, . . . , bp+1, n1, . . . , nq) =
∨B{α(b1, . . . , bp, a, n1, . . . ,

nq) : a ∈ A, 0 < a ≤ bp+1}.
It follows that α(b1, . . . , bp, a, n1, . . . , nq) > 0 for some a ∈ A with 0 < a ≤
bp+1. The result now follows by the inductive hypothesis. (2) follows from (1)

and the fact that each BAO is a dense subalgebra of its completion. 2

THEOREM 4.7. (Main Theorem)
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(1) Let A be a conjugated fixed point BAO relative to F ⊆ A, and let (A,F)

be the completion of (A,F). Then any Sahlqvist fixed point equation valid

in A relative to F is also valid in A relative to F .

(2) (Givant and Venema [8]) Let A be a conjugated BAO and A its comple-

tion. Then any Sahlqvist equation valid in A is valid in A.

Proof. (1) Throughout the proof we will assume that all fixed point operators

are interpreted relative to F . So we drop F as an index. Let α(β1, . . . , βp, γ1,

. . . , γq) be a Sahlqvist fixed point term, where α(x1, . . . , xp, y1, . . . , yq) is a

skeleton, the βi are of the form fd1 . . . f
d
k y, and the γj are negative fixed point

terms. Suppose α(β1, . . . , βp, γ1, . . . , γq) = 0 fails in A. We show that α(β1,

. . . , βp, γ1, . . . , γq) = 0 also fails in A.

That α(β1, . . . , βp, γ1, . . . , γq) = 0 fails in A means there is an assignment

h in A such that [α(β1, . . . , βp, γ1, . . . , γq)]Ah > 0. Let bi = [βi]
A
h ∈ A and

nj = [γj ]
A
h ∈ A (for each i ≤ p and j ≤ q). So α(b1, . . . , bp, n1, . . . , nq) > 0 in

A. By Lemma 3.4(2), A is conjugated. So by Lemma 4.5, α(x1, . . . , xp, y1, . . . ,

yq) is conjugated in A. Hence, by Lemma 4.6(2), there exist a1, . . . , ap ∈ A
with 0 < ai ≤ bi (for each i ≤ p) such that α(a1, . . . , ap, n1, . . . , nq) > 0 in A.

Let g be the assignment into A, which is called a ‘minimal assignment’,

given by

g(x) =
∨
{f−1k . . . f−11 (ai) : i ≤ p, βi = fd1 . . . f

d
kx} (5)

for each variable x, where f−1 is the conjugate of f in A, for each f ∈ L.

Note that if x does not occur in any βi, then, according to this definition,

g(x) =
∨
∅ = 0.

Claim.

(i) [βi]
A
g ≥ ai for each i ≤ p.

(ii) g(x) ≤ h(x) for each variable x.

(iii) [γj ]
A
g ≥ nj for each j ≤ q.

Proof. (i) First note that for each a ∈ A and each unary conjugated operator

f we have

a ≤ fdf−1a. (6)

That is to say that fd is the right residual of f . To see this, we just need to note

that ¬f−1(a)∧f−1(a) = 0 iff a∧f¬f−1(a) = 0 iff a ≤ ¬f¬f−1(a) = fdf−1(a).

Now we will prove by induction that

a ≤ fd1 . . . fdk f−1k . . . f−11 (a). (7)

The basic step follows from (6). Now assume (7) holds for k− 1 and we prove

it for k. By (6) we have fdk f
−1
k f−1k−1 . . . f

−1
1 (a) ≥ f−1k−1 . . . f

−1
1 (a). By the fact

that each fdi is monotone and using the induction hypothesis we obtain

fd1 . . . f
d
k−1f

d
k f
−1
k . . . f−11 (a) ≥ fd1 . . . f

d
k−1f

−1
k−1 . . . f

−1
1 (a)

≥ a.
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Now let βi = fd1 . . . f
d
kx. Then [βi]

A
g = fd1 . . . f

d
k g(x) ≥ fd1 . . . f

d
k (f−1k . . .

f−11 (ai)) ≥ ai.

(ii) Let i ≤ p and assume βi = fd1 . . . f
d
kx. As ai ≤ bi we have ai ≤

[βi]
A
h = [fd1 . . . f

d
kx]Ah = fd1 . . . f

d
kh(x). By conjugation, this implies that

f−1k . . . f−11 (ai) ≤ h(x) in A. This holds for each ai and βi with βi of the

form fd1 . . . f
d
kx. So

g(x) =
∨
{f−1k . . . f−11 (ai) : i ≤ p, βi = fd1 . . . f

d
kx} ≤ h(x).

(iii) As each γj is a negative term for each j ≤ q, from (2) of this claim

and Lemma 2.2, we have [γj ]
A
g ≥ [γj ]

A
h = nj . Since g is an assignment in A,

it follows from Lemma 3.2(2) that [γj ]
A
g = [γj ]

A
g for each j ≤ q. Therefore, we

have [γj ]
A
g ≥ nj for each j ≤ q. 2

Recall that α is positive and has no fixed points. Then putting everything

together we obtain:

[α(β1, . . . , βp, γ1, . . . , γq)]Ag = α([β1]Ag , . . . , [βp]Ag , [γ1]Ag , . . . , [γq]Ag )A

= α([β1]Ag , . . . , [βp]Ag , [γ1]Ag , . . . , [γq]Ag )A

≥ α(a1, . . . , ap, n1, . . . , nq)A

> 0.

So α(β1, . . . , βp, γ1, . . . , γq) = 0 fails in A, as required.

(2) The proof is the same as the proof of (1) except that we start with any

conjugated BAO (not necessarily a fixed point BAO) and we assume that each

term is just an L-term (not a fixed point term — thus F plays no role here).

2

REMARK 4.8. We note again that the ‘minimal’ assignment g defined in

(5) of the proof of Theorem 4.7 is in the original algebra A. In the topological

terminology of [15] and [4] this means that g corresponds to a ‘clopen’, not

just a ‘closed’ assignment. Esakia’s lemma and its fixed point analogue are

essentially used in the preservation proofs of [15] and [4] to move from a ‘closed’

assignment to a ‘clopen’ assignment. As the assignment g in our case is already

‘clopen’ we do not need to use the aforementioned lemmas. This also enables

us, unlike [4] where the analogue of the Esakia lemma is proved only for the

language with the least fixed point operator, to work with the fixed point

language with both least and greatest fixed point operators.

A natural question to ask is whether in Theorem 4.7(1) we can drop the

condition that fixed point operators in A and A are computed relative to

F . One could ask whether the following is true: if the Sahlqvist fixed point

equation γ = 0 is valid in A relative to A, then γ = 0 is valid in A relative to

A. In other words, can we prove an analogue of Theorem 4.7(1) if we compute

fixed point operators in a standard way, as meets (joins) of all pre-fixed points

(post-fixed points)? We finish this section by constructing an example of a

11



conjugated BAO (not a fixed point BAO) A and a Sahlqvist fixed point term

γ such that, with the standard interpretation of fixed point operators, γ = 0 is

valid in A but not in A. We leave it as an open problem to find a fixed point

BAO and a Sahlqvist fixed point term with the same property.

EXAMPLE 4.9. Let N be the set of natural numbers and R = {(n, n −
1), (n, n + 1) : n > 0}. Let A be the algebra of all finite and cofinite subsets

of N. For each U ⊆ N we let 〈R〉U = {n ∈ N : R[n] ∩ U 6= ∅}, where

R[n] = {m ∈ N : R(n,m)}. It is well known that A is a conjugated BAO. It is

called a conjugated modal algebra because of the close connection with modal

logic, see e.g., [5, Section 5]. It is also well known that the completion A of A
consists of all subsets of N with 〈R〉 defined as above. Observe that the only

pre-fixed point of the term δ = 33x ∨ 2⊥ in A is the whole set N. So the

interpretation of µxδ is equal to N = 1A. However, the only pre-fixed points of

δ in A are N and the set E of all even numbers. Therefore, the interpretation

of µxδ in A is equal to E. Finally, note that as µxδ is positive, γ = ¬µxδ is

a Sahlqvist fixed point term. Thus, from the above we obtain that γ = 0 is

valid in A, but γ = 0 is not valid in A.

5. Conclusions and future work

In this paper we defined Sahlqvist fixed point equations and fixed point

BAOs. For each BAO A, we interpreted fixed point operators in a ‘non-

classical’ way relative to some set F ⊆ A. We proved that for each fixed

point BAO A and F ⊆ A, every Sahlqvist fixed point equation valid in A
relative to F is also valid in the completion A relative to F . We also gave an

example of a conjugated BAO A and Sahlqvist fixed point equation that is

not preserved under the completion A provided that the fixed point operators

are interpreted in a classical way as meets and joins of all pre and post-fixed

points, respectively. We left it as on open problem to find a fixed point BAO

with the same property.

The last question is related to the following problem: Given a BAO A can

we find a fixed point BAO B such that A is a subalgebra of B and B is least

such? Obviously, the completion A is a fixed point BAO containing A as a

subalgebra. But can we find a ‘smaller’ one? In other words, can we define

fixed point completions of BAOs?

In this paper we consider lower extensions of conjugated operators on a

BAO. We could define the upper extension of a map f on a BAO A by f̂(b) =∧A{f(c) : c ∈ A, c ≥ b}. As follows from [8] (see also [9, Theorem 3.1] and [18,

Proposition 3.19]), if f is a unary conjugated operator, then f = f̂ . If f is not

unary though, then f and f̂ may differ [8] (see also [18, Example 3.20]). We

leave it as an open problem to investigate completions of fixed point BAOs,

when we consider upper extensions of operators.
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Finally, we note that the skeleton of a Sahlqvist fixed point term is an L-

term. Fixed point operators are only allowed in the negative terms substituted

in the skeleton. Currently we are unable to extend Lemma 4.5 and the claim

of Theorem 4.7 to skeletons that involve fixed point operators (e.g., as in the

Sahlqvist fixed point formulas of [3]). We leave it as an (interesting) open

problem whether the notions of skeletons or boxed atoms could be general-

ized so that they involve fixed point operators and so that the analogues of

Lemma 4.5 and Theorem 4.7 for these terms still hold.
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