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Abstract

We define for every Kripke complete modal logic L its hybrid companion
Ly and investigate which properties transfer from L to Ly. For a specific
class of logics, we present a satisfiability-preserving translation from Ly to
L. We prove that for this class of logics, complexity, (uniform) interpolation,
and finite axiomatization transfer from L to Ly. We also provide examples
showing that, in general, none of complexity, decidability, the finite model
property or the Beth property transfer.

1 Introduction

Nominals are a simple but useful addition to the modal language. They have found
applications in various domains, including description logic [28] and logics of space
[20]. Nominals increase the frame-definable power of the language: many modally
undefinable frame properties, such as irrreflexivity, become definable when nominals
are added. Adding nominals also gives rise to general completeness results covering
frame properties not definable in the basic modal language, and leads to simpler
proof systems by internalization of labeled deduction [4, 3]. From the perspective
of correspondence theory, nominals are simply first-order constants: they denote
individual elements of the domain.

In this paper, we investigate which properties (decidability, interpolation, etc.)
are preserved when nominals are added to a modal logic. More precisely, we consider
the extension of the basic modal language with a countably infinite set of nominals,
called the minimal hybrid language. For each Kripke complete modal logic L, we
define the hybrid companion logic Ly as the set of formulas of the minimal hybrid
language valid on the frame class defined by L. We then address the following
transfer question, for a range of properties J3:!

If a modal logic L has 3, does it follow that Ly has P too?

We show that complexity, the finite model property, decidability, and the Beth
property do not transfer. Some of these non-transfer results were already known
before, but we present natural and generic counterexamples. On the other hand, we
show that tabularity (i.e., completeness with respect to a single finite Kripke frame)
does transfer. We also give positive transfer results for restricted classes of logics.
For every modal logic L that has a master modality and admits filtration, we define
a satisfiability preserving translation from Ly to L. Using this translation, we
obtain transfer of complexity and (uniform) interpolation from L to Ly, as well as
an axiomatization of Ly by adding one simple axiom scheme to the axiomatization

LGargov and Goranko [15] ask the same question in the context of a richer hybrid language
that includes the universal modality.



of L. We prove similar translation and transfer results for a class of logics without
master modality that includes the basic modal logic K.

The technique developed here allows us to derive short proofs for several results
that were proved before by hand, e.g., the complexity of Kx [1] and the complexity
and finite axiomatizability of PDLy [24]. Furthermore, we prove that Kz, S5,
GLy and Grzy have uniform interpolation over proposition letters. As far as we
know, uniform interpolation has not been studied in the context of hybrid logic be-
fore. Finally, our results confirm the intuition that in many cases, adding nominals
to a modal logic does not increase the complexity.

The paper is organized as follows: in Section 2 we recall basic facts and give
the main definitions. In Section 3 we give examples that show that decidability,
complexity, the finite model property and the Beth property do not transfer in
general. In Section 4 we provide translations from hybrid logics to modal logics,
which are used in Section 5 to show that, for certain classes of logics, complexity,
(uniform) interpolation and finite axiomatization do transfer.

2 Preliminaries

2.1 Hybrid logic in a nutshell

Recall that the basic hybrid language is the result of extending the modal language
with nominals and satisfaction operators. In the present part, we will be concerned
with a less expressive hybrid language. The minimal hybrid language is an extension
of the basic modal language with nominals. Formally, given a countable set of
proposition letters PROP, and a countable set of nominals NOM, and a finite set of
modalities MOD, the minimal hybrid language is defined as

pu=pli|-¢[oAtY]|{a)d

where p € PROP, ¢ € NOM and a € MOD. While the frames that we work with are
the same as in ordinary modal logic, we put one extra condition on the models:
each nominal must be true at a unique point in the model. In other words, a model
for the hybrid language is a pair (§F,V), where § is a frame and V is a valuation
for § such that |V (i)| = 1 for all i € NOM. Apart from this extra requirement, no
changes are made to the semantics. In particular, the truth definition for nominals
is the same as that for ordinary proposition letters:

(FV),wlkiiff we V(i)

Validity of a hybrid formula on a frame is now defined by universal quantification
over all hybrid valuations, i.e., valuations that assign singleton sets to the nominals.
The singleton requirement on the valuation of nominals gives rise to new validities.
For instance (i A &i A Op) — p is valid on all frames (if a point is reflexive and all
its successors satisfy p, then the point itself satisfies p). Also, using nominals many
frame properties are definable that were not definable in the basic modal language.
For instance, irreflexivity is defined by ¢ — =<4,

Having nominals, it is very natural to further extend the language with satisfac-
tion operators, allowing one to express that a formula holds at a point named by a
nominal. However, in this part of the paper we will not consider these satisfaction
operators.

Given a frame class F, the modal (hybrid) logic of F is simply the set of modal
(hybrid) formulas that are valid on F. Conversely, given a modal or hybrid logic L,
the frame class defined by L, denoted by Fr(L), is the class of frames that validate
each formula of L. A modal or hybrid logic is said to be Kripke complete if it is the
logic of some frame class.
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Figure 1: The frame §,, used in the proof of Theorem 2.3

Definition 2.1 (Semantic hybrid companion) For any modal logic L, let Ly
be the hybrid logic of the frame class defined by L.

We call Ly the semantic hybrid companion (or simply hybrid companion) of the
modal logic L. Note that this is not the only possible way to define semantic hybrid
companions for modal logics. If a modal logic L is complete for several frame classes,
the hybrid logics of these classes need not be the same, and one could consider the
hybrid logic of other frame classes than the one defined by L. Nevertheless, our
choice seems a very natural one.

There is also a syntactic notion of hybrid companion.

Definition 2.2 (Syntactic hybrid companion) For any modal logic L, let L
be the smallest set of hybrid formulas containing all substitution instances of for-
mulas in L (in the enriched languages with nominals) as well as

1+ On(iA¢) = Opyr - Om(i — @) (Nom)

for each nominal i, hybrid formula ¢ and sequence of modalities 1, ..., O, such
that LT is closed under Modus Ponens, Necessitation.

Note that, for logics that have a master modality, the infinite set of axioms in
Definition 2.2 can be reduced to a single axiom scheme.

It is easy to see that L C Ly (all instances of (Nom) are valid on all frames).
The converse holds if L is a canonical modal logic [15, 8], but it does not hold in
general:

Theorem 2.3 There is a Kripke complete modal logic L for which LY is not Kripke
complete, and hence L™ # L.

Proof: Let L be the logic of the frame class {§,, | n > 0}, where §,, = (W, R) such
that W ={-n,...,0,...n+1} and R = {(0,1),(0,—1)}U{(k,¢) |0 <k <lor{ <
k < 0}, cf. Figure 1. By definition, L is Kripke complete and in fact has the finite
model property. We will show that L is not Kripke complete.

For each n € w, let §, be the formula O"T A =0T, expressing that the
longest path from current world has length n. Furthermore, let v be the GL axiom
O(Op — p) — Op, expressing transitivity and converse wellfoundedness. Clearly,
Oy € L and —04,, € L for all n > 1. Now, it is not hard to see that in all frames
validating these formulas, each element satisfying OOT has at least two distinct
successors. Thus, each such frame validates the hybrid formula ¢OT — =04, We
will show that the latter formula is not derivable in L, thereby showing that L7
is Kripke incomplete.

Suppose, for the sake of contradiction, that OO T — =05 were derivable in L.
Fix any derivation, and let t1,...,1, be the (finitely many) instances of (Nom)



used as axioms in this derivation. We will show that no derivation using only
these instances of (Nom) as axioms can contain OOT — =i as a conclusion, thus
establishing a contradiction.

Let k£ be any natural number greater than the modal depth of all v;’s, consider
the frame §j, and let V' be the valuation for it given by V(i) = {—1,1} and V(p) =
V(j) = {0} for all proposition letters p and nominals j distinct from i. Note that V'
is not a standard hybrid valuation, since it makes ¢ true at two points. Nevertheless,
we claim that every formula derivable in L7 using only 1, ...,%, as instances of
(Nom) must be globally true on (§x, V). To see this, firstly, note that all substitution
instances of formulas in L are valid on §j and hence globally satisfied in (g, V).
Secondly, 11, ..., 1, are globally satisfied in (g, V) (the only points of the model
satisfying ¢ are 1 and —1, and by the construction of §; and V, they agree on all
formulas of modal depth less than k). Finally, the set of formulas globally satisfied
in (Fx,V) is closed under Modus Ponens and Necessitation.

In particular, since (Fg,V),0 & OOT — =04, it follows that OGOT — -0
cannot be derivable in L using only v1,...,%, as instances of (Nom), which
contradicts our initial assumption. O

2.2 Filtrations

Filtrations are commonly used as a tool for establishing the finite model property
and decidability for modal logics. It was observed by several people that if a modal
logic admits filtration, then so does its hybrid companion (see below). Hence, if
a modal logic is proved to have the finite model property (to be decidable) using
filtrations, then its hybrid companion also has the finite model property (is decid-
able). Of course, this does not imply that the two logics have the same complexity.
For instance, KB, the logic of symmetric frames, admits filtration, and therefore
its hybrid companion KBy has the finite model property and is decidable. Never-
theless, KB has a PSPACE-complete satisfiability problem, whereas KBy has an
ExpPTIME-complete satisfiability problem, as we will show in Section 3.

In this paper, we will use filtrations in a different way: we will use them not to
prove decidability or the finite model property, but to construct satisfiability pre-
serving translations from certain hybrid companion logics Ly to the corresponding
modal logics L. Subsequently, we will use these translations to show that L and
Ly are in the same complexity class, that interpolation and uniform interpolation
transfer from L to Ly, and that Ly = L. Note that admitting filtration is not a
sufficient condition for the existence of such a translation: indeed, while KB admits
filtration, clearly no polynomial translation from KBy to KB can exist (assuming
PSPACE # EXPTIME).

Let us briefly recall the idea of filtration. For convenience of presentation we will
restrict attention to uni-modal languages. Let 9t = (W, R, V) be a model and let
Y. be a set of formulas. Define an equivalence relation ~x on W such that w ~x v
iff w and v agree on all formulas in ¥. Denote by [w] the ~s-equivalence class
containing w and let W/, be the set of all ~x-equivalence classes of W. Let Vy
be the valuation for W/, given by Vx(p) = {[w] | w = p}. By a filtration of M
through % we will mean any model MM’ = (W/ .., R', Vx), with R" a binary relation
over W, . Often, ¥ will be the set of subformulas of some formula ¢, denoted by
Sub(p).

Definition 2.4 A modal logic L admits filtration if for every formula ¢ there exists
a finite set of formulas ¥4 such that for every model M based on an L-frame, if ¢ is
satisfied at a point in M then ¢ is satisfied at a point in some filtration of M through
Y4 based on an L-frame. A modal logic L admits computable (polynomial) filtration
if it admits filtration and X4 is computable from ¢ (in polynomial time). We say



that a modal logic admits simple filtration if it admits filtration and X4 = Sub(¢)
for all formulas ¢.

Note that since |Sub(¢)| is linear in the length of ¢, every logic that admits
simple filtration admits polynomial filtration. Also note that the above definitions
are easily generalized to multi-modal logics.

The following folklore result was noted by several people (cf. e.g., [2, 15].)

Proposition 2.5 If L admits (computable / polynomial / simple) filtration, then
Ly admits (computable / polynomial / simple) filtration.

Proof: We simply apply the usual filtration, treating nominals as proposition let-
ters. All that needs to be checked is that the filtrated model is a hybrid model, in
other words, that every nominal occurring in a given formula is true at exactly one
point. Since each nominal is true at some point in the original model, it must also
be true at some point in the filtrated model. Now, suppose that a nominal 7 is true
at two points of the filtrated model, say [w] and [v]. Then w |= ¢ and v |= i in the
original model, and so w = v, which implies that [w] = [v]. O

Many well-known logics admit PTime-computable filtration, including K4, K45,
KD45, S4, S5, K4.2, K4.3, S4.2, S4.3, K5, K4.1, S4.1 [10, §5.3], S5 x S5 [14],
and PDL [13]. Each of these logics except K5, K4.1, S4.1 and PDL, admits
simple filtration. In the case of PDL, the filtration set ¥4 is the Fisher-Ladner
closure of ¢. The logics GL and Grz also admit filtration. Since these logics will
be referred to later on in the paper, we decided to discuss them explicitly.

Example 2.6 GL admits simple filtration [4, Ezercise in §4.8]: for any formula
¢, let Xy = Sub(¢). For any model M = (W, R, V) based on a GL-frame §, let
My, = (W/NE¢,RE¢,VE¢), where we let [w] Ry, [v] if the following two conditions
hold:

1. for every O € By, v =y V O implies w = O, and
2. there exists O € Ly with w = O and v = O,

It can be shown that My, is again based on a (finite) GL-frame, and for allw € W
and ¢ € Sub(¢), Ms,, [w] = ¥ iff M,w = . In particular, if ¢ is satisfied at
some point in M then ¢ is also satisfied at some point in Mx, .

Example 2.7 Grz admits polynomial filtration [6]: for any formula ¢, let £y =
Sub(p) U {O(—p A ) + Op € Sub(¢)}). For any model M = (W, R, V) based on
a Grz-frame §, let My, = (W/~y, Ry, Vs, ), where we let [w]Ry, [v] if [w] = [v]
or the following two conditions hold:

1. for every O € Xy, v =YV O implies w = Oy, and
2. there exists O € Ly with w = Oy and v = O,

It can be shown that My, is again based on a (finite) Grz-frame, and for allw € W
and ¢ € Sub(¢), My, , [w] E o iff M, w = . In particular, if ¢ is satisfied at some
point in M then ¢ is also satisfied at some point in My, .



2.3 Thomason simulation

The Thomason simulation [27] associates to each bi-modal logic L a uni-modal logic
L# with almost the same properties. We will use it in Section 3 in order to find
a uni-modal counterexample to the transfer of decidability and the finite model
property. We will now briefly review this construction, focusing only on the aspects
that are relevant for our purposes. For more details, the reader is referred to [19].

Given a bi-modal Kripke frame § = (W, Ry, Ra), let §° = (W', R') be the
uni-modal Kripke frame where W’ consists of two disjoint copies of each w € W
(denoted by w; and ws, respectively) plus an extra element denoted by ¢, and R =
{(wg,vg) | (w,v) € R, k = 0,1} U{(wy,ws), (we,w1) | w € W}U{(wo,t) | w e W}.
Given a Kripke complete bi-modal logic L, let L® to denote the uni-modal logic of
{§° |3 € Fr(L)}. It can be shown that every rooted L°-frame is isomorphic to §°
for some L-frame §.

This semantic construction is paralleled by a syntactic translation. Let us use
a, 81 and (5 as shorthands for 01, GO and ¢T A -OOT, respectively. For each
formula ¢(<O1, O2), let ¢° be defined inductively as follows:

p* = BiAp
(m¢)® = BiA=(¢°)
OGNy = PTAYE
C190° = B AOP*

Co9® = B AO(B ANO(Ba AO(BL A 9P)))

Proposition 2.8 For all bi-modal formulas ¢ and for all frames §, § & ¢ iff
3 E B — 8%

It follows from this result that if a Kripke-complete modal logic L is undecidable
(or, lacks the finite model property), the same holds for L°. As it happens, there is
also a converse translation (-)¥ from uni-modal formulas to bi-modal formulas, such
that §° | ¢ iff § &= ¢°. It follows that decidability and the finite model property
are in fact invariant under passage from L to L*®, as are many other properties [19].

Theorem 2.9 A Kripke-complete bi-modal logic L is decidable (has the finite model
property) iff L* is decidable (has the finite model property).

These results can be extended to hybrid logics. Just as in the case of modal logics,
given a Kripke complete bi-modal hybrid logic L we define L® to be the uni-modal
hybrid logic of the frame class {F* | § = L}. It is not hard to see that (-)® and (-) g
then commute: for any Kripke complete bi-modal logic L, (Ly)® = (L*) .

The above formula translation is also quite straightforwardly extended to for-
mulas containing nominals, by letting

= BLAGV OB AD)) .

Using this extended translation, Proposition 2.8 can be generalized to arbitrary
hybrid formulas:

Proposition 2.10 For all bi-modal hybrid formulas ¢ containing nominals iy, . .., iy,

and for all frames §, § = ¢ iff §° = (B1 A Npey (A D)) — ¢F.

Proof: [=] Suppose § = ¢, where § = (W, R1, R2), and considere any valuation
V for F* and world u such that §,V,u = 81 A Aj_; ~C(a Ad). We wil show
that §°,V,u = ¢*°. First, note that, since §°,V,u | 31, u = w; for some w € W.
Furthermore, note that each nominal occurring in ¢ is true at vy or vs, for some
v € W. Let V' be the valuation for § given by V'(p) = {w | w1 € V(p)} for all



proposition letters p and V' (i) = {w | V(i) = {w1} or V(i) = {wa}} for all nominals
i. It follows from the above considerations that V' is a well-defined hybrid valuation:
it assigns a singleton set to each nominal. Furthermore, a straightforward inductive
argument shows that, for all v € W, §, Vv = ¢ iff §°,v1 |E ¢°. In particular, since
¢ is valid on §, we may conclude that §°, V,u = ¢°.

[«] Suppose §° E (1 A Nj—y ~O(a A1) — ¢, where § = (W, Ry, Ra), and
consider any valuation V for § and any world w € W. Let V' be the valuation
for §* given by V'(p) = {v1 | v € V(p)} for all proposition letters and nominals
p. Clearly, V' is a well-defined hybrid valuation: it assigns singleton sets to the
nominals. Furthermore, a straightforward inductive argument shows that, for all
veW,§, Vv ¢iff §, v = ¢°. By construction, §, Vw1 = S AN_; ~O(ani),
and hence §°, V,wy = ¢*°. It follows that §, V,w | ¢. O

Theorem 2.11 Let L be any Kripke complete bi-modal hybrid logic. If L is unde-
cidable (lacks the finite model property) then L*® is also undecidable (also lacks the
finite model property).

Proof: Let L be any Kripke complete bi-modal hybrid logic, and let ¢ be any
hybrid formula containing nominals i1, . .., 4,. It follows from Proposition 2.10 that
¢ is satisfiable on a (finite) L-frame iff 81 A Aj_; ~O(a A1) A ¢ is satisfiable on a
(finite) L*-frame. Since the latter formula can be effectively computed from ¢, it
follows that undecidability and lack of the finite model property transfer from L to
L. O

As in the modal case, one could proceed to define analogous translations in the
other direction, i.e., from L® to L. a converse translation (-)® from uni-modal hybrid
formulas to bi-modal hybrid formulas, such that §° = ¢ iff § = ¢°. This translation
could then be used to show that decidability and the finite model property are in
fact invariant under passage from L to L°, as are many other properties. We will
not pursue this here, however, since the above results, in particular Theorem 2.11,
suffice for present purposes.

3 General transfer results

The main question we will address in this paper is the following: which properties
of logics are preserved under passage from L to Ly ? Tabularity (i.e., complete-
ness with respect to a single finite Kripke frame) is an example of a property that
transfers.

Theorem 3.1 If a modal logic L is tabular, then Ly is also tabular.

Proof: Let L be the modal logic of some finite §, and consider the frame class Fr(L).
It follows from Jénsson’s lemma [18] that this frame class consists precisely of those
frames that are isomorphic to disjoint unions of generated subframes of bounded
morphic images of F. A finite frame has (up to isomophism) only finitely many
bounded morphic images, and each of those is itself finite. Let the finite frames
B1,...,6, be all the bounded morphic images of §. It follows that every frame in
Fr(L) is isomorphic to a disjoint union of generated subframes of &1,...,&,. In
what follows, it will be convenient to assume without loss of generality that these
frames are mutually disjoint and that n > 1.

In order to show Ly is tabular, it suffices to show that Ly is complete for
some finite frame & € Fr(L). Take as & the disjoint union &; W --- ¥ &,,. If a
hybrid formula ¢ is Lp-consistent then, by definition, it is satisfied on some frame
in §' € Fr(L), under a valuation V and at a world w. By the above arguments, §



is isomorphic to a disjoint union of generated subframes of &q,...,&,,. Let 2 be
a component of § containing w. Then there is a generated subframe 2 of some
&) (k < n) such that 2 is isomorphic to 2'. Let h : A — A’ be the relevant
isomorphism. Fix a world u of ® not belonging to & and define a valuation V' on
& as follows:

V'(p) = {veAlh(v)eV(p)}
. {v} if V(i) = h(v) for some world v of A

V(i) = .
{u} otherwise

An inductive argument shows that (&,V’),h~1(w) | ¢. It follows that Ly is

complete for &, and hence is tabular. a

Note that the reason that we take all the bounded morphic images of § is that
hybrid formulas are not preserved under bounded morphic images. In other words,
if a frame & is a bounded morphic image of a frame § and ¢ is a hybrid formula,
then, unlike for modal formulas, the fact that § = ¢ does not imply that & | ¢.
Also note that, even though Theorem 3.1 shows that tabularity transfers from L to
Ly, the size of & is in general exponential in the size of §. Thus, we can define a
stronger notion, n-tabularity, that does not transfer, in general, from L to Ly for
any given n. We say that a logic L is n-tabular if it is tabular and n is the least
natural number such that L is complete with respect to a frame of size n.

Besides this positive transfer result, most results are negative. For a start,
while the basic modal logic K has the Beth property, Ky lacks it. Let us briefly
recall the definition of the Beth property. We will use =9'° to refer to the global
entailment relation on models, i.e., ':ngo ¢ means that for all models 9t based
on an L-frame, if 9t globally satisfies all formulas in 3 then 991 globally satisfies
¢. For a set of formulas 3(p) containing the proposition letter p (and possible
other proposition letters and nominals), we say that X(p) implicitly defines p, on
L-frames, if X(p) U X(p') h%lo p < p'. Here, p’ is a proposition letter not occurring
in ¥, and X(p’) is the result of replacing all occurrences of p by p’ in X(p). A (modal
or hybrid) logic L is said to have the Beth property if whenever a set of formulas
Y (p) defines a proposition letter p, on L-frames, then there is a formula 6 in which
p does not occur, such that ¥ ):%lo p < 0. The relevant formula 6 is called an
explicit definition of p, relative to 3 and L.

Proposition 3.2 Ky lacks the Beth property.

Proof: Let X ={p—i,jAq— C(iAp),j A—qg— (i A—p)}. In any model that
globally satisfies X, p holds nowhere besides (possibly) at the point named by the
nominal ¢, and it holds there if and only if ¢ holds at the point named j. In other
words, ¥ implicitly defines p in terms of ¢, ¢ and j.

Let § be the frame ({w, v}, {(v,w)}), and let V, V' be valuations for F such that
V(i) = V'(G) = {wh, V(G) = V() = {v}, V(p) = V() = 0 and V'(p) = {w}
and V'(¢) = {v}. Then (§,V) E X and (§,V’') E %, and (§,V),w [~ p and
(F, V'), w E p. Nevertheless, a simple bisimulation argument shows that w satisfies
the same formulas in the language with 4, j and ¢g. It follows that there can be no
explicit definition of p in terms of ¢, ¢ and j. O

A second negative transfer result is due to Areces et al. [1], who show by means
of a spy-point argument [5] that the satisfiability problem for the hybrid tense
logic K¢z is EXPTIME-complete. This implies that complexity does not transfer in
general, since the satisfiability problem for Ky is only PSPACE-complete. Note that



for the basic modal logic K, adding nominals does not increase the complexity: Kz
is still in PSPACE, as was first shown by Schaerf [25]. The modal logic of symmetric
frames KB provides a uni-modal counterexample to transfer of complexity. The
satisfiability problem for KB is PSPACE-complete [11]. However,

Theorem 3.3 The satisfiability problem for KBy is EXPTIME-complete.

Proof: The proof is again based on a spy-point argument. For any modal formula
o, let ¢’ =i ANO—i AOOOIAO@™, where i is any nominal and ¢~ is obtained from
¢ by relativising all modalities with — (i.e., replacing all subformulas of the form
O by O(—i A ) and replacing all subformulas of the form Oy by O(—i — )).
One can easily see that if ¢’ holds at a world w in a symmetric model 9t then ¢
holds globally in the submodel of 9t generated by w, minus the world w itself. It
follows that, on symmetric frames, ¢’ is satisfiable iff ¢ is globally satisfiable. The
global satisfiability problem for modal formulas on the class of symmetric frames
is ExPTIME-complete [11]. Hence, the satisfiability problem of KBy is EXPTIME-
hard. That the problem is inside EXPTIME follows from the fact that converse
PDL with nominals is in EXPTIME [12]. To see this, with every hybrid formula
¢ we associate a formula ¢~ in the language of converse PDL by replacing every
occurrence of < in ¢ by (aUa™) and replacing every occurrence of O in ¢ by [aUa™],
for some fixed atomic program a. Then ¢ is satisfiable on symmetric frames iff ¢~ is
satisfiable, and since converse PDL with nominals is in EXPTIME, we obtain that
KBy is also in EXPTIME. O

Decidability and the finite model property do not transfer either. For decidability,
this was first proved in [21, Theorem 14] in the context of description logic. That the
finite model property does not transfer follows from known results on the description
logic ALCFIO (cf. [23]). We will now give a simple example of a decidable modal
logic with finite model property whose hybrid companion is both undecidable and
lacks the finite model property. Let Koz @& S5 be the fusion of Koz and S5, where
K>3 is the normal modal logic axiomatized by the following two Sahlqvist axioms:

Ni<r<s 1k = Vicpar<s C1(pe Ap1) (at most 2 successors)
A1§k§4 O101pE — \/1§k<l§4 C101(pe Apr)  (at most 3 two-step successors)

Proposition 3.4 K>3 ® S5 has the finite model property and is decidable.

Proof: K3 is decidable and has the finite model property [26]. The same holds for
S5 [4]. Since decidability and the finite model property are preserved under fusions
[14], the result follows. O

Proposition 3.5 (Ky3 @ S5)p is undecidable and lacks the finite model property.

Proof: We will provide a reduction from the global satisfiability problem of Kas,
which is known to be undecidable, to the satisfiability problem for (Ko3 ® S5) 5.
For any uni-modal formula ¢, let ¢ = :AO50;<C9iA05¢. One can easily see that
if ¢’ holds at a world w in an model 9 based on a (Ka3 @ S5)-frame, then ¢ holds
globally in the submodel of 9 generated by w. Conversely, if ¢ is globally satisfied
in a model M = (W, R, V) based on a Kas-frame, then (W, R, W2 V'), w = ¢’ for
all w € W, where V' is the hybrid valuation that extends V' by mapping ¢ to {w}.
It follows that ¢ is globally satisfiable on a (finite) Kos-frame iff ¢’ is satisfiable
on a (finite) (Ka3 @ S5)-frame. Global satisfiability is undecidable for Kss, and
Kos lacks the global finite model property [26]. It follows that (Ka3 @ S5)p is
undecidable and lacks the finite model property. O



Note that the above proof is again based on a spy-point argument, and that the re-
sult would hold also if the S5-modality were replaced by a pair of tense modalities.
Using the Thomason simulation, the above example can be turned into a uni-modal
example of non-transfer of decidability and the finite model property: by Theo-
rem 2.9, (Ko3 @ S5)® has the finite model property and is decidable. As mentioned
in Section 2.3, ((Kz3 ® 85)°)y = ((K23 © S5)x)*®, and hence, by Theorem 2.11,
((Kas @ S5)%) i lacks the finite model property and is undecidable.

The above results also imply that decidability does not transfer under taking
fusions of hybrid logics, a phenomenon that has been observed and studied in [16].

In the remainder of this paper, we provide positive results for a class of logics that
includes several well-known non-canonical logics, including PDL, GL and Grz. We
show that for this class of logics, complexity, finite axiomatizability, interpolation
and uniform interpolation transfer.

4 Translations from hybrid logics to modal logics

In this section, we define two translations from the minimal hybrid language to
the basic modal language, and prove that they preserve satisfiability. The first
translation applies to logics that have a master modality and admit filtration. The
second translation applies to a class of logics that admit filtration but do not have
a master modality.

4.1 Logics with a master modality

First, let us recall the definition of a master modality.

Definition 4.1 A modal logic L has a master modality [4, p. 371] if there is a
modal formula ¢(p) containing only the proposition letter p such that for all models
M based on an L-frame and all worlds w, M, w = ¢(p) iff p is true somewhere in
the submodel of M generated by w (equivalently, if p is true at a point reachable
from w in a finite number of steps). If a logic has a master modality, we will refer
to it as & (more precisely, we will use © 1 as a shorthand for ¢p(v)).

Fact 4.2 1. Every logic of bounded depth has a master modality.
2. Bvery extension of K4 has a master modality.

Every extension of K5 has a master modality.

PDL has a master modality.?

FEvery extension of K4 x K4 has a master modality.

S T %

Every extension of the tense logic K4, with trichotomy has a master modality
(where trichotomy is the aziom Pp A\ Pq— P(pAPq)V P(qAPp)V P(pAq)).

Proof: 1. Take ¢ = \/nggn O¥p, where n is the bound on the depth.
2. Take p =pV Op.
3. Take p =p VvV Op VvV OOp
4. Take ¢ = ((U;a;)*)p.

5. Take d) =D vV <>1p vV <>2p \ <>1<>2p.

2For convenience, we assume that the language contains only finitely many atomic programs.
The results of this paper can easily be generalized to PDL with infinitely many atomic programs.

10



6. Take ¢ =pV PpV PFp
O

Note that K does not have a master modality (this can easily be shown by the
fact that every modal formula has a finite modal depth, and hence can only talk
about a small part of the generated submodel). Similarly, the basic tense logic K¢,
the tense logic of transitive frames K4; and the logic KB of symmetric frames do
not have a master modality.

The class of logics we will be working with is the class of logics that have a
master modality and that admit filtration. Let L be a Kripke-complete modal logic
that has a master modality and that admits filtration. Now we define a translation
from the language of Ly to the language of L. That is, we translate every hybrid
formula into a modal formula. For a hybrid formula ¢(i1, . . ., i), let ¢[i/p;] denote
the formula obtained from ¢ by uniformly replacing each nominal i by a distinct
new proposition letter p;, .

Theorem 4.3 Let L be a logic that has a master modality and that admits filtration.
Let ¢ be any hybrid formula. Then ¢ is Ly-satisfiable iff the modal formula

o =i/l A N\ (O A¥) = B, — 1))
1<k<n
YED 7/

is L-satisfiable, where ¥ sz . is the filtration set of oli/pi).

Proof: [=] Suppose (F,V),w = ¢ with § € Fr(L). Let V' be any valuation that
agrees with V on all proposition letters occurring in ¢, and such that V'(p;,) =
V (i1,) for each nominal . Clearly, (,V’),w = ¢[i/p;]. The truth of the second
conjunct of ¢* at w under V' follows directly from the fact that V'(p;, ) is a singleton
set for each k=1,...,n.

[«<] Suppose (§, V), w | ¢* with § = (W, R) € Fr(L). Without loss of generality,
we can assume that § is generated by w (note that ¢* is a modal formula: it contains
no nominals). Our task is to construct a hybrid model satisfying ¢. First, we will
filtrate (§,V). Let ¥ = Xz .. Since L admits filtration, there exists a model
M = (W/~y, Rx, V5) such that (W/.,, Rs) € Fr(L) and such that for all v € W
and ¥ € X, M, [v] E o iff (F,V),v = . In particular, M, [w] |= ¢[Z/pj]

Claim 1 Vx(p;,) contains at most one point (fork =1,...,n).

Proof of claim: Suppose [v], [v'] € Va(p;, ). Then v,v" € V(p;,), by the defini-
tion of Vx. Since (F,V),w E ®(p;, A1) — B(p;, — ) for all ¢ € 3, it follows
that v,v" agree on formulas in ¥. Indeed, if v | ¢ then w E ®(p;, A 1Y), so
w = B(p;, — ) and therefore v’ = 1. Thus, v ~x v' and so [v] = [v']. o

If every p;, is true at exactly one point, then the proof is finished, since we can
consider (W/.,,, Rx) to be a hybrid model for ¢. In general, however, this need
not be the case: p;, could be true nowhere. So, we need to ensure that for every
D, there is indeed a point where p;, is true. Let & be the disjoint union of two
isomorphic copies of (W/ ., Rs). For convenience, we will use [v]; and [v]3 to refer
to the two distinct copies of a world [v] € W/..,,. Since Fr(L) is modally definable,
it is closed under disjoint unions and hence, € Fr(L). Define the valuation V' for
(W/~s, Rx) so that V'(p) = {v1 | v € Vx(p)} for each proposition letter p occurring
in ¢, and for each nominal k =1,...,n,

[y Ve = ()
V@”‘{m@}ﬁwmn=w

11



Intuitively speaking, the only role of the second disjoint copy of (W/., Rx) is
to provide enough points so that we can make each p;, true somewhere, without
affecting the trutll of ¢ at [w];. Indeed, a simple bisimulation argument shows that
(67 V/)7 [w]l ): gb[l/p_;]

By construction, V' assigns to each p;, a singleton set. Replacing each p;, by
the corresponding iy, we therefore obtain a hybrid model again, which furthermore
satisfies ¢ at [w];. We conclude that ¢ is satisfiable on Fr(L). O

Corollary 4.4 Let L be a complete modal logic that has a master modality and that
admits filtration. Let ¢ be any hybrid formula with nominals i1,...,i,. Then ¢ is
Ly -valid iff the formula:

N @i A%) = Blpi, —v) ) = oli/p]

1<k<n
YES .y
is L-valid.
Proof: Suppose Ly - ¢, for some formula ¢ with nominals 41, ...,47,. Then —¢ is

not L p-satisfiable. Hence, by Theorem 4.3,
N\ Swi A ) = Blpi, — ) ) A—0li/5i]

1<k<n
wezﬁ(b

is not L-satisfiable, which means that

LE (N @i ne) - B, — ) ) - ol
JEE

a

Remark 4.5 We remark here that many well-known logics are known to have a
master modality and to admit polynomial filtration. We list some of them with
references for the proofs: K4, K45, KD45, S4, S5, K4.2, K4.3, S4.2, S4.3, K5,
K4.1, S4.1 [10, §5.3]; GL and PDL [4, §4.8]; S5 x S5 [14]; Grz [6]. Moreover,
all of these logics except K5, K4.1, S4.1, PDL and Grz admit simple filtration
(cf. Definition 2.4).

4.2 Logics with shallow axioms

Now we show that even though the basic multi-modal logic K,, does not have a
master modality, K,y admits a satisfiability-preserving translation into K,,. We
call a modal formula shallow if every occurrence of a proposition letter is in the
scope of at most one modal operator. We will show that the preservation result
holds for extensions of K, with shallow axioms. Note that every non-iterative
axiom [22] is shallow, as well as every closed formula (i.e., a formula in which no
proposition letters occur).

We will use ©¢ as a shorthand for \/ ., O, &= as a shorthand for

\/ogkgn<>~~<>¢-

k times

For every formula ¢ let md(¢) be the modal depth of ¢ [4, Definition 2.28].
Theorem 4.6 A hybrid formula ¢ is satisfiable iff the modal formula

o = o) A N (05 (i, A ) — BEO (i, — )
1<k<n
YeSub(8i/pi])

is satisfiable.
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Proof: The left to right implication is easy to prove. Now suppose that ¢* is
satisfiable. Let M, w | ¢*, with M = (F,V) and § = (W, (Ro)oecmop). Without
loss of generality, we can assume that § is generated by w. Let Re = o eyon Bo-
For every point v € W, let dz(v) be the minimal number of Re-steps in which v
is reachable from the root w. Consider the equivalence relation ~ Sub(6[i/F])" Two
worlds stand in this equivalence relation iff they satisfy the same sub%ormulas of
#[i/p;). For any ~ Sub(o[i/p;))-eduivalence class [v], choose a representative f[v] € [v]
such that for any v' € [v] we have dz(f[v]) < dz(v’). Note that while flw] = w,
these representatives are in general not unique. Also note that for every v € W and
¢ € Sub(gli/pi]), M, v = ¥ iff M, fv] = .

Let W = {f[v] | v € W}. For each & € MOD, define the relation R}, on W’ so
that f[u]RY f[v] iff there is a v’ € [v] with f[u]Rov'. Define a valuation V/ on W' by
letting f[w] € V'(p) iff w € V(p) for all p € Sub(¢[i/pi]). Let F = (W', (Rl)oemon)
and M = (F', V).

Claim 1 For any € Sub(¢[i/p;]) and any pointv € W, M, f[v] = iff M, flv] |=
G

Proof of claim: By induction on the complexity of . If ¥ is a propositional
letter, then the claim holds by the definition of V. The Boolean cases are obvious.
Finally, let ¢ = <, for some ¢ € MOD.

[=] Suppose that 91, f[v] = Ox. Then there is a point u € W such that
flv]Rou and 9, u = x. Since y € Sub(¢[i/p;]) and u ~sub(ei/p) o lul, we have
that M, flu] = x. By the induction hypothesis, it follows that 9V, flu] E x
Finally, we have that f[v]R% f[u], by the definition of R},. Hence, I, fv] = Ox.

[<] Suppose that 9, flv] E ©Ox. Then there is an flu] € W’ such that
flv]Rs flu] and 9, flu] E x. By the induction hypothesis, M, flu] | x. Also,
by the definition of R, there must be a v/ € [u] such that f[v]Rou’. Since
X € Sub(¢li/p;]) and u' ~sub(i/p flul, it follows that 9, v’ = x. We con-
clude that M, flv] E Ox. .

Let us define dgp similar to dz. Note that § need not be point-generated any-
more. For those f[v] € W’ that are not reachable from the root flw] = w, we let

dg: (f[v]) = o0.

Claim 2 dz(f[v]) < dgz (f[v]), for allv e W

Proof of claim: If dgz (f[v]) = oo, the claim obviously holds. Otherwise, the
proof proceeds by induction on dg: (f[v]). The base case, with dz (f[v]) = 0, only

applies if f[v] = w, in which case the claim clearly holds. Next, suppose dg: (f[v]) =
n + 1. By definition, there must be a path of the form

Ry, Ry, 'n.+1
flw=w— - “f[] flv]

for some <q,...,<On1 € MOD. It follows that dg (f[u]) < n, and hence by the

induction hypothesis, dg(f[u]) < dg/(f[ ]) < n. Since flu]Ro,,, [ ], by the defi-
nition of Ro’ we have that there is a v’ € [v] such that f[u]Ro,,,v’. This implies
that dgz(v') < n+1. By the definition of f, we know that dg(f[v]) g dg(v’), because
v’ € [v]. Therefore, dz(f[v]) <n+ 1. o

Claim 3 For all k = 1...n, there is at most one world flv] € W' such that
dy: (f[v]) < md(¢) and I, flv] = pi,.

Proof of claim: Suppose M, f[v] = p;,, and W, flu] | pi,, with dg (f[v]), dg (f[u]) <
md(¢). By Claim 2, dz(f[v]), dz(fu]) < md(¢). Furthermore, 9, f[v] = p;, and
9, flu] = pi,,. By our initial assumption, M, w = ¢*, hence f[v] ~gupe) flul,
which implies that f[v] = f[u]. -

13



From Claim 1, we immediately deduce that 9, w = ¢[i/p;]. The valuation of
Diys---,Di, can be restricted to the worlds with depth < md(¢) without affecting
the truth of (;S[Z/p_;] at w. In this way, we ensure that every p;, is true at at most
one world. Finally, applying the same argument as in the proof of Theorem 4.3, we
conclude that the original hybrid formula ¢ is satisfiable. a

Note that the length of ¢* is in general exponential in the length of ¢, but that
in case of uni-modal languages, it is polynomial.

Let L be a modal logic defined by finitely many shallow axioms, and for a hybrid
formula ¢(iy,...,1,), let

o = li/ml A N (05U (py, Ay) - BED (py, )
1<k<n
YED
where ¥ consists of all subformulas of ¢ plus all closed subformulas of the (finitely
many) shallow axioms of L (recall that a modal formula is closed if it contains no
proposition letters).

Theorem 4.7 Let L be any complete modal logic axiomatized by finitely many shal-
low axioms. A hybrid formula ¢ is Ly -satisfiable iff ¢* is L-satisfiable.

Proof: We use the same construction as in the proof of Theorem 4.6, but now we
use a richer filtration set, that also includes all closed subformulas of the shallow
axioms of L. It suffices to show that the constructed frame §’ is an L-frame. Let
V' be a valuation on §’, and let € W' be such that (§',V’),z = ¢. Define V on
§ such that v € V(p) iff flv] € V'(p). We claim that for all shallow axioms x of L
and for all v e W, (§,V), f[v] E x iff (F,V"), flv] = x.

This, we prove by induction on x. Note that x is shallow, and hence we may
assume that x is generated by the following recursive definition:

X =T |p]| x| x1Ax2 | Cv, where ¢ is any Boolean combination of
proposition letters and closed formulas.

The only non-trivial case in the induction is when x is of the form <t where ) is
a Boolean combination of proposition letters and closed formulas. In this case, we
reason as follows.

[=] Suppose (F,V), f[v] &= &1 Then there is a u € W such that flv]Rou and
(F,V),u = 9. By the definition of V and the fact that all closed subformulas of
¥ are in the filtration set, it follows that (§’,V”’), f[u] = . By definition of R%,
fI]Re f[u]. Hence, (&', V'), f[v] | 4.

[<] Suppose (§',V’), flv] E <. Then there is an flu] € W’ such that
(&, V"), flu] E ¢ and f[v]R, flu]. By definition of R, there is a v’ € [u] such
that f[v]Rou’. By the definition of V and the fact that all closed subformulas of 1)
are in the filtration set, it follows that (§, V), «' |= . Hence, (§,V), f[v] & Ov.

O

This covers logics axiomatized using reflexivity (Op — p), totality (¢T) and
bounded width (bw, = Op1 A+ A Opp — Vicpci<pn OOk AD1))-

Note again that the length of ¢* is in general exponential in the length of ¢, but
that in case of uni-modal languages, it is polynomial.

Corollary 4.8 Let L be a complete modal logic axiomatizable by finitely many shal-
low axioms. Let ¢ be any hybrid formula with nominals i1, . ..1,. Then ¢ is Ly -valid
iff the following formula is L-valid:

N o= (py Ag) — OSIO (p, ) ) — ¢li/pi]

1<k<n
)
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where X consists of all subformulas of ¢ plus all closed subformulas of the (finitely
many) shallow azioms of L.

Proof: As for Corollary 4.4. O

5 Applications of the translations

From Theorem 4.3 and 4.7, together with the observation that for logics admitting
polynomial filtration, the length of ¢* is polynomial in the length of ¢, we obtain
the following transfer results for complexity.

Corollary 5.1 Let L be a complete modal logic satisfying one of the following con-
ditions:

(a) L has a master modality and admits polynomial filtration.
(b) L is a uni-modal logic defined by finitely many shallow axioms.

Then Ly -satisfiability is polynomially reducible to L-satisfiability.

Hence, for modal logics L satisfying the conditions of Corollary 5.1, complexity
transfers in the following sense: if L is in (complete for) a complexity class C
closed under polynomial reductions, then Ly is also in (complete for) C.> Note
that Corollary 5.1 cannot be easily generalized: KB, the logic of symmetric frames,
admits polynomial filtration, yet by Theorem 3.3, KBy is ExpTIME-complete,
whereas KB is only PSPACE-complete.

Next, we will discuss the issue of transfer of interpolation and uniform interpo-
lation. For any hybrid formula ¢, let P(¢) and N(¢) denote the set of proposition
letters and nominals, respectively, occurring in ¢.

Definition 5.2 (Interpolation for hybrid logics) A hybrid logic L is said to
have interpolation over proposition letters if for all formulas ¢ and i such that
Lt ¢ — 1, there is a formula 0 such that LE ¢ — 0, L+ 0 — ¢ and P(0) C

P(¢) NP(y).

Note that according to this definition, § might contain nominals occurring in ¢ but
not in ¢ or vice versa. It seems more natural to require also the nominals in the
interpolant 6 to occur both in ¢ and in . However, it turns out that almost all
hybrid logics lack this strong form of interpolation [7].

Recall that a modal logic admits simple filtration if it admits filtration and
for every formula ¢ we have ¥, = Sub(¢). For logics admitting simple filtration,
interpolation transfers.

Theorem 5.3 Let L be a complete modal logic satisfying one of the following con-
ditions:

(a) L has a master modality and admits simple filtration.
(b) L is defined by finitely many shallow axzioms.

If L has interpolation, then Ly has interpolation over proposition letters.

3The familiar complexity classes NP, PSPACE, ExpTIME, NEXPTIME, 2EXPTIME, etc. are all
closed under polynomial reductions.

15



Proof: We only prove (a), since (b) is similar. Suppose Ly F ¢ — 1. Let iy, ooy in
be the nominals occurring in the formula ¢ — ¢, and let 3 = Sub(=(¢ — ¥)[i/pi])
By Corollary 4.4, the following formula is L-valid.

N @i AX) = Blpi, — ) = (80/5i] — v /5] m

1<k<n

XEX
The antecedent of this formula says that for all 1 < k < n, if two worlds w and
w’ in the model both satisfy p;,, then w and w' satisfy exactly the same formulas
in X. Note that every formula in ¥ is a Boolean combination of subformulas of
oli/p;] and ¥[i/p;]. Hence, to say that w and w’ satisfy the same formulas in ¥ is
equivalent to saying that they satisfy the same subformulas of ¢[i/p;] and ¥[i/p;].
Therefore, the formula

A S AX) = B, — ) = (98] — wli/5i) (2)
1<k<n
XE€Sub(¢[i/p;])USub(y[i/pi])

is semantically equivalent to (1), and hence L-valid. It is easy to see that (2) is
equivalent to

A @i AX) = Blpi, — X)) A 6li/5i] -
1<k<n
XESub(¢[i/pi])
A @i AX) = Blpi, — ) — I/
1<k<n
XESub(y[i/p7])

Let 6 be the modal interpolant for (3) in L. Note that apart from the proposition
letters p;,, ..., , 0 only contains proposition letters that occur both in ¢ and in .
Now, since Ly extends L and is closed under uniform substitution of formulas for
proposition letters, we have:

LHF< A <NWA@—%HQHX»A¢H9mﬁ

1<k<n
XESub()
L0/l — (N @lnAx) =B —x) =¥
1<k<n
XESub(v)

Since (i A x) — B(i — x) is valid in hybrid logic for any i and x, it follows that
Ly + ¢ — 0[]7,/%] and Ly F G[pj/za — 1. Finally, as we mentioned above, all
proposition letters occurring in 6[p;/i| occur both in ¢ and in ¢. We conclude that
0[p; /i is an interpolant for ¢ — 1. O

Definition 5.4 (Uniform interpolation for hybrid logics) A hybrid logic L has
uniform interpolation over proposition letters if for each formula ¢ and each finite
set of proposition letters P C P(¢), there is a formula ¢p such that

i P(¢P) - P7 and

e For all formulas v, if P(¢) NP(¢) C P and N(¢) C N(¢), then LE ¢ — ¢ iff
LEop— .

In contrast to what one might expect, the uniform interpolant ¢ p does not apply
to formulas ¢ that contain nominals not occurring in ¢.
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Theorem 5.5 Let L be a complete modal logic satisfying one of the following con-
ditions:

(a) L has a master modality and admits simple filtration.

(b) L is defined by finitely many shallow formulas.

If L has uniform interpolation, then Ly has uniform interpolation over proposition
letters.

Proof: We only prove (a), since (b) is similar.
Let ¢ be a hybrid formula, P C P(¢), and let N(¢) = {é1,...,ix}. Let P’ =
PU{pi,,-.-,pi.} Let 6 be a uniform interpolant in L over P’ of the formula

¢t = oli/mIn N\ @i AX) = B — X))
1<k<n
XESub($[i/pi])

We claim that 6[p; /ﬂ is a uniform interpolant in Ly of ¢ over P. Consider any
hybrid formula ¢ with P(¢)) N P(¢) € P and N(¢) C N(¢). We will show that
Lyt ¢ — b iff Ly - 0[p; /i) — .

[=] Suppose Ly F ¢ — . Let X = Sub(—(¢ — ¥)[i/p;]), By Corollary 4.4, we
have that the formula

A @i M) = Blos, — X)) — (0li/51] - vl/7])
1<k<n
XEX

is L-valid. The same argument as in the proof of Theorem 5.3 shows that

LE(sf/m A N i Ax) = Bs — X)) —
1<k<n
XESub([p; /7))

(A @ rn) = Bl ) — wfi/a]

XESub(¥[pi /1))
or, equivalently,
pee = (( A\ ®@iAx) — B, — X)) — 1/
1<k<n
xESub([pi /1))
Since 0 is a uniform interpolant for ¢*, it follows that
LEo—(( N\ ®miAx) — B, — X)) — 0/
1<k<n

XESub(¥[p; /3))

Since Ly extends L and is closed under uniform substitution of formulas for
proposition letters, we have:

Lut o/l - (( N\ @lin) = Bl — ) = v)
xlésif&)

Since ®(i A x) — B(i — x) is valid in hybrid logic for any nominal i and
formula , it follows that Ly - 0[p;/i] — 1.
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[«<] Suppose Ly F 0[p;/i) — 1. Since 6 is a uniform interpolant for ¢*, L - ¢* —
0. Ly extends L and is closed under uniform substitution, hence

Lt (64 FANRCEE R —x)) — 0[5/
xESub($)

Since Ly F (i A x) — B(i — x) for any nominal ¢ and formula ¥, it follows
that Ly - ¢ — 0[p;/i], and therefore, Ly F ¢ — 1.

a

It is known that K, GL, S5 and Grz have uniform interpolation (see [29] and
[17]). From Theorem 5.5 and the fact that GL and S5 admit simple filtration,
it follows immediately that Ky, S5y and GLy have uniform interpolation over
proposition letters. Grz does not admit simple filtration. Nevertheless, the same
technique can be applied to Grzy as well.

Theorem 5.6 Grzy has uniform interpolation over proposition letters.

Proof: Consider again the proof of Theorem 5.5. The crux of the proof lies in the
fact that the filtration set Sub(—(¢ — 1)) can be split up in two disjoint sets, such
that every formula in the first set contains only symbols that occur in ¢, and every
formula in the second set contains only symbols that occur in . As we will now
show, the same holds for the filtration set of Grz. To see this, recall Example 2.7
and note that

Sap—yy = Sub({=(¢ — )} U{O(=x A OX) | Ox € Sub(—~(¢ — ¥))})
= Sub({~(¢ = ¥)} U{O(=x A Ox) | Ox € Sub(¢) U Sub(v))})
{=(¢ =), ¢ — P} USub(¢) U Sub({O(=x A Ox) | Ox € Sub(¢)})
U Sub(¥) U Sub({O(—x A Ox) | Ox € Sub(¥)})

= {~(¢ =)0 = }UTs ULy

Hence, every formula in Eﬂ(qﬁﬁw) is a Boolean combination of formulas in ¥, and
>y. The same argument as in the proof of Theorem 5.5 now shows that Grzy has
the uniform interpolation over proposition letters. O

Recall from Section 2.1 the definition of L, i.e., the axiomatic hybrid compan-
ion of the modal logic L.

Theorem 5.7 Let L be a complete modal logic satisfying one of the following con-
ditions:

(a) L has a master modality and admits filtration.
(b) L is aziomatized by finitely many shallow modal formulas.

Then Ly = LY.

Proof: We only prove (a), since (b) is similar.

That L C Ly is clear (it suffices to observe that (i A ¢) — B(i — @) is valid,
and that the inference rules preserves validity). In the remainder of the proof, we
show that Ly C LH.

Suppose Ly F ¢, for some formula ¢ with nominals iy,...,4,. Let ¥ = Zwﬁ/m]‘
Then by Corollary 4.4, the formula

N\ S AY) = B, — ) ) = 6li/5i]
1<k<n
PED
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is L-valid, and hence

LF ( N\ @i AY) — B, — ) ) — ¢[i/Pi]

Since L contains all substitution instances of formulas in L, we have that

P (A 0Gnw) =Bl —) )~ o
Pes

By definition, L¥ = (i A x) — B(i — x) for all i and x. Since L is closed under
Modus Ponens, we conclude that LY F ¢. O

Remark 5.8 Suppose L is a logic that satisfies our conditions (has a master modal-
ity and admits filtrations). Furthermore, suppose L is complete for a frame class
F. In general we cannot conclude from our results that L is complete for F. All
we know is that L is complete for Fr(L). Consider the case of GL. As is well
known, GL is not only complete for the class of transitive conversely well-founded
frames (which it defines), but also for the class of finite transitive irreflexive trees
(finite trees for short). By Theorem 5.7 we know that GL* is complete for the
class of transitive conversely well-founded frames. As it turns out, though, GLY is
not complete for the class of finite trees: the formula

OpASOD) A OlgACi) — O(pACg) vV OlgAOp) vV O(pAg)

is valid on finite trees but is not valid on the class of transitive conversely well-
founded frames. Hence, it is not derivable in GL*. We conjecture that if this
formula is added as an axiom to GL*, the resulting logic is complete for finite
trees.

6 Conclusions

We addressed the question which properties transfer under passage from a modal
logic to its (semantic) hybrid companion. We showed that tabularity transfers
and the Beth property does not. Furthermore, we gave simple counterexamples to
transfer of complexity, decidability and the finite model property.

Next, we provided satisfiability preserving translations from certain hybrid com-
panion logics to the corresponding modal logics. Using these translations, we ob-
tained transfer results concerning complexity, (uniform) interpolation and axiomatic
completeness. These transfer results apply to modal logics with a master modality
that admit filtration, and to logics axiomatized by shallow formulas, i.e., formulas
in which every occurrence of a proposition letter is under the scope of at most one
modal operator.

There are still many questions remaining. The study of this topic could be
developed in at least three directions: (1) find other classes (or extend the class of
logics we are working with) for which the translation works, (2) see which other
properties do or do not transfer from L to Ly, (3) generalize these results to richer
hybrid languages. Regarding the first point, our result concerning the logic of
symmetric frames KB suggests that the class of logics to which the translation
applies cannot be easily generalized. Concerning the second point, it was proved in
Gargov and Goranko [15] and in [9] that canonicity transfers. Interesting remaining
questions are whether interpolation and compactness transfer in general. With
respect to the third point, generalizations of the present results to hybrid languages
with @-operators can be found in [8].

19



Acknowledgments. The authors are very grateful to Johan van Benthem, Patrick
Blackburn, Maarten Marx and Valentin Goranko for helpful discussions and valu-
able suggestions as well as to Loredana Afanasiev for carefully reading the paper.
We would also like to thank the anonymous referees for their useful comments.

References

1]

Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logics: Charac-
terization, interpolation and complexity. Journal of Symbolic Logic, 66(3):977—
1010, 2001.

Patrick Blackburn. Nominal tense logic. Notre Dame Journal of Formal Logic,
34:56-83, 1993.

Patrick Blackburn. Internalizing labelled deduction. Journal of Logic and
Computation, 10(1):137 — 168, 2000.

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cam-
bridge University Press, Cambridge, UK, 2001.

Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic,
Languages and Information, 4(3):251-272, 1995.

George Boolos. The Logic of Provability. Cambridge University Press, 1993.

Balder ten Cate. Interpolation for extended modal languages. Journal of
Symbolic Logic, 70(1):223-234, 2005.

Balder ten Cate. Model theory for extended modal languages. PhD thesis,
University of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01.

Balder ten Cate, Maarten Marx, and Petrucio Viana. Hybrid logics with
Sahlqvist axioms. Logic Journal of the IGPL, 13(3):293-300, 2005.

Alexander Chagrov and Michael Zakharyaschev. Modal logic. Oxford Univer-
sity Press, 1997.

Cheng-Chia Chen and I-Peng Lin. The complexity of propositional modal the-
ories and the complexity of consistency of propositional modal theories. In
Anil Nerode and Yuri Matiyasevich, editors, Proceedings of the Third Interna-
tional Symposium on Logical Foundations of Computer Science, volume 813 of
Lecture Notes in Computer Science. Springer, 1994.

Giuseppe De Giacomo. Decidability of Class-Based Knowledge Representation
Formalisms. PhD thesis, Universita di Roma “La Sapienza”, 1995.

Michael J. Fisher and Richard E. Ladner. Propositional modal logic of pro-
grams. In Proceedings of the ninth annual ACM symposium on theory of com-
puting, pages 286294, 1977.

Dov Gabbay, Agnes Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-
Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in
Logic. North-Holland, 2003.

George Gargov and Valentin Goranko. Modal logic with names. Journal of
Philosophical Logic, 22:607-636, 1993.

20



[16]

[17]

[18]

[19]

Silvio Ghilardi and Luigi Santocanale. Algebraic and model-theoretic tech-
niques for fusion decidability in modal logic. In Moshe Vardi and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 03), volume 2850 of Lecture Notes in Artificial Intelligence, pages
152-166. Springer Verlag, 2003.

Silvio Ghilardi and Marek Zawadowski. Sheaves, Games and Model Comple-
tions. Trends in logic. Kluwer Academic, 2002.

Bjarni Jonsson. Algebras whose congruence lattices are distributive. Math.
Scand., 21:110-121, 1967.

Marcus Kracht and Frank Wolter. Simulation and transfer results in modal
logic — a survey. Studia Logica, 59:149-177, 1997.

Oliver Kutz, Frank Wolter, Holger Sturm, Nobu-Yuki Suzuki, and Michael
Zakharyaschev. Logics of metric spaces. ACM Transactions on Computational
Logic, 4(2):260-294, 2003.

Olivier Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-
connections of abstract description systems. Artificial Intelligence, 156(1):1-73,
2004.

David Lewis. Intensional logics without iterative axioms. Journal of Philo-
sophical Logic, 3:457-466, 1974.

Carsten Lutz. An improved nexptime-hardness result for the description logic
ALC extended with inverse roles, nominals, and counting. LTCS-Report LTCS-
04-07, Chair for Automata Theory, Institute for Theoretical Computer Sci-
ence, Dresden University of Technology, Germany, 2004. See http://lat.inf.tu-
dresden.de/research /reports.html.

Solomon Passy and Tinko Tinchev. An essay in combinatory dynamic logic.
Information and computation, 93:263-332, 1991.

Andrea Schaerf. Reasoning with individuals in concept languages. Data and
Knowledge Engineering, 13(2):141-176, 1994.

Edith Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of
Amsterdam, 1993.

Steven K. Thomason. Reduction of tense logic to modal logic ii. Theoria,
41:154-169, 1975.

Stephan Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence Re-
search, 12:199-217, 2000.

Albert Visser. Uniform interpolation and layered bisimulation. In Gédel 1996,
volume 6 of Lecture Notes Logic, pages 139-164, Berlin, 1996. Springer.

21



