
Minimisation in Logical Form

Nick Bezhanishvili and Marcello Bonsangue and Helle Hvid Hansen and Dexter Kozen and
Clemens Kupke and Prakash Panangaden and Alexandra Silva

Abstract Recently, two apparently quite different duality-based approaches to automata minimi-
sation have appeared. One is based on ideas that originated from the controllability-observability
duality from systems theory, and the other is based on ideas derived from Stone-type dualities
specifically linking coalgebras with algebraic structures derived from modal logics. In the present
paper, we develop a more abstract view and unify the two approaches. We show that dualities,
or more generally dual adjunctions, between categories can be lifted to dual adjunctions between
categories of coalgebras and algebras, and from there to automata with initial as well as final
states. As in the Stone-duality approach, algebras are essentially logics for reasoning about the
automata. By exploiting the ability to pass between these categories, we show that one can
minimize the corresponding automata. We give an abstract minimisation algorithm that has sev-
eral instances, including the celebrated Brzozowski minimisation algorithm. We further develop
three examples that have been treated in previous works: deterministic Kripke frames based on a
Stone-type duality, weighted automata based on the self-duality of semimodules, and topological
automata based on Gelfand duality. As a new example, we develop alternating automata based
on the discrete duality between sets and complete atomic Boolean algebras.

Nick Bezhanishvili
University of Amsterdam, The Netherlands, e-mail: N.Bezhanishvili@uva.nl

Marcello Bonsangue

Leiden University, The Netherlands e-mail: marcello@liacs.nl

Helle Hvid Hansen

University of Groningen, The Netherlands e-mail: h.h.hansen@rug.nl

Dexter Kozen
Cornell University, USA e-mail: kozen@cornell.edu

Clemens Kupke

University of Strathclyde, Glasgow, Scotland e-mail: clemens.kupke@strath.ac.uk

Prakash Panangaden
McGill University, Canada e-mail: prakash@cs.mcgill.ca

Alexandra Silva

University College London, United Kingdom e-mail: alexandra.silva@gmail.com

1

N.Bezhanishvili@uva.nl
marcello@liacs.nl
h.h.hansen@rug.nl
kozen@cornell.edu
clemens.kupke@strath.ac.uk
prakash@cs.mcgill.ca
alexandra.silva@gmail.com

2 Authors Suppressed Due to Excessive Length

1 Introduction

Category theory, algebra, and logic are deepening our understanding of program semantics and
algorithms, and Samson has been a pioneer and leader in developing this field. His seminal
paper Domain Theory in Logical Form [1] studies the connection between program logic and
domain theory via Stone duality. This is an example of a fundamental duality in Computer
Science between (operational or denotational) semantics and program logic which can be viewed
as following the algebraic structure of the syntax.

Building on Stone’s celebrated representation theorems for Boolean algebras [56] and distribu-
tive lattices [57], categorical dualities linking algebra and topology [36] have been widely used in
logic and theoretical computer science [15,23,30]. With algebras corresponding to the syntactic,
deductive side of logical systems, and topological spaces to their semantics, Stone-type dualities
provide a powerful mathematical framework for studying various properties of logical systems.
More recently, it has also been fruitfully explored in more algorithmic applications: notably in un-
derstanding minimisation of various types of automata [2,13,16,17,27,41,50]. Among these, [13]
and [16] were published around the same time, and they had some similarities, but also some
key differences. It was not clear whether the differences could be reconciled in a principled way.
The main aim of this paper is to find a unifying perspective on the minimisation constructions
in [13] and [16] which we briefly recall here.

In [13], (generalised) Moore automata (without initial state) are modelled as coalgebras on
base categories of algebras or topological spaces. The main observation used in [13] is that for
many types of such coalgebras, one can define a category of algebras that is dually equivalent to
the category of coalgebras. This dual equivalence generalises the Jónsson-Tarski duality known
from modal logic, which in turn arises from Stone duality. The algebras in [13] are therefore
understood as modal algebras, i.e., they consist of an algebra (that describes a propositional
logic, e.g., Boolean logic) expanded with the modal operators. From this coalgebra-algebra duality
it follows that maximal quotients of coalgebras correspond to minimal subobjects of algebras.
Moreover, it is shown that for a given coalgebra, the minimal subalgebra of its dual modal algebra
consists of the algebra of definable subsets. A maximal quotient can therefore be constructed
by computing definable subsets and dualising. The minimisation-via-duality approach of [13]
was shown to apply to partially observable DFAs (using duality of finite sets and finite Boolean
algebras), linear weighted automata (using the self-duality of vector spaces), and belief automata
viewed as coalgebras on compact Hausdorff spaces (using Gelfand duality). Moreover, for each
of these examples it is shown that the definable subsets are determined by the subsets definable
in the trace logic fragment consisting of formulas of the shape [a0] · · · [an]p.

In [16], Brzozowski’s double-reversal minimisation algorithm [22] for deterministic finite au-
tomata (with both initial and final states) was described categorically and its correctness
explained via the duality between reachability and observability known from control theory
(cf. [6,7,38]). This duality arises from a dual adjunction between algebras and coalgebras, not a
full duality, but this is sufficient to formalise Brzozowski’s algorithm in terms of a dual adjunc-
tion between categories of automata. This categorical formulation was then used to formulate
Brzozowski-style minimisation algorithms for Moore automata (over Set) and weighted automata
over commutative semirings, which include nondeterministic and linear weighted automata as in-
stances. To be more precise, a weighted automaton is first determinised into a generalised Moore
automaton with a semimodule statespace to which the double-reversal algorithm is applied,
yielding in the end a minimal Moore automaton.

The perspective taken in [16] is language-based; no link is made to modal logic. Conversely, the
perspective taken in [13] is logic-based; no link is made to reachability, and language acceptance
is only implicitly present via trace logic. Duality will play a central role in our unification of

Minimisation in Logical Form 3

these approaches. Our work is very much inspired by Samson’s perspective and we hope that he
will regard it as being in the spirit of his own approach to formalising theories.

The contributions of the present paper are as follows.

1. A categorical framework within which minimisation algorithms can be understood and differ-
ent approaches unified (Section 3). We start by illustrating the difference in the approaches
from [13] and [16] on classic deterministic automata (Section 3.1), and then proceed to a
general setup for different automata types based on algebra and coalgebra (Section 3.2). Sec-
tion 3.3 includes the categorical picture that unifies the work in [13] and [16]: in a nutshell,
it is a stack of three interconnected adjunctions. It starts with a base dual adjunction that
is subsequently lifted to a dual adjunction between coalgebras and algebras, and finally to
a dual adjunction between automata. Section 3.4 extends this categorical picture to include
trace logic. Section 3.5 presents an abstract understanding of reachability and observability,
and finally everything is summarised and abstract minimisation algorithms are stated in
Section 3.6.

2. A thorough illustration of the general framework instantiated to concrete examples. In Sec-
tion 4), we revisit a range of examples stemming from previous approaches: deterministic
Kripke frames, weighted automata, and topological automata (belief automata). In Sec-
tion 5, we include an extensive new example on alternating automata, which uses the duality
of complete atomic Boolean algebras and sets. For weighted automata, we use our framework
to extend a well-known result for weighted automata over a field [54] to weighted automata
over a principal ideal domain: the minimal weighted automaton over a principal ideal domain
always exists, and, as expected, it has a state space smaller or equal than that of the original
automaton.

We conclude the paper with a review of related work (Section 6).

Acknowledgments We thank Jan Rutten and Filippo Bonchi for their contributions to the
earlier stages this work, and Jurriaan Rot for fruitful discussions.

2 Preliminaries

In this section, we fix notation and recall basic definitions of coalgebras and algebras. For a more
detailed introduction to coalgebra, we refer to [51]. For general categorical notions, see e.g. [3].

Categories are denoted by C,D, . . ., objects of categories by X,Y, Z, . . ., and arrows or mor-
phisms of categories by f, g, h, We denote by Set the category of sets and functions. Let
X1, X2 be in C. The product of X1 and X2 (if it exists) is denoted by X1 ×X2 with projection
maps πi : X1 × X2 → Xi, i = 1, 2. Similarly, their coproduct (if it exists) is written X1 + X2

with coprojection (inclusion) maps ini : Xi → X1 + X2. In Set, X1 × X2 and X1 + X2 are the
usual constructions of cartesian product and disjoint union. Let X be an object in C and A be
a set. Assuming C has products, then XA :=

∏
AX denotes the A-fold product of X with itself.

Similarly, if C has coproducts, then A ·X :=
∐
AX denotes the A-fold coproduct of X with itself.

The covariant powerset functor P : Set → Set sends a set X to its powerset P(X) and a
function f : X → Y to the direct-image map P(f) : P(X) → P(Y). The contravariant powerset
functor Q : Set → Setop also sends a set X to its powerset, now denoted Q(X) = 2X , and a
function f : X → Y to its inverse-image map Q(f) : Q(Y)→ Q(X).

4 Authors Suppressed Due to Excessive Length

2.1 Coalgebras, Algebras and Monads

Given an endofunctor F : C → C, an F -coalgebra is a pair (X, γ : X → FX), where X is a C-
object and γ : X → FX is a C-arrow. The functor F specifies the type of the coalgebra (which
may be thought of as the type of observations and transitions), and the structure map γ specifies
the dynamics. An F -coalgebra morphism from an F -coalgebra (X, γ) to an F -coalgebra (Y, δ) is
a C-arrow h : X → Y that preserves the coalgebra structure, i.e., δ ◦ h = Fh ◦ γ. F -coalgebras
and F -coalgebra morphisms form a category denoted by CoalgC(F). A final F -coalgebra is a final
object in CoalgC(F), i.e., an F -coalgebra (Z, ζ) is final if for all T -coalgebras (X, γ) there is a
unique F -coalgebra morphism h : (X, c)→ (Z, ζ).

An F -algebra is a pair (X,α), where X is a C-object and α : FX → X is a C-arrow. Now, the
functor F can be seen to specify the type of operations of the algebra. An F -algebra morphism
from an F -algebra (X,α) to an F -algebra (Y, β) is a C-arrow h : X → Y that preserves the algebra
structure, i.e., h ◦α = β ◦Fh. F -algebras and F -algebra morphisms form a category denoted by
AlgC(F). An initial F -algebra is an initial object (A,α) in AlgC(F), i.e., for all F -algebras (X,β)
there is a unique F -algebra morphism h : (A,α)→ (X,β).

A monad (on C) is a triple (T, η, µ) consisting of a functor T : C → C and two natu-
ral transformations η : Id → T (the unit) and µ : TT → T (the multiplication) satisfying
µ ◦ ηT = idT = µ ◦ Tη and µ ◦ Tµ = µ ◦ µT . For brevity, we will sometimes refer to a monad
simply by its functor part, leaving the unit and multiplication implicit. An Eilenberg-Moore T -
algebra is a T -algebra (A,α) such that α ◦ ηA = idA and α ◦ µA = α ◦ Tα. Eilenberg-Moore
T -algebras and T -algebra morphisms form a category denoted by EM(T). In particular, for every
X in C, (TX, µX) is the free Eilenberg-Moore T -algebra on X, i. e., for every (A,α) in EM(T)
and every C-arrow f : X → A there is a unique T -algebra morphism (called the free extension of
f) f] : (TX, µX)→ (A,α) such that f] ◦ ηX = f . Notice also that we have f] = α ◦ Tf .

2.2 Determinisation

Let (T, η, µ) be a monad on Set and F : Set→ Set a functor given by FX = B×XΣ where Σ is
a set and B is the carrier of an Eilenberg-Moore T -algebra (B, β). Then FT -coalgebras can be
seen as automata with input alphabet Σ, output in B and branching structure given by T . For
example, nondeterministic automata are FP-coalgebras where FX = 2×XΣ and β = ∨ : P2→ 2
is the join (or max). Such FT -coalgebras can be “determinised” using a generalisation of the
classic powerset construction [55], and the result can be seen as an F -coalgebra in the category
EM(T). We follow [12, 34] in explaining this general construction. As shown in [34], there is a
so-called distributive law λ : TF ⇒ FT of the monad (T, η, µ) over the functor F given by

λX : T (B ×XΣ)
〈Tπ1,Tπ2〉

// TB × T (XΣ)
β×st

// B × (TX)Σ (1)

where st : T ◦(−)Σ ⇒ (−)Σ◦T is the strength natural transformation that exists for all monads on
Set. Such a distributive law λ corresponds to a lifting of F : Set→ Set to a functor Fλ : EM(T)→
EM(T) [37], and it induces a functor (−)

]
: CoalgSet(FT)→ CoalgEM(T)(Fλ) which sends an FT -

coalgebra γ = 〈o, t〉 : X → B × (TX)Σ to its determinisation γ] = FµX ◦ λTX ◦ Tγ, that is,

γ] = TX
Tγ
// T (B × (TX)Σ)

λTX // B × (TTX)Σ
B×(µX)Σ

// B × (TX)Σ (2)

Minimisation in Logical Form 5

Another perspective is that λ induces an Eilenberg-Moore T -algebra structure α on FTX, and
γ] : (TX, µS) → (FTX,α) is the free extension of γ induced by α. This also justifies our use

of the notation (−)
]
. The determinisation γ] can be seen as a Moore automaton in EM(T). We

will use the determinisation construction in order to place alternating automata and weighted
automata in our general minimisation framework.

3 Minimisation via Dual Adjunctions

In this section, we will present a categorical picture that unifies the approaches of [13] and [16].
In particular, our picture formalises the role of trace logic in the minimisation algorithms. Some
of the technical details of this part are known from [16, 32, 39, 50] – precise connections are
detailed throughout the subsections below and in Section 6.

3.1 An illustrative example

We illustrate the differences between the approaches of [13] and [16] on classic deterministic
finite automata (DFAs). A DFA can be minimised via Brzozowski’s algorithm as well as via the
approach in [13] using the duality between finite sets and finite Boolean algebras, and observing
that a DFA is a PODFA with a single observation (or atomic proposition letter) p which is true
precisely at the accepting states.

We will apply the two minimisation algorithms to the DFA X below left which is also found
in (11) in [16]. The DFA X accepts the language (a+ b)∗a. The result X′ after the first reverse-
determinise step in Brzozowski’s algorithm is shown to the right of X. Disregarding final states,
X′ is also the modal algebra obtained from X. The reachable part of X′ is the automaton Y,
and the algebra A is the subalgebra of definable subsets in the modal language with the single
proposition letter p, and a modality for each letter of the alphabet.

Start: X X′ = det(rev(X)) Y = reach(X′) A

// x

b

��

a
// z //

b
yy

a

}}
y //

b

OO

a

II

xy

==

a
��

b // xyz

a,b

		
<<

xz
boo

a
��

==

// yz

b

!!

a

<<

x
b

bb

a

}}

==

y
b
//

a

OO

∅

a,b

JJ
z

b
oo

a

OO

xyz

a,b

		

//

// yz

b $$

a
99

∅

a,b

JJ

xyz

a,b

		

yz

b $$

a
99

x

b
dd

azz

∅

a,b

JJ

After doing again reverse-determinise-reachability on Y to complete the Brzozowski algorithm,
we get the automaton below on the left. Taking the dual automaton of atoms of A, we get the
coalgebra below on the right.

6 Authors Suppressed Due to Excessive Length

Result of Brzozowski’s algorithm: Result of minimisation-via-duality

// xyz

b

��
a // yz, xyz

b
vv

a

		

��

x

b

��
a // yz

b
yy

a

		

��

Accepts (a+ b)∗a State x accepts (a+ b)∗a

The two deterministic automata (modulo initial state) are clearly isomorphic, but not identical.

3.2 Automata, Algebras and Coalgebras

Throughout this paper, we let Σ be a finite set. We will consider different types of automata,
but they will all have input alphabet Σ.

A deterministic finite automaton (DFA), on alphabet Σ, consists of a set X (the state space),
a transition map t : X → XΣ (or equivalently t : Σ×X → X), an acceptance map f : X → 2, and
an initial state i : 1→ X. We generalise this basic definition to arbitrary categories as follows.

Definition 1 Let C be a category, and let I and B be objects in C. A C-automaton (with ini-
tialisation in I and output in B) is a quadruple X = (X, t, i, f) consisting of a state space object
(or carrier) X in C, a Σ-indexed set of transition morphisms {ta : X → X | a ∈ Σ}, an initialisa-
tion morphism i : I → X, and an output morphism f : X → B. A C-automaton morphism from
X1 = (X1, t1, i1, f1) to X2 = (X2, t2, i2, f2) is a C-morphism h : X1 → X2 such that for all a ∈ Σ,
h ◦ t1,a = t2,a ◦ h, f1 = f2 ◦ h, and h ◦ i1 = i2. Together, C-automata (with initialisation in I and

output in B) and their morphisms form a category which we denote by AutI,BC .

A deterministic automaton is a Set-automaton with output in 2 and initialisation in 1.
A central observation in [16] is that automata can be seen as coalgebras with initialisation,

or dually, as algebras with output, as we briefly recall now. Assuming that C has products and
coproducts, the transition morphisms {ta : X → X | a ∈ Σ} correspond uniquely to morphisms
of the following type:

〈ta〉a∈Σ : X → XΣ

[ta]a∈Σ : Σ ·X → X
(1)

Letting F and G be endofunctors on C given by FX = B ×XΣ and GX = I +Σ ·X, we see
that a C-automaton is an F -coalgebra 〈f, 〈ta〉a∈Σ〉 : X → B ×XΣ together with an intialisation
morphism i : I → X. Or equivalently, a G-algebra [i, [ta]a∈Σ] : GX → X together with an output
morphism f : X → B.

3.3 Dual Adjunctions of Coalgebras, Algebras and Automata

The categorical picture that unifies the work in [13] and [16] is sketched in the diagram (2) below.
This picture starts with a base dual adjunction that is lifted to a dual adjunction between coal-
gebras and algebras. This adjunction captures the construction in [13] for obtaining observable
coalgebras via duality. The coalgebra-algebra adjunction is then lifted to a dual adjunction be-
tween automata which captures the formalisation of the Brzozowski algorithm from [16], which

Minimisation in Logical Form 7

uses automata with initial states. In the remainder of the section, we will explain the details of
how this picture comes about.

(
Aut

I,S(O)
C

)op P
′

++

>

��

Aut
O,P (I)
D

S
′

ll

��

CoalgC(FC)op

P
++

>

��

AlgD(GD)

S

kk

��

Cop
F op

C

**
P

))
> D GD

xx

S

ii

FC = S(O)× (−)Σ , GD = O +Σ · (−)

(2)

3.3.1 Base dual adjunction

Our starting point is a dual adjunction S a P between categories C and D as in the above picture.
We will generally try to avoid the use of superscript op, and treat P and S as contravariant
functors. The units of the dual adjunction will be denoted η : Id ⇒ PS and ε : Id ⇒ SP . The
natural isomorphism of Hom-sets θX,Y : C(X,SY) → D(Y, PX), will sometimes be written in
both directions simply as f 7→ f [. For f : X → SY , its adjoint is f [= Pf ◦ ηY , and for
g : Y → PX, its adjoint is g[= Sg ◦ εX .

In all our examples, C and D are concrete categories, and the dual adjunction arises from
homming into a dualising object ∆ (cf. [49]), i.e., P = C(−, ∆) and S = D(−, ∆), and we will
often denote both of them by ∆(−). This means that adjoints are obtained simply by swapping
arguments. E.g., for f : Y → ∆X we have f [(x)(y) = f(y)(x). Moreover, the units are given by

evaluation. E.g. ηX : X → ∆∆X is defined by ηX(x)(f) = f(x).

Example 1 Consider the self-dual adjunction of Set given by the contravariant powerset functor
Q = Set(−, 2) which maps a set X to its powerset 2X and a function f : X → Y to its inverse
image map f−1 : 2Y → 2X . The functor Q is dually self-adjoint with Qop a Q, and the isomorphism
of Hom-sets is given by taking exponential transposes, i.e., for f : X → 2Y we have f [: Y → 2X .

Dual adjunctions are also called logical connections as they form the basis of semantics for
coalgebraic modal logics [18, 35, 40]. In this logic perspective, C is a category of state spaces, D
is a category of algebras (e.g. Boolean algebras) encoding a propositional logic, and the functor
GD encodes a modal logic. Intuitively, the adjoint P maps a state space C to the predicates over
C, and S maps an algebra A to the theories of A. The logic given by GD can be interpreted
over FC-coalgebras by providing a so-called one-step modal semantics in the form of a natural
transformation % : GDP ⇒ PFC, or equivalently via its mate ξ : FCS ⇒ SGD. The pair (GD, %)
is referred to as a logic. By assuming that the initial GD-algebra (A0, α0) exists, and viewing its
elements as formulas, the semantics of formulas in an FC-coalgebra (C, γ) is obtained from the
initial map sGD : (A0, α0)→ P (γ) ◦ %C . As an underlying D-map, it has type sGD : A0 → P (C),
hence it maps formulas to predicates. Alternatively, the semantics can be specified by the theory
map thGD : C → S(A0) which is defined as the adjoint of sGD . We refer to [18,35,40] for a more
detailed introduction to coalgebraic modal logic via dual ajdunctions.

8 Authors Suppressed Due to Excessive Length

3.3.2 Dual adjunction between coalgebras and algebras

The base dual adjunction in (2) lifts to one between coalgebras and algebras due to the shape of
the functors FC and GD. This follows from some basic results in [32,39] as we explain now.

So assume that C has products, D has coproducts, and that we have a base dual adjunction
S a P and functors FC and GD as in (2), in particular,

FC(C) = S(O)× CΣ and GD(D) = O +Σ ·D

We know from [32, Cor. 2.15] (see also [39, Thm. 2.5]), that the dual adjunction S a P lifts to
a dual adjunction S a P between CoalgC(FC) = AlgCop(F

op
C) and AlgD(GD) if there is a natural

isomorphism ξ : FCS
∼⇒ SGD. For our choice of FD and GC, we have such a natural isomorphism,

since for all D ∈ D,

FCS(D) = S(O)× S(D)Σ ∼= S(O +Σ ·D) = SGD(D) (3)

since S (as a dual adjoint functor) turns colimits into limits. Let % : GDP ⇒ PFC be the mate
of ξ, i.e., the adjoint of ξP ◦ FCε:

% = PFCε ◦ PξP ◦ ηGDP (4)

The lifted adjoint functors are defined for all FC-coalgebras γ : C → FC(C), all FC-coalgebra
morphisms f , all GD-algebras α : GD(D)→ D, and all GD-algebra morphisms g by:

P (γ) = Pγ ◦ %C : GDPC → PC, P (f) = P (f)
S(α) = ξD ◦ Sα : SD → FCSD, S(g) = S(g)

(5)

Remark 1 If F ′C : C → C is F ′C(C) = B × CΣ with B ∼= S(O), then F ′C
∼⇒ FC, and hence

CoalgC(F ′C) ∼= CoalgC(FC), so we can think of F ′C-coalgebras as FC-coalgebras.

The isomorphism θ of Hom-sets for S a P is simply the restriction of the isomorphism θ of
Hom-sets for S a P to the relevant morphisms.

The natural transformation % : GDP ⇒ PFC provides the one-step semantics for a modal logic
for FC-coalgebras as described at the end of Section 3.3.1. This makes most sense when the dual
adjunction arises from a dualising object ∆ in which case ∆ is a domain of truth-values, i.e., the
logic is ∆-valued, and when D is a category of algebras with operations given by a signature Sgn.
Letting ΦD(X) denote the free algebra in D over a setX, an algebra functorGD = ΦD(Ω)+Σ·(−)
then corresponds to a modal language L(GD) that has atomic propositions from a finite set Ω,
labelled modalities [a], a ∈ Σ, and the propositional connectives are the operations from Sgn.
That is, formulas in L(GD) are generated by the following grammar:

ϕ ::= q ∈ Ω | [a]ϕ, a ∈ Σ | σ(ϕ1, . . . , ϕn), σ ∈ Sgn (6)

where n is the arity of the operation σ.
For our specific choice of functors FC and GD, and when the adjunction arises from a dualising

object ∆ (i.e., S(ΦD(Ω)) = ∆ΦD(Ω)), we can compute the concrete definition of % from (4), and
we get the following ∆-valued modal semantics of the language L(GD):

JqK(x) = j(q), where γ(x) = 〈j : ∆ΦD(Ω),d : XΣ〉
J[a]ϕK(x) = JϕK(d(a)), where γ(x) = 〈j : ∆ΦD(Ω), d : XΣ〉

Jσ(ψ1, . . . , ψn)K(x) = σ(Jψ1K(x), . . . , JψnK(x))
(7)

Minimisation in Logical Form 9

This shows that % gives the expected modal semantics for FC-coalgebras viewed as deter-
ministic Σ-labelled Kripke frames with observations from Ω. In particular, the modalities are
“deterministic” Kripke box/diamond-modalities.

Example 2 We consider the case of DFAs. Here C = D = Set, FSet = 2 × (−)Σ and GSet =
1 + Σ · (−), and the self-dual adjunction of Set is given by the contravariant powerset functor
Q = Set(−, 2) (Example 1). The formulas of L(GSet) are built from a single atomic proposition
q, and a modality [a] for each a ∈ Σ, since D = Set means that there are no propositional
connectives. The initial GSet-algebra is Σ∗, the set of finite words over Σ, which is easily seen to
be in bijection with the set of formulas. The logic we obtain is trace logic [40], but here interpreted
over DFAs rather than labelled transition systems as in [40]. The natural transformation % has

type %X : 1+Σ ·2X → 22×X
Σ

, given concretely below together with the induced semantics, where
we write x
 ϕ iff JϕK(x) = 1:

%X(q) = {(b, d) ∈ 2×XΣ | b = 1}
%X(a, U) = {(b, d) ∈ 2×XΣ | d(a) ∈ U}

x
 q ⇐⇒ x is accepting

x
 [a]ϕ ⇐⇒ x
a−→ y and y
 ϕ

3.3.3 Dual adjunction between automata

In order to obtain the upper adjunction in (2) (which formalises the Brzozowski algorithm), we
will use algebra and coalgebra structure on both sides, hence we assume that C and D both have
products and coproducts. The lifting is a small extension of S a P obtained by defining how an
initialisation map I → C for an FC-coalgebra γ is turned into an observation map PC → PI for
the GD-algebra P (γ), and vice versa for S.

Theorem 1 Assume that C and D both have products and coproducts, and that we have the
dual adjunctions and functors FC and GD as specified in the two lower parts of (2). The dual

adjunction S a P between CoalgC(FC) and AlgD(GD) lifts to a dual adjunction S
′ a P ′ between

AutI,SOC and AutO,PID by defining P
′

and R
′

as follows for all γ : C → FCC and α : GDD → D:

P
′
(γ, i : I → C) = (P (γ) : GDPC → PC,P (i) : PC → PI), P

′
(f) = P (f)

S
′
(α, j : D → PI) = (R(α) : SD → FCSD, j

[: I → SD), S
′
(g) = S(g)

Proof This is a minor generalisation of Prop. 9.1 in [16]. It suffices to show that for all C-arrows
i : I → C, and all D-arrows g : D → PI and h : D → PX: g = Pi ◦ h iff g[= h[◦ i. First, if
g = Pi◦h, then g[= Sg◦εI = Sh◦SPi◦εI = Sh◦εX ◦i = h[◦i, where the third equality follows
from naturality of ε. Conversely, if g[= h[◦ i, then g = Pg[◦ ηD = Pi ◦ Ph[◦ ηD = Pi ◦ h. �

The final FC-coalgebra exists and has carrier S(O)Σ
∗
. The final morphism ! : C → S(O)Σ

∗

assigns to each state in C an S(O)-weighted language. For X = 〈γ, i〉 ∈ Aut
I,S(O)
C , we define its

language semantics as the composition I
i→ C

!γ→ S(O)Σ
∗
. This C-morphism can be seen as a

Σ∗-indexed family of C-morphisms 〈|X|〉w : I → SO defined for all w = a1 · · · ak ∈ Σ∗ by

〈|X|〉w = I
i−→ X

ta1−→ · · ·
tak−→ X

f−→ S(O)

Computing the adjoint transpose 〈|X|〉[w = P 〈|X|〉 ◦ ηO, we get the D-morphism:

〈|X|〉[w = P (I)
P (i)←− P (X)

P (ta1)←− · · ·
P (tak)←− P (X)

f[←− O

10 Authors Suppressed Due to Excessive Length

Hence 〈|X|〉[w = 〈|P ′(X)|〉wR where wR = ak · · · a1 is the reversal of w. Similarly, we find that for

all Y ∈ Aut
O,P (I)
D , 〈|Y|〉[w = 〈|S′(Y)|〉wR . In the case of DFAs from Example 2 where I = O = 1 and

S(O) = P (I) ∼= 2, the above says that the adjoint functors reverse the language accepted by the
automaton.

3.4 Language Semantics and Trace Logic

In this section, we give a general condition on the output sets that ensures that we can link trace
logic with the full modal logic via an adjunction. This places trace logic in the general picture.
In [13], it was shown in each of the concrete examples that trace logic is equally expressive as
the full modal logic. The results of this section give a general explanation of this fact.

Assume that the category D is monadic over Set with adjunction ΦD : D Set : UD This
adjoint situation allows us to relate the Set-based language semantics to the final FC-coalgebra
semantics as we will show now.

Consider the functor G : Set → Set defined as G(X) = Ω + Σ · X = Ω + Σ × X where Ω
is a finite set of observations. Then the set Σ∗Ω is an initial G-algebra with algebra structure
Ω+Σ×(Σ∗Ω)→ Σ∗Ω given by prefixing o ∈ Ω with the empty word o 7→ εo and concatenation
(a,w) 7→ aw. Then we can compose the adjunction ΦD a UD with the dual adjunction S a P to
obtain a dual adjunction between C and Set as follows:

Cop
F op

C

**
P

&&
> D

GD

ZZ

S

gg

UD

''
> Set G

tt

ΦD

ff (8)

Lemma 1 Assume we have the situation in (8), and that FC, GD, G are defined by:

FC(C) = SΦD(Ω)× CΣ , GD(D) = ΦD(Ω) +Σ ·D, G(X) = Ω +Σ ·X.

Then (8) lifts to

CoalgC(FC)op

P
++

> AlgD(GD)

S

kk

UD

++

> AlgSet(G)

ΦD

kk
(9)

Proof The dual adjunction on the left lifts because of a special case of (3). For similar reasons,
the adjunction on the right lifts, because there is a natural isomorphism κ : ΦDG

∼⇒ GDΦD that
can be obtained as follows

κ : ΦDGX = ΦD(Ω +Σ ·X) ∼= ΦD(Ω) +Σ · ΦD(X) = GDΦD(X), (10)

since ΦD (being a left adjoint) preserves colimits. By [32, Thm. 2.14], ΦD a UD lifts to an
adjunction ΦD a UD between AlgD(GD) and AlgSet(G) where the functor ΦD maps a G-algebra
(X,α) to the GD-algebra (ΦD(X), ΦDα ◦ κ−1).

By composition of adjunctions, also SΦD a UDP lifts. This could also be verified by noticing
that for all sets X, there is natural isomorphism

Minimisation in Logical Form 11

ξtrc := Sκ ◦ ξΦD : FCSΦD
∼⇒ SΦDG (11)

where ξ : FCS
∼⇒ SGD from (3) is the mate of the modal logic (GD, %). Hence by [32,

Thm. 2.14,Cor. 2.15] (see also [39, Thm. 2.5]), the adjunction SΦD a UDP lifts to one between
CoalgC(FC)op and AlgSet(G). �

Letting %trc : GUDP ⇒ UDPFC be the mate of ξtrc from (11), then (G, %trc) is a modal logic
for FC-coalgebras. Since its formulas are the elements of the intial G-algebra of traces, we refer
to (G, %trc) as a trace logic.

Lemma 2 The theory maps thG and thGD of the logics (G, %trc) and (GD, %) coincide.

Proof Due to the adjunctions in (8), the intial G-algebra Σ∗Ω of traces is mapped by ΦD to
an initial GD-algebra, which in turn is mapped by S to a final FD-coalgebra. The coincidence of
the theory maps follows from them being adjoints of the initial maps. �

Since the mates ξ and ξtrc are both natural isomorphisms, it follows from [35,40] (and C having
a suitable factorisation system, cf. Theorem 2) that the full modal logic (GD, %) and trace logic
(G, %trc) are both expressive for FC-coalgebras. In other words, the propositional connectives from
D-structure in the logic language L(GD) do not add any expressive power to L(G) = Σ∗Ω. In
summary, we arrive at the following proposition.

Proposition 1 With the above assumptions, the trace logic (G, %trc) and the full logic (GD, %)
are equally expressive over FC-coalgebras, meaning that for all FC-coalgebras γ : C → FC(C), and
all states c1, c2 in C (recall that C is a concrete category), c1 and c2 are logically equivalent for
(G, %trc) iff they are logically equivalent for (GD, %).

By the uniqueness of final coalgebras up to isomorphism, it follows that there is an isomorphism
σ : SΦD(Ω)Σ

∗ ∼→ S ΦD(Σ∗Ω) which links the language semantics in the automata/coalgebraic
sense with trace logic semantics given by initiality.

Proposition 2 For all FC-coalgebras γ, its language semantics defined as the unique morphism
into the final FC-coalgebra SΦD(Ω)Σ

∗
corresponds to the trace theory map thG into the final

FC-coalgebra S ΦD(Σ∗Ω), (and with the theory map thGD) via the isomorphism σ.

We remark that it is straightforward to extend ΦD a UD to an adjunction of automata by
taking adjoints of additional output maps to the algebras. We omit the details.

Finally, we show that trace logic expressiveness can be extended to coalgebras for what we can
think of as subfunctors of FC. This will be needed for the topological automata in section 4.3.

Remark 2 Let F ′C be a functor on C which preserves monos and such that there is a natural
transformation τ : F ′C ⇒ FC which is abstract mono, i.e., all components are mono. Assume that
C has factorisation system (E,M) with E ⊆ Epi and M ⊆ Mono. Defining ξ′ = ξtrc ◦ τS , then
ξ′ : F ′CSΦD ⇒ SΦDG defines semantics of trace formulas over F ′C-coalgebras which is essentially
the same as the semantics over FC-coalgebras. Since τ is abstract mono and ξtrc is a natural iso,
it follows that ξ′ is abstract mono, and hence the associated logic is expressive [35,40].

3.5 Reachability and Observability

Recall that a classic DFA is reachable if all states are reachable by reading some word from the
initial state; it is observable if no two states accept the same language; and it is minimal if it is
both reachable and observable.

12 Authors Suppressed Due to Excessive Length

A main point emphasised in [16] is that reachability is an algebraic concept, and observability
is a coalgebraic concept. We will call an algebra reachable if it has no proper subalgebras, and
a coalgebra is observable if it has no proper quotients. Both concepts apply to C-automata as
they are both coalgebras and algebras (cf. Section 3.2), and a C-automaton is then minimal if its
algebraic part is reachable, and its coalgebraic part is observable.

Both [13] and [16] show that a reachable algebra dualises to an observable coalgebra, but
the conditions and arguments differ. Note that in [13], observable coalgebras are referred to
as minimal automata. In [16], automata were generally considered as automata over Set, and
the reachable part of an automaton was defined as the image of the initial G-algebra inside
the automaton (using its G-algebra structure, after possibly forgetting D-structure). In [13], an
initial GD-algebra generally did not exist. Instead, a reachable algebra was obtained by taking
a least subalgebra, the existence of which was ensured by assuming that D is wellpowered and
having an epi-mono factorisation system. It is straighforward to show that when conditions for
both are satisfied, the two reachability notions coincide, i.e., if an initial GD-algebra exists, and
D is wellpowered with epi-mono factorisation system, then the least subalgebra is obtained by
factorisation of the initial morphism.

The assumptions in Lemma 1 are most closely related to the setup of [16], as we have an
initial GD-algebra. The connection to the logical perspective of [13] comes from viewing the
initial GD-algebra as a generalisation of the Lindenbaum algebra. For an FC-coalgebra (C, γ),
the factorisation of the initial morphism to P (γ) then yields the subalgebra of L(GD)-definable
subsets of C (or more abstractly, L(GD)-definable ∆-valued predicates on C). By Lemma 1,
ΦD(Σ∗Ω) is also initial, and hence the reachable part of P (γ) is equivalently characterised as
the factorisation of the unique morphism from ΦD(Σ∗Ω), and this factorisation is easily seen to
be the subalgebra generated by the trace logic definable subsets.

Finally, by Lemma 1, a quotient of an initial GD-algebra is mapped by S to a subobject of a
final FC-coalgebra since the dual adjoint functors turn colimits into limits. A subcoalgebra of a
final coalgebra is necessarily observable. The following proposition summarises our discussion.

Proposition 3 Under the assumptions of Lemma 1, and assuming further that D has a factori-
sation system (E,M) such that E ⊆ Epi and M ⊆ Mono, we then have:

For all (D, δ) ∈ AlgD(GD), let reach(D, δ) be the reachable part of (D, δ) obtained by (E,M)-
factorisation of the initial morphism:

ΦD(Σ∗Ω,α)
e
� reach(D, δ)

m
↪→ (D, δ).

The epimorphism e : ΦD(Σ∗Ω,α)� reach(D, δ) is mapped by S to a monomorphism

S(e) : S(reach(D, δ)) ↪→ SΦD(Σ∗Ω,α).

As a subcoalgebra of a final coalgebra, S(reach(D, δ)) is an observable FC-coalgebra.

Note that S maps epis to monos, but monos are not necessarily mapped to epis, unless we have
a full duality. In particular, with only a dual adjunction we cannot argue that a least subalgebra
of P (γ) is mapped by S to a largest quotient of γ, as in [13].

Extending the notion of reachable part to D-automata is done simply by taking the reachable
part of their GD-algebraic part and restricting the output map. Proposition 3 thus also tells us
how to obtain an observable C-automaton by taking the reachable part of the dual D-automaton.

Brzozowski’s algorithm produces a minimal C-automaton by also taking the reachable part
of the resulting observable C-automaton, that is, with respect to the algebraic structure of C-
automata given by GC = I + Σ · (−). In order to do so, we need to assume that also C has a
suitable factorisation system.

Minimisation in Logical Form 13

3.6 Abstract minimisation algorithms

We now put everything together into one diagram with which we can describe both approaches
from [13] and [16] including the role of trace logic.

(
Aut

I,SΦD(Ω)
C

)op P
′

,,

>

��

Aut
ΦD(Ω),P (I)
D

S
′

mm

UD
′

,,

>

��

Aut
Ω,UDP (I)
Set

ΦD
′

kk

��

CoalgC(FC)op

P
++

>

��

AlgD(GD)

S

kk

UD

++

>

��

AlgSet(G)

ΦD

kk

��

Cop
F op

C

**
P

))
> D

GD

ZZ

S

jj

UD

))
> Set G

tt

ΦD

ii

FC(C) = SΦD(Ω)× CΣ , GD(D) = ΦD(Ω) +Σ ·D, G(X) = Ω +Σ ·X.

(12)

Theorem 2 Let C,D be concrete categories, both having products and coproducts, and both hav-
ing factorisation systems (E,M) such that E ⊆ Epi and M ⊆ Mono. Let Ω be a finite set (of
observations), and I an (initialisation) object in C, and assume that we have the adjoint situ-
ation between C, D, Set and functors as described at the bottom level of (12). Then the lower
adjunctions lift to the upper two levels in (12) as shown in sections 3.3.2, 3.3.3 and 3.4, and we
have the following abstract algorithms:

Algo1 Given an FC-coalgebra γ, compute S(reach(P (γ))) which will be an observable FC-
coalgebra.

Algo2 Given a C-automaton (γ, i), compute reach(S
′
(reach(P

′
(γ, i)))), which will be a reach-

able and observable (i.e., minimal) C-automaton.

Of course, the abstract algorithms only become actual algorithms, when all structures involved
have finite representations.

Concerning Algo1, we note that, in general, S(reach(P (γ))) can be much larger than γ as
the application of both S and P might yield some kind of completion of γ. However, if P ` S
is a dual equivalence, then S(reach(P (γ))) is a maximal quotient of γ. All instances of Algo1
contained in [13] and in this paper are of this form. In the general case, following [50], one can
obtain the maximal quotient of γ by factoring a morphism from γ to the result S(reach(P (γ)))
of Algo1.

Also, when P ` S is a dual equivalence (as in [13]) the initial state is easily found back in
the observable coalgebra resulting from Algo1 as its language equivalence class, so the extension
to Algo2 seems almost trivial. In case P ` S is not a full duality, the transformation of the
initial state goes via the dual adjunction, and factorisation on the dual side. This is formalised
in Theorem 1, and illustrated by the example in Section 3.1.

Brzozowski’s algorithm and its generalisation to weighted automata in Section 4.2 are instances
of Algo2 as they use initial states. The classic Brzozowski algorithm is the case C = D = Set,
GD = G, and Ω = I = 1. The set-based algorithm for weighted automata in [16] is neither

14 Authors Suppressed Due to Excessive Length

of the above algorithms, but it can be described as constructing reach(UD
′
P
′
(γ, i)), that is,

reachability is computed over Set, and then dualise back (without going through D = SMod)
to get a Set-based Moore automaton. As shown in [16], this may result in the reachable part
of the reversed automaton being infinite (cf. Example 8.3 of [16]), whereas it might be finitely
generated as a coalgebra/automaton over D.

Remark 3 We end this section by observing that the requirements regarding products, coproducts
and factorisation systems hold in all our examples, since C and D are monadic over Set meaning
that they are equivalent to an Eilenberg-Moore category EM(T) for a Set-monad T . For such
a category EM(T), we know that it is complete, cocomplete and exact [20, Thm 4.3.5]. W.r.t
factorisation systems, (Epi ,Mono) is generally not a factorisation system for EM(T), rather
(RegEpi ,Mono) is. Using the fact that regular epis are the surjective morphisms, and monos are
the injective morphisms, one can prove that in CoalgC(FC) and AlgD(GD) the surjective and
injective morphisms form a factorisation system.

4 Revisiting Examples

4.1 Deterministic Kripke Models

A central example from [13] are deterministic Kripke models (in loc.cit referred to as PODFAs,
i.e., partially observable DFAs). We will first recall the definitions of deterministic Kripke models
and their dual Boolean algebras with operators corresponding to a modal logic of tests. After
that we will see how this duality can be seen as a special case of our general duality picture, which
has as immediate corollary a minimisation algorithm for the case of finite models. In addition,
results from Section 3.4 entail that the modal test language without propositional operators is
sufficiently expressive to specify deterministic Kripke models up to bisimulation and to compute
their observable quotient.

For the remainder of the section we fix an arbitrary finite set Σ of actions and an arbitrary
finite set Ω of observations.

Definition 2 A deterministic Kripke model is a quintuple S = (S,Σ,Ω, t : S → SΣ , f : S → 2Ω)
where S is a set of states, t is a transition function and f is an observation function. A function
h : S1 → S2 is a morphism between Kripke models (S1, Σ,Ω, t1, f1) and (S2, Σ,Ω, t2, f2) if for
all s ∈ S1 and all a ∈ Σ we have h(t1(s)(a)) = t2(h(s))(a) and f1(s) = f2(s). We write DKM for
the category of deterministic Kripke models.

In other words, deterministic Kripke models are Kripke models where for each action a ∈ Σ the
corresponding relation is the graph of a (total) function. It is well-known that there is a duality
between DKM and a suitable category BAO of Boolean algebras. We will now recall the definition
of BAO and some known facts concerning this duality.

Definition 3 The category BAO of (deterministic) Boolean algebras with operators (BAOs) has
as objects Boolean algebras B with the usual operations ∧ and ¬ with a greatest element > and
least element ⊥ together with unary operators (a) : B → B, for each action a ∈ Σ, such that (a)
is a Boolean homomorphism. For each observation o ∈ Ω, we also have constants o. We denote
an object of BAO by

B = (B, {(a)|a ∈ Σ}, {o|o ∈ Ω},>,∧,¬).

Minimisation in Logical Form 15

The BAO morphisms are the usual Boolean homomorphisms preserving, in addition, the constants
and commuting with the unary operators. Finally, we denote by FBAO the category of finite
Boolean algebras with operators.

The following fact is well-known (cf. e.g. [15, 31]).

Fact There is a dual adjunction between Set and BA as depicted below given by the contravariant
functor P that maps a set to its Boolean algebra of subsets and the functor Uf := Hom(−,2),
i.e., the contravariant functor the maps a Boolean algebra to its collection of ultrafilters. This
adjunction restricts to a dual equivalence between the category FSet of finite sets and the category
FBA of finite Boolean algebras.

Setop

F op

��
P

((
> BA

GBA

��

Uf

hh

F (X) = 2Ω ×XΣ

GBA(X) = ΦBA(Ω) +Σ ·X
Uf (ΦBA(Ω)) ∼= 2Ω

We are now going to show how this example fits into our general framework. As a corollary we
obtain a minimisation procedure for finite deterministic Kripke models.

Proposition 4 We have the following equivalences:

1. DKM ∼= CoalgSet(F) for F = 2Ω ×XΣ

2. BAO ∼= AlgBA(GBA) for GBA = ΦBA(Ω) +Σ ·X

Both equivalences are an immediate consequence of the definitions. In the sequel, we will make no
distinction between F -coalgebras and deterministic Kripke models and, likewise, between GBA-
algebras and BAOs. As a consequence of the proposition we obtain the following duality results
by applying our general framework.

Proposition 5 The dual adjunction Uf a P lifts to a dual adjunction between DKM and BAO

and to an adjunction between Aut1,2
Ω

Set and Aut
2,ΦBA(Ω)
BA . If we start with the dual equivalence

FSet ∼= FBA, both liftings are dual equivalences as well.

Proof For the dual adjunction between DKM and BAO recall from Proposition 4 that both
categories are equivalent to categories of F -coalgebras and GBA-algebras for certain functors F
and GBA, respectively. Furthermore, we have Uf (ΦBA(Ω)) ∼= 2Ω , which follows from the well-
known fact that the set of homomorphisms of type ΦBA(Ω) → 2 (i.e., ultrafilters) is in one-one
correspondence with the set of functions of type Ω → 2. Therefore the functors F and GBA

have the shape required by our general lifting result from Section 3.3.2 and we obtain functors
P : Coalg(F)op → Alg(GBA) and Uf : Alg(GBA)→ Coalg(F)op with Uf a P.

To extend the adjunction Uf a P between Coalg(F) and Alg(GBA) further to a dual adjunction

Uf
′ a P′ between Aut1,2

Ω

Set and Aut
ΦBA(Ω),2
BA — the latter is a slight extension of the former by

adding a initial state to deterministic Kripke models and adding an acceptance predicate to
BAOs — it suffices to note that P1 ∼= 2 such that the result follows from the general theorem in
Section 3.3.3.

The fact that the obtained adjunctions restrict to equivalences when we replace the base
categories Set and BA with FSet and FBA, respectively, is a matter of routine checking. �

This shows, in particular, that we get a duality between finite deterministic Kripke models
and FBAO’s. Proposition 5 is the key for obtaining a minimal realization via logical theories.
Towards obtaining observable coalgebras via logical theories, we define a modal logic for DKMs.

16 Authors Suppressed Due to Excessive Length

Definition 4 Consider (cf. (6)) the language L(GBA):

ϕ ::= > | ô, o ∈ Ω | [a]ϕ, a ∈ Σ | ϕ1 ∧ ϕ2 | ¬ϕ.

with 2-valued semantics defined as in (7) which corresponds to the usual semantics by identifying
the predicate JϕK : S → 2 with the set {s ∈ S | JϕK(s) = 1}. For a given deterministic Kripke
model S = (S, t, f) we say that a subset U of S is definable by L(GBA) if U = JϕK for some
ϕ ∈ L(GBA). We let Def(S) = (Def(S), {(a)S}a∈Σ , {JôK}o∈Ω) be the BAO-subalgebra of P (S)
based on the definable subsets of S, where (a)S(JϕK) = J[a]ϕK.

In other words, the modal logic has (deterministic) Σ-indexed modalities and atomic propositions
from Ω. It might seem strange that we introduced negation and indeed one does not need it,
because one can get exactly the same Boolean algebra without having negation explicitly in
the logic. This reflects the fact that for deterministic systems, unlike for non-deterministic ones,
bisimulation and language equivalence coincide.

For a given DKM S, the algebra Def(S) of definable subsets is a least BAO-subalgebra (=zero
generated subalgebra) of the dual BAO P (S). By our definition in Section 3.5, Def(S) is clearly
reachable, since it has no proper BAO-subalgebras. We instantiate the discussion in Section 3.5
further for DKMs. As is well-known, the Lindenbaum algebra for L(GBA) is an initial BAO, and
the subalgebra Def(S) is also the image of the Lindenbaum algebra in P (S) under the initial
BAO-morphism. This image is obtained from the factorisation of the initial morphism in the
factorisation system consisting of surjective and injective BAO-homomorphisms (cf. Remark 3).

Central to [13] was the result that the fragment of trace logic formulas is as expressive as the
full modal logic.

Definition 5 A trace logic formula is a formula ϕ of the form [a1] . . . [an]ô for some ô ∈ Ω, n ∈ N
and ai ∈ Σ for i ∈ {1, . . . , n}. For a DKM S, we denote by Def∗(S) the Boolean subalgebra of
P(S) generated by subsets that are definable by a trace formula.

The expressiveness of trace logic was proven in the general setting in Proposition 1, and it is
equivalent to the following statement:

Def(S) = Def∗(S) for all DKMs S. (1)

Note that equation (1) can be seen as a normal form theorem for modal logics over DKMs. This
result can also be obtained by observing that Def∗(S) is the image of ΦBA(Σ∗Ω), which is an
initial BAO by Lemma 1. So both Def(S) and Def∗(S) are images of an initial object inside P (S),
hence they must be equal, since initial objects are unique up to isomorphism.

We finish with a key observation from [13] that allows to compute quotients of finite DKMs
via duality.

Corollary 1 Given a finite DKM S, the quotient of S modulo bisimulation can be effectively
computed as Uf (Def∗(S)).

Proof By Algo1 in Theorem 2 we have that Uf (reach(P(S)) and thus Uf (Def∗(S)) are observ-
able. As Def∗(S) is a BAO-subalgebra of P(S) and as FSet and FBA are dually equivalent, we
get that Uf (Def∗(S)) is a quotient of Uf(P(S)) ∼= S. Therefore, as Uf (Def∗(S)) is an observable
quotient of S, it is the quotient modulo bisimulation of S. �

Remark 4 We note that the full duality between finite DKMs and finite BAOs, which was the
basis of the minimisation-via-duality in [13], is not an instance of Theorem 2, since the category
of finite Boolean algebras is not monadic over Set. Algo1, of course, applies to finite DKMs as

Minimisation in Logical Form 17

they are just DKMs, and it will produce the same result as minimisation-via-duality from [13],
since the full duality between finite sets and finite Boolean algebras is a restriction of the dual
adjunction between Set and BA.

4.2 Weighted Automata

We need some basic definitions on semirings and semimodules to present the example of weighted
automata. Recall that a semiring is a tuple (S,+, ·, 0, 1) where (S,+, 0) and (S, ·, 1) are monoids,
the former of which is commutative, and multiplication distributes over finite sums:

r · 0 = 0 = 0 · r r · (s+ t) = r · s+ r · t (r + s) · t = r · t+ s · t

We just write S to denote a semiring. Examples of semirings are: every field, the Boolean semiring
2, the semiring (N,+, ·, 0, 1) of natural numbers, and the tropical semiring (N∪{∞},min,+,∞, 0).
All these semirings are examples of commutative semirings, as the · operation is also commutative.

For a semiring S, an S-semimodule is a commutative monoid (M,+, 0) with a left-action
S×M →M denoted by juxtaposition rm for r ∈ S and m ∈M , such that for every r, s ∈ S and
every m,n ∈M the following laws hold:

(r + s)m = rm+ sm r(m+ n) = rm+ rn
0m = 0 r0 = 0
1m = m r(sm) = (r · s)m

Every semiring S is an S-semimodule, where the action is taken to be just the semiring multipli-
cation. Semilattices are another example of semimodules (for the Boolean semiring S).

An S-semimodule homomorphism is a monoid homomorphism h : M1 → M2 such that
h(rm) = rh(m) for each r ∈ S and m ∈ M1. S-semimodule homomorphisms are also called
S-linear maps or simply linear maps. The set of all linear maps from an S-semimodule M1 to M2

is denoted by SMod(M1,M2).
Free S-semimodules over a set X exist and can be built using the functor VS : Set → Set

defined on sets X and maps h : X → Y as follows:

VS(X) = {ϕ : X → S | ϕ has finite support },

VS(h)(ϕ) =
(
y 7→

∑
x∈h−1(y) ϕ(x)

)
,

where a function ϕ : X → S is said to have finite support if ϕ(x) 6= 0 holds only for finitely
many elements x ∈ X. VS(X) is the free S-semimodule on X when equipped with the following
pointwise S-semimodule structure:

(ϕ1 + ϕ1)(x) = ϕ1(x) + ϕ2(x) (sϕ1)(x) = s · ϕ1(x) .

We sometimes write the elements of VS(X) as formal sums s1x1 + . . . + snxn with si ∈ S and
xi ∈ X. VS(X) is a monad and the category of Eilenberg-Moore algebras is SMod, the category
of S-semimodules and S-linear maps. As usual, free S-semimodules enjoy the following universal
property: for every function h : X →M from a set X to a semimodule M , there exists a unique
linear map h] : VS(X)→M that is called the linear extension of h.

We can define for an S-semimodule M its dual space M? to be the set SMod(M,S) of all linear
maps between M and S, endowed with the S-semimodule structure obtained by taking pointwise

18 Authors Suppressed Due to Excessive Length

addition and monoidal action: (g + h)(m) = g(m) + h(m), and (sh)(m) = s · h(m). Note that
S ∼= VS(1) and that S? = SMod(S,S) ∼= S.

4.2.1 Weighted automata and weighted languages

A weighted automaton with finite input alphabet Σ and weights over a semiring S is given by
a set of states X, a function t : X → VS(X)Σ (encoding the transition relation in the following
way: the state x ∈ X can make a transition to y ∈ X with input a ∈ Σ and weight s ∈ S if
and only if t(x)(a)(y) = s), a final state function f : X → S associating an output weight with
every state, and an initial state function i : 1→ VS(X). A diagrammatic representation is given
in Figure 4.2.1(a).

1

i

S

X

f

>>

t

��

VS(X)Σ

1

i

��

S // S

X

f

==

t

��

η
// V (X)

t]}}

f]

OO

// SΣ∗

o

??

d

��

V (X)Σ // (SΣ∗)Σ

(a) (b)

Fig. 1 (a) Weighted automata as Set-automata, and (b) their determinisation as SMod-automata.

We see that a weighted automaton is an FVS-coalgebra 〈f, t〉 : X → S × (VSX)Σ , where
F : Set→ Set is given by F (X) = S×XΣ , together with an initialisation map i : 1→ X.

The function t : X → VS(X)Σ can be inductively extended to words w ∈ Σ∗:

t(x)(ε) = 1.x

t(x)(aw) = v1t(x1)(w) + · · ·+ vnt(xn)(w), where t(x)(a) = v1x1 + · · ·+ vnxn

Weighted automata recognise functions in SΣ∗ , or formal power series over S. More precisely,
the formal power series recognised by a weighted automaton X = (X, t, i, f) is the function
L(X) : Σ∗ → S that maps w ∈ Σ∗ to f(t(i)(w)) ∈ S. More concretely, the value L(X)(w), for

w = a1a2 · · · an, is the sum of all v1 · . . . ·vn ·f(xn+1) over all paths pw = x1
a1,v1−−−→ . . .

an,vn−−−−→ xn+1

labelled by w.
Observe that S is (isomorphic to) the carrier of the free Eilenberg-Moore VS-algebra on one

generator VS(1). Hence, as described in Section 2.2, we can determinise a weighted automaton
X into a Moore automaton X] in SMod. More precisely, letting X = (X, t, i, f) be a weighted
automaton, we determinise its coalgebraic part 〈f, t〉 : X → S × VS(X)Σ into 〈f], t]〉 : VS(X) →
S× VS(X)Σ and take as initialisation morphism VS(i) : VS(1)→ VS(X). The result is an SMod-
automaton X] = (VS(X), t],VS(i), f]) with initialisation in S ∼= VS(1) and output in S. We view
such automata as Moore automata over SMod. The construction is illustrated in Fibure 4.2.1(b).

The unique map from the determinised Moore automaton into the final Moore automaton
of weighted languages gives the language semantics of weighted automata described concretely
above. In SMod, the value of L(X)(w) can be computed using the usual matrix representation
of linear maps: the initialisation morphism VS(i) corresponds to a column vector η ◦ i : VS(X),

Minimisation in Logical Form 19

the output morphism f] is a row vector, and the transition morphism t] can be represented as a
Σ-indexed collection of X ×X-matrices ta where ta(y, x) = t(x)(a)(y) for all x, y ∈ X. L(X)(w)
is then obtained by the following matrix multiplication f × tan × . . .× ta0 × i.

4.2.2 Brozowski’s Algorithm for Weighted Automata

There is self-dual adjunction of SMod obtained by taking dual space: (−)? = SMod(−,S). A
special case is the self-dual adjunction of vector spaces in case S is a field, which restricts to a
duality between finite-dimensional vector spaces. This duality was used in [13] to obtain observ-
able Moore automata over vector spaces.

We lift the base adjunction to one between Moore automata in SMod using Theorem 1. Let
C = D = SMod = EM(VS) and FSMod(X) = S ×XΣ and GSMod(X) = S + Σ ·X. Since S? ∼= S,
the conditions for Theorem 1 hold, and the adjunction lifts, as illustrated in Figure 2(a).

We can now give the Brzozowski algorithm for weighted automata by instantiating Algo2
of Theorem 2 for the determinised automaton. Start with a weighted automaton in Set, deter-
minise it into a Moore automaton in AutS,SSMod (to have a canonical representative of the accepted
language), reverse and determinise, take the reachable part (w.r.t GSMod-structure over SMod),
reverse and determinise, take the reachable part again. Diagramatically, Algo2 is (putting op on

the right-hand side to start and end in AutS,SSMod) shown in Figure 2(b).

(
AutS,SSMod

)op

(−)?
′

**

>

��

AutS,SSMod

(−)?
′

kk

��

SModop

FSMod

ZZ

(−)?

))
> SMod

G
op
SMod

ZZ

(−)?

ii

WAut over Set

(−)]

�� ��

AutS,SSMod

(−)?
′
//
(
AutS,SSMod

)op

reachop

��

AutS,SSMod

reach

��

(
AutS,SSMod

)op(−)?
′

oo

AutS,SSMod

(a) (b)

Fig. 2 (a) The dual adjunction for weighted automata, and (b) Brzozowski’s algorithm for weighted automata.

At this point we have built a minimal Moore automaton min(X]) over SMod accepting the
same language as the weighted automaton X we started with and, moreover, the state space is a
subsemimodule of the semimodule generated by the original state space.

The last step missing is to recover a weighted automaton over Set with a state space Y
such that VS(Y) is the state space of min(X]). Unfortunately, subsemimodules of free, finitely
generated semimodules are not necessarily free and finitely generated. Therefore our construction
does not guarantee, in general, that the resulting automaton min(X]) corresponds to a weighted
automaton in Set. Fortunately, we know from a result of Tan [59] that for a commutative semiring
S, every nonzero subsemimodule N of a finitely generated free S-semimodule M is free if and

20 Authors Suppressed Due to Excessive Length

only if S is a principal ideal domain [59, Theorem 4.3]. Furthermore, because N is free, it follows
that it is also finitely generated and of rank smaller than that of M [59, Theorem 4.3]. In other
words, the minimal weighted automaton over a principal ideal domain exists and has a state
space smaller or equal than that of the original automaton if the latter is finite.

Recall that a principal ideal domain is an integral domain in which every ideal is principal, i.e.,
can be generated by a single element. Examples include any Euclidean domain, thus any field,
the ring of integers, the ring of polynomials in one variable with coefficients in a field, and the
ring of formal power series over a field and one variable. The ring of polynomials in two or more
variables and the ring of polynomials with integer coefficients are not principal ideal domains.

4.2.3 Logic for weighted automata

The S-valued logic (cf. (6)) corresponding to the functor GSMod(X) = VS(1) +Σ ·X (recall that
S ∼= VS(1), i.e., Ω = 1), has formulas generated by the following grammar:

ϕ ::= ↓| [a]ϕ, a ∈ Σ | 0 | s · ϕ, s ∈ S | ϕ+ ϕ

where ↓ is a single atomic proposition (denoting termination) and the linear propositional con-
nectives are interpreted via semimodule structure. Trace logic is the fragment that is built only
from ↓ and modalities. The results from Section 3.4 tell us that trace logic is already expressive
for SMod-automata.

4.3 Topological Automata via Gelfand Duality

A very popular model heavily used in reforcement learning is the partially observable Markov
decision process (POMDP). The idea is that one can only see the observations and not exactly
which state the system is in. Many algorithms in machine learning deal with this situation by
constructing a new automaton called the belief automaton. The state space of this automaton is
the set of probability distributions over the original states. When seeking to minimize this using
duality [13], the original idea was to exploit the fact that the state space of the belief automaton
is a compact Hausdorff space and use Gelfand duality. However, we have since felt that convex
duality is a better match for this situation. Nevertheless, the notion of a topological automaton is
interesting in its own right and may be the basis for later extensions and examples. This section,
therefore develops Gelfand duality and its application to topological automata.

Given a finite set X, we write D≤1(X) for the set of discrete subdistributions on X endowed
with the relative topology when viewed as a subset of [0, 1]X . This is a compact Hausdorff space.
As in other sections, we fix a finite set Σ of actions or inputs, and a finite set Ω of observations.

Definition 6 A compact Hausdorff automaton is a 5-tuple

H = (S, t : S → SΣ , f : S → D≤1(Ω), i : S)

where S is a compact Hausdorff space, t is a continuous transition function (to the product space
SΣ), f is a continuous observation function, and i : S is an initial state.

A compact Hausdorff automaton is easily seen to be a coalgebra for the functor F : KHaus→
KHaus given by F (X) = D≤1(Ω)×XΣ together with an initialisation morphism i : 1→ S where
1 is the discrete, one-element space. Since Gelfand duality is a full duality, the initial state plays

Minimisation in Logical Form 21

only a minor role as mentioned in Section 3.6. In [13], compact Hausdorff automata were defined
without initial state.

We recall a few basic facts about C∗-algebras, and refer to [10, 36] for further information.
Usually C∗-algebras are considered as algebras over the complex field. Here, we are concerned
with probabilistic computation, and therefore we consider C∗-algebras over the field R of reals.

A (real-valued) Banach algebra A is Banach space (complete normed real vector space)
equipped with an associative multiplication such that ‖xy‖ ≤ ‖x‖‖y‖ for all x, y. This require-
ment makes multiplication continuous in the norm topology. A (real) C∗-algebra is a Banach
algebra together with an involution (−)∗ which is a linear, norm-preserving map on A such that
(xy)∗ = y∗x∗ and (x∗)∗, and which in addition satisfies the C∗-axiom: ‖x∗x‖ = ‖x‖2 for all
x ∈ A. A C∗-algebra A is unital if it has a multiplicative unit 1 whose norm is 1 ∈ R, and A is
commutative if the multiplication is commutative.

A homomorphism of C∗-algebras is a bounded, linear map that preserves the multiplication
and the involution. A homomorphism of unital C∗-algebras is additionally required to preserve
the unit. We denote by CUC∗Alg the category of unital, commutative, real-valued C∗-algebras
and their homomorphisms.

In [48] it was shown 1 that U has a left adjoint M : Set→ CUC∗Alg given by

M(X) = C([0, 1]X) = {f : [0, 1]X → R | f continuous} (2)

M(g : X → Y) = f(v ◦ g) where f ∈ C([0, 1]X), v ∈ [0, 1]Y . (3)

where [0, 1]X is equipped with the product topology.
We denote by KHaus the category of compact Hausdorff spaces and continuous maps. Given

a compact Hausdorff space X, the hom-set C (X) = HomKHaus(X,R) becomes a commutative,
unital, real-valued C∗-algebra by defining operations pointwise. In particular, the unit is the
constantly 1 map, and for f ∈ C (X), the norm is ‖f‖ = sup{|f(x)| | x ∈ X}; recall that for a
compact space and a continuous function the supremum is attained. For a morphism g : X → Y
in KHaus, defining C (g)(h) = h ◦ g makes C (−) a functor from KHaus to CUC∗Algop.

Conversely, for A ∈ CUC∗Alg, the set Â = HomCUC∗Alg(A,R) becomes a compact Hausdorff
space (called the spectrum of A) by equipping it with the weak ∗-topology τ which is generated
by the sets Ox = {Φ ∈ Â | Φ(x) 6= 0} for all x ∈ A. We define Spec(A) = (Â, τ). For a morphism
h : A → B in CUC∗Alg, defining Spec(h)(Φ) = Φ ◦ h makes Spec a functor from CUC∗Algop to
KHaus.

The functors C and Spec establish a dual equivalence between KHaus and CUC∗Alg known as
Gelfand duality

KHausop

C
((

∼= CUC∗Alg

Spec

gg (4)

For the purposes of this paper, we only need a dual adjunction. We will take C to be the right
adjoint. As this dual adjunction is in fact a dual equivalence, the unit and the counit of this
adjunction are natural isomorphisms. The unit ηA : A → C (Spec(A)) is known as the Gelfand
transform, and is given by ηA(x)(Φ) = Φ(x). For all A ∈ CUC∗Alg, ηA is an isometric isomorphism
in CUC∗Alg.

We first lift the base dual adjunction between KHaus and CUC∗Alg to an a dual ajdunction
between the category of F -coalgebras and G-algebras for the functors

1 Strictly speaking, she showed it for complex-valued C∗-algebras, but the result also holds for real-valued ones.

22 Authors Suppressed Due to Excessive Length

F : KHaus→ KHaus, F (X) = D≤1(Ω)×XΣ

G : CUC∗Alg→ CUC∗Alg, G(A) = M(Ω)/J +Σ ·A (5)

Recall from (2) that M is the left adjoint of the unit interval functor U . Finally, J ⊆ M(Ω) is
an ideal of the CUC∗Alg-algebra M(Ω) which we describe in a moment. Note that CUC∗Alg has
coproducts. This follows from the fact that KHaus has products and using Gelfand duality.

In order to lift the base dual adjunction Spec a C to a dual adjunction between Coalg(F) and
Alg(G) as in section 3.3.2, we need to show that Spec(M(Ω)/J) ∼= D≤1(Ω). First, we define the
ideal J . Fix a finite set Y and consider the C∗-algebra M(Y) ∈ CUC∗Alg defined by [0, 1]Y . For
each y ∈ Y , we have a projection map πy ∈M(Y)→ R given by πy(v) = v(y). Let π =

∑
y∈Y πy.

Then π : [0, 1]Y → R is linear and π ∈ M(Y). We will take J to be the ideal corresponding to
the congruence generated by the equality obtained by rewriting π � 1 as an equality as follows:

π � 1 ⇐⇒ π ∨ 1 = 1 ⇐⇒ 1
2 (π + 1) + 1

2 |π + 1| = 1 ⇐⇒ |1− π| = 1− π

Definition 7 We define the ideal J of M(Y) as the principal ideal generated by the element
(|π−| − π−) where π− := 1− π. That is,

J = {m ∈M(Y) | ∃k ∈M(Y) : m = k(|π−| − π−)}.

The congruence relation ≡J on M(Y) arising from the ideal J is then defined standardly as
follows: For m,n ∈ M(Y), m ≡J n if m− n ∈ J. We write M(Y)/J for the quotient of M(Y)
with respect to ≡J .

Due to space limitations, we omit the rather technical proof.

Lemma 3 For any set Y , D≤1(Y) ∼= Spec(M(Y)/J) in KHaus.

From Lemma 3 and section 3.3.2, it follows that the base dual adjunction lifts to one between
F -coalgebras and G-algebras. This adjunction in turn can be easily lifted to one between au-
tomata using Theorem 1 from section 3.3.3. The categories of automata are here the category

CHA = Aut
1,D≤1(Ω)
KHaus of compact Hausdorff automata and the category CAO = Aut

M(Obs)/J,R
CUC∗Alg of

CUC∗Alg-automata with initialisation in M(Obs)/J and output in R ∼= C(1).

CHAop

C
′

((

>

��

CAO

Spec
′

gg

��

KHausop

C
((

> CUC∗Alg

Spec

gg

The abstract algorithms Algo1 and Algo2 apply since KHaus and CUC∗Alg are monadic
over Set (cf. Section 3.6). In particular, KHaus is the Eilenberg-Moore category of the ul-
trafilter monad [47]. In order to show that the associated trace logic is expressive we need
an extra argument, since the functor F defined in (5) does not have the shape required by
Lemma 1 and Theorem 2. However, we can apply Remark 2 after observing the following. Let
F ′ := Spec(M(Ω))×(−)Σ . Then the associated natural isomorphism ξtrc

′
: F ′SpecM ⇒ SpecMG

specifies semantics of trace logic over F ′-coalgebras. To obtain a suitable τ : F ⇒ F ′ note that
quotienting with J in CUC∗Alg yields an epi e : M(O) � M(O)/J from which we get a mono

Minimisation in Logical Form 23

Spec(e) : Spec(M(O)/J)� Spec(M(O)) in KHaus. Pre-composing Spec(e) with the isomorphism
h : D≤1(O)

∼→ Spec(M(O)/J) given by Lemma 3 and defining τ := (Spec(e) ◦ h) × id, it fol-
lows that τ : F ⇒ F ′ has all components mono in KHaus. It now follows that trace logic is also
expressive for F -coalgebras, i.e., for compact Hausdorff automata.

Remark 5 In order to view Gelfand duality (4) as a concrete duality obtained from a dualising
object, we need to expand the setting a bit, since R is not a compact Hausdorff space. This
can be done by considering the dual adjunction between locally compact Hausdorff spaces and
not-necessarily unital commutative C∗-algebras. Gelfand duality is a restriction of this dual
adjunction.

5 Alternating Automata

Alternating finite automata (aka Boolean automata or parallel automata) were first studied in
[21, 24, 25, 42, 46] as a finite-state analog of alternating Turing machines [24]. Let Σ be a fixed
finite input alphabet. An alternating finite automaton (AFA) over Σ is a tuple A = (X, i, t, F),
where

• X is a finite set of states,
• F ⊆ X are the final states,
• t : Σ → X → 2X → 2 is the transition function, and
• i : 2X → 2 is the acceptance condition.

Intuitively, the machine A operates as follows. Let k = |X|. Initially k processes are started, each
assigned to a different state, reading the first symbol of the input word w ∈ Σ∗. In each step,
a process at state s reads the next input symbol a and spawns k child processes, each of which
moves to a different state and continues in the same fashion, while the parent process at s waits
for the child processes to report back a Boolean value. In this way a k-branching computation
tree is generated. When the end of the input word is reached, a process at state s reports 1
back to its parent if s ∈ F , 0 otherwise. A non-leaf process waiting at state s, having read input
symbol a, collects the k-tuple b ∈ 2X of Boolean values reported by its children, computes tasb,
and reports that Boolean value back to its parent. When the initial processes have all received
values, say c ∈ 2X , the machine accepts if ic = 1, otherwise it rejects.

Alternating automata accept all and only regular sets. It was shown in [43] by combinatorial
means that a language L ⊆ Σ∗ is accepted by a k-state AFA iff its reverse {wR | w ∈ L} is
accepted by a 2k state deterministic finite automaton (DFA).

Our purpose in this section is to recast this result in the framework of our general duality
principle. The duality involves the category CABA of complete atomic Boolean algebras and the
category Set of discrete spaces, which underlie powerset Boolean algebras.

5.1 CABA, EM(N), and Setop

5.1.1 CABA

A complete Boolean algebra (CBA) is a structure (B,¬,
∨
,
∧
, 0, 1,≤), where B is a set, ¬ is a

unary operation on B,
∨

and
∧

are infinitary operations on the powerset of B, 0 and 1 are
constants, and ≤ is a partial order on B, such that

24 Authors Suppressed Due to Excessive Length

• (B,¬,∨,∧, 0, 1,≤) is an ordinary Boolean algebra (BA), where ∨ and ∧ are the restrictions
of
∨

and
∧

, respectively, to two-element sets; and
•
∨
A and

∧
A give the supremum and infimum of A, respectively, with respect to ≤.

The CBA-morphisms are BA-homomorphisms that preserve
∨

and
∧

.
An atom of a BA is a ≤-minimal nonzero element. A BA is atomic if every nonzero element has

an atom ≤-below it. A complete atomic Boolean algebra (CABA) is an atomic CBA. A CABA-
morphism is just a CBA-morphism. Together, CABAs and their morphisms form the category
CABA.

It is known that every CABA is isomorphic to the powerset Boolean algebra on its atoms,
thus every element is the supremum of the atoms below it. CBAs and CABAs satisfy infinitary
de Morgan and distributive laws:

¬
∨
a =

∧
{¬x | x ∈ a} (

∨
a) ∧ x =

∨
{y ∧ x | y ∈ a}

¬
∧
a =

∨
{¬x | x ∈ a} (

∧
a) ∨ x =

∧
{y ∨ b | y ∈ a}

as well as other useful infinitary properties such as commutativity, associativity, and idempotence

of
∨

and
∧

. The free CABA on generators X is the powerset CABA (22
X

,
⋃
,
⋂
,∼, ∅, 2X). See,

e.g., [31] for further information on the theory of CBAs and CABAs.

5.1.2 EM(N)

The self-dual adjunction Qop a Q of the contravariant powerset functor (Example 1) gives rise to
a Set-monad N = Q ◦ Qop, where for X a set and f : X → Y a set function,

NX = QQopX = 22
X

Nf = (f−1)−1 : 22
X

→ 22
Y

The unit and multiplication are

ηX(x) = {a | x ∈ a}, µX(H) = {a | ηQX(a) ∈ H} = η−1QX(H).

This is called the double powerset or neighbourhood monad. The category of Eilenberg-Moore
algebras of N is denoted EM(N).

5.1.3 Equivalence of CABA, Setop, and EM(N)

It is known that the Eilenberg-Moore algebras of the double powerset monad N are exactly the
CABAs. These two categories are also dually equivalent to Set, that is, equivalent to Setop, as
observed in [60].

The equivalence of the three categories can be shown via the composition of three faithful
functors that are injective on objects:

Setop EM(N) CABA Setop.
J D At

(1)

Here J is the Eilenberg-Moore comparison functor [3, 45]. Concretely, J sends a set X to the
CABA 2X and a function f : X → Y to its inverse image map. That is, J = Set(−, 2) with
Boolean structure. The functor At takes a CABA to its set of atoms and a CABA-morphism

Minimisation in Logical Form 25

f : A→ B to At f : At B → At A, where Atf (b) is the unique atom a of A such that a↑ = f−1(b↑)
and a↑ and b↑ are the principal ultrafilters on atoms a and b, respectively. In a CABA, there is a
bijection between principal ultrafilters and atoms, and we have that At ∼= CABA(−, 2). In other
words, the equivalence given by J and At is a concrete duality with dualising object 2.

Although the equivalence between EM(N) and CABA is fairly well known, the details are rarely
provided. We therefore describe the functor D that produces a CABA from an EM(N)-algebra
(X,α). Let TX be the term monad for CABA terms over indeterminates X.2 Let D(X,α) =
(X,Dα), where

Dα : TX → X Dα = α ◦ (τN ◦ Tη)X , (2)

where TηX : TX → TNX substitutes ηX(x) for x ∈ X in a term and τNX : TNX → NX

is the evaluation map of the powerset CABA (22
X

,
⋃
,
⋂
,∼, ∅, 2X). In particular (and in more

conventional notation), this gives the following definitions of the Boolean operations:∨
n xn = α(

⋃
n ηX(xn))

∧
n xn = α(

⋂
n ηX(xn))

¬x = α(∼ηX(x)) 0 = α(∅) 1 = α(2X).
(3)

The action of D on morphisms is the identity.
The natural transformation τN ◦Tη : T → N in (2) relating CABA terms and double powerset

is invertible up to CABA equivalence. Consider the natural transformation

υ : N → T υX(A) =
∨
a∈A

(
∧
x∈a

x ∧
∧
x 6∈a

¬x), A ∈ 22
X

.

It can be shown that

τN ◦ Tη ◦ υ = idN υ ◦ τN ◦ Tη ≡ idT .

By the latter we mean that for any term θ ∈ TX, υX(τNX(TηX(θ))) ≡ θ modulo the axioms of
CABA. This essentially says that there is a disjunctive normal form for CABA terms.

5.2 Language acceptance of alternating automata

Let A = (X, t, f, i) be an AFA with states X and components

i : 1→ 22
X

ta : X → 22
X

, a ∈ Σ f : X → 2

where i is the (transposed) acceptance condition, ta are the transitions, and f : X → 2 is the
characteristic function for the subset F of accepting states.

The language accepted by A is L(A) , {w ∈ Σ∗ | i(t′w(F)) = 1}, where

t′w : 2X → 2X t′ε(A) = A t′aw(A)(s) = ta(s)(t′w(A)).

2 TX consists of CBA terms with the arity of the infinitary operations bounded by 22
|X|

. There can be no such

bound for CBA in general, as there are CBAs of arbitrarily large cardinality generated by X; thus there is no term
monad for CBA. However, CABAs generated by X are of cardinality at most double exponential in |X|, and we

can bound arities accordingly.

26 Authors Suppressed Due to Excessive Length

As constructed in [43], the associated DFA for the reverse language is A′ with states 2X and
components

f [: 1→ 2X t[a : 2X → 2X , a ∈ Σ i[: 2X → 2.

This is a deterministic automaton, that is, a coalgebra for the functor F = 2× (−)Σ with start
state f [, transitions t[a, and accept states i[. The language accepted by A′ is L(A′) , {w ∈ Σ∗ |
i[(t[w(f [)) = 1}, where

t[ε = id2X t[wa = t[a ◦ t[w.

The combinatorial construction of [43] amounts to recurrying the components of the automata.
Denoting the reverse of a string w by wR and using the fact that t[a = t′a, it can be shown
inductively that t[w = t′wR , therefore the language accepted by A′ is the reverse of the language
accepted by A:

L(A′) = {w | i[(t[w(f [)) = 1} = {w | i(t′wR(f)) = 1} = {w | wR ∈ L(A)}.

5.3 Alternating automata as EM(N)-automata

We now show how the relationship between A and A′ comes about as an instance of a dual
adjunction of automata as described in Section 3.3, in particular Section 3.3.3. We use the base
equivalence between EM(N) and Setop described in Section 5.1. For the sake of uniformity with
the general setup in Section 3.3, we take R as the right adjoint (hence we put the op on EM(N)),
and consider R and J as contravariant functors.

(
Aut

N(1),2
EM(N)

)op R
′

))

>

��

Aut1,2Set

J
′

mm

��

EM(N)op

R

((
∼= Set

J

ii

(4)

More precisely, we show that A′ = R
′
(A]), where A] is the deterministic automaton over

EM(N) obtained by applying the determinisation construction from Section 2.2 for N to A. The
functor R is the composition R = At ◦D (see (1)).

Recall from Section 2.2 that determinisation for N takes free extensions of the transition
function and output function. That is, given an alternating automaton A with states X and
components

i : 1→ 22
X

ta : X → 22
X

, a ∈ Σ f : X → 2

over Set, we have a deterministic automaton A] with

i] : 22
1

→ 22
X

t]a : 22
X

→ 22
X

, a ∈ Σ f] : 22
X

→ 2

Minimisation in Logical Form 27

over EM(N), using the CABA structure on 2. In A], we leave algebraic structure on 22
X

and 2

implicit. Formally, they are the powerset CABAs on 22
X

and 2, respectively; these are isomorphic
to the free EM(N)-algebras (NX,µX) and (N∅, µ∅) on generators X and ∅, respectively.

We easily see that 〈22X , f], t], i]〉 instantiates the definition from Section 3.2 of an EM(N)-

automaton with initialisation in 22
1

and output in 2, i.e., A] is in Aut
N(1),2
EM(N). For ease of notation,

we will sometimes write the initialisation morphism i] as its corresponding Set-function i.
A dual automaton in Aut1,2Set (with states X) is a coalgebra for F = 2× (−)Σ together with an

initial state j : 1→ X, or equivalently an algebra for G = 1 +Σ× (−) with output f : X → 2. It

is easy to check that the conditions for Theorem 1 hold. First note that I = 22
1

and O = 1. We
then easily verify that FEM(N)

∼= J(1)× (−)Σ by noting that J(1) = 21 ∼= 2. Similarly, to see that

G ∼= R(22
1

) +Σ · (−), we note that R(22
1

) = At(22
1

) = 21 ∼= 2. Hence the base dual adjunction

J a R lifts to J
′ a R′ between automata categories, and the lifted adjoints are given by (5) and

Theorem 1. We describe the reversal functor R
′

a bit more concretely as a contravariant functor

from Aut
N(1),2
EM(N) to Aut1,2Set. The base adjunction of (4) gives us a bijection of homsets:

θ : EM(N)((A,α), JX)→ Set(X,R(A,α))

natural in (A,α) and X. Given an automaton in Aut
N(1),2
EM(N)

i : 1→ (A,α) ta : (A,α)→ (A,α) f : (A,α)→ 2

(again, we leave the algebraic structure on 2 implicit), R
′

produces the deterministic automaton
over Set

θf : 1→ R(A,α) R(ta) : R(A,α)→ R(A,α) Ri] : R(A,α)→ 2. (5)

Applying R
′

to A], which is

i : 1→ 22
X

t]a : 22
X

→ 22
X

f] : 22
X

→ 2

we get the reversed, deterministic automaton R
′
(A]) (over Set):

θf] : 1→ 2X R̄t]a : 2X → 2X Ri] : 2X → 2.

Theorem 4 For any alternating automaton

A = (X, {ta : X → 22
X

| a ∈ Σ}, i : 1→ 22
X

, f : X → 2),

we have that A′ ∼= R
′
(A]).

Proof The state space of A′ is 2X and the state space of R
′
(A]) is the set of atoms of the CABA

D(22
X

, µX) which is the set {{a} | a ⊆ X}. To see that θ(f]) = f [, observe that θ−1(f [) = f [
−1

,

and expand the definitions to show that f] = f [
−1

. To see that R(ta
]) = t[a, we show that for

all d : Y → 22
X

, and all a ⊆ X, R(d])({a}) = {d[(a)}. Thus R(d]) = d[up to bijections relating

atoms {a} and their singleton elements a. The atoms of (22
X

, µX) are of the form {a} for a ⊆ X,

hence for A ∈ 22
Y

,

28 Authors Suppressed Due to Excessive Length

R(d])({a}) =
∧
{A ∈ 22

Y

| {a} ≤ d](A)}

=
⋂
{A ∈ 22

Y

| a ∈ d](A)} since
∧

is
⋂

in (22
X

, µX)

=
⋂
{A ∈ 22

Y

| d[(a) ∈ A} since d] = d[
−1

= {d[(a)} since d[(a) ∈ 2Y .

where d] = d[
−1

can be shown by expanding the definitions. The argument for R(i]) = i[is
similar. �

The relationship between an AFA and its determinised version can be understood as follows.
In an AFA, when reading an input word, we generate a computation tree downwards, and once
we reach the end of the word, we evaluate the outputs going back up using Boolean functions, and
at the top all outputs are aggregated into a single Boolean value with the acceptance condition.
In the determinised AFA, we propagate the acceptance condition forwards as a Boolean function
(encapsulated in the state) and once we reach the end of the input word, we use the Boolean
function to evaluate immediately instead of propagating back up.

The modal logic of alternating automata (cf. (6)) has a single termination predicate, labelled
modalities, and no propositional connectives, since D = Set. Hence formulas correspond to
words in Σ∗. The dual DFA of an AFA represents its logical semantics, or predicate transformer
semantics, where the observations at the end of the word are propagated backwards to the initial
state. Since predicate transformers move backwards, the language of an AFA is the reversed
language of the dual DFA.

Finally, we note that all conditions for Theorem 2 hold (with D = Set and ΦD = UD =
Id). Hence we also get a Brzozowski style minimisation algorithm for alternating automata by
instantiating Algo2 of Section 3.6. Reachability in Aut1,2Set is just the standard automata-theoretic
notion, whereas now the more abstract algebraic notion from Section 3.5 is relevant “on the left”

in the category Aut
N(1),2
EM(N). As with weighted automata (cf. Section 4.2), we are not guaranteed

that the result of the minimisation algorithm is again an alternating automaton (understood as
an FN -coalgebra over Set), since a subalgebra of a free CABA need not be free.

6 Conclusion and Related Work

In this paper, we presented a unifying categorical perspective on the minimisation constructions
presented in [13] and [16], revisited some examples from these two papers in light of the general
framework, and presented a new example of alternating automata. We also filled in some details
regarding topological automata (belief automata) that were missing from [13].

Our starting points are Brzozowski’s algorithm [22] for the minimisation of deterministic
automata and the use of Stone-type duality between computational processes and their logical
characterisation [1]. The connection between these two seemingly unrelated points is given by
the duality principle between reachability and observability originally introduced in systems
theory [38] and then extended to automata theory in [7–9].

The duality between reachability and observability has been studied, e.g. in [14], to relate coal-
gebraic and algebraic specifications in terms of observations and constructors. In this context
most notable is the use of Stone-type dualities between automata and varieties of formal lan-
guages [28,29] which recently culminated into a general algebraic and coalgebraic understanding
of equations, coequations, Birkhoff’s and Eilenberg-type correspondences [4, 5, 11,52,53].

Minimisation in Logical Form 29

Our unifying categorical perspective is based on a dual adjunction between base categories
lifted to a dual adjunction between coalgebras and algebras, as introduced in [19, 39, 40] in the
context of coalgebraic modal logic, and in [13, 41] to capture the observable behaviour of a
coalgebra. Our novelty is to lift the coalgebra-algebra adjunction to a dual adjunction between
automata which generalises the formalisation of Brzozowski’s algorithm from [16], and formalising
the relationship of trace logic to the full modal logic and language semantics.

Our paper focuses on comparing and unifying our earlier approaches from [13] and [16] under a
common umbrella, but we hasten to remark that the concept of minimisation via logic presented
in section 3.3 is already in [50]. At its core, [50] uses a dual adjunction that is lifted to a dual
adjunction between coalgebras and algebras. A logic is then used to provide a construction for ob-
taining observable coalgebras. This is esssentially what we call Algo1. The setting of [50] is more
general as no assumptions are made on the specific shape of the algebra and coalgebra functors
involved. Instead the necessary functor requirements are axiomatised. One achievement of [50] is
to generalise the setup in [13] from dual equivalences to dual adjunctions. The central contribu-
tion in [50] is to combine the duality-based framework with coalgebraic partition-refinement [2]
such that a logic-based treatment of Brzozowski and partition refinement is obtained. Compared
to [50], our framework is more restricted, as we confine ourselves to functors of certain shapes,
but we believe this strikes a good balance between generality and a categorical setting for study-
ing many different types of automata. Furthermore, our categorical framework incorporates a
formalisation of the full Brzozowski algorithm via the small extension of the coalgebra-algebra
adjunction to the adjunction of automata, i.e., structures that have both initial and final states.

Other categorical approaches to automata minimisation have been proposed in the literature;
we mention here just a few. In [26] languages and their acceptors are regarded as functors which
provides a different perspective on minimisation in which Brzozowski’s algorithm can also be
formulated. In [2] the authors study coalgebras in categories equipped with factorisation struc-
tures in order to devise a generic partition refinement algorithm. From the language-theoretic
point of view, the relation between the automata constructions resulting from the automata-
based congruences, together with the duality between right and left congruences, allows to relate
determinisation and minimisation operations [27].

References

1. Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic, 51(1):1 – 77, 1991.

2. Jiŕı Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and Alexandra Silva. A coal-
gebraic perspective on minimization and determinization. In Lars Birkedal, editor, Foundations of Software

Science and Computational Structures - 15th International Conference, (FOSSACS 2012), volume 7213 of

Lecture Notes in Computer Science, pages 58–73. Springer, 2012.
3. Jiŕı Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Categories - The Joy of Cats.

Dover Publications, 2009.

4. Jiri Adamek, Robert S. R. Myers, Henning Urbat, and Stefan Milius. Varieties of languages in a category. In
Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), LICS
15, page 414425. IEEE Computer Society, 2015.

5. Jǐŕı Adámek, Stefan Milius, Robert S.R. Myers, and Henning Urbat. Generalized Eilenberg theorem: Varieties
of languages in a category. ACM Transaction of Computational Logic, 20(1), 2018.

6. M. A. Arbib and E. G. Manes. Machines in a category: An expository introduction. SIAM Review, 16:163–192,
1974.

7. M.A. Arbib and H.P. Zeiger. On the relevance of abstract algebra to control theory. Automatica, 5:589–606,
1969.

8. Michael A. Arbib and Ernest G. Manes. Adjoint machines, state-behavior machines, and duality. J. of Pure
and Applied Algebra, 6(3):313 – 344, 1975.

30 Authors Suppressed Due to Excessive Length

9. Michael A. Arbib and Ernest G. Manes. Foundations of system theory: The Hankel matrix. Journal of
Computer and System Sciences, 20:330–378, 1980.

10. William Arveson. An Invitation to C∗-Algebras, volume 39 of Graduate Texts in Mathematics. Springer-

Verlag, 1976.
11. A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equivalence of equations and coequations

for automata. Information and Computation, 244(C):4975, 2015.

12. F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD thesis, Vrije Universiteit
Amsterdam, 2004.

13. Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via duality. In L. Ong and

R. de Queiroz, editors, Proceedings of WoLLIC 12, volume 7456 of LNCS, pages 191–205. Springer, 2012.
14. Michel Bidoit, Rolf Hennicker, and Alexander Kurz. On the duality between observability and reachability.

In Furio Honsell and Marino Miculan, editors, FoSSaCS, volume 2030 of Lect. Notes in Comp. Sci., pages
72–87. Springer, 2001.

15. P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge University Press, Cambridge, 2001.

16. Filippo Bonchi, Marcello Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan Rutten, and Alexandra
Silva. Algebra-coalgebra duality in brzozowski’s minimization algorithm. ACM Transactions on Computa-

tional Logic,, 15(1), 2014.

17. Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan J. M. M. Rutten, and Alexandra Silva. A
coalgebraic perspective on linear weighted automata. Information and Computation, 211:77–105, 2012.

18. M. M. Bonsangue and A. Kurz. Duality for logics of transition systems. In FoSSaCS05, 2005.

19. Marcello M. Bonsangue and Alexander Kurz. Presenting functors by operations and equations. In Luca
Aceto and Anna Ingólfsdóttir, editors, Foundations of Software Science and Computation Structures, 9th

International Conference, FOSSACS 2006, Held as Part of the Joint European Conferences on Theory and

Practice of Software, (ETAPS 2006), volume 3921 of Lecture Notes in Computer Science, pages 172–186.
Springer, 2006.

20. Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structure. Cambridge University Press,
1994.

21. J. A. Brzozowski and E. Leiss. On equations for regular languages, finite automata, and sequential networks.

Theoretical Computer Science, 10:19–35, 1980.
22. Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. In Math-

ematical Theory of Automata, volume 12 of MRI Symposia Series, pages 529–561, Polytechnic Institute of

Brooklyn, 1962. Polytechnic Press.
23. A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic Guides. The Clarendon Press,

New York, 1997.

24. Ashok Chandra, Dexter Kozen, and Larry Stockmeyer. Alternation. J. Assoc. Comput. Mach., 28(1):114–133,
1981.

25. Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In Proc. 17th Symp. Found. Comput. Sci., pages

98–108. IEEE, October 1976.
26. Thomas Colcombet and Daniela Petrisan. Automata minimization: a functorial approach. In Filippo Bonchi

and Barbara König, editors, 7th Conference on Algebra and Coalgebra in Computer Science, (CALCO 2017),
volume 72 of LIPIcs, pages 8:1–8:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

27. Pierre Ganty, Elena Gutiérrez, and Pedro Valero. A congruence-based perspective on automata minimization

algorithms. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International
Symposium on Mathematical Foundations of Computer Science, (MFCS 2019), volume 138 of LIPIcs, pages

77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

28. Mai Gehrke. Stone duality and the recognisable languages over an algebra. In Alexander Kurz, Marina
Lenisa, and Andrzej Tarlecki, editors, CALCO, volume 5728 of Lect. Notes in Comp. Sci., pages 236–250.

Springer, 2009.
29. Mai Gehrke, Serge Grigorieff, and Jean-Eric Pin. Duality and equational theory of regular languages. In

Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP (2), volume 5126 of Lect. Notes in Comp. Sci., pages 246–257. Springer, 2008.

30. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous lattices and
domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,

Cambridge, 2003.
31. Steven Givant and Paul Halmos. Introduction to Boolean Algebras. Springer, 2009.

32. Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibrational setting. Information
and Computation, 145:107–152, 1998.

33. Edward V. Huntington. Sets of independent postulates for the algebra of logic. Trans. Amer. Math. Soc.,

5(3):288–309, July 1904.

Minimisation in Logical Form 31

34. B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages. In K. Futatsugi,
J.-P. Jouannaud, and J. Meseguer, editors, Algebra, Meaning and Computation: Essays dedicated to Joseph

A. Goguen on the Occasion of his 65th Birthday, volume 4060 of LNCS, pages 375–404. Springer, 2006.
35. Bart Jacobs and Ana Sokolova. Exemplaric expressivity of modal logics. J. Log. Comput., 20(5):1041–1068,

2010.
36. P. T. Johnstone. Stone spaces. Cambridge University Press, Cambridge, 1982.
37. P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bulletin London Mathematical Society,

7:294–297, 1975.
38. R. Kalman. On the general theory of control systems. IRE Transactions on Automatic Control, 4(3):110–110,

1959.
39. Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting adjunctions to coalgebras to (re)discover

automata constructions. In Marcello M. Bonsangue, editor, Coalgebraic Methods in Computer Science, pages

168–188, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.
40. Bartek Klin. Coalgebraic modal logic beyond sets. In Marcelo Fiore, editor, Proceedings of the 23rd Conference

on the Mathematical Foundations of Programming Semantics, (MFPS 2007), volume 173 of Electronic Notes

in Theoretical Computer Science, pages 177–201. Elsevier, 2007.
41. Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. Logical Methods in Computer

Science, 12(4), 2016.
42. Dexter Kozen. On parallelism in Turing machines. In Proc. 17th Symp. Found. Comput. Sci., pages 89–97.

IEEE, October 1976.
43. Dexter Kozen. Theory of Computation. Springer, New York, 2006.
44. Alexander Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwigs-

Maximilians-Universität Mn̈chen, 2000.
45. Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971.
46. Ernst Leiss. Succinct representation of regular languages by Boolean automata. Theoretical Computer

Science, 13:323–330, 1981.
47. E. Manes. A triple-theoretic construction of compact algebras. In B. Eckman, editor, Seminar on Triples

and Categorical Homology Theory, number 80 in Lect. Notes Math., pages 91–118. Springer, 1969.
48. Joan W. Negrepontis. Duality in analysis from the point of view of triples. Journal of Algebra, 19:228–253,

1971.
49. Hans-E. Porst and Walter Tholen. Concrete dualities. In H. Herrlich and Hans-E. Porst, editors, Category

Theory at Work. Heldermann Verlag, 1991.
50. Jurriaan Rot. Coalgebraic minimization of automata by initiality and finality. In Lars Birkedal, editor,

The Thirty-second Conference on the Mathematical Foundations of Programming Semantics, (MFPS 2016),

volume 325 of Electronic Notes in Theoretical Computer Science, pages 253–276. Elsevier, 2016.
51. J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer Science, 249(1):3–80,

2000.
52. Julian Salamanca, Adolfo Ballester-Bolinches, Marcello M. Bonsangue, Enric Cosme-Llópez, and Jan J. M. M.

Rutten. Regular varieties of automata and coequations. In Ralf Hinze and Janis Voigtländer, editors, Math-
ematics of Program Construction - 12th International Conference, (MPC 2015), Proceedings, volume 9129

of Lecture Notes in Computer Science, pages 224–237. Springer, 2015.
53. Julian Salamanca, Marcello M. Bonsangue, and Jurriaan Rot. Duality of equations and coequations via

contravariant adjunctions. In Ichiro Hasuo, editor, Coalgebraic Methods in Computer Science - 13th IFIP

WG 1.3 International Workshop, (CMCS 2016), volume 9608 of Lecture Notes in Computer Science, pages
73–93. Springer, 2016.

54. Marcel Paul Schützenberger. On the definition of a family of automata. Information and Control, 4(2-3):245–
270, 1961.

55. A. Silva, F. Bonchi, M.M. Bonsangue, and J.J.M.M. Rutten. Generalizing the powerset construction, coal-
gebraically. In Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of

Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 272–283. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010.

56. M. H. Stone. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc., 40(1):37–111,
1936.

57. M. H. Stone. Topological representation of distributive lattices and Brouwerian logics. Časopis Pešt. Mat.
Fys., 67:1–25, 1937.

58. Ross Street. The formal theory of monads. J. Pure and Applied Algebra, 2:149–168, 1972.
59. Yi-Jia Tan. Free sets and free subsemimodules in a semimodule. Linear Algebra and its Applications,

496:527–548, 2016.
60. Paul Taylor. Subspaces in abstract Stone duality. Theory and Applications of Categories, 10(13):300–366,

2002.

	Minimisation in Logical Form
	 Nick Bezhanishvili and Marcello Bonsangue and Helle Hvid Hansen and Dexter Kozen and Clemens Kupke and Prakash Panangaden and Alexandra Silva
	Introduction
	Preliminaries
	Coalgebras, Algebras and Monads
	Determinisation

	Minimisation via Dual Adjunctions
	An illustrative example
	Automata, Algebras and Coalgebras
	Dual Adjunctions of Coalgebras, Algebras and Automata
	Language Semantics and Trace Logic
	Reachability and Observability
	Abstract minimisation algorithms

	Revisiting Examples
	Deterministic Kripke Models
	Weighted Automata
	Topological Automata via Gelfand Duality

	Alternating Automata
	CABA, EM (N), and Setop
	Language acceptance of alternating automata
	Alternating automata as EM (N)-automata

	Conclusion and Related Work
	References
	References

