NICK BEZHANISHVILI All Proper Normal
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have the Polynomial Size
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Abstract.  We show that every proper normal extension of the bi-modal system S52
has the poly-size model property. In fact, to every proper normal extension L of S52
corresponds a natural number b(L) — the bound of L. For every L, there exists a polynomial
P(-) of degree b(L)+ 1 such that every L—consistent formula ¢ is satisfiable on an L-frame
whose universe is bounded by P(|¢|), where || denotes the number of subformulas of ¢.
It is shown that this bound is optimal.

Introduction

It follows from [5] that the bi-modal system S52 has the expontential size
model property. In [1] it is proved that every normal extension of the bi-
modal system S52 has the finite model property. Using this result we show
that in fact every proper normal extension of S52 has the poly-size model
property.

To every proper normal extension L of S52 we correspond a natural
number b(L) — the bound of L. We show that for every L, there exists a
polynomial P(-) of degree b(L) + 1 such that every L—consistent formula ¢
is satisfiable on an L-frame whose universe is bounded by P(|p|), where |¢|
is the number of subformulas of ¢. At the end of the paper we show that
this bound is optimal.

The modal logic S52 is widely studied, under a variety of names. Its
algebraic counterpart is the variety Dfy = RDfy of (representable) diagonal-
free cylindric algebras of dimension two [7]. Segerberg [17] discusses an
expansion under the name of two—dimensional modal logic. In Gabbay and
Shehtman [2], 852 is studied as a special case of taking products of modal
logics.
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One of the sources of interest for S52 is that it corresponds to a “clean”
equality free fragment of first order logic with two variables. Our work is
best motivated from this angle.

There is a wide variety of proofs available for the decidability of first-
order logic with two variables and without function symbols. Equivalent
results were stated and proved using quite different methods in first-order,
modal and algebraic logic. We present a short historic overview.

Decidability of validity of equality free first-order sentences in two vari-
ables is due to Scott [15]. The proof uses a reduction to the set of prenex
formulas of the form 32V™yp, whose validity is decidable by [3]. The result
was stated with equality in the language, because at that time it was still
believed that the 32V class of formulas containing equality is decidable for
validity. This was however refuted in [4]. Scott’s result was extended by
Mortimer [12] by including equality in the language and showing that such
sentences cannot force infinite models, obtaining decidability as a corollary.
A simpler proof was provided in [5] and showed that any formula which can
be satisfied, can actually be satisfied in a model whose size is single expo-
nential in the length of the formula. Adding two unary function symbols to
the language with only one variable leads to undecidability, as shown in [6].

Segerberg [17] proves decidability for a so-called “two-dimensional modal
logic” which is essentially the equality free first-order logic with two vari-
ables. The modal technique of filtration provides the decidability result plus
the finite model property. For an algebraic proof see [7] (Theorem 3.2.66
and Corollary 4.2.9).

Explicit bounds on the size of finite models are known. Every S5-
consistent formula ¢ is satisfiable in a model of size |¢| + 1 [9]. For S52
the models need to be much larger. Every S52-consistent formula ¢ can be
satisfied in a product model of size 2°(%)) [5]. Both bounds are optimal.

To these results we add that in extensions L of S52, every L-consistent
formula ¢ is satisfiable in an L model whose size is bounded by a polynomial
function in ||

Preliminaries

Recall that the language of 852 is the propositional language equipped with
two existential modalities &1 and ¢9 and their duals O; and Os. Recall also
that a set of formulas L is called a logic if it contains all tautologies of the
classical propositional calculus and is closed under the rule of modus ponens.
A modal logic is called normal if it contains axiom schema 2) (see below)
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and is closed under the rule of necessitation. A logic L; is an extension of
Lo if Ly C L4

Let S52 be the set of formulas generated by the following axiom schemas,
for i = 1,2:

1) All tautologies of the classical propositional calculus;
2) O;(p — ) — (Oip — Og9);

3) Oip — o;

4) O — 0;0;0;

5) Oibsp — o

6) Ellljzgo > DQDMp;

7) Ozp = =040,

and closed under the following rules of inference:

Modus Ponens (MP): from ¢ and ¢ — 1 infer 1;
Necessitation (N);:  from ¢ infer O;p.

(Since ;¢ « —<O;—, are axioms of 852 for i = 1,2, we will subsequently
assume that O; do not appear explicitly in the formulas.)

We consider two classes of models for this logic. Call a triple F =
(W, E1, E3) an S52-frame if W is a non-empty set, and F; and E are equiv-
alence relations on W such that Ey o Es = EyoFEj. The variety generated by
the full complex algebras of S5-frames is denoted by Df, in the algebraic
literature [7].

A couple M = (F, ), is called a model if F is an S52-frame, and |= is
a binary relation on W x ® (where @ is the set of formulas) such that for
any w € W and ¢,9 € &:

wEMMNY & wkEo& w1,
wEoVYy & wEdorwky,
wE & wlEy,

wELYy & YveWwEyv=vkEr1),
wEGY & FveWwEyv &vE1y).

A formula ¢ is satisfiable in an S52-frame F = (W, E1, E,) if there exists a
model M = (F, =) and a point w € W such that w = ¢. A formula ¢ is
valid in F if for any model M = (F,|=), and any point w € W, we have
w = .

For any equivalence relation £ on W, let E(w) = {v € W : vEw} and
E(V) = Upey E(w) for w € W and V C W. An especially interesting
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subclass of the class of S52-frames is the class of frames which satisfy an
additional condition: Ey(w) N Ez(w) = {w} for any w € W. These frames
can be represented as products of two S5-frames. Recall that for given two
S5-frames F = (W, E) and F' = (W', E’), the product F x F' is defined as
the triple (W x W', Ey, Es), where

(w,w)Ey(v,v) iff w=wvand wWE"

(w,w")Ea(v,v") if wEvandw =7

Call an S52-frame (W, Ey, E») rooted if E1Eo(w) = W for any w € W. S52
has the fmp with respect to both classes of rooted frames (cf., [7] or [2]), in
other words for every formula ¢ of the language of S52 we have:

¢ € S52 iff ¢ is valid in every finite rooted S52-frame
iff  is valid in every finite rooted product frame.

(Note that in [7] RDfy denotes the variety generated by the full complex al-
gebras of product frames.) Below we assume that every S5%-frame is rooted.

One of the main reasons for studying S52 is that S52 axiomatizes the
two-variable substitution-free fragment of the first order classical logic, FOL
for short. Indeed, consider the following translation of the formulas of the
language of 852 to the formulas of the language of FOL:

p' = P(z1,72),

(1)t is a homomorphism for the Booleans,

(O19)" = 14,

(Cap)t = Fzapp.

Then one can show (see e.g. [7]) that this translation is faithful, for all
formulas ¢ we have ¢ € 852 iff FOL |- .

Similarly to S52, one can show that the logic S5" of n-ary products of
S5-frames is a subfragment of the n-variable F'OL when the translation is
defined in the same way as for S52 above.

It is relevant here to recall that S5 axiomatizes the one-variable fragment
of FOL (see [18]). The lattice of (normal) extensions of S5 is rather easy to
describe, it is a (w+ 1)-chain; every (normal) extension of S5 is semantically
characterized by the S5-frame shown in Figure 1; all of them are finitely
axiomatizable, enjoy the finite model property and are decidable (see Scroggs
[16]). Actually, every (normal) extension of S5 has the linear-size model
property, and every proper (normal) extension of S5 is tabular.

Let [S5, 85, ..., S5] denote the modal logic of n commuting S5 diamonds

N ———~

n—times

(meaning that for all ¢, j, ¢;0;¢ < ©;<0;¢ is an axiom of [S5,S5,...,S5]).
———

n—times
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Figure 1. The proper extensions of S5.

However, unlike S5, in the case of [S5,S5,...,85], for n > 3, the lattice of
N ——~

n—times
extensions of [S5, S5, ..., S5] is much more complicated. It has been shown
T

by Maddux [10] that every logic between [S5, S5, S5] and S52 is undecidable.
Kurucz [8] strengthened this by showing that fmp also fails for all logics in
this interval.

However, the situation improves in the two-dimensional case. Indeed, we
have the following consequence of [1]:

THEOREM 1. Every normal extension L of S52 enjoys the finite model prop-
erty.

PROOF. It is shown in [1], that every subvariety of the variety Dfs of the
two-dimensional diagonal-free cylindric algebras is generated by its finite
members. Since there exists a lattice anti-isomorphism between the lattice
of subvarieties of Dfy and the lattice of normal extensions of S52 (see e.g.[7]
or [13]), and since for any finitely approximable variety, the corresponding
logical system has the finite model property, we conclude that every normal
extension of 852 enjoys the finite model property. [

For every formula ¢, let Sub{p) denote the set of all subformulas of ¢,
and let || denote the cardinality of the set Sub(p). A logic L is said to have
the poly-size model property if there exist a polynomial P(-) such that every
L-consistent formula ¢ (that is L ¢ L U {p}) is satisfiable in an L—frame
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containing at most P(|¢|) points. If P(-) is a linear function, then L is said
to have the linear-size model property.

We will show that all proper normal extensions of S52 have the poly-size
model property.

Finally, let us mention that our notation is slightly different from the
standard one in [7]: instead of ¢y and ¢; we use ¢y and <, and instead of
To and 177 we use Ey and E» respectively.

Normal extensions of S52

In this section we prove a more specific version of Theorem 1. In particular,
for each proper normal extension of 852 we will describe the class of its finite
frames in terms of the depth of F; and E5 equivalence classes. For this we
introduce the following terminology.

For a given S52-frame F = (W, E1,Ep), w € W and i = 1,2 we call
the sets of the form F;(w), F;-clusters. We also call the sets of the form
Ey(w) N Ey(w) Ep-clusters and denote them by Ey(w). (It should be clear
that Ey = E; N Ey is also an equivalence relation.)

We denote Fj-clusters of F by C}, Ex-clusters by C'J?, and Fy-clusters
cln Cf by C’Sj.

DEFINITION 2. A given S52-frame F is said to be of E;-depth n (i = 1,2
and n € w), written as d;(F) = n, if it contains precisely n F;-clusters.

F is said to be of an infinite E;-depth (i=1,2), written as d;(F) = w, if
the number of E;-clusters of F is infinite.

A class F of S52-frames is said to be of E;-depthn (i = 1,2 and n € w),
written as d;(F) = n, if there is a member of F of F;-depth n, and E;-depth
of every other member of F is less than or equal to n.

F is said to be of E;-depth w, written as d;(F) = w, if E;-depth of
members of F' is not restricted to any natural n.

For every normal extension L of 852, we say that an S52-frame F is an
L-frame if F validates all the theorems of L. Let F; denote the class of all
finite L-frames. It follows from Theorem 1 that every normal extension L of
S52 is complete with respect to Fy,. We say that a logic L is of Ej-depth n
(¢ =1,2 and n € w), written as d;(L) = n, if F, is of E;-depth n. L is said
to be of E;-depth w, written as d;(L) = w, if d(Fp) = w.

THEOREM 3. For every proper normal extension L of 852 there exists a
natural number n such that ¥y can be divided into three disjoint classes
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Fr =F,UFUF3, where dQ(Fl), dl(Fg), dl(Fg), d2(F3) <n. (Note that
any two of the classes F1,Fy and F3 may be empty.)

The proof of this theorem depends on two lemmas. The first one will also
be used in the next section. It states that certain frames can be compressed
and still remain frames of the logic. The compression is a standard technique
in modal logic: define an equivalence relation, let the new states be the
equivalence classes, define the accessibility relations minimally and show that
the function which sends states to their equivalence classes is a p-morphism.?
The proof is left to the reader.

LEMMA 4. Let F = (W, E1, E») be a finite S52-frame and B an equivalence
relation on W. Let Fg = (W/B, E', E}), where

B(w)E[B(v) iff there exist w' € B(w) and v' € B(v) with w'E;0/,

fori=1,2. Let the function fg : W — W/B be defined by fp(w) = B(w)
for any w € W. If any of the following three cases (1),(2a), (2b) holds, then
fB s a p-morphism from F onto Fp.

(1) B C Ey (that is, B identifies only points from Eg-clusters).
(2a) B C E3 and uBv implies that for every u' € Ey(u) there exists some
v' € Eq(v) with ' Bv'.

(2b) B C E; and uBv implies that for every v’ € Ea(u) there exists some
v' € Eq(v) with /' Bv'.

Denote by n the S5-frame (W, E), where W, is an n-element set and
E =W, x W,. Also denote by n x m the product of n and m. Obviously
n x m is an S52-frame.

LEMMA 5. (i) Every S52-frame F = (W, Ey, Ep) with di(F) = k and
d2(F) = m can be p-morphically maped onto the product frame k x m.

(i2) If k > k' and m > m/, then k X m can be p-morphically maped onto
k' x m'.

PROOF. (i) Cousider Fg, = (W/Ey, E{, Ej). Define fg, : W — W/Ey by
setting fg,(w) = Ep(w) for any w € W. By Lemma 4 (1) is a p-morphism
and it is obvious that Fg, is isomorphic to the product frame k x m.

'Given two S5%-frames F; = (W, E1, E») and F» = (W', E{, E}), a function f : W —
W' is said to be a p-morphism, if, for any w € W,w’ € W' and i = 1,2, f(w)Ejw’ iff
(Fv € W)(wEw & f(v) = w'). F» is said to be a p-morphic image of F1 if there is a
p-morphism from W onto W'. It is well-known that p-morphic images preserve validity of
formulas.
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(ii) Fix &' — 1 different Fj-clusters C{,...,C}_; of k x m. Let Y =

f:ll Cil. Define an equivalence relation B; on k X m by putting;:

wByv iff w = v for any w,v €Y,
wByv iff wEyv for any w,v € (k xm) —-Y.

Now define fp, from k x m onto k x m/B; by setting fp, (w) = Bi(w)
for any w € k x m. By Lemma 4 (2a) it follows directly that fg, is a p-
morphism. It is straightforward to check that k x m/B; is isomorphic to
k/ x m.

Now fix m’ — 1 different Ey-clusters C%,...,C2, | of k' x m. Let Z =

U;":III C']? . Define an equivalence relation By on k' X m by putting:

wBov iff w = v for any w,v € Z,
wBav iff wE v for any w,v € (k' x m) — Z.

Define fp, from k' x m onto k/ x m/By by setting fp,(w) = By(w)
for any w € k' x m. From Lemma 4 (2b) it follows directly that fg, is a
p-morphism and it is straightforward to check that k' x m/Bs is isomorphic
to k' x m'. Therefore, k' x m’ is a p-morphic image of k x m. [ ]

Now we are ready to prove Theorem 3.

PROOF OF THEOREM 3. Suppose L is a proper normal extension of S52.
Because 852 is complete with respect to the class of all finite product frames
of the form n x n (see e.g. [17]), there exists a product frame n x n such
that n x n ¢ Fy. Let n be the minimal number such that n x n ¢ Fy.
Consider three subclasses of Fr: Fy = {F € Fr : d1(F) > n}, Fo = {F €
Fy : d2(.7:) > TL} and Fg = {.7: eFyr: dl(f),dz(]:) < n}

Let us show that if F € Fy, then do(F) < n and if F € Fy, then
di(F) < n. Indeed, suppose F € Fy UFy, di(F) = k, do(F) = m and
both k,m > n. By Lemma 5 (i) k X m is a p-morphic image of F and by
Lemma 5 (ii) n X n is a p-morphic image of k x m. So, n x n is a p-morphic
image of F and hence n x n belongs to ¥y which is a contradiction. So, if
F € Fy, then di(F) > n and do(F) < n, if F € Fy, then di(F) < n and
da(F) > n and if F € F3, then d;(F), d2(F) < n. This shows that all three
classes F, Fo, F3 are disjoint. [ |

Poly-size model property

In this section we prove the main result of the paper, that every proper
normal extension of S52 has the poly-size model property. First we introduce
some terminology.
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For every proper normal extension L of 852, we introduce the following
parameters: for i € {1,2}, k € {1,2,3}, p¥ = d;(F%). The parameter pf
gives the F; depth of the class Fy. Call a parameter finite, if it is not w.
Note that the only parameters which may be infinite are p} and p2. Denote
by b(L) the maximum between all the finite parameters of L, and call it the
bound of L. Note that if p] and p3 are w, then b(L) = n, where n is the
minimal natural number such that n x n ¢ Fy.

Let |¢| denote the modal size of ¢, that is the number of subformulas of
@ of the form <11 and Ogx. Recall that a polynomial P(n) is said to be of
degree k if nF occurs in P(n) and n™ does not occur in P(n) for any m > k.

THEOREM 6. Let L be a proper normal extension of S52 with bound b(L).
Then every L-satisfiable formula ¢ is satisfiable in an L-frame of size P(|¢|),
for P(|¢|) a polynomial of degree b(L) + 1. Moreover, if all the parameters
of L are finite, then P(|pl|) is just linear in o).

In the proof we create small models from large ones taking care that
1) the frame of the small model is still a frame of the logic, and 2) certain
formulas are still satisfied in the small model. For the first part we can use
Lemma. 4, for the latter part we use next lemma.

LEMMA 7. For any proper normal extension L of S52, if ¢ is L-satisfiable,
then it is satisfiable in an L-frame F = (W, E1, E) such that

W < di(Flol + doFlel + da(F) - do F) + 1.
Moreover, the size of any Eg-cluster in F is at most |¢p)|.

Proor. Let F = (W, E1, E;) be an L-frame satisfying formula ¢. Then
there exists a valuation = on F and a point w € W, such that w |= ¢.

CLAIM 8. Let M = (F, =) be a model on some S52-frame F = (W, Ey, Es).
Let W C W, F' = (W', Erlw+, E2|lw+), (Eilw+ is the restriction of E; on
W') and M’ = (F', ) be such that v =’ p iff v |= p, for all variables p and
ve W' Suppose W' is such that

(i) for all O19 € Sub(p) and Er-cluster C} in F, if there exists x € C}
with = |= 1 then there exists y € C’i1 NW’ with y =, and

(ii) for all Ooyp € Sub(yp) and Ep-cluster Cj2 in F, if there exists x € C’J2
with x |= 1 then there exists y € 0]2 NW' with y | 1.

Then for all v € W' and ¢ € Sub(p), v = ¢ iff v E .
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PROOF. By induction on the size of ¥ € Sub(y). The Boolean clauses are
trivial. Let ¢ = Ojx, ¢ = 1,2. Then v ' ©;x implies that there exists
v' € W' such that vE;v" and v/ =" x. But then by the induction hypothesis
v' = x, and hence v = O;x. Conversely, from v |= O;x it follows that x is
satisfied in F;(v). From (i) and (ii) it follows that there exists y € W’ such
that vE;y and y = x. But then by the induction hypothesis ¥y ' x, and
hence v =’ O;x. |

Now we will create a small satisfiable model from F. For every E;-cluster
C! (1 < i < di(F)) and every O19 € Sub(p), we choose a point z € C}
such that = = ¢ (if such a point exists at all). We do the same for Fjy-
clusters and $gtp € Sub(y). Moreover, if there are Ep-clusters of W which
do not contain any selected points, we choose one point from each of them.
Denote by W’ the set of all selected points plus w. (Note that if F is a
product-frame, then W = W’.) Define the relation B on W as follows. By
the definition of W/, for each Ey-cluster C’g j of F we have chosen at least one
point witness (C?’ j) € C’g ; to bein W’'. Now let B be the smallest equivalence
relation which identifies the points from Cg. — W’ with witness(ng) and
define fp : F — Fp by putting fp(w) = B(w) for any w € W. Then the
frame Fp is isomorphic to F’, and B C Ey. Therefore by Lemma 4 (1), F
is a p-morphic image of F, and hence is an L-frame.

Finally, consider the model M’ = (F','), where F' = (W', E1lw,
Es|lw) and v =’ p iff v = p, for every v € W’ and every propositional letter
p occurring in ¢. Then by Claim 8, 7’ also satisfies ¢. Note, that |W'| <
di(F)|el +do(F)le| +di (F)-da(F) + 1. Indeed, there exist di (F)-many E;-
clusters and do(F)-many Es-clusters of W. From every E;-cluster, i = 1,2,
we select at most || points. So, we select (d1 (F)||+da(F)|p|)-many points,
and then from every Fjy-cluster which does not contain any selected point,
we choose an additional point. Obviously there are dy (F) - do(F)-many Ep-
clusters in W, hence |W’| < di(F)|¢| + do(F)|¢| + d1(F) - do F) + 1. |

Now we can quickly prove Theorem 6.
PROOF OF THEOREM 6. Let L be as in the theorem with bound b(L). Let ¢
be L-satisfiable. Then there exist an L-frame F = (W, E;, E3), a valuation
= on F and w € W such that w |= ¢. By Lemma 7 we may assume that

(W < di(F)lel + da(F)lel + da(F) - da(F) + 1,

Moreover, the size of any FEp-cluster in F is at most |p|. Hence, every Fj-
cluster of F contains at most da(F)|p| and every Es-cluster contains at most
d1(F)|p| points respectively. We split the proof in three cases.
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Case 1: [All parameters are finite or F € F3]. In this case, di(F)
and dyp(F) are both smaller than b(L), whence ¢ is satisfied in a frame with
at most 2b(L)|p| + b(L)? + 1 points, which is a linear function in |¢).

Case 2: [F € Fy and do(F) is unbounded]. Because F € Fy, d;(F) <
b(L), but da(F) is unbounded, whence the frame might be too large. We
make it smaller by defining an equivalence relation B on W, and factorize F
through it. To this end we say that two Ey-clusters C’g and C’g are equivalent,
if
Icln C’g| =|cln C§| for all i between 1 and d; (F).

Because the size of the Eg-clusters C} N C’J2 is bounded by |¢|, the number
of non-equivalent Fs-clusters is bounded? by || (F ).,

Now we define a submodel of M which still satisfies ¢, its underlying
frame is a p-morphic image of F and it is of the right (small) size.

For every Ej-cluster C} of F (1 < i < d;(F)) and every <19 € Sub(yp),
we choose a point x € C} such that = 1 (if such a point exists at all).
Denote by S the set of selected points plus w. It is easy to see that

[E2(S)] < (du(Flel + 1)di (F)le|

Indeed, from every Ej-cluster we select at most |p] points. There are d; (F)
Ej-clusters in F. So, we select points from at most di(F)}p| + 1 different
Es-clusters and every Es-cluster of F contains at most d;(F)|¢| points.
Now from every equivalence class let us choose one representative Cp2
and let W’ be E3(S) plus this set of representatives. Put 7' = (W', Eq |y,
Eslw), and M’ = (F',=’) such that v ¥’ piff v = p, for all pin v € W'.
Then by Claim 8, F' satisfies ¢. The number of points in W’ is bounded by

|E(S)] + (|| %) - di(F)lel) < L[l + b(L)]p| + (L) I

Finally, almost the same construction as in Lemma 7 will provide us
with a p-morphism from F to F’. For every Es-cluster Cg CW—-W, let
Cp2 C W' be a Es-cluster which is equivalent to C’g. Then the Eg-clusters
|C£p| and |ng| contain the same number of points for every i = 1,...,d1(F).
Suppose C7, = {wi, .., ws, } and C’gq = {Viss---,vi, }. Let B be the

Indeed, to every Ez-cluster Cf, from F corresponds the sequence of natural numbers
B = (N1,..., N4, (7)), Where ny = |[CF,|,...,nay(r) = [C’gl(]_-)m]. Obviously, n; < |¢| for
1 < j < di(F), and to equivalent Fa-clusters correspond the same sequences. Now since
there exist only |¢|?7)-many different sequences 7 = (n1,...,nq, (7)), there exist only
]cp|d1('¢ )-many non-equivalent Fa-clusters.



378 N. Bezhanishvili, M. Marx

smallest equivalence relation such that w; Bv;, holds for all r = 1,...,n;
and i =1,...,d;(F). Then B satisfies condition (2b) of Lemma 4. Thus by
Lemma 4, fp is a p-morphism from F onto Fg. But Fp is isomorphic to
F', thus the latter is in Fy.

Thus ¢ is satisfiable in an L-frame containing at most P(|p|)-many
points, for P(-) a polynomial of degree b(L) + 1.

Case 3: [F € F; and d;(F) is unbounded]. This case is symmetrical
to case 2. This finishes the proof of the theorem. |

COROLLARY 9. Every proper normal extension of S52 has the poly-size model
property.

Proof. Let L be a proper normal extension of S52 and ¢ an L-consistent
formula. Then —¢ ¢ L and by Theorem 1 there is a finite L-frame F refuting
—p. Hence, F satisfies ¢ and by Theorem 6 there exists an L-frame F’ which
satisfies ¢ and the universe of F’ is bounded by a polynomial of degree
b(L) + 1 in |p|. Therefore, L has the poly-size model property. n

Proper extensions of S5? without linear-size model property

In the previous section we showed that proper normal extensions of S52
have the poly-size model property. In this section we show that our bound
is indeed optimal by constructing proper normal extensions Lj of S5 and
formulas ¢} such that the size of the smallest Ly-frame satisfying ¢} is a
polynomial of degree b(Ly) + 1 in |¢}|. (Of course, the logics Ly will have
an infinite parameter, namely p3(Ly) will be w.)

Let a finite S5%-frame F be given and let {C}}? | and {Cf};nzl be the
sets of F, and Eo-clusters of F, respectively. Recall from the previous section
that two distinct Es-clusters Cg and C’g are equivalent if

|C} NCZ| = |C} N C?| for all i between 1 and n.

Fix any natural number £ > 2. For any natural number n, let G; be an
S52%-frame of Ey-depth k such that every Es-cluster of G contains exactly
k + n points and every two distinct Ey-clusters of G} are not equivalent
to each other. Note that G is not unique, since there are several (though
finitely many) frames with this property. Let F* be the maximal one with
this property, that is |G}| < |F7|, for any G

Let Ly = peo L(FR), where L(F}) is the logic of the frame F}} for
n € w. Obviously, p3(Lg) = w and b(Ly) = k.
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Ey

7 7
Figure 2. 77 frames for k = 2 and k = 3.
The cases for k = 2 and k = 3 are shown in Figure 2.
Now for n > k, let pf = Qr A Y™, where
k
Qe = AL ©10pi ATHD[AL, (C1pi © i) A Ni<izj< ~(Pi A D5,

P* = AL C2gi A Do A1<izj<n (@ A g5)))-
It is not difficult to show that

Q. is satisfiable in F iff F contains at least k-many Ej;-clusters; (1)

™ is satisfiable in F iff
every FEs—cluster of F contains at least n points.

(2)

Thus the formula ¢}, is satisfiable in the frame .77,’:“’“. The next claim states
that in the logic Ly we cannot do better.

.77,?_’“ is the smallest Lp-frame satisfying ¢7. (3)

To prove (3), suppose ¢} is satisfiable in a finite Ly-frame F. Then F is
a p-morphic image of some F, ¢ € w, that is, there is an onto p-morphism
f:FL — F. As ¢" is satisfied in F, by (2), i > n — k.
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Let ¢ = n — k. The argument when i > n — k is similar. Since Qj
is satisfiable in F, (1) implies that F contains k-many Ej-clusters. Thus,
f cannot identify points from different E;-clusters of .7-'2’_’“ . Also note that
since ¥™ is satisfiable in F and every Fs-cluster of fz_k contains n points, f
cannot identify points from the same Fo-cluster. Let us show that f cannot
identify points from different Es-clusters either. Indeed, suppose there exist
w € Cgp and v € ng such that f(w) = f(v). Since f is a p-morphism, for
anyj=1,...,kand v € C'J(.”p there exists v/ € CJQ’q such that f(w') = f(v/).
Now since C’g is not equivalent to Cg, at least two points from some C’](-),p
will be identified by f. Hence the number of points of the Es-cluster f (CIZ,)
of F is strictly less than n, which again contradicts the satisfiability of 9™
in F. Therefore, f should be the identity map, and F = f;"’k .

Now we compute the size of .7:,?_'“. As in Theorem 6, to every Es-cluster
Cg of .7-'?_’“ we correspond the sequence of natural numbers (mq,...,mg),
where my = |C)_|,...,my = |C’,8’p[. From the definition of 2% it fol-
lows that m1 + ... 4+ mg = n. But then the number of different sequences
(mq,...,myg) will be

(n —1)! n-1)...(n—k)

k —
Cn—l - >

(n— k)
Klln — (k+1))! k! ‘

k!

Furthermore, every Es-cluster of fﬁ_k contains precisely n points. So the

N AY
size of .7:}’:_’“ is at least —Q(nTk—)—-, hence

The size of .7-','?"’“ is a polynomial of degree k + 1 in n. (4)
Putting (3) and (4) together yields

THEOREM 10. There exist infinitely many proper normal extensions Ly of
S52 and formulas oy such that the size of the smallest Li-frame satisfying
@ is a polynomial of degree b(Ly) + 1 in |p}|. o

Conclusions

In this paper we presented a generalization of results for the one-dimensional
modal system to its two-dimensional analog. Indeed, the modal system S5
has the linear size model property but all its proper extensions are tabular.
Two-dimensional S5, the logic $52, has the exponential size model property.
However, as we show in this paper, proper normal extensions of 852 are sim-
pler - they all have the poly-size model property. One can ask which modal
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systems allow such kind of generalizations to the two-dimensional case. For
instance, for the well known modal system S4 it is still not known whether
its two-dimensional analog is decidable or has a finite model property. On
the other hand it is known that two-dimensional products of linear modal
logics are undecidable (see [14]).

We did not discuss consequences of the results concerning the compu-
tational complexity of extensions of S52, as well as the question of finite
axiomatizability of extensions of 852. One of the directions for further re-
search would be to provide a finite axiomatization for every extension of S52
(which is believed to be possible). As a consequence this would imply that
the satisfiability problem of every proper extension of 852 is NP-complete.?
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