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Abstract. We propose a new perspective on logics of computation by combining
instantial neighborhood logic INL with bisimulation safe operations adapted from
PDL and dynamic game logic. INL is a recently proposed modal logic, based on
a richer extension of neighborhood semantics which permits both universal and
existential quantification over individual neighborhoods. We show that a number
of game constructors from game logic can be adapted to this setting to ensure
invariance for instantial neighborhood bisimulations, which give the appropriate
bisimulation concept for INL. We also prove that our extended logic IPDL is a
conservative extension of dual-free game logic, and its semantics generalizes the
monotone neighborhood semantics of game logic. Finally, we provide a sound
and complete system of axioms for IPDL, and establish its finite model property
and decidability.

1 Introduction

In this paper, we introduce a new modal logic of computation, in the style of proposi-
tional dynamic logic, based on instantial neighborhood logic INL [3]. The logic INL
is based on a recent variant of monotone neighborhood semantics for modal logics,
called instantial neighborhood semantics. In the standard neighborhood semantics, the
box operator has the interpretation: Op is true at a point if there exists a neighborhood
in which all the elements satisfy the proposition p. So the box operator has a built-in
fixed existential-universal quantifier pattern. In instantial neighborhood logic, we allow
both universal and existential quantification over individual neighborhoods, so the ba-
sic modality has the form O(py, ..., pn; ¢). This formula is true at a point if there exists
a neighborhood N in which all the elements satisfy the proposition ¢, and furthermore
each of the propositions pj, ..., p, are satisfied by some elements of N. INL is more
expressive than monotone neighborhood logic, and comes with a natural associated no-
tion of bisimulation together with a Hennessy-Milner theorem for finite models. It has
a complete system of axioms, has the finite model property, is decidable and PSpace-
complete.

Formally, our proposal is to consider an extension of the base language INL by bisim-
ulation safe “program constructors”, as in the standard propositional dynamic logic of



sequential programs (PDL). The usual repertoire here consists of choice, test, sequen-
tial composition and a Kleene star for program iteration. Similar additions have already
been studied extensively for the standard (monotone) neighborhood semantics, where
the constructors are interpreted as methods of constructing complex games (this idea
dates back to [13]). In the neighborhood setting, some additional operations are avail-
able, including the dual construction. This is a very powerful construction, and it is well
known that dynamic game logic is not contained in any fixed level of the u-calculus al-
ternation hierarchy [4].

We think of our extended logic, which we call instantial PDL (IPDL for short), as a dy-
namic logic for a richer notion of computation than sequential programs. We consider
a computational process as an agent acting in an uncertain environment that affects the
outcome of each action. This is similar to the thinking behind the alternating-time tem-
poral logic ATL of Alur et al. [1]. Dynamic game logic can be interpreted in a similar
way, thinking of processes as “games against the environment”. Instantial neighborhood
semantics introduces a more fine-grained perspective to this setting, with a more expres-
sive language and a finer bisimulation concept than standard neighborhood bisimilarity,
namely the instantial neighborhood bisimulations of [3].

We generalize operations from game logic in the setting of instantial neighborhood
logic, with the implicit desiderata that the extended language should be bisimulation
invariant, and that the operations should be reasonably simple. Note that bisimulation
invariance now has a new meaning, since we are working with instantial neighborhood
bisimulations. This means that setting up the program constructors correctly is a non-
trivial task, and the constructors known from game logic need to be revised in order
to ensure bisimulation invariance. The case for sequential composition of programs is
particularly subtle, and a naive generalization of the composition operation from game
logic could easily break bisimulation safety. In particular, the standard definition from
game logic is not bisimulation safe in our sense. One of our key contributions in this
paper is to provide a bisimulation safe sequential composition operation. We also find
natural analogues of test, choice and Kleene star. As opposed to the case of dynamic
game logic, we cannot see any obvious candidate for a dual constructor. However, a dual
to the choice operator can be defined, generalizing “demonic choice” in game logic and
bearing a similarity to the parallel game composition operation considered in [15]. We
show that our logic is in fact a conservative extension of dual-free game logic, and the
instantial neighborhood semantics can be seen as a generalization of the semantics for
dual-free game logic over monotone neighborhood structures, in a sense that will be
made precise in Section 4.2.

We provide sound and complete axioms for our instantial propositional dynamic logic
IPDL, prove decidability via finite model property, and establish bisimulation invari-
ance. The latter amounts to bisimulation safety for our program constructors. The com-
pleteness proof for the language IPDL, including all the program constructors that we
consider, is based on the standard completeness proof for PDL (see [5] for an expo-
sition), but involves some non-trivial new features. In particular, the axiom system re-
quires two distinct induction rules, corresponding to a nested least fixpoint induction,



and the model construction makes heavy use of a normal form for INL-formulas estab-
lished in [3].

2 Instantial neighborhood logic

2.1 Syntax and semantics

We start by reviewing the basic language for instantial neighborhood semantics. The
only difference with our first paper on instantial neighborhood logic is that we are inter-
preting the language over labelled neighborhood structures, where the labels play the
same role as “atomic programs” in PDL or “atomic games” in game logic.

The syntax of INL is given by the following grammar:

p:=pePropleAg|-¢|lal(¥;¢)

where a ranges over a fixed set A of atomic labels, and ¥ ranges over finite sets of
formulas of INL. We have deviated a bit from the syntax of [3] here in allowing ¥ to be
a finite set rather than a tuple of formulas. We shall sometimes write [a]({/1, ..., ¥nu; @)
rather than [a]({¢1, ..., ¥, }; @), in particular we write [a](i; ¢) rather than [a]({¢}; @),
and [a]e rather than [a](0; ).

Formulas in INL will be interpreted over neighborhood structures.

Definition 1. A neighborhood frame is a structure (W, R) where W is a set and R as-
sociates with each a € A a binary relation R, € W X PW. A neighborhood model
(W, R, V) is a neighborhood frame together with a valuation V : Prop — PW.

We define the interpretations of all formulas in a neighborhood model M = (W, R, V) as
follows:

-Ipl = V(p).

-l A vl = el N [

- [=ell = W [l

-u € [[al(yi, ..., ¥ @) ] iff there is some Z € W such that:

(u,Z) e Ryand Z C [lo]l, ZN [yl # 0 fori e{l,...,k}

We write M, v I ¢ for v € [¢]], and we write I ¢ and say that ¢ is valid if, for ev-

ery game model 9t and v € W, we have I, v - ¢. We allow the notation [—]ly; to make
explicit reference to the model in the background.



Neighborhood models come with a natural notion of bisimulation, introduced in a more
general setting in [3]. For this definition, the so called Egli-Milner lifting of a binary
relation will play an important role:

Definition 1 The Egli-Milner lifting of a binary relation R € X X Y, denoted R isa
relation from PX to PY defined by: ZRZ' iff:

1. Forall z € Z there is some 7 € Z’ such that zR7'.
2. Forall 7 € Z' there is some 7 € Z such that zZRz7'.

We write R; S for the composition of relations R and §. It is well known that the Egli-
Milner lifting preserves relation composition:

R;S:E;§

Definition 2 Let M = (W,R, V) and W' = (W',R’, V') be any neighborhood models.
The relation B C W x W’ is said to be an instantial neighborhood bisimulation if for all
uBu’ and all atomic labels a we have:

Atomic Forall p, u e V(p)iffu' € V'(p).
Forth For all Z such that uR,Z, there is some Z' such that 'R, Z’ and ZBZ'.
Back For all Z' such that w'R,Z’ there is some Z such that uR,Z and ZBZ'.

We say that pointed models M, w and N, v are bisimilar, written M, w «— N, v, if there
is an instantial neighborhood bisimulation B between I and N such that wBv.

It is easy to check that all formulas of INL are invariant for instantial neighborhood
bisimilarity:

Proposition 1 If M, w «— N, v then M, w I+ ¢ iff N, v I @, for each formula ¢ of INL.

2.2 Axiomatization

We now turn to the task of axiomatizing the valid formulas of INL. Our system of
axioms is a gentle modification of the axiom system for instantial neighborhood logic
presented in [3].

INL axioms

Mon: [a](Y1, ....¥ni @) = [al@1 V a1, . fn V @i V B)
Weak: [a](?;¢) — [al(P';¢) for ¥’ C ¥

Un: [al(f1, . ¥ns ) = [al1 A @, oosthn A @3 0)

Lem: [a](¥;¢) — [al(P U{yhe) V [al(¥50 A —y)

Bot: —[a](L;¢)



Rules

MP:
A A
v
RE:
poy 0
Ole/y]
where 6[¢/y] is the result of substituting some occurrences of the formula i by ¢
in 6.

We denote this system of axioms by Ax1 and write Ax1 + ¢ to say that the formula ¢ is
provable in this axiom system. We also write ¢ Faxy ¢ for AX1 + ¢ — i, and say that ¢
provably entails .

Theorem 1 The system Ax1 is sound and complete for validity on neighborhood mod-
els.

The proof of this result is essentially the same as in [3], and will not be repeated
here.

Since the proof in [3] constructs a finite model for each consistent formula, we also
get:

Theorem 2 The logic INL is decidable and has the finite model property.

3 Test, Choice, parallel composition and sequential
composition

We now extend the language INL with four basic PDL-style operations: test, choice,
parallel composition and sequential composition. The resulting language will be called
dynamic instantial neighborhood logic, or (DINL). The syntax of DINL is defined by
the following dual grammar.

p:=pePropleAg|-p|[r)(¥;¢)

ni=acA|lp?|nUn|rNa|xon

We define the interpretation [[o]] of each operation 0 € {U,N, o} in a neighborhood
model I as a binary map from pairs of neighborhood relations to neighborhood rela-
tions, as follows:

— Ry[UJR, = R, UR,
= Ri[NIRy = {w, Zi UZp) | (W, Z)) €ER| & W, Z,) € Ry}

- wW,Z2) € Ri[[°]R> iff there is some set Y and some family of sets F such that
w,Y)eR,Y,F)eR,andZ =JF.



The interpretation [[?]] of the test operator will be a map [?]] assigning a neighborhood
relation to each subset Z of W, defined by:

(712 := {(u, {u}) | u € Z}

Note that [[?]] is monotone in the sense that Z C Z’ implies [?]1Z € [?]1Z’. Each operator
o € {U,N, o} is also monotone, in the sense that R [[0]|R, C R} [0]IR, whenever R; C R}
and Ry C R),. For the sequential composition operator, this uses the well known fact that
the Egli-Milner lifting is monotone, i.e. R C R’ whenever R C R'.

We can now define the semantic interpretations of all formulas, and the neighborhood
relations corresponding to all complex labels 7, by the following mutual recursion:
-[pl = V(p).

-l Ayl = Tl N [¥.

- [l = W\ [[¢l.

-u € [[71W1, ..., ;@)1 iff there is some Z C W such that:

u,Z) € Ry and Z C [[¢ll, ZN [[y;]] # 0 fori € {1, ..., k}.

- Ryom, = Ry [[0lIR,, for 0 € {U, N, o}.

- Ry = 1l

To motivate the semantic interpretations of the dynamic operators, we show how they

in a precise sense generalize familiar operations from game logic.

Definition 3 Let Mt = (W, R, V) be a neighborhood model. Then I is said to be mono-
tone if for all atomic labels a € A, w € Wand Z,Z C W: if u,Z) e R,and Z C 7'
then (u,Z’) € R, also.

The definitions of the dynamic operations are tailored towards obtaining the following
result:

Proposition 2 All formulas of DINL are invariant for instantial neighborhood bisimu-
lations.

3.1 Axiomatization

Our axiom system for DINL will take the sound and complete axioms for INL as its
foundation, and extend it with reduction axioms for the test, choice, parallel composi-
tion and sequential composition operators. The axioms and rules are listed below; note
that the INL axioms and the axioms for frame constraints are now stated for arbitrary
complex labels 7 rather than just atoms a.



INL axioms: (Mon), (Weak), (Un), (Lem) and (Bot)

Reduction axioms:

Test: [Y(P0) oy AN A

Ch: [m; Um](¥;¢) & [m1(¥5¢) V [ml(¥; ¢)

Pa: [ Nm](V;¢) © Viml(O1;¢9) A [ml(@;¢) | ¥ = 61U O}
Cmp: [71) o ] (Y1, oo Y3 ) © [T (W15 9), -y [T2] W3 @); [2]0)

Rules: (MP) and (RE)

We denote this system of axioms by Ax2 and write AX2 I ¢ to say that the formula ¢
is provable in this axiom system. We also write ¢ Faxe ¢ for AX2 + ¢ — . We shall
sometimes drop the reference to Ax2 to keep notation cleaner.

Proposition 3 (Soundness) If Ax2 + ¢, then ¢ is valid on all neighborhood models.

By applying soundness of the reduction axioms, we can use a standard argument to
obtain for every consistent formula ¢ of DINL a provably (and hence semantically)
equivalent formula ¢’ in INL, which is then satisfiable by Theorem 1. For example, the
formula [y?](Y1, ..., n; @)’ is defined to be y' A Y| A ... Al Ag.

We get:

Theorem 3 (Completeness) A formula ¢ of DINL is valid on all neighborhood models
iff AX2 + .

Furthermore, the finite model property and decidability clearly carry over from INL:

Theorem 4 The logic DINL is decidable and has the finite model property.

4 TIteration

4.1 The language IPDL

We now introduce the final operation that we consider here, a Kleene star for finite itera-
tion. This operation will be set up to generalize the game iteration operation from game
logic. The corresponding language will be denoted by IPDL, read “instantial PDL”, and
is given by the following dual grammar:

p:=peProplene¢|-pl|[xl(¥;e)

m=a€eA|Q?rUn|nNa|non| "



For the semantic interpretation of the Kleene star, it will be useful to first define the
relation skip by:
skip := {(w, {(w}) | w € W}

We now define a relation Rl¢! for each ordinal £ by induction as follows.
- R =9
— R = skip[UT(R[o]IR%T)
= R* = Uge, R if k is a limit ordinal.

We define [+]R to be equal to Rl¢!, where & is the smallest ordinal satisfying R =
R*11 Tt is easy to see that this is a standard least fixpoint construction, in particular we
have:

Proposition 4 Let W be a finite set and R € W X P(W). Then:

[+1R = |_JR™

new

Semantics of IPDL-formulas in a neighborhood model 9t = (W, R, V) are now defined
as follows:

- [p1 = V(p).

-l Ayl = Tl N I

- [—¢ll = W\ [l

- u € [[7]@W1, ... Yi; )] iff there is some Z C W such that:
(u,Z) € Ryand Z C [[¢ll, Z N [y;]l # 0 fori € {1,...,k}.

- Ryyom, = Ry, [0]IRy, for 0 € {U, N, 0}.

- Ry = 711l

- Rﬂ* = [[*]]R;r.

Proposition 5 All formulas of IPDL are invariant for instantial neighborhood bisimu-
lations.

The proof of this is a bisimulation safety argument, and the step for the Kleene star
involves using the bisimulation safety of union and sequential composition to prove the
appropriate back-and-forth conditions for each approximant R,[f] of the least fixpoint
R, = [*]|R,. We omit the details.



4.2 Comparison with dual-free game logic

We now show that IPDL can, in a precise sense, be viewed as a language extension of
dual-free game logic. We shall denote this language simply by GL, for “game logic”, al-
though the full dynamic game logic also includes a dual constructor. Formally, formulas
of GL and game terms are defined by the following dual grammar:

p:=peProplong|-¢llnle
m=a€eA|Q?|ron|xUn|nNx| A"

where Prop is a fixed set of propositional variables and A is a set of atomic games, both
assumed to be countably infinite. Note that GL is a syntactic fragment of IPDL. Here,
U is interpreted as “angelic choice” (choice for Player I), N is interpreted as “demonic
choice” (choice for Player II), o is sequential game composition and * is finite game
iteration (controlled by Player I).

Semantics of game logic formulas are again given by neighborhood frames, with the
extra constraint that neighborhoods associated with a world are upwards closed under
subsethood:

Definition 4 A neighborhood frame (W, R) is said to be a monotonic power frame if the
following condition holds for each a € A:

(Monotonicity) For allu e W, if u,Z) € R, and Z C Z' then (u,Z’) € R,.

A monotonic power model is a neighborhood model whose underlying frame is a mono-
tonic power frame.

In order to provide the semantic interpretations of formulas in a model, we need to
provide semantic interpretations of the game constructors. We shall use double vertical
lines ||—|| to refer to semantic interpretations of formulas in GL and game constructors
in monotonic neighborhood models, in order to distinguish it from the semantics given
for IPDL, where we use square brackets [—]. We follow the definitions in [2]. Formally,
we define operations on the lattice NW = P(W xP(W)) of neighborhood relations over
W as follows:

“R|U|IR" =RUR’
“RINIR" =RNR

- (u,Z") € R||o||R" iff there is some Z C W with (u,Z) € R and (v,Z") € R’ for all
veZ.

-I2NE2) = {w, Z) e WXPW) lweZnZ'}
Finally, we define ||#||R to be the least fixpoint in the lattice NW of the monotone map

F defined by:
FS = skip'[Ul|(RI[o]IS)



where skipT ={w,Z2) e WxP(W) | w e Z}. We can now set up the semantics of GL.
Fixing a monotonic power model i, we define the interpretation of every formula ¢
and the neighborhood relations R, corresponding to each game term 7 in the obvious
way, so that in particular we have -Ry,ur, = Rz [|UlIRzy, Rayan, = R lINIIR,, etc., and
u € ||[7]ell iff (i, |lel]) € R,. For a monotonic power model M = (W,R, V) and u €¢ W
we shall also write M, u £ ¢ for u € ||¢||. Since semantic interpretations are always
defined relative to a model, if necessary we shall use the notation ||—||o; rather than ||—||
to make it clear which model 9t is being referred to. We write £ ¢ if 9, u £ ¢ for every
pointed monotone power model (9, u). We get the following result, showing in what
sense IPDL indeed generalizes the semantics of GL:

Proposition 6 For any GL-formula ¢, and any monotonic power model MM, we have
llelln = DTl

From this proposition, we get the following result:

Theorem 5 IPDL is a conservative extension of GL. That is, for every GL-formula ¢,
we have

Foiff ke
In other words: the formulas of IPDL that are valid on arbitrary neighborhood frames

form a conservative extension of the GL-formulas that are valid over monotonic power
frames.

4.3 Axiomatization

Our axiomatization for IPDL is given below.

INL axioms: (Mon), (Weak), (Un), (Lem) and (Bot).
Reduction axioms from DINL: (Test), (Ch), (Pa) and (Cmp).
Basic rules: (MP) and (RE).

Kleene star Finally we add axioms and rules for iteration. The Kleene star is a least
fixpoint construction, and a standard approach to axiomatizing least fixpoints is to use
one fixpoint axiom and one induction rule (see [10]). The fixpoint axiom Fix is stated
as follows:

[F1(¥50) & (\ P n@)VImon(#:9)

We will actually need two induction rules:



Indl1:
ooy [rly -y

[l =y

Ind2: .
WAp) >y [7](y; [7* 1) — v

[Tl ) =y

Remark 1. The reason that we require two distinct induction rules can be seen as fol-
lows: the reduction axioms for IPDL should be interpreted as encoding a recursive
translation of the language IPDL into the modal u-calculus (interpeted on instantial
neighborhood models). When we pass by formulas involving the Kleene-star in this
translation, the translation will not surprisingly involve least fixpoint operators, and the
induction rules then correspond to the Kozen-Park induction rules for least fixpoint
operators. This step of the translation is trickier than the step for the Kleene star in a
translation of PDL into the y-calculus (see [6]), and requires use of nested least fixpoint
variables.

Note also that the second induction axiom only involves a single instantial formula .
This is because we can “pre-process” an arbitrary formula [7*](/1, ..., ¥,; ¢) by applying
the axiom Fix, and then applying the composition axiom (Cmp) to the formula [r o
711, ..., Yu; @) to obtain the formula:

[T1A7* W15 9), oo [T 1Wos 0); [ 100)

Here, each occurrence of the operator [7*] is followed by at most one instantial formula.

We denote this axiom system as Ax3 and write ¢ a3 ¢ to say that Ax3 F ¢ — . We
will also sometimes drop the explicit reference to the system Ax3, simply writing + ¢

ory k.

Theorem 6 The axiom system AX3 is sound and complete for validity over neighbor-
hood models.

The soundness part of this theorem is a fairly straightforward check. For the com-
pleteness proof, we shall rely heavily on the following lemma, which was proved (in
a slightly different formulation) in [3]: fix a finite and subformula closed set of formu-
las 2. An atom over 2 is a maximal consistent subset of 2, and we denote the set of
atoms over X by At(2). Given any atom w € At(2), let w be its conjunction, and let
Z = {w | w € Z} for a set of atoms Z.

Lemma 1. Let [7](¥; @) be any formula such that each formula in ¥ U{y} is a boolean
combination of formulas in 2. Then [n](¥; ¢) is provably equivalent to a disjunction of
formulas of the form [n](Z;\/ Z) for Z C At(X) being some set of atoms with w + ¢ for
eachw € Z and for all y € ¥ there is some v € Zwithv .

We shall also need an adapted concept of Fischer-Ladner closure:



Definition 5 A set 2 of formulas is said to be Fischer-Ladner closed if the following
clauses hold:

If p € X, and the main connective of ¢ is not =, then the formula —p is in X.

Any subformula of a formula in X is in 2.

If[yN(V;@)isin2 thensoisy A NV A .

If[mom ], -os s @) € 2, then [m1([m2](15 @), . [T1](Wns ); [m2lg) is in 2 t00.
If [m1 Um](s @) € 2 then [m)(¥;¢) V [m](¥; ¢) € 2 too.

If [r1 N m)(V; @) € 2 then the formula:

\/{[ﬂl](@1;<p) A [m](@2;0) | ¥ = 01 U O3}
is in X too.

If [7*1(¥;0) € X then (NP A @)V [mor*l(V; ) is in X too.

Lemma 2. Every formula ¢ is a member of some finite Fischer-Ladner closed set of
formulas.

Proof. Standard, see for example [5].

Fix a finite and Fischer-Ladner closed set of formulas 2. An atom over X' is a maximal
consistent subset of 2, and we denote the set of atoms over 2 by At(2). Given any atom
w € At(2), let w be its conjunction, and let Z = {w | w € Z} for a set of atoms Z.

Lemma 3. Let [n](V; @) be any formula such that each formula in ¥ U{e} is a boolean
combination of formulas in 2. Then [n](¥; ¢) is provably equivalent to a disjunction of
formulas of the form [n](Z;\/ Z) for Z C AY{(X) being some set of atoms with w + ¢ for
each w € Z and for all y € 'V there is some v € Z with v .

Definition 6 Given any label rr, we define the relation S= C Al(X) x P(A(Y)) by setting
w,Z)e S f iff w A [)(Z; \/ Z) is consistent with respect to the system AX3.

The canonical neighborhood model over X denoted C* is defined as the triple (W*, R*, V*)
where W* is the set of atoms over X, R= = S2 for each atomic label a, and V*(p) =
(weW? | pew).

The key lemma in the completeness proof, which is proved using the induction rules for
the Kleene star, is the following:

Lemma 4. For each label m, we have S=. C [+](S2).

Lemma 4 is needed to prove Lemma 5 below, by induction on the complexity of pro-
gram terms. Say that a label 7 is safe if, for every formula y such that the term y? appears
in 7, we have y € X and furthermore, y € w iff €*, w I y for each w € At(X).



Lemma 5. For every safe label &, we have S C RZ.
Using Lemma 5 we can prove a truth lemma for the canonical model:
Lemma 6. For every atom w and any € X, we have (6, w) v  if and only if ¢ € w.

Finally, we can now prove Theorem 6: suppose the formula ¢ is not provable, so that
- is consistent. By Lemma 2, —¢ belongs to some finite Fischer-Ladner closed set 2
and since - is consistent it belongs to some atom w. Hence ¢ ¢ w and by Lemma 6
we have €, w ¥ ¢. So ¢ is not valid.

As a corollary to the completeness proof, which produces a finite model for a consistent
formula, we get:

Theorem 7 IPDL has the finite model property and is decidable.

5 Concluding remarks

We have explored a propositional dynamic logic defined over instantial neighborhood
logic. A language extension that is clearly related to the framework of this paper is
the addition to the base language of least and greatest fixpoint operators, which for
standard modal logic results in the modal p-calculus. It is well known that PDL can
be viewed as a fragment of the modal yu-calculus. In fact, our logic IPDL can also
be translated into the analogous extension of INL with fixpoints. The translation is not
straightforward though, and in fact the best translation we have found so far even causes
an exponential blowup in formula size. We have omitted this material here due to lack of
space. The fixpoint extension of INL is a very well behaved language: as shown in [3],
INL is a coalgebraic modal logic corresponding to a weak pullback preserving functor
- the double covariant powerset functor - that additionally preserves finite sets. (This
should be contrasted with the monotone neighborhood functor, which is the appropriate
functor for monotone modal logic and is known not to preserve weak pullbacks - see
[12]. The monotone neighborhood functor is not suitable for INL since INL-formulas
are not invariant for the behavioural equivalence associated with this functor.) This
means that the p-calculus extension of INL will inherit a number properties that hold in
much wider generality: the language has the finite model property and is decidable [16],
a sound and complete system of axioms is available [8] and the uniform interpolation
property holds [11]. Note however that it does not mean that we obtain our completeness
result (and hence decidability and finite model property) for free, since completeness
for fragments of modal u-calculi does not generally follow easily from completeness of
the full languages. Witnessing examples are Reynold’s highly non-trivial completeness
proof for CTL* [14] (which is a fragment of the u-calculus [7]), or Parikh’s game logic,
which still lacks a complete system of axioms.

There is a growing body of work on PDL-like coalgebraic logics, with generic results
on axiomatizability, see for example [9]. This setting is clearly related to the present



work, however our system IPDL is not covered by this framework as it stands: while
the covariant powerset functor is a monad, the double covariant powerset functor is not,
which would be a requirement for existing work on coalgebraic PDL-logics to readily
apply?>. Perhaps the framework can be modified to capture IPDL as an instance — we
offer this as a challenge and an interesting direction for future research.
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