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Abstract. We introduce relativized modal algebra homomorphisms and show that the

category of modal algebras and relativized modal algebra homomorphisms is dually equiv-

alent to the category of modal spaces and partial continuous p-morphisms, thus extending

the standard duality between the category of modal algebras and modal algebra homomor-

phisms and the category of modal spaces and continuous p-morphisms. In the transitive

case, this yields an algebraic characterization of Zakharyaschev’s subreductions, cofinal

subreductions, dense subreductions, and the closed domain condition. As a consequence,

we give an algebraic description of canonical, subframe, and cofinal subframe formulas,

and provide a new algebraic proof of Zakharyaschev’s theorem that each logic over K4 is

axiomatizable by canonical formulas.
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1. Introduction

Refutation patterns play an important role in developing axiomatic bases for
modal logics. As was shown by Fine [8], each finite rooted S4-frame F gives
rise to the formula χ(F) such that a general S4-frame G refutes χ(F) iff F is a
p-morphic image of a generated subframe of G. This yields an axiomatization
of a large class of logics over S4. Fine’s formulas are a frame-theoretic
version of Jankov’s formulas for intuitionistic logic, developed several years
earlier by Jankov [10, 11] using algebraic techniques. (De Jongh [6] also
developed a version of Jankov formulas for intuitinostic logic via frame-
theoretic methods.) The results of Fine easily generalize to logics over K4.
For an algebraic account of these formulas, which is a direct generalization
of Jankov’s approach, see Rautenberg [13]. Similar results were obtained by
Fine [9] and Zakharyaschev [17] for subframe and cofinal subframe logics
over K4. Namely Fine showed that each rooted K4-frame F gives rise

Special issue in honor of Ryszard Wójcicki on the occasion of his 80th birthday
Edited by J. Czelakowski, W. Dziobiak, and J. Malinowski
Received April 30, 2011; Accepted July 23, 2011



94 G. Bezhanishvili and N. Bezhanishvili

to the formula αs(F) such that a general K4-frame G refutes αs(F) iff G

is subreducible to F, thus providing an axiomatization of subframe logics
over K4. Zakharyaschev generalized Fine’s results by showing that each
rooted K4-frame F gives rise to the formula αcs(F) such that a general K4-
frame G refutes αcs(F) iff G is cofinally subreducible to F, thus providing an
axiomatization of cofinal subframe logics over K4. These are large classes of
logics over K4, but not every logic over K4 is axiomatizable by these means.

The problem of axiomatizing every logic over K4 was resolved by Zak-
haryaschev [16], who developed the theory of canonical formulas and showed
that each logic over K4 is axiomatizable by canonical formulas. Canonical
formulas of Zakharyaschev are also built from finite rooted K4-frames F, but
they have an additional parameter—a set of antichans D in F. The two main
ingredients of Zakharyaschev’s proof are: (i) the refutation of a formula α
in a general K4-frame G can be coded by means of finitely many canonical
formulas (which are constructed effectively from α) and (ii) if F is a finite
rooted K4-frame and D is a set of antichains in F, then whether a general
frame G refutes the canonical formula α(F, D) depends on whether or not
there is a cofinal subreduction f from G to F that satisfies the closed domain
condition—a condition relating the subreduction f to the set of antichains D.

Our aim is to provide a purely algebraic account of canonical formu-
las. This requires an algebraic analysis of the two main ingredients of Za-
kharyaschev’s proof. One of our main tools will be a generalization of the
well-known duality between the category MA of modal algebras and modal
algebra homomorphisms and the category MS of modal spaces and con-
tinuous p-morphisms. By the duality between MA and MS, continuous p-
morphisms correspond to modal algebra homomorphisms. Subreductions are
partial p-morphisms. We generalize the duality between MA and MS to a
duality between the category MAR of modal algebras and relativized modal
algebra homomorphisms and the category MSP of modal spaces and partial
continuous p-morphisms. This yields that partial continuous p-morphisms
correspond to relativized modal algebra homomorphisms. We also intro-
duce cofinal relativized modal algebra homomorphisms and show that they
correspond to cofinal partial continuous p-morphisms.

If A and B are K4-algebras and η : A → B is a relativized modal
algebra homomorphism, then η does not preserve ♦ in general. We show that
Zakharyaschev’s closed domain condition exactly corresponds to preserving
♦ for all elements in some fixed subset D of A, where D is an algebraic
analogue of Zakharyaschev’s extra parameter of antichains.

For each finite subdirectly irreducible K4-algebra A and a subset D
of A, generalizing the technique of Jankov and Rautenberg, we define the
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canonical formula α(A,D), and show that a K4-algebra B refutes α(A,D)
iff there exist a homomorphic image C of B and a 1-1 cofinal relativized
modal algebra homomorphism from A to C that preserves ♦ for all elements
in D. This is an algebraic analogue of (ii).

For each formula α, we construct (A1, D1), . . . , (An, Dn), where each Ai

is a finite subdirectly irreducible K4-algebra and Di ⊆ Ai, and prove that a
K4-algebra B refutes α iff there exist i ≤ n, a homomorphic image C of B,
and a 1-1 cofinal relativized modal algebra homomorphism from Ai to C that
preserves ♦ for all elements in Di. This is an algebraic analogue of (i). Our
construction utilizes the results of [3], where an algebraic proof of the finite
model property of cofinal subframe logics was given. (For frame-theoretic
proofs see [9, 17].) Putting (i) and (ii) together provides a new algebraic
proof of Zakharyaschev’s theorem that each logic over K4 is axiomatizable
by canonical formulas.

We also give an algebraic account of negation-free canonical formulas,
and show that the Jankov-Rautenberg, subframe, and cofinal subframe for-
mulas are special cases of canonical formulas. This, in particular, gives
the first axiomatization of subframe and cofinal subframe logics over K4
by “algebra-based formulas,” as opposed to their axiomatizations by frame-
based formulas of Fine and Zakharyaschev [9, 17].

Our results complement the results of [1], where an algebraic account of
canonical formulas for intuitionistic logic was given. As shown in [1], in the
intuitionistic setting, partial p-morphisms correspond to (∧,→)-preserving
maps between Heyting algebras, cofinal partial p-morphisms correspond to
(∧,→, 0)-preserving maps, and partial p-morphisms satisfying the closed do-
main condition correspond to (∧,→)-preserving maps that also preserve ∨
for a fixed set of pairs of elements. This provides an algebraic analogue of
canonical formulas for intuitionistic logic that generalize Jankov’s formulas,
yielding an algebraic proof of Zakharyaschev’s theorem that each interme-
diate logic is axiomatizable by canonical formulas.

The paper is organized as follows: In Section 2 we recall the duality
between the category of modal algebras and modal algebra homomorphisms
and the category of modal spaces and continuous p-morphisms. In Section 3
we extend this duality to a duality between the category of modal algebras
and relativized modal algebra homomorphisms and the category of modal
spaces and partial continuous p-morphisms. In Section 4 we restrict our
attention to the transitive case. We give an algebraic characterization of
Zakharyaschev’s closed domain condition. We also define cofinal and dense
relativized modal algebra homomorphisms and show that they correspond to
Zakharyaschev’s cofinal and dense subreductions. In Section 5 we provide
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an algebraic description of canonical formulas, and give a new algebraic
proof of Zakharyaschev’s theorem that each logic over K4 is axiomatizable
by canonical formulas. Finally, in Section 6 we give an algebraic description
of negation-free canonical formulas and show that each logic over K4 that is
axiomatizable by negation-free formulas is also axiomatizable by negation-
free canonical formulas. We also show that Jankov-Rautenberg, subframe,
and cofinal subframe formulas are particular cases of canonical formulas.
This in particular leads to a new axiomatization of subframe and cofinal
subframe formulas via “algebra-based” formulas.

2. Preliminaries

In this section we briefly recall some basic facts about modal algebras and
the duality between modal algebras and modal spaces that will be used in
subsequent sections. The main references for this section are [5, 12, 14].

A modal algebra is a pair (A, ♦), where A is a Boolean algebra and
♦ : A → A is a unary function on A satisfying ♦0 = 0 and ♦(a∨b) = ♦a∨♦b.
As usual, we define � : B → B by �a = ¬♦¬a for each a ∈ A. We denote
modal algebras (A, ♦) simply by A. Given two modal algebras A and B, we
recall that η : A → B is a modal algebra homomorphism if η is a Boolean
algebra homomorphism and η(♦a) = ♦η(a). When no confusion arises,
we call modal algebra homomorphisms simply homomorphisms. Clearly
modal algebras and modal algebra homomorphisms form a category which
we denote by MA.

Let F be a filter in a modal algebra A. We recall that F is a �-filter
if a ∈ F implies �a ∈ F . It is well known that the lattice of congruences
of a modal algebra A is isomorphic to the lattice of �-filters of A. In the
lattice of �-filters of A, we have that A is the largest element and {1} is
the least element. Consequently, A is subdirectly irreducible if there exists a
least �-filter properly containing {1}.

It is well known that MA has the congruence extension property; that
is, for each A,B ∈ MA, if A is subalgebra of B and F is a �-filter of A,
then there exists a �-filter G of B such that G ∩ A = F . The next lemma,
which will be used in Section 5, is now an immediate consequence.

Lemma 2.1. If A,B, C ∈ MA, η : A → B is a 1-1 homomorphism, and
θ : A → C is an onto homomorphism, then there exist D ∈ MA, an onto
homomorphism ξ : B → D, and a 1-1 homomorphism ζ : C → D such that
ξ ◦ η = ζ ◦ θ.

We briefly recall the duality between modal algebras and modal spaces
that generalizes the celebrated Stone duality for Boolean algebras. We as-
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sume an elementary knowledge of category theory. In particular, we recall
that two categories C and D are dually equivalent if there exist contravari-
ant functors F : C → D and G : D → C such that each object c of C is
isomorphic to GF (c), each object d of D is isomorphic to FG(d), and these
isomorphisms are natural.

As usual, for a set X and a binary relation R on X, let R(x) = {y ∈ X :
xRy} and R−1(x) = {y ∈ X : yRx}. Also, for U ⊆ X, let R(U) =

⋃{R(x) :
x ∈ U} and R−1(U) =

⋃{R−1(x) : x ∈ U}. If X is a topological space,
then we recall that U ⊆ X is clopen if U is both closed and open, that X is
zero-dimensional if clopen subsets of X form a basis for X, and that X is a
Stone space if X is compact, Hausdorff, and zero-dimensional.

A modal space is a pair (X, R), where X is a Stone space and R is a
binary relation on X such that (i) R(x) is closed for each x ∈ X, and (ii)
R−1(U) is clopen for each clopen U ⊆ X. Given two modal spaces (X,R)
and (Y,Q), we recall that a map f : X → Y is a p-morphism if for all
x, z ∈ X and y ∈ Y , (i) xRz implies f(x)Qf(z), and (ii) f(x)Qy implies
there exists z ∈ X such that xRz and f(z) = y. Clearly modal spaces and
continuous p-morphisms form a category which we denote by MS. Then
MA is dually equivalent to MS. This duality is a generalization of Stone
duality and is obtained as follows.

First, the functor (−)∗ : MA → MS is defined as follows. If A is a
modal algebra, then A∗ is the set of ultrafilters of A topologized by the
basis {ϕ(a) : a ∈ A} for open sets, where ϕ(a) = {x ∈ A∗ : a ∈ x}. For
x, y ∈ A∗, set xRy iff (∀a ∈ A)(a ∈ y implies ♦a ∈ x). Then A∗ is a
modal space. For modal algebras A,B and a homomorphism η : A → B,
let η∗ = η−1 : B∗ → A∗. Then η∗ is a continuous p-morphism, and so (−)∗
is a contravariant functor. Next, the functor (−)∗ : MS → MA is defined
as follows. If (X, R) is a modal space, then (X, R)∗ = (Clopen(X),♦R) is
a modal algebra, where Clopen(X) is the Boolean algebra of clopen subsets
of X and ♦R(U) = R−1(U). For continuous p-morphism f : X → Y ,
let f∗ = f−1 : Clopen(Y ) → Clopen(X). Then f∗ is a modal algebra
homomorphism, and so (−)∗ is a contravariant functor. Moreover, ϕ : A →
A∗∗ and ε : X → X∗∗, given by ε(x) = {U ∈ X∗ : x ∈ U}, are natural
isomorphisms, and so (−)∗ and (−)∗ establish the desired dual equivalence
between MA and MS.

3. Relativizations and generalized duality for modal algebras

In this section we generalize the concept of modal algebra homomorphism to
that of relativized modal algebra homomorphism, the concept of continuous
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p-morphism to that of partial continuous p-morphism, and prove that the
category of modal algebras and relativized modal algebra homomorphisms
is dually equivalent to the category of modal spaces and partial continuous
p-morphisms. This generalizes the well-known duality for modal algebras.

Let B be a Boolean algebra and s ∈ B. Then [0, s] = {x ∈ B : 0 ≤ x ≤ s}
also forms a Boolean algebra which we denote by Bs. The Boolean operations
on Bs are defined as follows:

1. x ∧s y = x ∧ y;

2. x ∨s y = x ∨ y;

3. 0s = 0 and 1s = s;

4. ¬sx = ¬x ∧ s.

We call Bs the relativization of B to s.

Lemma 3.1. Let A and B be Boolean algebras and η : A → B be a map.
Then η is a Boolean algebra homomorphism from A to Bη(1) iff η preserves
∧,∨, and 0 (that is, η(a ∧ b) = η(a) ∧ η(b), η(a ∨ b) = η(a) ∨ η(b), and
η(0) = 0).

Proof. Let η be a Boolean algebra homomorphism from A to Bη(1). Then:

η(a ∧ b) = η(a) ∧η(1) η(b) = η(a) ∧ η(b),

η(a ∨ b) = η(a) ∨η(1) η(b) = η(a) ∨ η(b),

η(0) = 0η(1) = 0.

Therefore, η preserves ∧,∨, and 0. Conversely, suppose that η preserves
∧,∨, and 0. Then:

η(a ∧ b) = η(a) ∧ η(b) = η(a) ∧η(1) η(b),

η(a ∨ b) = η(a) ∨ η(b) = η(a) ∨η(1) η(b),

η(0) = 0 = 0η(1) and η(1) = 1η(1).

Moreover,

η(a) ∧η(1) η(¬a) = η(a) ∧ η(¬a) = η(a ∧ ¬a) = η(0) = 0η(1),

η(a) ∨η(1) η(¬a) = η(a) ∨ η(¬a) = η(a ∨ ¬a) = η(1) = 1η(1).

Therefore, ¬η(1)η(a) = η(¬a), and so η is a Boolean algebra homomorphism
from A to Bη(1).
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Let A be a modal algebra and s ∈ A. We define ♦s : As → As by

♦sx = s ∧ ♦x

for each x ∈ As. Then As is a modal algebra because

♦s(x ∨ y) = s ∧ ♦(x ∨ y) = s ∧ (♦x ∨ ♦y) = (s ∧ ♦x) ∨ (s ∧ ♦y) = ♦sx ∨ ♦sy

and
♦s0s = ♦s0 = s ∧ ♦0 = s ∧ 0 = 0 = 0s.

Instead of modal algebra homomorphisms we will work with relativized
modal algebra homomorphisms; that is, maps η : A → B such that η is a
modal algebra homomorphism from A to the relativized modal algebra Bη(1).
Note that it may happen that Bη(1) = {0}. By Lemma 3.1, η is a relativized
modal algebra homomorphism iff η preserves ∧,∨, 0 and η(♦a) = ♦η(1)η(a)
for each a ∈ A. When no confusion arises, we call relativized modal algebra
homomorphisms simply relativized homomorphisms. Clearly each identity
map A → A is a relativized homomorphism. If η : A → B and θ : B → C are
relativized homomorphisms, then θ ◦ η : A → Cθ(η(1)) is a homomorphism,
and so θ ◦ η : A → C is a relativized homomorphism. It follows that modal
algebras and relativized homomorphisms form a category which we denote
by MAR. Clearly MA is a subcategory of MAR, MA and MAR have the
same objects, but not every morphism in MAR is a morphism in MA.

Next we introduce the concept dual to that of relativized homomorphism.
Let X and Y be Stone spaces and f : X → Y be a partial map. We call f a
partial continuous map if dom(f) is a clopen subset of X and f is a continu-
ous map from dom(f) to Y . In particular, if dom(f) = X, then f : X → Y is
a continuous map, and so the concept of partial continuous map generalizes
that of continuous map. Note that f = ∅ is a partial continuous map.

Definition 3.2. Let (X, R) and (Y,Q) be modal spaces and f : X → Y be
a partial continuous map. We call f a partial continuous p-morphism if in
addition f satisfies:

1. x, z ∈ dom(f) and xRz imply f(x)Qf(z).

2. x ∈ dom(f) and f(x)Qy imply there exists z ∈ dom(f) such that xRz
and f(z) = y.

Clearly each identity map X → X is a partial continuous p-morphism.
Let f : X → Y and g : Y → Z be partial continuous p-morphisms. Then
f−1(dom(g)) is a clopen subset of dom(f), hence a clopen subset of X, and
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the restriction of g ◦ f to f−1(dom(g)) is a continuous p-morphism from
f−1(dom(g)) to Z. Therefore, we define the composition of f and g as
the partial map g ∗ f : X → Z such that dom(g ∗ f) = f−1(dom(g)) and
(g ∗ f)(x) = g(f(x)) for x ∈ dom(g ∗ f). Then g ∗ f : X → Z is a partial
continuous p-morphism. It follows that modal spaces and partial continuous
p-morphisms form a category which we denote by MSP. Clearly MS is a
subcategory of MSP, MS and MSP have the same objects, but not every
morphism in MSP is a morphism in MS. In order to prove that MAR is
dually equivalent to MSP, we need the following lemma.

Lemma 3.3.

1. Let A,B be modal algebras, η : A → B be a relativized homomorphism,
and a ∈ A. Then η(♦a) ≤ ♦η(a).

2. Let (X, R), (Y,Q) be modal spaces, f : X → Y be a partial p-morphism,
and x ∈ dom(f). Then fR(x) = Qf(x).

Proof. (1) Let a ∈ A. Since η is a relativized homomorphism, we have:

η(♦a) = ♦η(1)η(a) = η(1) ∧ ♦η(a) ≤ ♦η(a).

(2) First suppose that y ∈ fR(x). Then there exists z ∈ dom(f) such
that xRz and f(z) = y. Since x ∈ dom(f), by Definition 3.2.1, f(x)Qf(z).
Therefore, f(x)Qy, and so y ∈ Qf(x). Next suppose that y ∈ Qf(x). Then
f(x)Qy. By Definition 3.2.2, there exists z ∈ dom(f) such that xRz and
f(z) = y. Thus, y ∈ fR(x), and so fR(x) = Qf(x).

Theorem 3.4. MAR is dually equivalent to MSP.

Proof. We define a contravariant functor (−)∗ : MAR → MSP as follows.
For a modal algebra A, let A∗ be the modal space of A. If η : A → B
is a relativized homomorphism and x ∈ B∗, then η−1(x) = ∅ or η−1(x) is
an ultrafilter of A∗. We set dom(η∗) = {x ∈ B∗ : η−1(x) = ∅} and for
x ∈ dom(η∗) we set η∗(x) = η−1(x).

Claim 3.5. dom(η∗) = ϕ(η(1)) and η−1∗ (ϕ(a)) = ϕ(η(a)) for each a ∈ A.

Proof. We have x ∈ dom(η∗) iff η−1(x) = ∅ iff 1 ∈ η−1(x) iff η(1) ∈ x
iff x ∈ ϕ(η(1)). Thus, dom(η∗) = ϕ(η(1)). We also have x ∈ η−1∗ (ϕ(a)) iff
x ∈ dom(η∗) and η∗(x) ∈ ϕ(a) iff x ∈ dom(η∗) and a ∈ η∗(x) iff η(a) ∈ x iff
x ∈ ϕ(η(a)). Thus, η−1∗ (ϕ(a)) = ϕ(η(a)).
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Now since ϕ(η(1)) is a clopen subset of B∗, it follows that dom(η∗) is
clopen. Moreover, as each clopen subset of A∗ has the form ϕ(a) for some a ∈
A, we obtain that η∗ is a continuous map from dom(η∗) to A∗. Consequently,
η∗ is a partial continuous map. We show that η∗ satisfies conditions (1) and
(2) of Definition 3.2.

Let x, z ∈ dom(η∗), xRz, and a ∈ η∗(z). Then a ∈ η−1(z), and so
η(a) ∈ z. Since xRz, we have ♦η(a) ∈ x. As x ∈ dom(η∗), we also have
η−1(x) = ∅, so 1 ∈ η−1(x), and so η(1) ∈ x. Therefore, η(1) ∧ ♦η(a) ∈ x,
which means that ♦η(1)η(a) ∈ x. Because η is a relativized homomorphism,
♦η(1)η(a) = η(♦a). It follows that η(♦a) ∈ x. Thus, ♦a ∈ η−1(x), so
♦a ∈ η∗(x), and so η∗(x)Qη∗(z). Consequently, η∗ satisfies condition (1) of
Definition 3.2.

Now let x ∈ dom(η∗) and η∗(x)Qy. Let F be the filter generated by
η[y] = {η(a) : a ∈ y} and I be the ideal generated by {a ∈ B : ♦a /∈
x} ∪ η[A − y]. If F ∩ I = ∅, then there exist a ∈ y, b ∈ B with ♦b /∈ x,
and c /∈ y such that η(a) ≤ b ∨ η(c). Therefore, η(a) ∧ ¬η(c) ≤ b. Since
η(¬c) ≤ ¬η(c), we have η(a) ∧ η(¬c) ≤ b. Thus, η(a ∧ ¬c) ≤ b, and so
♦η(a ∧ ¬c) ≤ ♦b. By Lemma 3.3.1, η(♦(a ∧ ¬c)) ≤ ♦η(a ∧ ¬c). This yields
η(♦(a ∧ ¬c)) ≤ ♦b. As a ∧ ¬c ∈ y, we have ♦(a ∧ ¬c) ∈ η−1(x), and so
η(♦(a ∧ ¬c)) ∈ x. Therefore, ♦b ∈ x, a contradiction. Thus, F ∩ I = ∅,
and so there exists an ultrafilter z of B such that F ⊆ z and I ∩ z = ∅.
From {a ∈ B : ♦a /∈ x} ∩ z = ∅ it follows that xRz, and F ⊆ z and
η[A − y] ∩ z = ∅ imply η−1(z) = y. Therefore, xRz and η−1(z) = y, which
implies that z ∈ dom(η∗) and η∗(z) = y. Thus, there exists z ∈ dom(η∗)
such that xRz and η∗(z) = y, and so η∗ satisfies condition (2) of Definition
3.2. Consequently, η∗ is a partial continuous p-morphism.

By the duality for modal algebras, if η : A → A is identity, then so is
η∗ : A∗ → A∗. Let η : A → B and θ : B → C be relativized homomorphisms.
We show that η∗ ∗θ∗ : C∗ → A∗ is a partial continuous p-morphism and that
(θ◦η)∗ = η∗∗θ∗. We have that η : A → Bη(1) and θ : Bη(1) → Cθ(η(1)) are ho-
momorphisms. Therefore, by the duality for modal algebras and Claim 3.5,
η∗ : ϕ(η(1)) → A∗ and θ∗ : ϕ(θ(η(1))) → B∗ are continuous p-morphisms.
Thus, η∗ ◦ θ∗ : ϕ(θ(η(1))) → A∗ is a continuous p-morphism. Moreover,
dom(η∗ ∗ θ∗) = (θ∗)−1(dom(η∗)) = (θ∗)−1(ϕ(η(1))) = ϕ(θ(η(1))). Conse-
quently, η∗ ∗θ∗ : C∗ → A∗ is a partial continuous p-morphism. Furthermore,
dom((θ ◦ η)∗) = ϕ(θ(η(1))) = dom(η∗ ∗ θ∗), and for x ∈ dom((θ ◦ η)∗), we
have (θ ◦ η)∗(x) = (θ ◦ η)−1(x) = η−1(θ−1(x)) = η∗(θ∗(x)) = (η∗ ∗ θ∗)(x).
Thus, (−)∗ : MAR → MSP is a well-defined functor.
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Next we define a contravariant functor (−)∗ : MSP → MAR as follows.
For a modal space (X,R), let (X, R)∗ be the modal algebra (Clopen(X), ♦R).
Also for a partial continuous p-morphism f : X → Y , let f∗ : Y ∗ → X∗ be
given by f∗(U) = f−1(U). It is easy to check that f∗ is a relativized Boolean
algebra homomorphism. Let U ∈ Y ∗. We show that

f∗(♦QU) = ♦Rf∗(U) ∩ dom(f).

We have x ∈ f∗(♦QU) iff x ∈ dom(f) and f(x) ∈ ♦QU iff x ∈ dom(f)
and Qf(x) ∩ U = ∅. On the other hand, x ∈ ♦Rf∗(U) ∩ dom(f) iff R(x) ∩
f−1(U) = ∅ and x ∈ dom(f) iff fR(x) ∩ U = ∅ and x ∈ dom(f). Since
x ∈ dom(f), by Lemma 3.3.2, fR(x) = Qf(x). Therefore, x ∈ f∗(♦QU) iff
x ∈ ♦Rf∗(U)∩dom(f), and so f∗(♦QU) = ♦Rf∗(U)∩dom(f). Consequently,
f∗ is a relativized homomorphism.

By the duality for modal algebras, if f : X → X is identity, then so
is f∗ : X∗ → X∗. Let f : X → Y and g : Y → Z be partial continuous
p-morphisms. Then g ∗ f : X → Y is a partial continuous p-morphism with
dom(g ∗ f) = f−1(dom(g)). Moreover, for U ∈ Z∗, we have (g ∗ f)∗(U) =
(g ∗ f)−1(U) = f−1(g−1(U)) = f∗(g∗(U)). Therefore, (g ∗ f)∗ = f∗ ◦ g∗, and
so (−)∗ : MSP → MAR is a well-defined functor.

Finally, it is obvious that the isomorphisms ϕ : B → B∗∗ and ε : X →
X∗∗ given by the duality for modal algebras are still natural in this more
general setting. Thus, MAR is dually equivalent to MSP.

Remark 3.6. If η : A → B is a modal algebra homomorphism, then η(1) =
1, and so dom(η∗) = ϕ(η(1)) = ϕ(1) = B∗. Thus, η∗ : B∗ → A∗ is a
total continuous p-morphism. Also, if f : X → Y is a total continuous p-
morphism, then clearly f−1 : Y ∗ → X∗ is a modal algebra homomorphism.
Therefore, the dual equivalence of MA and MS is an easy consequence of
Theorem 3.4.

Remark 3.7. Let BA denote the category of Boolean algebras and Boolean
algebra homomorphisms, and Stone denote the category of Stone spaces and
continuous maps. By Stone duality, BA is dually equivalent to Stone. Let
also BAR denote the category of Boolean algebras and relativized Boolean
algebra homomorphisms, and StoneP denote the category of Stone spaces
and partial continuous maps. Then it is a consequence of Theorem 3.4
that BAR is dually equivalent to StoneP. The proof of this is an obvious
generalization of the proof that Stone duality is a consequence of the duality
between MA and MS.
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4. K4-algebras and the closed domain condition

In this section we restrict our attention to K4-algebras and their dual transi-
tive spaces. For transitive spaces X and Y , we show that a partial continuous
p-morphism f : X → Y satisfies the closed domain condition (CDC) iff the
dual relativized homomorphism f∗ : Y ∗ → X∗ preserves ♦Q for some spec-
ified subset D of Y ∗. This results in a purely algebraic characterization of
(CDC). We also give an algebraic characterization of when f : X → Y is
cofinal and when f is dense. We conclude the section by comparing our
approach to that of Zakharyaschev.

We recall that a modal algebra A is a K4-algebra if ♦♦a ≤ ♦a for each
a ∈ A. Let K4 denote the category of K4-algebras and modal algebra
homomorphisms. Let A be a K4-algebra and s ∈ A. It is well known
(see, e.g., [3, Lem. 4.8]) that the relativization As of A to s is also a K4-
algebra. For each a ∈ A, we set ♦+a = a ∨ ♦a. Then it is obvious that
a ≤ ♦+a for each a ∈ A, and so (A,♦+) is an S4-algebra. Moreover,
�+a = ¬♦+¬a = a ∧ �a, and H = �+(A) = {�+a : a ∈ A} is a Heyting
algebra (see, e.g., [3, Sec. 3]). Next lemma will be used in Section 5. A
Heyting algebra analogue of the lemma can be found in [15, Lem. 1].

Lemma 4.1. Let A be a K4-algebra, a, b ∈ A, and �+a ≤ b. Then there
exists a subdirectly irreducible K4-algebra B and an onto homomorphism
η : A → B such that η(�+a) = 1 and η(b) = 1.

Proof. Let F be the filter of A generated by �+a. Since A is a K4-algebra,
F is a �-filter of A. Moreover, �+a ∈ F and b /∈ F . Let Z be the set of
�-filters of A containing �+a and missing b. Then F ∈ Z, and so Z is
nonempty. If we order Z by set inclusion, then it is easy to see that Z is an
inductive set. Therefore, by Zorn’s lemma, Z has a maximal element M . Let
B = A/∼, where x∼y iff x ↔ y ∈ M . For x ∈ A, let [x] = {y ∈ A : x∼y}.
Define η : A → B by η(x) = [x] for each x ∈ A. Then it is well known that
η : A → B is an onto modal algebra homomorphism. It is also clear that
η(�+a) = 1 and η(b) = 1. Moreover, each �-filter of B corresponds to a
�-filter of A containing M . Since M is a maximal �-filter of A containing
�+a and missing b, each �-filter of A properly containing M also contains b.
Therefore, each �-filter of B which properly contains {1}, also contains η(b).
Thus, the filter of B generated by �+η(b) = η(�+b) is the smallest �-filter
of B properly containing {1}. Consequently, B is subdirectly irreducible.

It is well known that the dual spaces of K4-algebras are transitive spaces;
that is, modal spaces (X,R) in which R is transitive. Let TS denote the cat-
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egory of transitive spaces and continuous p-morphisms. Then the duality be-
tween MA and MS restricts to the duality between K4 and TS. Moreover, if
A ∈ K4 and A∗ is the dual transitive space of A, then (A, ♦+)∗ = (A∗, R+),
where R+ = R ∪ {(x, x) : x ∈ A∗} is the reflexive closure of R (see, e.g.,
[3, Sec. 3]).

Let X be a transitive space and U ⊆ X. We say that x ∈ U is a minimal
point of U if for each y ∈ U , from yRx it follows that xRy. We denote by
min(U) the set of minimal points of U . It is well known (see, e.g., [7, Thm.
III.2.1]) that for each closed subset F of X and y ∈ F there exists x ∈ min(F )
such that xR+y. In fact, for each closed subset F of X, by selecting one
point from each C ∩ F , where C is a cluster with C ∩ min(F ) = ∅, we can
find an antichain d ⊆ min(F ) such that F ⊆ R+(d). In order to avoid such
a selection, it is more convenient to work with quasi-antichains instead of
antichains, where d ⊆ X is a quasi-antichain if xRy implies yRx for each
x, y ∈ d. Clearly each antichain is a quasi-antichain, but not the other way
around. Nevertheless, they are closely related concepts; it is easy to see
that if d is a quasi-antichain, then by selecting one point from each cluster
of d, we obtain an antichain d0 such that R+(d) = R+(d0). One particular
advantage of quasi-antichains over antichains is that if F is a closed subset
of X, then min(F ) is always a quasi-antichain, which in general may not be
an antichain.

From now on we will mostly work with quasi-antichains, but we point
out that it is only a convenient convention; all our results involving quasi-
antichains can also be formulated by means of antichains.

Definition 4.2. Let X and Y be transitive spaces and let f : X → Y be
a partial continuous p-morphism. Let also D be a (possibly empty) set of
quasi-antichains in Y . We say that f satisfies the closed domain condition
(CDC) for D if:

f(R(x)) = R+(d) for some d ∈ D implies x ∈ dom(f).

Equivalently, f satisfies (CDC) for D if

x /∈ dom(f) implies f(R(x)) = R+(d) for each d ∈ D.

In particular, since minfR(x) is a quasi-antichain with
fR(x) = R+(minfR(x)), we have that x /∈ dom(f) implies minfR(x) /∈ D.

Lemma 4.3. Let (X, R), (Y, Q) be transitive spaces, f : X → Y be a partial
continuous p-morphism, and U be a clopen subset of Y . We let

DU = {minfR(x) : fR(x) ∩ U = ∅}.
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Then the following conditions are equivalent:

1. f satisfies (CDC) for DU .

2. x /∈ dom(f) implies minfR(x) /∈ DU .

3. x /∈ dom(f) implies fR(x) ∩ U = ∅.
4. ♦Rf−1(U) ⊆ f−1♦Q(U).

Proof. The implications (1)⇒(2)⇒(3) are obvious.
(3)⇒(4): Let x ∈ ♦Rf−1(U). Then fR(x)∩U = ∅. By (3), x ∈ dom(f).

By Lemma 3.3.2, fR(x) = Qf(x). Therefore, Qf(x) ∩ U = ∅, so f(x) ∈
♦Q(U), and hence x ∈ f−1♦Q(U). Thus, ♦Rf−1(U) ⊆ f−1♦Q(U).

(4)⇒(1): Let x /∈ dom(f). If min(fR(x)) ∈ DU , then fR(x) ∩ U = ∅.
Therefore, x ∈ ♦Rf−1(U), and so, by (4), x ∈ f−1♦Q(U). Thus, x ∈ dom(f),
a contradiction. Consequently, min(fR(x)) /∈ DU , and it follows from the
definition of DU that f satisfies (CDC) for DU .

Remark 4.4. As follows from Lemma 4.3, a partial continuous p-morphism
f satisfies (CDC) for DU iff x /∈ dom(f) implies fR(x) ∩ U = ∅. Therefore,
we could take the latter condition as the definition of (CDC). We chose the
former condition as the definition of (CDC) because we wanted to keep our
approach close to that of Zakharyaschev.

Next we give an algebraic analogue of Lemma 4.3.

Theorem 4.5. Let A and B be K4-algebras, η : A → B be a relativized ho-
momorphism, and a ∈ A. Then the following two conditions are equivalent:

1. η(♦a) = ♦η(a).

2. η∗ : B∗ → A∗ satisfies (CDC) for Dϕ(a).

Proof. The result follows from Lemmas 3.3.1, 4.3, and Theorem 3.4.

Corollary 4.6. Let A and B be K4-algebras, η : A → B be a relativized
homomorphism, and D ⊆ A. Then the following two conditions are equiva-
lent:

1. η(♦a) = ♦η(a) for each a ∈ D.

2. η∗ : B∗ → A∗ satisfies (CDC) for D =
⋃{Dϕ(a) : a ∈ D}.

Proof. Apply Theorem 4.5.

Next we recall the definitions of cofinal and dense partial continuous
p-morphisms and give their dual algebraic descriptions.
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Definition 4.7. Let (X, R) be a transitive space. We call Y ⊆ X cofinal if
X = (R+)−1(Y ).

Definition 4.8. Let X and Y be transitive spaces and let f : X → Y be a
partial continuous p-morphism.

1. We say that f is cofinal if dom(f) is cofinal in X.

2. We say that f is dense if dom(f) is a downset ; that is, x ∈ dom(f) and
yRx imply y ∈ dom(f). In other words, f is dense if x /∈ dom(f) implies
R(x) ∩ dom(f) = ∅.

Lemma 4.9. Let X and Y be transitive spaces and let f : X → Y be a partial
continuous p-morphism. Then f is cofinal iff ♦R+(domf) = X.

Proof. We have f is cofinal iff X = (R+)−1dom(f) iff ♦R+(domf) = X.

Definition 4.10. Let A and B be K4-algebras and let η : A → B be a
relativized homomorphism.

1. We say that η is cofinal if ♦+η(1) = 1.

2. We say that η is dense if ♦η(1) ≤ η(1).

Lemma 4.11. Let A and B be K4-algebras and let η : A → B be a relativized
homomorphism. Then:

1. η is cofinal iff η∗ : B∗ → A∗ is cofinal.

2. η is dense iff η∗ : B∗ → A∗ is dense.

Proof. (1) We recall that ϕ(η(1)) = dom(η∗). Therefore, η is cofinal iff
♦+η(1) = 1 iff ϕ(♦+η(1)) = B∗ iff ♦R+dom(η∗) = B∗, which, by Lemma 4.9,
holds iff η∗ is cofinal.

(2) We have:

η is dense iff ♦η(1) ≤ η(1)
iff ♦R(dom(η∗)) ⊆ dom(η∗)
iff B∗ − dom(η∗) ⊆ B∗ − ♦R(dom(η∗))
iff x /∈ dom(η∗) ⇒ R(x) ∩ dom(η∗) = ∅
iff η∗ is dense.
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Lemma 4.12. If A and B are K4-algebras and η : A → B is a cofinal and
dense relativized homomorphism, then η is a modal algebra homomorphism.

Proof. Since η is cofinal, ♦+η(1) = 1. Therefore, η(1) ∨ ♦η(1) = 1. But
as η is dense, ♦η(1) ≤ η(1). Thus, η(1) = 1, and so η is a modal algebra
homomorphism.

Next lemma is an immediate consequence of Lemmas 4.11 and 4.12 and
Theorem 3.4. Nevertheless, its direct proof is simple enough that we give it
below.

Lemma 4.13. If X and Y are transitive spaces and f : X → Y is a cofinal
and dense partial continuous p-morphism, then f is a total continuous p-
morphism.

Proof. It is sufficient to show that dom(f) = X. If not, then there exists
x /∈ dom(f). As f is cofinal, there exists y ∈ dom(f) such that xR+y. Since
x /∈ dom(f), we have x = y. Therefore, xRy, and so R(x)∩ dom(f) = ∅. As
f is dense, x must be in dom(f). The obtained contradiction proves that
dom(f) = X, and so f is a total continuous p-morphism.

Next lemma will play an important role in Section 5. Let A be a K4-
algebra and (X, R) be the dual space of A. We recall that Y ⊆ X is an upset
of X if x ∈ Y and xRy imply y ∈ Y , and that homomorphic images of A
dually correspond to closed upsets of X (see, e.g., [5, Sec. 8.5]).

Lemma 4.14. Let A and B be K4-algebras, s ∈ A, and η : As → B be
an onto homomorphism. Then there exists a K4-algebra C and an onto
homomorphism θ : A → C such that B is isomorphic to the relativization of
C to θ(s). Moreover, if s is cofinal in A, then θ(s) is cofinal in C.

Proof. Let (X,R) be the dual space of A and let Rs be the restriction of
R to ϕ(s). Then (ϕ(s), Rs) is homeomorphic to the dual space of As. Since
B is a homomorphic image of As, the dual space of B is homeomorphic to
a closed upset Y of ϕ(s). Let Z = Y ∪ R(Y ). Then Z is a closed upset
of X. Therefore, (Z,RZ) is a transitive space. Let C be the K4-algebra
of clopen subsets of (Z, RZ). Then C is a homomorphic image of A. Let
θ : A → C be the onto homomorphism. As Y is an upset of X, we have
Y = Z ∩ ϕ(s) = ϕ(θ(s)). Therefore, Y is a clopen subset of Z, and so B
is isomorphic to the relativization of C to θ(s). In addition, if s is cofinal
in A, then ϕ(s) is cofinal in X. Thus, Y is cofinal in Z, and so θ(s) is cofinal
in C.
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We conclude this section by comparing our approach to that of Za-
kharyaschev. We will mostly follow [5, Sec. 9], which is a streamlined version
of Zakharyaschev’s earlier results. We point out that Zakharyaschev works
with transitive general frames, whereas we work with transitive spaces. Al-
though transitive spaces form a proper subcategory of the transitive general
frames, they are sufficient for our purposes as they are duals of K4-algebras.
Note that for transitive spaces, the notion of subreduction [5, p. 287] coin-
cides with that of onto partial continuous p-morphism.

Definition 4.15. Let X and Y be transitive spaces and let f : X → Y be
an onto partial continuous p-morphism.

1. [5, p. 295] We call f a cofinal subreduction if

R(dom(f)) ⊆ (R+)−1(dom(f)).

2. [5, p. 293] We call f a dense subreductionif

R+(dom(f)) ∩ (R+)−1(dom(f)) = dom(f).

For an onto partial continuous p-morphism f : X → Y , it is easy to
see that if f is cofinal (resp. dense) in our sense (Definition 4.8), then it is
cofinal (resp. dense) in Zakharyaschev’s sense (Definition 4.15). However, the
converse is clearly not true (see, e.g., [1, Ex. 4.3 and 4.6]). Nevertheless, each
cofinal (resp. dense) subreduction f : X → Y gives rise to a cofinal (resp.
dense) partial continuous p-morphism from the closed upset R+(dom(f)) of
X onto Y . For a proof, we refer to [1, Lem. 4.5 and 4.7]. Note that [1]
discusses only the intuitionistic case, but the proof for the modal case is
unchanged.

Next we address Zakharyaschev’s (CDC). We point out that Zakhary-
aschev only considers subreductions onto finite transitive frames. The main
reason for this, of course, is that the canonical formulas he defines are asso-
ciated with finite (rooted) transitive frames rather than any transitive space.
On the other hand, our (CDC) applies to the infinite case as well (although
the canonical formulas we will define will also be associated only with finite
subdirectly irreducible K4-algebras). Therefore, we will not assume that
the target space is finite. In addition, Zakharyaschev works with antichains,
while we prefer to work with quasi-antichains. But as we mentioned earlier
in this section, it is only a matter of convenience. Thus, we will modify
Zakharyaschev’s definition by replacing antichains by quasi-antichains.
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Definition 4.16. [5, p. 298] Let Y be a transitive space and D be a (possibly
empty) set of quasi-antichains in Y . We say that a partial continuous p-
morphism f from a transitive space X to Y satisfies Zakharyaschev’s closed
domain condition (ZCDC) for D if:

x ∈ R(dom(f)) and f(R(x)) = R+(d) for some d ∈ D imply x ∈ dom(f).

Clearly (CDC) implies (ZCDC). However, the converse is not true in
general. Nevertheless, (ZCDC) implies (CDC) for the restriction of f to
R+(dom(f)). Again, the proof is the same as in the intuitionistic case [1,
Cor. 4.9] and we skip it.

5. Canonical formulas for K4

In this section we give an algebraic description of canonical formulas. Our
canonical formulas generalize the Jankov-Rautenberg formulas. The main
result of the section is a new algebraic proof of Zakharyaschev’s theorem
that each logic over K4 is axiomatizable by these formulas.

5.1. An algebraic description of canonical formulas

We assume that modal formulas are built from propositional variables and
the constants � and ⊥ by means of the connectives ¬,∨ and the modal
operator ♦. We also treat the connectives ∧,→,↔ and the modal operator
� as derived operations in the standard way; that is, p ∧ q = ¬(¬p ∨ ¬q),
p → q = ¬p ∨ q, p ↔ q = (p → q) ∧ (q → p), and �p = ¬♦¬p. For modal
formulas α and β, we use the following abbreviations: ¬αβ = α ∧ ¬β and
♦αβ = α ∧ ♦β.

Let A be a finite subdirectly irreducible K4-algebra. Then it is well
known that H = �+(A) is a subdirectly irreducible Heyting algebra, hence
H has the second largest element which we denote by t. Let D be a subset of
A. For each a ∈ A we introduce a new variable pa and define the canonical
formula α(A,D) associated with A and D as follows:

α(A,D) =�+[ (� ↔ ♦+p1) ∧ (⊥ ↔ p0)∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧

∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧

∧
{p♦a ↔ ♦p1pa : a ∈ A}∧

∧
{p♦a ↔ ♦pa : a ∈ D}] → (p1 → pt).
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If we let
Γ = (� ↔ ♦+p1) ∧ (⊥ ↔ p0)∧∧

{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧
∧

{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧
∧

{p♦a ↔ ♦p1pa : a ∈ A}∧
∧

{p♦a ↔ ♦pa : a ∈ D},

then
α(A,D) = �+Γ → (p1 → pt).

Lemma 5.1. Let A be a finite subdirectly irreducible K4-algebra, H = �+(A),
t be the second largest element of H, and D be a subset of A. Then A |=
α(A,D).

Proof. Define a valuation ν on A by ν(pa) = a for each a ∈ A. Then

ν(α(A,D)) = �+1 → (1 → t) = 1 → t = t.

Therefore, A |= α(A,D).

Theorem 5.2. Let A be a finite subdirectly irreducible K4-algebra, D ⊆ A,
and B be a K4-algebra. Then B |= α(A,D) iff there exist a homomorphic
image C of B and a 1-1 modal algebra homomorphism η from A into a
cofinal relativization Cs of C such that η(♦a) = ♦η(a) for each a ∈ D.

Proof. First assume that there exist a homomorphic image C of B and
a 1-1 modal algebra homomorphism η from A into a cofinal relativization
Cs of C such that η(♦a) = ♦η(a) for each a ∈ D. By Lemma 5.1, there
is a valuation ν on A refuting α(A,D). We define a valuation μ on C by
μ(pa) = η ◦ ν(pa) = η(a) for each a ∈ A. We show that μ(α(A,D)) = η(t).
Since s is cofinal in C, we have 1C = ♦+η(1A). Therefore,

μ(� ↔ ♦+p1) = μ(�) ↔ ♦+μ(p1) = 1C ↔ ♦+η(1A) = ♦+η(1A) = 1C .

As Cs is a relativization of C and η : B → Cs is a Boolean algebra homo-
morphism, η(0A) = 0C , η(a∨ b) = η(a)∨ η(b), η(a∧ b) = η(a)∧ η(b) for each
a, b ∈ A. Thus,

μ(⊥ ↔ p0) = 0C ↔ μ(p0) = 0C ↔ η(0A) = 1C ,

μ(pa∨b ↔ pa∨pb) = μ(pa∨b) ↔ μ(pa)∨μ(pb) = η(a∨b) ↔ η(a)∨η(b) = 1C ,
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μ(pa∧b ↔ pa∧pb) = μ(pa∧b) ↔ μ(pa)∧μ(pb) = η(a∧b) ↔ η(a)∧η(b) = 1C .

Also, since η : A → Cs is a modal algebra homomorphism, for each a ∈ A
we have η(♦a) = ♦η(1A)η(a). Therefore,

μ(p♦a ↔ ♦p1pa) = μ(p♦a) ↔ ♦η(1A)μ(pa) = η(♦a) ↔ ♦η(1A)η(a) = 1C .

Moreover, η(♦a) = ♦η(a) for each a ∈ D implies

μ(p♦a ↔ ♦pa) = μ(p♦a) ↔ ♦μ(pa) = η(♦a) ↔ ♦η(a) = 1C

for each a ∈ D. Thus, μ(Γ) = 1C , and so μ(�+Γ) = �+μ(Γ) = �+1C = 1C .
We also have that μ(pt) = η(t). This yields

μ(α(A,D)) = �+μ(Γ) → (μ(p1) → μ(pt)) = 1C → (η(1A) → η(t)) =
η(1A) → η(t).

It is obvious that η(t) ≤ η(1A). If η(1A) → η(t) = 1C , then η(1A) ≤ η(t), so
η(1A) = η(t), and so η is not 1-1, a contradiction. Therefore, η(1A) ≤ η(t),
yielding η(1A) → η(t) = 1C . Consequently, α(A,D) is refuted on C. Now as
C is a homomorphic image of B, we also have that α(A,D) is refuted on B.

Conversely, let B |= α(A,D). Then there exists a valuation μ on B
such that μ(α(A,D)) = 1B. Therefore, μ(α(A,D)) = �+μ(Γ) → (μ(p1) →
μ(pt)) = 1B. Thus, �+μ(Γ) ≤ μ(p1) → μ(pt). By Lemma 4.1, there exist a
subdirectly irreducible K4-algebra C and an onto homomorphism θ : B → C
such that θ(�+μ(Γ)) = 1C and θ(μ(p1) → μ(pt)) = 1C . Clearly ν = θ ◦ μ
is a valuation on C such that �+ν(Γ) = 1C and ν(p1) → ν(pt) = 1C . It
follows that ν(Γ) = 1C .

Next define a map η : A → C by η(a) = ν(pa) for each a ∈ A. Let
s = η(1A). First we show that s is cofinal in C. Since ν(Γ) = 1C and ν(Γ) ≤
ν(� ↔ ♦+p1), we obtain that ν(� ↔ ♦+p1) = 1C . But ν(� ↔ ♦+p1) =
ν(�) ↔ ♦+ν(p1) = 1C ↔ ♦+ν(p1), which implies that ♦+ν(p1) = 1C . But
ν(p1) = η(1A) = s. Therefore, ♦+s = ♦+η(1A) = 1C , and so s is cofinal
in C. Next we show that η is a 1-1 modal algebra homomorphism from A
into Cs such that η(♦a) = ♦η(a) for each a ∈ D.

Let a, b ∈ A. Since ν(Γ) = 1C and ν(Γ) ≤ ν(pa∧b) ↔ (ν(pa) ∧ ν(pb)), we
obtain that ν(pa∧b) ↔ (ν(pa) ∧ ν(pb)) = 1C . Therefore, ν(pa∧b) = ν(pa) ∧
ν(pb). By a similar argument,

ν(pa∨b) = ν(pa) ∨ ν(pb),

ν(p0) = 0C ,

ν(p♦a) = ♦ν(p1)ν(pa), and
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ν(p♦a) = ♦ν(pa) for a ∈ D.

But ν(pa) = η(a) for each a ∈ A. Therefore, for each a, b ∈ A, we have:

η(a ∧ b) = η(a) ∧ η(b),

η(a ∨ b) = η(a) ∨ η(b),

η(0A) = 0C ,

η(♦a) = ♦η(1A)η(a) = ♦sη(a), and

η(♦a) = ♦η(a) for a ∈ D.

By Lemma 3.1, η is a relativized Boolean algebra homomorphism, and hence
η is a modal algebra homomorphism from A to Cs such that η(♦a) = ♦η(a)
for each a ∈ D. It is left to be shown that η is 1-1. Let a, b ∈ A with
a ≤ b. Then a → b = 1A, and so �+(a → b) ≤ t. Therefore, η(�+(a →
b)) ≤ η(t). Thus, �+

s (η(a) →s η(b)) ≤ η(t) ≤ η(1A) = s. If η(1A) ≤ η(t),
then ν(p1) ≤ ν(pt). So ν(p1) → ν(pt) = 1C , a contradiction. Consequently,
η(t) < η(1A) = s, and so �+

s (η(a) →s η(b)) < s. If η(a) →s η(b) = s,
then �+

s (η(a) →s η(b)) = �+
s (s) = �+

s (η(1A)) = η(�+1A) = η(1A) = s,
a contradiction. Thus, η(a) →s η(b) < s, so η(a) ≤ η(b), and hence η
is 1-1.

As an immediate consequence of Theorems 3.4, 5.2, and Corollary 4.6,
we obtain:

Corollary 5.3. Let A be a finite subdirectly irreducible K4-algebra, D ⊆ A,
and D =

⋃{Dϕ(a) : a ∈ D} be the set of quasi-antichains in A∗ associated
with D. Then for each transitive space X, we have X |= α(A,D) iff there ex-
ist a closed upset Y of X and an onto cofinal partial continuous p-morphism
f : Y → A∗ such that f satisfies (CDC) for D.

Remark 5.4. For an intuitionistic version of Theorem 5.2 see [1, Thm. 5.3].
Corollary 5.3 corresponds to [5, Thm. 9.39(i)]. Its intuitionistic analogues
are [5, Thm. 9.40(i)] and [1, Cor. 5.5]. Also note that a transitive space
X validates our canonical formulas iff X validates Zakharyachev’s canonical
formulas. Since the proof of this fact is the same as in the intuitionistic case,
we refer the reader to [1, Rem. 5.6].

5.2. Axiomatization

We are ready to give a new algebraic proof of Zakharyaschev’s theorem that
every logic over K4 is axiomatizable by canonical formulas. For this we first
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show that the refutability of a modal formula α in a K4-algebra B can be
“coded” by means of finitely many pairs (A1, D1), . . . , (Am, Dm), where each
Ai is a subdirectly irreducible K4-algebra and Di ⊆ Ai.

Theorem 5.5. If K4 � α(p1, . . . , pn), then there exist (A1, D1), . . . , (Am,
Dm) such that each Ai is a finite subdirectly irreducible K4-algebra, Di ⊆ Ai,
and for each K4-algebra B we have B |= α(p1, . . . , pn) iff there exist i ≤ m,
a homomorphic image C of B, and a modal algebra homomorphism ηi from
Ai into a cofinal relativization Cu of C such that ηi(♦ia) = ♦ηi(a) for each
a ∈ Di.

Proof. Let Fn be the free n-generated K4-algebra and let g1, . . . , gn be
the generators of Fn. Since K4 � α(p1, . . . , pn), we have Fn |= α(p1, . . . , pn).
Therefore, α(g1, . . . , gn) = 1Fn . By [3, Main Lemma], there exist a cofinal s ∈
Fn and a finite modal subalgebra Bs of (Fn)s such that Bs |= α(p1, . . . , pn).
We briefly recall the construction of s. Let Bα be the Boolean subalgebra
of Fn generated by the subpolynomials of α(g1, . . . , gn). Then Bα is finite.
Let Aα denote the set of atoms of Bα. Let also Hn = �+(Fn). Then Hn is
a Heyting algebra, where −−→

Hn

denotes the Heyting implication in Hn. Let

Hα be the (∧,−−→
Hn

)-subalgebra of Hn generated by �+(Bα). By Diego’s

Theorem, Hα is finite. Let

s =
∨

a∈Aα

∧

h∈Hα

(
ha ∨ �+

a ¬aha

)
.

By [3, Lem. 5.3], s is cofinal. Finally, let B be the Boolean subalgebra of
Fn generated by Bα ∪ Hα, and let Bs = {bs : b ∈ B}, where bs = s ∧ b.
Clearly Bs is finite. By [3, Rem. 5.8], Bs is a modal subalgebra of (Fn)s and
Bs |= α(p1, . . . , pn).

Let A1, . . . , Am be the subdirectly irreducible homomorphic images of
Bs refuting α(p1, . . . , pn), and let θi : Bs → Bi be the corresponding onto
homomorphisms. Since each Ai refutes α(p1, . . . , pn), there exist a1, . . . , an ∈
Ai such that α(a1, . . . , an) = 1Ai . Let Aα

i be the Boolean subalgebra of Ai

generated by the subpolynomials of α(a1, . . . , an). We set Di = {¬a ∈ Aα
i :

♦ia ∈ Aα
i }.1

Given a K4-algebra B, we need to show that B |= α(p1, . . . , pn) iff there
is i ≤ m, a homomorphic image C of B, and a modal algebra homomorphism
ηi from Ai into a cofinal relativization Cu of C such that ηi(♦id) = ♦ηi(d)
for each d ∈ Di.

1Di could alternatively be defined as {a ∈ Aα
i : �ia ∈ Aα

i }.
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First suppose there exist i ≤ m, a homomorphic image C of B, and a
modal algebra homomorphism ηi from Ai into a cofinal relativization Cu of
C such that ηi(♦id) = ♦ηi(d) for each d ∈ Di. Since ηi : Ai → Cu is a 1-1
modal algebra homomorphism, the formula α(p1, . . . , pn) is refuted on Cu.
We show that α(p1, . . . , pn) is also refuted on C.

Lemma 5.6. Suppose that B is a K4-algebra, u ∈ B, and ♦+u = 1. Let
Bu be the relativization of B to u. Let also A be a K4-algebra such that
α(a1, . . . , an) = 1A for some a1, . . . , an ∈ A. We let Aα be the Boolean subal-
gebra of A generated by the subpolynomials of α(a1, . . . , an), and D = {¬a ∈
Aα : ♦a ∈ Aα}. If there is a 1-1 modal algebra homomorphism η from A into
Bu satisfying ♦η(d) = η(♦d) for each d ∈ D, then α(η(a1), . . . , η(an)) = 1B.

Proof. Since α(a1, . . . , an) = 1A and there is a 1-1 modal algebra ho-
momorphism η : A → Bu, we have that αBu(η(a1), . . . , η(an)) = u. As
♦η(d) = η(♦d) for each d ∈ D, by Corollary 4.6, η∗ : B∗ → A∗ satis-
fies (CDC) for D =

⋃{Dϕ(d) : d ∈ D}. Therefore, x /∈ dom(η∗) implies
η∗R(x)∩ϕ(d) = ∅ for each d ∈ D. As dom(η∗) = ϕ(u) and η∗R(x)∩ϕ(d) = ∅
iff R(x) ∩ ϕ(u) ∩ η−1∗ ϕ(d) = ∅ iff R(x) ∩ ϕ(u) ∩ ϕ(η(d)) = ∅, we obtain:

η∗ : B∗ → A∗ satisfies (CDC) for D =
⋃{Dϕ(d) : d ∈ D} iff

R(x) ∩ ϕ(u) ∩ ϕ(η(d)) = ∅ for each d ∈ D and x /∈ ϕ(u) iff
R(x) ∩ ϕ(u) ⊆ ϕ(u) − ϕ(η(d)) for each d ∈ D and x /∈ ϕ(u) iff
R(x) ∩ ϕ(u) ⊆ ϕ(η(1)) − ϕ(η(d)) for each d ∈ D and x /∈ ϕ(u) iff
R(x) ∩ ϕ(u) ⊆ ϕ(¬η(1)η(d)) for each d ∈ D and x /∈ ϕ(u) iff
R(x) ∩ ϕ(u) ⊆ ϕ(η(¬d)) for each d ∈ D and x /∈ ϕ(u).

That α(η(a1), . . . , η(an)) = 1B now follows from the following claim.

Claim 5.7. Let Bα
u be the Boolean subalgebra of Bu generated by the subpoly-

nomials of αBu(η(a1), . . . , η(an)). If R(x) ∩ ϕ(u) ⊆ ϕ(¬d) for each d ∈ D
and x /∈ ϕ(u), then

u ∧ α(b1, . . . , bn) = αBu(b1, . . . , bn)

for each b1, . . . , bn ∈ Bα
u . Consequently, if there exist b1, . . . , bn ∈ Bα

u such
that αBu(b1, . . . , bn) = u, then α(b1, . . . , bn) = 1B.

Proof. Induction on the complexity of α(b1, . . . , bn).
If α(b1, . . . , bn) = 1, then

u ∧ α(b1, . . . , bn) = u ∧ 1 = 1u = αBu(b1, . . . , bn).
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The case when α(b1, . . . , bn) = 0 is proved similarly.
If α(b1, . . . , bn) = bi, then

u ∧ α(b1, . . . , bn) = u ∧ bi = bi = αBu(b1, . . . , bn).

If α(b1, . . . , bn) = β ∨ γ, then

u∧α(b1, . . . , bn) = u∧(β∨γ) = (u∧β)∨(u∧γ) = βu∨γu = αBu(b1, . . . , bn).

If α(b1, . . . , bn) = ¬β, then

u ∧ α(b1, . . . , bn) = u ∧ ¬β = u ∧ (¬u ∨ ¬β) = u ∧ ¬(u ∧ β) = ¬uβu =
αBu(b1, . . . , bn).

Lastly, let α(b1, . . . , bn) = ♦β. Then

u ∧ α(b1, . . . , bn) = u ∧ ♦β

and
αBu(b1, . . . , bn) = ♦uβu = u ∧ ♦(u ∧ β).

We show that u∧♦β = u∧♦(u∧β). It is obvious that u∧♦(u∧β) ≤ u∧♦β.
Conversely, let x ∈ ϕ(u ∧ ♦β). Then x ∈ ϕ(u) and R(x) ∩ ϕ(β) = ∅. So
there exists y ∈ B∗ such that xRy and y ∈ ϕ(β). If y ∈ ϕ(u), then x ∈ ϕ(u∧
♦(u ∧ β)). If y /∈ ϕ(u), then as ♦+u = 1B, there exists z ∈ ϕ(u) such that
yRz. As R is transitive, xRz. Since ♦β ∈ Bα

u , we have ¬β ∈ D. Therefore,
R(y) ∩ ϕ(u) ⊆ ϕ(β). Thus, z ∈ ϕ(β), and so x ∈ ϕ(u ∧ ♦(u ∧ β)). This
implies that u∧♦β ≤ u∧♦(u∧β). Consequently, u∧♦β = u∧♦(u∧β), and
hence by induction we can conclude that u∧α(b1, . . . , bn) = αBu(b1, . . . , bn).

Finally, if αBu(b1, . . . , bn) = u, then as u∧α(b1, . . . , bn) = αBu(b1, . . . , bn)
= u, we obtain that α(b1, . . . , bn) = 1B.

This concludes the proof of Lemma 5.6.

Lemma 5.6 yields that α(p1, . . . , pn) is refuted on C. Since C is a homo-
morphic image of B, it follows that α(p1, . . . , pn) is also refuted on B.

Conversely, suppose that B |= α(p1, . . . , pn). Then there exist a1, . . . ,
an ∈ B such that α(a1, . . . , an) = 1B. Let Sn be the subalgebra of B
generated by a1, . . . , an. Then Sn is an n-generated K4-algebra, and so Sn

is a homomorphic image of Fn. Let θ : Fn → Sn be the onto homomorphism
and let Sα be the Boolean subalgebra of Sn generated by the subpolynomials
of α(a1, . . . , an). We construct a cofinal u and Bu in Sn exactly the same
way we constructed s and Bs in Fn. We also let D = {¬a ∈ Sα : ♦a ∈ Sα}.
Clearly θ(s) = u. Also, by [3, Lem. 5.7], ♦ubu = u ∧ ♦b for each b ∈ Sα.
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Let k : Bu → (Sn)u, l : (Sn)u → Sn, and m : Sn → B be the corresponding
embeddings. Then k and m are modal algebra homomorphisms, while l
is a relativized modal algebra homomorphism. Moreover, the embedding
m ◦ l ◦ k : Bu → B satisfies ♦mlk(a) = mlk(♦ua) for each a ∈ Sα.

Since θ : Fn → Sn is an onto homomorphism and θ(s) = u, the restriction
of θ to Bs is a homomorphism from Bs onto Bu. As Bu |= α(p1, . . . , pn), there
is a subdirectly irreducible homomorphic image of Bu refuting α(p1, . . . , pn).
Since each homomorphic image of Bu is also a homomorphic image of Bs,
we obtain that the subdirectly irreducible homomorphic image of Bu refut-
ing α(p1, . . . , pn) is Ai for some i ≤ m. Let θi : Bu → Ai be the onto
homomorphism. Then, by Lemma 2.1, there exists a K4-algebra T , an onto
homomorphism ζ : (Sn)u → T , and a 1-1 homomorphism n : Ai → T such
that ζ ◦k = n◦θi. By Lemma 4.14, there exists a K4-algebra E and an onto
homomorphism ξ : Sn → E such that T is isomorphic to the relativization
of E to ξ(u). Moreover, as u is cofinal in Sn, we also have that ξ(u) is
cofinal in E. Let p : T → E be the corresponding relativized modal algebra
homomorphism from T into E. Then ξ ◦ l = p ◦ ζ. Applying Lemma 2.1
again, we obtain a K4-algebra C, an onto homomorphism η : A → C, and a
1-1 homomorphism q : E → C such that η ◦ m = q ◦ ξ. Therefore, we arrive
at the following commutative diagram.

Bu

θi
����

�� k �� (Sn)u
�� l ��

ζ
����

Sn

ξ
����

�� m �� B

η
����

Ai
�� n �� T �� p �� E �� q �� C

Let ηi = q◦p◦n and let (Ai)α be the Boolean subalgebra of Ai generated
by the subpolynomials of α(θi(a1), . . . , θi(an)). Then (Ai)α = θi[Sα]. Let
a ∈ (Ai)α. Then there exists b ∈ Sα such that a = θi(b). As the diagram
commutes and ♦Bmlk(b) = mlk(♦ub) for each b ∈ Sα, we have ηi(♦ia) =
ηi(♦iθi(b)) = ηiθi(♦ub) = ηmlk(♦ub) = η♦Bmlk(b) = ♦Cηmlk(b) =
♦Cηiθi(b) = ♦Cηi(a). In particular, ηi(♦id) = ♦Cηi(d) for each d ∈ D.
Thus, we have found i ≤ m, a homomorphic image C of B, and a relativized
modal algebra homomorphism ηi from Ai into a cofinal relativization Cη(u)

of C such that ηi(♦id) = ♦ηi(d) for each d ∈ Di.

As an immediate consequence of Theorems 3.4, 5.5, and Corollary 4.6,
we obtain:

Corollary 5.8. If K4 � α(p1, . . . , pn), then there exist (A1, D1), . . . , (Am,
Dm) such that each Ai is a finite subdirectly irreducible K4-algebra, Di ⊆ Ai,
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and for each transitive space X, we have X |= α(p1, . . . , pn) iff there exist
i ≤ m, a closed upset Y of X, and a cofinal partial continuous p-morphism
fi from Y onto (Ai)∗ satisfying (CDC) for Di =

⋃{Dϕ(a) : a ∈ Di}.
Corollary 5.9. If K4 � α(p1, . . . , pn), then there exist (A1, D1), . . . , (Am,
Dm) such that each Ai is a finite subdirectly irreducible K4-algebra, Di ⊆ Ai,
and for each K4-algebra B, we have:

B |= α(p1, . . . , pn) iff B |=
m∧

i=1

α(Ai, Di).

Proof. Suppose that K4 � α(p1, . . . , pn). Then, by Theorem 5.5, there
exist (A1, D1), . . . , (Am, Dm) such that each Ai is a finite subdirectly irre-
ducible K4-algebra, Di ⊆ Ai, and for each K4-algebra B, we have B |=
α(p1, . . . , pn) iff there exist i ≤ m, a homomorphic image C of B, and a
modal algebra homomorphism ηi from Ai into a cofinal relativization Cu of
C such that ηi(♦ia) = ♦ηi(a) for each a ∈ Di. The result now follows from
Theorem 5.2.

Corollary 5.10. If K4 � α(p1, . . . , pn), then there exist (A1, D1), . . . , (Am,
Dm) such that each Ai is a finite subdirectly irreducible K4-algebra, Di ⊆ Ai,
and for each transitive space X, we have:

X |= α(p1, . . . , pn) iff X |=
m∧

i=1

α(Ai, Di).

Remark 5.11. For an intuitionistic version of Theorem 5.5 see [1, Thm.
5.7]; Lemma 5.6 corresponds to [5, Thm. 9.30]; Corollary 5.8 corresponds
to [5, Thms. 9.34 and 9.36(i)]; for its intuitionistic version see [1, Cor. 5.5];
Corollary 5.9 corresponds to [5, Thm 9.43(i)]; for intuitionistic versions of
Corollaries 5.9 and 5.10 see [1, Cor. 5.10 and 5.11].

As a consequence of Corollary 5.9, we obtain that every logic over K4 is
axiomatizable by canonical formulas.

Corollary 5.12 (Zakharyaschev’s theorem). Each logic L over K4 is ax-
iomatizable by canonical formulas. Moreover, if L is finitely axiomatizable,
then L is axiomatizable by finitely many canonical formulas.

Proof. Let L be a logic over K4. Then L is obtained by adding {αi : i ∈ I}
to K4 as new axioms. Therefore, K4 � αi for each i ∈ I. By Corollary
5.9, for each i ∈ I, there exist (Ai1, Di1), . . . , (Aimi , Dimi) such that Aij is
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a finite subdirectly irreducible K4-algebra, Dij ⊆ Aij , and for each K4-
algebra B, we have B |= αi iff B |= ∧mi

j=1 α(Aij , Dij). Thus, B |= L iff
B |= {αi : i ∈ I}, which happens iff B |= {∧mi

j=1 α(Aij , Dij) : i ∈ I}.
Consequently, L = K4+{∧mi

j=1 α(Aij , Dij) : i ∈ I}, and so L is axiomatizable
by canonical formulas. In particular, if L is finitely axiomatizable, then L is
axiomatizable by finitely many canonical formulas.

6. Negation-free canonical formulas, Jankov-Rautenberg,
subframe, and cofinal subframe formulas for K4

In this section we consider negation-free canonical formulas. We show that
all the results of the previous section hold for negation-free formulas if we
remove the word “cofinal” in all the statements. We also show that Jankov-
Rautenberg, subframe, and cofinal subframe formulas are particular cases
of canonical formulas. This leads to a new axiomatization of subframe and
cofinal subframe logics over K4 with “algebra-based” formulas, as opposed
to frame-based formulas.

6.1. Negation-free canonical formulas for K4

Suppose that A is a finite subdirectly irreducible K4-algebra, H = �+(A),
t is the second largest element of H, and D ⊆ A. For each a ∈ A, we
introduce a new variable pa and define the negation-free canonical formula
β(A,D) associated with A and D as

β(A,D) =�+[ (⊥ ↔ p0)∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧

∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧

∧
{p♦a ↔ ♦p1pa : a ∈ A}∧

∧
{♦pa ↔ p♦a : a ∈ D}] → (p1 → pt).

Thus, β(A,D) is obtained from α(A, D) by deleting the conjunct � ↔ ♦+p1.

Theorem 6.1. Let A be a finite subdirectly irreducible K4-algebra, D ⊆ A,
and B be a K4-algebra. Then B |= β(A,D) iff there exist a homomorphic
image C of B and a relativized modal algebra homomorphism η from A into
a relativization Cs of C satisfying η(♦a) = ♦η(a) for each a ∈ D.

Proof. The proof is a simplified version of the proof of Theorem 5.2.
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As an immediate consequence, we obtain:

Corollary 6.2. Let A be a finite subdirectly irreducible K4-algebra, D ⊆ A,
and D =

⋃{Dϕ(a) : a ∈ D} be the set of quasi-antichains in A∗ associated
with D. Then for each transitive space X, we have X |= β(A,D) iff there
exist a closed upset Y of X and an onto partial continuous p-morphism
f : Y → A∗ such that f satisfies (CDC) for D.

We recall [5] that a modal formula α is negation-free if α is built from
propositional variables and constants by means of ∧, ∨, and ♦. The next
theorem is an analogue of Theorem 5.5 for negation-free canonical formulas.

Theorem 6.3. If K4 � α(p1, . . . , pn), where α(p1, . . . , pn) is negation-free,
then there exist (A1, D1), . . . , (Am, Dm) such that each Ai is a finite subdi-
rectly irreducible K4-algebra, Di ⊆ Ai, and for each K4-algebra B, we have
B |= α(p1, . . . , pn) iff there exist i ≤ m, a homomorphic image C of B, and
a modal algebra homomorphism η from Ai into a relativization Cs of C.

Proof. The proof is virtually the same as the proof of Theorem 5.5 with the
only exception that we need to prove a version of Lemma 5.6 for negation-free
canonical formulas. This we do in the next lemma.

Lemma 6.4. Let α(p1, . . . , pn) be a negation-free formula, A,B be K4-alge-
bras, and s ∈ B. Suppose there exist a1, . . . , an ∈ A such that α(a1, . . . , an)
= 1A. Let also Aα denote the Boolean subalgebra of A generated by the
subpolynmials of α(a1, . . . , an), and let D = {¬a ∈ Aα : ♦a ∈ Aα}. If
there exists a 1-1 relativized modal algebra homomorphism η from A into Bs

satisfying η(♦d) = ♦η(d) for each d ∈ D, then α(η(a1), . . . , η(an)) = 1B.

Proof. Since α(a1, . . . , an) = 1A and there is a 1-1 modal algebra ho-
momorphism η : A → Bs, we have that αBs(η(a1), . . . , η(an) = s. As
η(♦d) = ♦η(d) for each d ∈ D, we have that η∗ : B∗ → A∗ satisfies (CDC)
for D =

⋃{Dϕ(d) : d ∈ D}. But η∗ : B∗ → A∗ satisfies (CDC) for D

iff R(y) ∩ ϕ(u) ⊆ ϕ(η(a)) for each ¬a ∈ D (see the proof of Lemma 5.6).
Therefore, the result follows from the following claim.

Claim 6.5. Let Bα
s be the Boolean subalgebra of Bs generated by the sub-

polynomials of αBs(η(a1), . . . , η(an)). If R(x)∩ϕ(s) ⊆ ϕ(¬d) for each d ∈ D
and x /∈ ϕ(s), then

s ∧ α(b1, . . . , bn) = αBs(b1, . . . , bn)

for each b1, . . . , bn ∈ Bα
s . Consequently, if there exist b1, . . . , bn ∈ Bα

s such
that αBs(b1, . . . , bn) = s, then α(b1, . . . , bn) = 1B.
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Proof. We prove the claim by induction on the complexity of α(b1, . . . , bn).
The cases α(b1, . . . , bn) = 1, α(b1, . . . , bn) = 0, α(b1, . . . , bn) = bi, and
α(b1, . . . , bn) = β ∨ γ are proved as in Claim 5.7. The case α(b1, . . . , bn) =
β ∧ γ is proved similarly.

Let α(b1, . . . , bn) = ♦β. It is sufficient to prove that s∧♦β ≤ s∧♦(s∧β).
Let x ∈ ϕ(s ∧ ♦β). Then x ∈ ϕ(s) and there exists y ∈ B∗ such that xRy
and y ∈ ϕ(β). If y ∈ ϕ(s), then we are done. Suppose that y /∈ ϕ(s). If
R(y)∩ϕ(s) = ∅, we proceed as in the proof of Claim 5.7. On the other hand,
since α(p1, . . . , pn) is negation-free, an easy induction on the complexity
of subpolynomials γ of α(b1, . . . , bn) shows that for each z /∈ ϕ(s) with
R(z) ∩ ϕ(s) = ∅, we have z /∈ ϕ(γ). Therefore, if R(y) ∩ ϕ(s) = ∅, as β is a
subpolynomial of α(b1, . . . , bn), we obtain y /∈ ϕ(β), which is a contradiction.
Thus, s ∧ ♦β = s ∧ ♦(s ∧ β), and so by induction we can conclude that
s ∧ α(b1, . . . , bn) = αBs(b1, . . . , bn). Finally, if αBs(b1, . . . , bn) = s, then as
s∧α(b1, . . . , bn) = αBs(b1, . . . , bn) = s, we obtain that α(b1, . . . , bn) = 1B.

Thus, Lemma 6.4 is proved.

Consequently, Theorem 6.3 is also proved.

Theorem 6.3 has a number of useful corollaries. The proofs are similar
to the ones given in the previous section, and we skip them.

Corollary 6.6. If K4 � α(p1, . . . , pn), where α(p1, . . . , pn) is negation-
free, then there exist (A1, D1), . . . , (Am, Dm) such that each Ai is a finite
subdirectly irreducible K4-algebra, Di ⊆ Ai, and for each transitive space
X, we have X |= α(p1, . . . , pn) iff there exist i ≤ m, a closed upset Y of X,
and a partial continuous p-morphism fi from Y onto (Ai)∗ satisfying (CDC)
for Di =

⋃{Dϕ(a) : a ∈ Di}.

Corollary 6.7. If K4 � α(p1, . . . , pn), where α(p1, . . . , pn) is negation-
free, then there exist (A1, D1), . . . , (Am, Dm) such that each Ai is a finite
subdirectly irreducible K4-algebra, Di ⊆ Ai, and for each K4-algebra B, we
have:

B |= α(p1, . . . , pn) iff B |=
m∧

i=1

β(Ai, Di).

Corollary 6.8. If K4 � α(p1, . . . , pn), where α(p1, . . . , pn) is negation-
free, then there exist (A1, D1), . . . , (Am, Dm) such that each Ai is a finite
subdirectly irreducible K4-algebra, Di ⊆ Ai, and for each transitive space
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X, we have:

X |= α(p1, . . . , pn) iff X |=
m∧

i=1

α(Ai, Di).

Corollary 6.9. Each logic L over K4 axiomatizable by negation-free for-
mulas is axiomatizable by negation-free canonical formulas. Moreover, if L
is axiomatizable by finitely many negation-free formulas, then L is axioma-
tizable by finitely many negation-free canonical formulas.

Remark 6.10. Corollary 6.2 corresponds to [5, Thm. 9.39(ii)]; Lemma 6.4
corresponds to [5, Thm. 9.31]; Corollary 6.6 corresponds to [5, Thms. 9.34
and 9.36(ii)]; and Corollary 6.8 corresponds to [5, Thm. 9.43(ii)]. For an
algebraic treatment of negation-free canonical formulas in the setting of in-
tuitionistic logic see [1, Sec. 5.2].

6.2. Jankov-Rautenberg formulas for K4

Next we show that the Jankov-Rautenberg formulas are a particular case of
our canonical formulas. Let A be a finite subdirectly irreducible K4-algebra,
H = �+(A), and t be the second largest element of H. We recall that the
Jankov-Rautenberg formula of A is

χ(A) =�+[
∧

{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧
∧

{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧
∧

{p¬a ↔ ¬pa : a ∈ A}∧
∧

{p♦a ↔ ♦pa : a ∈ A}] → pt.

It is well known that a K4-algebra B refutes χ(A) iff A is a subalgebra of a
homomorphic image of B. We show that α(A,A) is equivalent to χ(A). Let

χ′(A) =�+[ (� ↔ p1) ∧ (⊥ ↔ p0)∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧

∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧

∧
{p♦a ↔ ♦pa : a ∈ A}] → pt.

Lemma 6.11. Let A be a finite subdirectly irreducible K4-algebra and let B
be a K4-algebra. The following three conditions are equivalent:
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1. B |= χ(A),

2. B |= χ′(A),

3. B |= α(A, A).

Proof. It is easy to see that (1) is equivalent to (2) as any lattice homo-
morphism between Boolean algebras is a Boolean algebra homomorphism iff
it preserves 0 and 1.

(1)⇒(3): Suppose that B |= α(A, A). Then by Theorem 5.2, there exist
a homomorphic image C of B and a 1-1 modal algebra homomorphism η
from A into a cofinal relativization Cs of C such that η(♦a) = ♦η(a) for
each a ∈ A. Then 1C = ♦+η(1A) = η(1A) ∨ ♦η(1A) = η(1A) ∨ η(♦1A) =
η(1A ∨ ♦1A) = η(1A). Therefore, η is a modal algebra homomorphism, and
so B |= χ(A).

(3)⇒(1): This is straightforward as every modal algebra homomorphism
is also a cofinal relativized modal algebra homomorphism.

As a direct consequence of Lemma 6.11, we obtain:

Corollary 6.12. Let A be a finite subdirectly irreducible K4-algebra.

1. For each K4-algebra B, we have B |= α(A,A) iff A is a subalgebra of a
homomorphic image of B.

2. For each transitive space X, we have X |= α(A,A) iff there exists a
closed upset Y of X and a continuous p-morphism from Y onto A∗.

6.3. Subframe and cofinal subframe formulas for K4

We conclude the paper by showing that the subframe and cofinal subframe
formulas for K4 can be obtained from our canonical formulas by taking
D = ∅. This yields a new axiomatization of subframe and cofinal subframe
logics over K4 using “algebra-based” formulas.

Let A be a finite subdirectly irreducible K4-algebra, H = �+(A), and t
be the second largest element of H. Let

αcs(A) =�+[ (� ↔ ♦+p1) ∧ (⊥ ↔ p0)∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧

∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧

∧
{p♦a ↔ ♦p1pa : a ∈ A}] → (p1 → pt).

Note that αcs(A) = α(A, ∅).
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Corollary 6.13. Let A be a finite subdirectly irreducible K4-algebra.

1. For each K4-algebra B, we have B |= αcs(A) iff there exist a homomor-
phic image C of B and a 1-1 cofinal relativized homomorphism from A
into C.

2. For each transitive space X, we have X |= αcs(A) iff there exist a
closed upset Y of X and a cofinal partial continuous p-morphism from
Y onto A∗.

Proof. Apply Theorem 5.2 and Corollary 5.3.

Subframe formulas are obtained from cofinal subframe formulas by re-
moving the conjunct � ↔ ♦+p1. Thus, the subframe formula of a finite
subdirectly irreducible K4-algebra A is

αs(A) =�+[ (⊥ ↔ p0)∧∧
{pa∨b ↔ pa ∨ pb : a, b ∈ A}∧

∧
{pa∧b ↔ pa ∧ pb : a, b ∈ A}∧

∧
{p♦a ↔ ♦p1pa : a ∈ A}] → (p1 → pt).

Note that αs(A) = β(A, ∅).
Corollary 6.14. Let A be a finite subdirectly irreducible K4-algebra.

1. For each K4-algebra B, we have B |= αs(A) iff there exist a homomor-
phic image C of B and a 1-1 relativized homomorphism from A into C.

2. For each transitive space X, we have X |= αcs(B) iff there exist a closed
upset Y of X and a partial continuous p-morphism from Y onto A∗.

Proof. Apply Theorem 6.1 and Corollary 6.2.

Remark 6.15. Frame-based versions of subframe and cofinal subframe for-
mulas are due to Fine [9] and Zakharyaschev [17]. An algebraic approach to
subframe and cofinal subframe logics is developed in [3]. For an algebraic
treatment of subframe and cofinal subframe formulas in the intuitionistic
setting see [2], [1, Sec. 5.4], and [4, Sec. 3.3.3].

Let X be a transitive space. We recall that Y ⊆ X is a subframe of
X if Y is a clopen subset of X. If in addition R(Y ) ⊆ (R+)−1(Y ), then
Y is a cofinal subframe of X. (Note that the notion of a subframe in the
intuitionistic setting is different; see [5, Sec 9.1] and [2].)
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Let L be a logic over K4. We recall that L is a subframe logic if for
each transitive space X and a subframe Y of X, from X |= L it follows that
Y |= L. We also recall that L is a cofinal subframe logic if for each transitive
space X and a cofinal subframe Y of X, from X |= L it follows that Y |= L.

It was proved by Fine [9] that each subframe logic over K4 is axioma-
tizable by subframe formulas, and by Zakharyaschev [17] that each cofinal
subframe logic over K4 is axiomatizable by cofinal subframe formulas. It
follows that each subframe logic over K4 is axiomatizable by the formulas of
the form αs(A), and that each cofinal subframe logic over K4 is axiomatiz-
able by the formulas of the form αsc(A). This yields a new “algebra-based”
axiomatization of subframe and cofinal subframe logics.
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