Guram Bezhanishvili
Nick Bezhanishvili

An Algebraic Approach to Canonical Formulas: Modal Case

Dedicated to Ryszard Wójcicki on his 80th birthday

Abstract

We introduce relativized modal algebra homomorphisms and show that the category of modal algebras and relativized modal algebra homomorphisms is dually equivalent to the category of modal spaces and partial continuous p-morphisms, thus extending the standard duality between the category of modal algebras and modal algebra homomorphisms and the category of modal spaces and continuous p-morphisms. In the transitive case, this yields an algebraic characterization of Zakharyaschev's subreductions, cofinal subreductions, dense subreductions, and the closed domain condition. As a consequence, we give an algebraic description of canonical, subframe, and cofinal subframe formulas, and provide a new algebraic proof of Zakharyaschev's theorem that each logic over K4 is axiomatizable by canonical formulas.

Keywords: Modal logic, duality theory, relativization.

1. Introduction

Refutation patterns play an important role in developing axiomatic bases for modal logics. As was shown by Fine [8], each finite rooted $\mathbf{S 4}$-frame \mathfrak{F} gives rise to the formula $\chi(\mathfrak{F})$ such that a general $\mathbf{S} 4$-frame \mathfrak{G} refutes $\chi(\mathfrak{F})$ iff \mathfrak{F} is a p-morphic image of a generated subframe of \mathfrak{G}. This yields an axiomatization of a large class of logics over $\mathbf{S} 4$. Fine's formulas are a frame-theoretic version of Jankov's formulas for intuitionistic logic, developed several years earlier by Jankov [10, 11] using algebraic techniques. (De Jongh [6] also developed a version of Jankov formulas for intuitinostic logic via frametheoretic methods.) The results of Fine easily generalize to logics over K4. For an algebraic account of these formulas, which is a direct generalization of Jankov's approach, see Rautenberg [13]. Similar results were obtained by Fine [9] and Zakharyaschev [17] for subframe and cofinal subframe logics over K4. Namely Fine showed that each rooted $\mathbf{K 4}$-frame \mathfrak{F} gives rise

[^0]to the formula $\alpha_{s}(\mathfrak{F})$ such that a general K4-frame \mathfrak{G} refutes $\alpha_{s}(\mathfrak{F})$ iff \mathfrak{G} is subreducible to \mathfrak{F}, thus providing an axiomatization of subframe logics over K4. Zakharyaschev generalized Fine's results by showing that each rooted $\mathbf{K 4}$-frame \mathfrak{F} gives rise to the formula $\alpha_{c s}(\mathfrak{F})$ such that a general K4frame \mathfrak{G} refutes $\alpha_{c s}(\mathfrak{F})$ iff \mathfrak{G} is cofinally subreducible to \mathfrak{F}, thus providing an axiomatization of cofinal subframe logics over $\mathbf{K 4}$. These are large classes of logics over K4, but not every logic over $\mathbf{K 4}$ is axiomatizable by these means.

The problem of axiomatizing every logic over $\mathbf{K 4}$ was resolved by Zakharyaschev [16], who developed the theory of canonical formulas and showed that each logic over K4 is axiomatizable by canonical formulas. Canonical formulas of Zakharyaschev are also built from finite rooted $\mathbf{K} 4$-frames \mathfrak{F}, but they have an additional parameter-a set of antichans \mathfrak{D} in \mathfrak{F}. The two main ingredients of Zakharyaschev's proof are: (i) the refutation of a formula α in a general K4-frame \mathfrak{G} can be coded by means of finitely many canonical formulas (which are constructed effectively from α) and (ii) if \mathfrak{F} is a finite rooted K4-frame and \mathfrak{D} is a set of antichains in \mathfrak{F}, then whether a general frame \mathfrak{G} refutes the canonical formula $\alpha(\mathfrak{F}, \mathfrak{D})$ depends on whether or not there is a cofinal subreduction f from \mathfrak{G} to \mathfrak{F} that satisfies the closed domain condition - a condition relating the subreduction f to the set of antichains \mathfrak{D}.

Our aim is to provide a purely algebraic account of canonical formulas. This requires an algebraic analysis of the two main ingredients of Zakharyaschev's proof. One of our main tools will be a generalization of the well-known duality between the category MA of modal algebras and modal algebra homomorphisms and the category MS of modal spaces and continuous p-morphisms. By the duality between MA and MS, continuous pmorphisms correspond to modal algebra homomorphisms. Subreductions are partial p-morphisms. We generalize the duality between MA and MS to a duality between the category $\mathbf{M} \mathbf{A}^{\mathbf{R}}$ of modal algebras and relativized modal algebra homomorphisms and the category $\mathbf{M S} \mathbf{P}^{\mathbf{P}}$ of modal spaces and partial continuous p-morphisms. This yields that partial continuous p-morphisms correspond to relativized modal algebra homomorphisms. We also introduce cofinal relativized modal algebra homomorphisms and show that they correspond to cofinal partial continuous p-morphisms.

If A and B are K4-algebras and $\eta: A \rightarrow B$ is a relativized modal algebra homomorphism, then η does not preserve \diamond in general. We show that Zakharyaschev's closed domain condition exactly corresponds to preserving \diamond for all elements in some fixed subset D of A, where D is an algebraic analogue of Zakharyaschev's extra parameter of antichains.

For each finite subdirectly irreducible K4-algebra A and a subset D of A, generalizing the technique of Jankov and Rautenberg, we define the
canonical formula $\alpha(A, D)$, and show that a K4-algebra B refutes $\alpha(A, D)$ iff there exist a homomorphic image C of B and a 1-1 cofinal relativized modal algebra homomorphism from A to C that preserves \diamond for all elements in D. This is an algebraic analogue of (ii).

For each formula α, we construct $\left(A_{1}, D_{1}\right), \ldots,\left(A_{n}, D_{n}\right)$, where each A_{i} is a finite subdirectly irreducible $\mathbf{K 4}$-algebra and $D_{i} \subseteq A_{i}$, and prove that a K4-algebra B refutes α iff there exist $i \leq n$, a homomorphic image C of B, and a 1-1 cofinal relativized modal algebra homomorphism from A_{i} to C that preserves \diamond for all elements in D_{i}. This is an algebraic analogue of (i). Our construction utilizes the results of [3], where an algebraic proof of the finite model property of cofinal subframe logics was given. (For frame-theoretic proofs see $[9,17]$.) Putting (i) and (ii) together provides a new algebraic proof of Zakharyaschev's theorem that each logic over K4 is axiomatizable by canonical formulas.

We also give an algebraic account of negation-free canonical formulas, and show that the Jankov-Rautenberg, subframe, and cofinal subframe formulas are special cases of canonical formulas. This, in particular, gives the first axiomatization of subframe and cofinal subframe logics over K4 by "algebra-based formulas," as opposed to their axiomatizations by framebased formulas of Fine and Zakharyaschev [9, 17].

Our results complement the results of [1], where an algebraic account of canonical formulas for intuitionistic logic was given. As shown in [1], in the intuitionistic setting, partial p-morphisms correspond to (\wedge, \rightarrow)-preserving maps between Heyting algebras, cofinal partial p-morphisms correspond to $(\wedge, \rightarrow, 0)$-preserving maps, and partial p-morphisms satisfying the closed domain condition correspond to (\wedge, \rightarrow)-preserving maps that also preserve \vee for a fixed set of pairs of elements. This provides an algebraic analogue of canonical formulas for intuitionistic logic that generalize Jankov's formulas, yielding an algebraic proof of Zakharyaschev's theorem that each intermediate logic is axiomatizable by canonical formulas.

The paper is organized as follows: In Section 2 we recall the duality between the category of modal algebras and modal algebra homomorphisms and the category of modal spaces and continuous p-morphisms. In Section 3 we extend this duality to a duality between the category of modal algebras and relativized modal algebra homomorphisms and the category of modal spaces and partial continuous p-morphisms. In Section 4 we restrict our attention to the transitive case. We give an algebraic characterization of Zakharyaschev's closed domain condition. We also define cofinal and dense relativized modal algebra homomorphisms and show that they correspond to Zakharyaschev's cofinal and dense subreductions. In Section 5 we provide
an algebraic description of canonical formulas, and give a new algebraic proof of Zakharyaschev's theorem that each logic over K4 is axiomatizable by canonical formulas. Finally, in Section 6 we give an algebraic description of negation-free canonical formulas and show that each logic over K4 that is axiomatizable by negation-free formulas is also axiomatizable by negationfree canonical formulas. We also show that Jankov-Rautenberg, subframe, and cofinal subframe formulas are particular cases of canonical formulas. This in particular leads to a new axiomatization of subframe and cofinal subframe formulas via "algebra-based" formulas.

2. Preliminaries

In this section we briefly recall some basic facts about modal algebras and the duality between modal algebras and modal spaces that will be used in subsequent sections. The main references for this section are $[5,12,14]$.

A modal algebra is a pair (A, \diamond), where A is a Boolean algebra and $\diamond: A \rightarrow A$ is a unary function on A satisfying $\diamond 0=0$ and $\diamond(a \vee b)=\diamond a \vee \diamond b$. As usual, we define $\square: B \rightarrow B$ by $\square a=\neg \diamond \neg a$ for each $a \in A$. We denote modal algebras (A, \diamond) simply by A. Given two modal algebras A and B, we recall that $\eta: A \rightarrow B$ is a modal algebra homomorphism if η is a Boolean algebra homomorphism and $\eta(\diamond a)=\diamond \eta(a)$. When no confusion arises, we call modal algebra homomorphisms simply homomorphisms. Clearly modal algebras and modal algebra homomorphisms form a category which we denote by MA.

Let F be a filter in a modal algebra A. We recall that F is a \square-filter if $a \in F$ implies $\square a \in F$. It is well known that the lattice of congruences of a modal algebra A is isomorphic to the lattice of \square-filters of A. In the lattice of \square-filters of A, we have that A is the largest element and $\{1\}$ is the least element. Consequently, A is subdirectly irreducible if there exists a least \square-filter properly containing $\{1\}$.

It is well known that MA has the congruence extension property; that is, for each $A, B \in \mathbf{M A}$, if A is subalgebra of B and F is a \square-filter of A, then there exists a \square-filter G of B such that $G \cap A=F$. The next lemma, which will be used in Section 5, is now an immediate consequence.

Lemma 2.1. If $A, B, C \in \mathbf{M A}, \eta: A \rightarrow B$ is a 1-1 homomorphism, and $\theta: A \rightarrow C$ is an onto homomorphism, then there exist $D \in \mathbf{M A}$, an onto homomorphism $\xi: B \rightarrow D$, and a 1-1 homomorphism $\zeta: C \rightarrow D$ such that $\xi \circ \eta=\zeta \circ \theta$.

We briefly recall the duality between modal algebras and modal spaces that generalizes the celebrated Stone duality for Boolean algebras. We as-
sume an elementary knowledge of category theory. In particular, we recall that two categories \mathcal{C} and \mathcal{D} are dually equivalent if there exist contravariant functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ such that each object c of \mathcal{C} is isomorphic to $G F(c)$, each object d of \mathcal{D} is isomorphic to $F G(d)$, and these isomorphisms are natural.

As usual, for a set X and a binary relation R on X, let $R(x)=\{y \in X$: $x R y\}$ and $R^{-1}(x)=\{y \in X: y R x\}$. Also, for $U \subseteq X$, let $R(U)=\bigcup\{R(x)$: $x \in U\}$ and $R^{-1}(U)=\bigcup\left\{R^{-1}(x): x \in U\right\}$. If X is a topological space, then we recall that $U \subseteq X$ is clopen if U is both closed and open, that X is zero-dimensional if clopen subsets of X form a basis for X, and that X is a Stone space if X is compact, Hausdorff, and zero-dimensional.

A modal space is a pair (X, R), where X is a Stone space and R is a binary relation on X such that (i) $R(x)$ is closed for each $x \in X$, and (ii) $R^{-1}(U)$ is clopen for each clopen $U \subseteq X$. Given two modal spaces (X, R) and (Y, Q), we recall that a map $f: X \rightarrow Y$ is a p-morphism if for all $x, z \in X$ and $y \in Y$, (i) $x R z$ implies $f(x) Q f(z)$, and (ii) $f(x) Q y$ implies there exists $z \in X$ such that $x R z$ and $f(z)=y$. Clearly modal spaces and continuous p-morphisms form a category which we denote by MS. Then MA is dually equivalent to MS. This duality is a generalization of Stone duality and is obtained as follows.

First, the functor $(-)_{*}:$ MA \rightarrow MS is defined as follows. If A is a modal algebra, then A_{*} is the set of ultrafilters of A topologized by the basis $\{\varphi(a): a \in A\}$ for open sets, where $\varphi(a)=\left\{x \in A_{*}: a \in x\right\}$. For $x, y \in A_{*}$, set $x R y$ iff $(\forall a \in A)(a \in y$ implies $\forall a \in x)$. Then A_{*} is a modal space. For modal algebras A, B and a homomorphism $\eta: A \rightarrow B$, let $\eta_{*}=\eta^{-1}: B_{*} \rightarrow A_{*}$. Then η_{*} is a continuous p-morphism, and so $(-)_{*}$ is a contravariant functor. Next, the functor $(-)^{*}:$ MS \rightarrow MA is defined as follows. If (X, R) is a modal space, then $\left.(X, R)^{*}=(\operatorname{Clopen}(X),\rangle_{R}\right)$ is a modal algebra, where Clopen (X) is the Boolean algebra of clopen subsets of X and $\nabla_{R}(U)=R^{-1}(U)$. For continuous p-morphism $f: X \rightarrow Y$, let $f^{*}=f^{-1}: \operatorname{Clopen}(Y) \rightarrow \operatorname{Clopen}(X)$. Then f^{*} is a modal algebra homomorphism, and so $(-)^{*}$ is a contravariant functor. Moreover, $\varphi: A \rightarrow$ $A_{*}{ }^{*}$ and $\varepsilon: X \rightarrow X^{*}{ }^{*}$, given by $\varepsilon(x)=\left\{U \in X^{*}: x \in U\right\}$, are natural isomorphisms, and so $(-)_{*}$ and $(-)^{*}$ establish the desired dual equivalence between MA and MS.

3. Relativizations and generalized duality for modal algebras

In this section we generalize the concept of modal algebra homomorphism to that of relativized modal algebra homomorphism, the concept of continuous
p-morphism to that of partial continuous p-morphism, and prove that the category of modal algebras and relativized modal algebra homomorphisms is dually equivalent to the category of modal spaces and partial continuous p-morphisms. This generalizes the well-known duality for modal algebras.

Let B be a Boolean algebra and $s \in B$. Then $[0, s]=\{x \in B: 0 \leq x \leq s\}$ also forms a Boolean algebra which we denote by B_{s}. The Boolean operations on B_{s} are defined as follows:

1. $x \wedge_{s} y=x \wedge y$;
2. $x \vee_{s} y=x \vee y$;
3. $0_{s}=0$ and $1_{s}=s ;$
4. $\neg_{s} x=\neg x \wedge s$.

We call B_{s} the relativization of B to s.
Lemma 3.1. Let A and B be Boolean algebras and $\eta: A \rightarrow B$ be a map. Then η is a Boolean algebra homomorphism from A to $B_{\eta(1)}$ iff η preserves \wedge, \vee, and $0($ that is, $\eta(a \wedge b)=\eta(a) \wedge \eta(b), \eta(a \vee b)=\eta(a) \vee \eta(b)$, and $\eta(0)=0)$.

Proof. Let η be a Boolean algebra homomorphism from A to $B_{\eta(1)}$. Then:

$$
\begin{aligned}
& \eta(a \wedge b)=\eta(a) \wedge_{\eta(1)} \eta(b)=\eta(a) \wedge \eta(b) \\
& \eta(a \vee b)=\eta(a) \vee_{\eta(1)} \eta(b)=\eta(a) \vee \eta(b) \\
& \eta(0)=0_{\eta(1)}=0
\end{aligned}
$$

Therefore, η preserves \wedge, \vee, and 0 . Conversely, suppose that η preserves \wedge, \vee, and 0 . Then:

$$
\begin{aligned}
& \eta(a \wedge b)=\eta(a) \wedge \eta(b)=\eta(a) \wedge_{\eta(1)} \eta(b), \\
& \eta(a \vee b)=\eta(a) \vee \eta(b)=\eta(a) \vee_{\eta(1)} \eta(b) \\
& \eta(0)=0=0_{\eta(1)} \text { and } \eta(1)=1_{\eta(1)} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \eta(a) \wedge_{\eta(1)} \eta(\neg a)=\eta(a) \wedge \eta(\neg a)=\eta(a \wedge \neg a)=\eta(0)=0_{\eta(1)} \\
& \eta(a) \vee_{\eta(1)} \eta(\neg a)=\eta(a) \vee \eta(\neg a)=\eta(a \vee \neg a)=\eta(1)=1_{\eta(1)}
\end{aligned}
$$

Therefore, $\neg \eta(1) \eta(a)=\eta(\neg a)$, and so η is a Boolean algebra homomorphism from A to $B_{\eta(1)}$.

Let A be a modal algebra and $s \in A$. We define $\diamond_{s}: A_{s} \rightarrow A_{s}$ by

$$
\diamond_{s} x=s \wedge \diamond x
$$

for each $x \in A_{s}$. Then A_{s} is a modal algebra because

$$
\diamond_{s}(x \vee y)=s \wedge \diamond(x \vee y)=s \wedge(\diamond x \vee \diamond y)=(s \wedge \diamond x) \vee(s \wedge \diamond y)=\diamond_{s} x \vee \diamond_{s} y
$$

and

$$
\diamond_{s} 0_{s}=\diamond_{s} 0=s \wedge \diamond 0=s \wedge 0=0=0_{s}
$$

Instead of modal algebra homomorphisms we will work with relativized modal algebra homomorphisms; that is, maps $\eta: A \rightarrow B$ such that η is a modal algebra homomorphism from A to the relativized modal algebra $B_{\eta(1)}$. Note that it may happen that $B_{\eta(1)}=\{0\}$. By Lemma 3.1, η is a relativized modal algebra homomorphism iff η preserves $\wedge, \vee, 0$ and $\eta(\diamond a)=\diamond_{\eta(1)} \eta(a)$ for each $a \in A$. When no confusion arises, we call relativized modal algebra homomorphisms simply relativized homomorphisms. Clearly each identity $\operatorname{map} A \rightarrow A$ is a relativized homomorphism. If $\eta: A \rightarrow B$ and $\theta: B \rightarrow C$ are relativized homomorphisms, then $\theta \circ \eta: A \rightarrow C_{\theta(\eta(1))}$ is a homomorphism, and so $\theta \circ \eta: A \rightarrow C$ is a relativized homomorphism. It follows that modal algebras and relativized homomorphisms form a category which we denote by $\mathbf{M} \mathbf{A}^{\mathbf{R}}$. Clearly $\mathbf{M A}$ is a subcategory of $\mathbf{M} \mathbf{A}^{\mathbf{R}}$, $\mathbf{M A}$ and $\mathbf{M} \mathbf{A}^{\mathbf{R}}$ have the same objects, but not every morphism in $\mathbf{M} \mathbf{A}^{\mathbf{R}}$ is a morphism in MA.

Next we introduce the concept dual to that of relativized homomorphism. Let X and Y be Stone spaces and $f: X \rightarrow Y$ be a partial map. We call f a partial continuous map if $\operatorname{dom}(f)$ is a clopen subset of X and f is a continuous map from $\operatorname{dom}(f)$ to Y. In particular, if $\operatorname{dom}(f)=X$, then $f: X \rightarrow Y$ is a continuous map, and so the concept of partial continuous map generalizes that of continuous map. Note that $f=\emptyset$ is a partial continuous map.

Definition 3.2. Let (X, R) and (Y, Q) be modal spaces and $f: X \rightarrow Y$ be a partial continuous map. We call f a partial continuous p-morphism if in addition f satisfies:

1. $x, z \in \operatorname{dom}(f)$ and $x R z$ imply $f(x) Q f(z)$.
2. $x \in \operatorname{dom}(f)$ and $f(x) Q y$ imply there exists $z \in \operatorname{dom}(f)$ such that $x R z$ and $f(z)=y$.

Clearly each identity map $X \rightarrow X$ is a partial continuous p-morphism. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be partial continuous p-morphisms. Then $f^{-1}(\operatorname{dom}(g))$ is a clopen subset of $\operatorname{dom}(f)$, hence a clopen subset of X, and
the restriction of $g \circ f$ to $f^{-1}(\operatorname{dom}(g))$ is a continuous p-morphism from $f^{-1}(\operatorname{dom}(g))$ to Z. Therefore, we define the composition of f and g as the partial map $g * f: X \rightarrow Z$ such that $\operatorname{dom}(g * f)=f^{-1}(\operatorname{dom}(g))$ and $(g * f)(x)=g(f(x))$ for $x \in \operatorname{dom}(g * f)$. Then $g * f: X \rightarrow Z$ is a partial continuous p-morphism. It follows that modal spaces and partial continuous p-morphisms form a category which we denote by $\mathbf{M S}^{\mathbf{P}}$. Clearly MS is a subcategory of $\mathbf{M S} \mathbf{S}^{\mathbf{P}}$, MS and $\mathbf{M S} \mathbf{S}^{\mathbf{P}}$ have the same objects, but not every morphism in $\mathbf{M S} \mathbf{S}^{\mathbf{P}}$ is a morphism in MS. In order to prove that $\mathbf{M} \mathbf{A}^{\mathbf{R}}$ is dually equivalent to $\mathbf{M S}{ }^{\mathbf{P}}$, we need the following lemma.

Lemma 3.3.

1. Let A, B be modal algebras, $\eta: A \rightarrow B$ be a relativized homomorphism, and $a \in A$. Then $\eta(\diamond a) \leq \diamond \eta(a)$.
2. Let $(X, R),(Y, Q)$ be modal spaces, $f: X \rightarrow Y$ be a partial p-morphism, and $x \in \operatorname{dom}(f)$. Then $f R(x)=Q f(x)$.

Proof. (1) Let $a \in A$. Since η is a relativized homomorphism, we have:

$$
\eta(\diamond a)=\diamond_{\eta(1)} \eta(a)=\eta(1) \wedge \diamond \eta(a) \leq \diamond \eta(a)
$$

(2) First suppose that $y \in f R(x)$. Then there exists $z \in \operatorname{dom}(f)$ such that $x R z$ and $f(z)=y$. Since $x \in \operatorname{dom}(f)$, by Definition 3.2.1, $f(x) Q f(z)$. Therefore, $f(x) Q y$, and so $y \in Q f(x)$. Next suppose that $y \in Q f(x)$. Then $f(x) Q y$. By Definition 3.2.2, there exists $z \in \operatorname{dom}(f)$ such that $x R z$ and $f(z)=y$. Thus, $y \in f R(x)$, and so $f R(x)=Q f(x)$.

Theorem 3.4. $\mathbf{M A}^{\mathbf{R}}$ is dually equivalent to $\mathbf{M S}{ }^{\mathbf{P}}$.
Proof. We define a contravariant functor $(-)_{*}: \mathbf{M A}^{\mathbf{R}} \rightarrow \mathbf{M S}^{\mathbf{P}}$ as follows. For a modal algebra A, let A_{*} be the modal space of A. If $\eta: A \rightarrow B$ is a relativized homomorphism and $x \in B_{*}$, then $\eta^{-1}(x)=\emptyset$ or $\eta^{-1}(x)$ is an ultrafilter of A_{*}. We set $\operatorname{dom}\left(\eta_{*}\right)=\left\{x \in B_{*}: \eta^{-1}(x) \neq \emptyset\right\}$ and for $x \in \operatorname{dom}\left(\eta_{*}\right)$ we set $\eta_{*}(x)=\eta^{-1}(x)$.

CLAIM 3.5. $\operatorname{dom}\left(\eta_{*}\right)=\varphi(\eta(1))$ and $\eta_{*}^{-1}(\varphi(a))=\varphi(\eta(a))$ for each $a \in A$.
Proof. We have $x \in \operatorname{dom}\left(\eta_{*}\right)$ iff $\eta^{-1}(x) \neq \emptyset$ iff $1 \in \eta^{-1}(x)$ iff $\eta(1) \in x$ iff $x \in \varphi(\eta(1))$. Thus, $\operatorname{dom}\left(\eta_{*}\right)=\varphi(\eta(1))$. We also have $x \in \eta_{*}^{-1}(\varphi(a))$ iff $x \in \operatorname{dom}\left(\eta_{*}\right)$ and $\eta_{*}(x) \in \varphi(a)$ iff $x \in \operatorname{dom}\left(\eta_{*}\right)$ and $a \in \eta_{*}(x)$ iff $\eta(a) \in x$ iff $x \in \varphi(\eta(a))$. Thus, $\eta_{*}^{-1}(\varphi(a))=\varphi(\eta(a))$.

Now since $\varphi(\eta(1))$ is a clopen subset of B_{*}, it follows that $\operatorname{dom}\left(\eta_{*}\right)$ is clopen. Moreover, as each clopen subset of A_{*} has the form $\varphi(a)$ for some $a \in$ A, we obtain that η_{*} is a continuous map from $\operatorname{dom}\left(\eta_{*}\right)$ to A_{*}. Consequently, η_{*} is a partial continuous map. We show that η_{*} satisfies conditions (1) and (2) of Definition 3.2.

Let $x, z \in \operatorname{dom}\left(\eta_{*}\right), x R z$, and $a \in \eta_{*}(z)$. Then $a \in \eta^{-1}(z)$, and so $\eta(a) \in z$. Since $x R z$, we have $\diamond \eta(a) \in x$. As $x \in \operatorname{dom}\left(\eta_{*}\right)$, we also have $\eta^{-1}(x) \neq \emptyset$, so $1 \in \eta^{-1}(x)$, and so $\eta(1) \in x$. Therefore, $\eta(1) \wedge \diamond \eta(a) \in x$, which means that $\nabla_{\eta(1)} \eta(a) \in x$. Because η is a relativized homomorphism, $\diamond_{\eta(1)} \eta(a)=\eta(\diamond a)$. It follows that $\eta(\diamond a) \in x$. Thus, $\diamond a \in \eta^{-1}(x)$, so $\diamond a \in \eta_{*}(x)$, and so $\eta_{*}(x) Q \eta_{*}(z)$. Consequently, η_{*} satisfies condition (1) of Definition 3.2.

Now let $x \in \operatorname{dom}\left(\eta_{*}\right)$ and $\eta_{*}(x) Q y$. Let F be the filter generated by $\eta[y]=\{\eta(a): a \in y\}$ and I be the ideal generated by $\{a \in B: \diamond a \notin$ $x\} \cup \eta[A-y]$. If $F \cap I \neq \emptyset$, then there exist $a \in y, b \in B$ with $\diamond b \notin x$, and $c \notin y$ such that $\eta(a) \leq b \vee \eta(c)$. Therefore, $\eta(a) \wedge \neg \eta(c) \leq b$. Since $\eta(\neg c) \leq \neg \eta(c)$, we have $\eta(a) \wedge \eta(\neg c) \leq b$. Thus, $\eta(a \wedge \neg c) \leq b$, and so $\diamond \eta(a \wedge \neg c) \leq \diamond b$. By Lemma 3.3.1, $\eta(\diamond(a \wedge \neg c)) \leq \diamond \eta(a \wedge \neg c)$. This yields $\eta(\diamond(a \wedge \neg c)) \leq \diamond b$. As $a \wedge \neg c \in y$, we have $\diamond(a \wedge \neg c) \in \eta^{-1}(x)$, and so $\eta(\diamond(a \wedge \neg c)) \in x$. Therefore, $\Delta b \in x$, a contradiction. Thus, $F \cap I=\emptyset$, and so there exists an ultrafilter z of B such that $F \subseteq z$ and $I \cap z=\emptyset$. From $\{a \in B: \diamond a \notin x\} \cap z=\emptyset$ it follows that $x R z$, and $F \subseteq z$ and $\eta[A-y] \cap z=\emptyset$ imply $\eta^{-1}(z)=y$. Therefore, $x R z$ and $\eta^{-1}(z)=y$, which implies that $z \in \operatorname{dom}\left(\eta_{*}\right)$ and $\eta_{*}(z)=y$. Thus, there exists $z \in \operatorname{dom}\left(\eta_{*}\right)$ such that $x R z$ and $\eta_{*}(z)=y$, and so η_{*} satisfies condition (2) of Definition 3.2. Consequently, η_{*} is a partial continuous p-morphism.

By the duality for modal algebras, if $\eta: A \rightarrow A$ is identity, then so is $\eta_{*}: A_{*} \rightarrow A_{*}$. Let $\eta: A \rightarrow B$ and $\theta: B \rightarrow C$ be relativized homomorphisms. We show that $\eta_{*} * \theta_{*}: C_{*} \rightarrow A_{*}$ is a partial continuous p-morphism and that $(\theta \circ \eta)_{*}=\eta_{*} * \theta_{*}$. We have that $\eta: A \rightarrow B_{\eta(1)}$ and $\theta: B_{\eta(1)} \rightarrow C_{\theta(\eta(1))}$ are homomorphisms. Therefore, by the duality for modal algebras and Claim 3.5, $\eta_{*}: \varphi(\eta(1)) \rightarrow A_{*}$ and $\theta_{*}: \varphi(\theta(\eta(1))) \rightarrow B_{*}$ are continuous p-morphisms. Thus, $\eta_{*} \circ \theta_{*}: \varphi(\theta(\eta(1))) \rightarrow A_{*}$ is a continuous p-morphism. Moreover, $\operatorname{dom}\left(\eta_{*} * \theta_{*}\right)=\left(\theta_{*}\right)^{-1}\left(\operatorname{dom}\left(\eta_{*}\right)\right)=\left(\theta_{*}\right)^{-1}(\varphi(\eta(1)))=\varphi(\theta(\eta(1)))$. Consequently, $\eta_{*} * \theta_{*}: C_{*} \rightarrow A_{*}$ is a partial continuous p-morphism. Furthermore, $\operatorname{dom}\left((\theta \circ \eta)_{*}\right)=\varphi(\theta(\eta(1)))=\operatorname{dom}\left(\eta_{*} * \theta_{*}\right)$, and for $x \in \operatorname{dom}\left((\theta \circ \eta)_{*}\right)$, we have $(\theta \circ \eta)_{*}(x)=(\theta \circ \eta)^{-1}(x)=\eta^{-1}\left(\theta^{-1}(x)\right)=\eta_{*}\left(\theta_{*}(x)\right)=\left(\eta_{*} * \theta_{*}\right)(x)$. Thus, $(-)_{*}: \mathbf{M A}^{\mathbf{R}} \rightarrow \mathbf{M S}^{\mathbf{P}}$ is a well-defined functor.

Next we define a contravariant functor $(-)_{*}: \mathbf{M S}^{\mathbf{P}} \rightarrow \mathbf{M A}^{\mathbf{R}}$ as follows. For a modal space (X, R), let $(X, R)^{*}$ be the modal algebra $\left.(\operatorname{Clopen}(X),\rangle_{R}\right)$. Also for a partial continuous p-morphism $f: X \rightarrow Y$, let $f^{*}: Y^{*} \rightarrow X^{*}$ be given by $f^{*}(U)=f^{-1}(U)$. It is easy to check that f^{*} is a relativized Boolean algebra homomorphism. Let $U \in Y^{*}$. We show that

$$
f^{*}\left(\diamond_{Q} U\right)=\diamond_{R} f^{*}(U) \cap \operatorname{dom}(f)
$$

We have $x \in f^{*}\left(\diamond_{Q} U\right)$ iff $x \in \operatorname{dom}(f)$ and $f(x) \in \diamond_{Q} U$ iff $x \in \operatorname{dom}(f)$ and $Q f(x) \cap U \neq \emptyset$. On the other hand, $x \in \diamond_{R} f^{*}(U) \cap \operatorname{dom}(f)$ iff $R(x) \cap$ $f^{-1}(U) \neq \emptyset$ and $x \in \operatorname{dom}(f)$ iff $f R(x) \cap U \neq \emptyset$ and $x \in \operatorname{dom}(f)$. Since $x \in \operatorname{dom}(f)$, by Lemma 3.3.2, $f R(x)=Q f(x)$. Therefore, $x \in f^{*}\left(\diamond_{Q} U\right)$ iff $x \in \diamond_{R} f^{*}(U) \cap \operatorname{dom}(f)$, and so $f^{*}\left(\diamond_{Q} U\right)=\diamond_{R} f^{*}(U) \cap \operatorname{dom}(f)$. Consequently, f^{*} is a relativized homomorphism.

By the duality for modal algebras, if $f: X \rightarrow X$ is identity, then so is $f^{*}: X^{*} \rightarrow X^{*}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be partial continuous p-morphisms. Then $g * f: X \rightarrow Y$ is a partial continuous p-morphism with $\operatorname{dom}(g * f)=f^{-1}(\operatorname{dom}(g))$. Moreover, for $U \in Z^{*}$, we have $(g * f)^{*}(U)=$ $(g * f)^{-1}(U)=f^{-1}\left(g^{-1}(U)\right)=f^{*}\left(g^{*}(U)\right)$. Therefore, $(g * f)^{*}=f^{*} \circ g^{*}$, and so $(-)_{*}: \mathbf{M S}^{\mathbf{P}} \rightarrow \mathbf{M A}^{\mathbf{R}}$ is a well-defined functor.

Finally, it is obvious that the isomorphisms $\varphi: B \rightarrow B_{*}^{*}$ and $\varepsilon: X \rightarrow$ X^{*} * given by the duality for modal algebras are still natural in this more general setting. Thus, $\mathbf{M A} \mathbf{A}^{\mathbf{R}}$ is dually equivalent to $\mathbf{M S}{ }^{\mathbf{P}}$.

REMARK 3.6. If $\eta: A \rightarrow B$ is a modal algebra homomorphism, then $\eta(1)=$ 1 , and so $\operatorname{dom}\left(\eta_{*}\right)=\varphi(\eta(1))=\varphi(1)=B_{*}$. Thus, $\eta_{*}: B_{*} \rightarrow A_{*}$ is a total continuous p-morphism. Also, if $f: X \rightarrow Y$ is a total continuous pmorphism, then clearly $f^{-1}: Y^{*} \rightarrow X^{*}$ is a modal algebra homomorphism. Therefore, the dual equivalence of MA and MS is an easy consequence of Theorem 3.4.

Remark 3.7. Let BA denote the category of Boolean algebras and Boolean algebra homomorphisms, and Stone denote the category of Stone spaces and continuous maps. By Stone duality, BA is dually equivalent to Stone. Let also $\mathbf{B} \mathbf{A}^{\mathbf{R}}$ denote the category of Boolean algebras and relativized Boolean algebra homomorphisms, and Stone ${ }^{\mathbf{P}}$ denote the category of Stone spaces and partial continuous maps. Then it is a consequence of Theorem 3.4 that $\mathbf{B} \mathbf{A}^{\mathbf{R}}$ is dually equivalent to Stone ${ }^{\mathbf{P}}$. The proof of this is an obvious generalization of the proof that Stone duality is a consequence of the duality between MA and MS.

4. K4-algebras and the closed domain condition

In this section we restrict our attention to K4-algebras and their dual transitive spaces. For transitive spaces X and Y, we show that a partial continuous p-morphism $f: X \rightarrow Y$ satisfies the closed domain condition (CDC) iff the dual relativized homomorphism $f^{*}: Y^{*} \rightarrow X^{*}$ preserves \diamond_{Q} for some specified subset D of Y^{*}. This results in a purely algebraic characterization of (CDC). We also give an algebraic characterization of when $f: X \rightarrow Y$ is cofinal and when f is dense. We conclude the section by comparing our approach to that of Zakharyaschev.

We recall that a modal algebra A is a K4-algebra if $\diamond \Delta a \leq \diamond a$ for each $a \in A$. Let K4 denote the category of K4-algebras and modal algebra homomorphisms. Let A be a K4-algebra and $s \in A$. It is well known (see, e.g., [3, Lem. 4.8]) that the relativization A_{s} of A to s is also a K4algebra. For each $a \in A$, we set $\diamond^{+} a=a \vee \diamond a$. Then it is obvious that $a \leq \diamond^{+} a$ for each $a \in A$, and so $\left(A, \diamond^{+}\right)$is an $\mathbf{S 4}$-algebra. Moreover, $\square^{+} a=\neg \checkmark^{+} \neg a=a \wedge \square a$, and $H=\square^{+}(A)=\left\{\square^{+} a: a \in A\right\}$ is a Heyting algebra (see, e.g., [3, Sec. 3]). Next lemma will be used in Section 5. A Heyting algebra analogue of the lemma can be found in [15, Lem. 1].

Lemma 4.1. Let A be $a \mathbf{K 4}$-algebra, $a, b \in A$, and $\square^{+} a \not \leq b$. Then there exists a subdirectly irreducible K4-algebra B and an onto homomorphism $\eta: A \rightarrow B$ such that $\eta\left(\square^{+} a\right)=1$ and $\eta(b) \neq 1$.

Proof. Let F be the filter of A generated by $\square^{+} a$. Since A is a K4-algebra, F is a \square-filter of A. Moreover, $\square^{+} a \in F$ and $b \notin F$. Let Z be the set of \square-filters of A containing $\square^{+} a$ and missing b. Then $F \in Z$, and so Z is nonempty. If we order Z by set inclusion, then it is easy to see that Z is an inductive set. Therefore, by Zorn's lemma, Z has a maximal element M. Let $B=A / \sim$, where $x \sim y$ iff $x \leftrightarrow y \in M$. For $x \in A$, let $[x]=\{y \in A: x \sim y\}$. Define $\eta: A \rightarrow B$ by $\eta(x)=[x]$ for each $x \in A$. Then it is well known that $\eta: A \rightarrow B$ is an onto modal algebra homomorphism. It is also clear that $\eta\left(\square^{+} a\right)=1$ and $\eta(b) \neq 1$. Moreover, each \square-filter of B corresponds to a \square-filter of A containing M. Since M is a maximal \square-filter of A containing $\square^{+} a$ and missing b, each \square-filter of A properly containing M also contains b. Therefore, each \square-filter of B which properly contains $\{1\}$, also contains $\eta(b)$. Thus, the filter of B generated by $\square^{+} \eta(b)=\eta\left(\square^{+} b\right)$ is the smallest \square-filter of B properly containing $\{1\}$. Consequently, B is subdirectly irreducible.

It is well known that the dual spaces of $\mathbf{K} 4$-algebras are transitive spaces; that is, modal spaces (X, R) in which R is transitive. Let TS denote the cat-
egory of transitive spaces and continuous p-morphisms. Then the duality between MA and MS restricts to the duality between K4 and TS. Moreover, if $A \in \mathbf{K} 4$ and A_{*} is the dual transitive space of A, then $\left(A, \diamond^{+}\right)_{*}=\left(A_{*}, R^{+}\right)$, where $R^{+}=R \cup\left\{(x, x): x \in A_{*}\right\}$ is the reflexive closure of R (see, e.g., [3, Sec. 3]).

Let X be a transitive space and $U \subseteq X$. We say that $x \in U$ is a minimal point of U if for each $y \in U$, from $y R x$ it follows that $x R y$. We denote by $\min (U)$ the set of minimal points of U. It is well known (see, e.g., [7, Thm. III.2.1]) that for each closed subset F of X and $y \in F$ there exists $x \in \min (F)$ such that $x R^{+} y$. In fact, for each closed subset F of X, by selecting one point from each $C \cap F$, where C is a cluster with $C \cap \min (F) \neq \emptyset$, we can find an antichain $\mathfrak{d} \subseteq \min (F)$ such that $F \subseteq R^{+}(\mathfrak{d})$. In order to avoid such a selection, it is more convenient to work with quasi-antichains instead of antichains, where $\mathfrak{d} \subseteq X$ is a quasi-antichain if $x R y$ implies $y R x$ for each $x, y \in \mathfrak{d}$. Clearly each antichain is a quasi-antichain, but not the other way around. Nevertheless, they are closely related concepts; it is easy to see that if \mathfrak{d} is a quasi-antichain, then by selecting one point from each cluster of \mathfrak{d}, we obtain an antichain \mathfrak{d}_{0} such that $R^{+}(\mathfrak{d})=R^{+}\left(\mathfrak{d}_{0}\right)$. One particular advantage of quasi-antichains over antichains is that if F is a closed subset of X, then $\min (F)$ is always a quasi-antichain, which in general may not be an antichain.

From now on we will mostly work with quasi-antichains, but we point out that it is only a convenient convention; all our results involving quasiantichains can also be formulated by means of antichains.

Definition 4.2. Let X and Y be transitive spaces and let $f: X \rightarrow Y$ be a partial continuous p-morphism. Let also \mathfrak{D} be a (possibly empty) set of quasi-antichains in Y. We say that f satisfies the closed domain condition $(C D C)$ for \mathfrak{D} if:

$$
f(R(x))=R^{+}(\mathfrak{d}) \text { for some } \mathfrak{d} \in \mathfrak{D} \text { implies } x \in \operatorname{dom}(f)
$$

Equivalently, f satisfies (CDC) for \mathfrak{D} if

$$
x \notin \operatorname{dom}(f) \text { implies } f(R(x)) \neq R^{+}(\mathfrak{d}) \text { for each } \mathfrak{d} \in \mathfrak{D}
$$

In particular, since $\min f R(x)$ is a quasi-antichain with $f R(x)=R^{+}(\min f R(x))$, we have that $x \notin \operatorname{dom}(f)$ implies $\min f R(x) \notin \mathfrak{D}$.

Lemma 4.3. Let $(X, R),(Y, Q)$ be transitive spaces, $f: X \rightarrow Y$ be a partial continuous p-morphism, and U be a clopen subset of Y. We let

$$
\mathfrak{D}_{U}=\{\min f R(x): f R(x) \cap U \neq \emptyset\}
$$

Then the following conditions are equivalent:

1. f satisfies $(C D C)$ for \mathfrak{D}_{U}.
2. $x \notin \operatorname{dom}(f)$ implies $\min f R(x) \notin \mathfrak{D}_{U}$.
3. $x \notin \operatorname{dom}(f)$ implies $f R(x) \cap U=\emptyset$.
4. $\diamond_{R} f^{-1}(U) \subseteq f^{-1} \diamond_{Q}(U)$.

Proof. The implications $(1) \Rightarrow(2) \Rightarrow(3)$ are obvious.
$(3) \Rightarrow(4):$ Let $x \in \diamond_{R} f^{-1}(U)$. Then $f R(x) \cap U \neq \emptyset$. By $(3), x \in \operatorname{dom}(f)$. By Lemma 3.3.2, $f R(x)=Q f(x)$. Therefore, $Q f(x) \cap U \neq \emptyset$, so $f(x) \in$ $\diamond_{Q}(U)$, and hence $x \in f^{-1} \diamond_{Q}(U)$. Thus, $\diamond_{R} f^{-1}(U) \subseteq f^{-1} \diamond_{Q}(U)$.
$(4) \Rightarrow(1)$: Let $x \notin \operatorname{dom}(f)$. If $\min (f R(x)) \in \mathfrak{D}_{U}$, then $f R(x) \cap U \neq \emptyset$. Therefore, $x \in \diamond_{R} f^{-1}(U)$, and so, by (4), $x \in f^{-1} \diamond_{Q}(U)$. Thus, $x \in \operatorname{dom}(f)$, a contradiction. Consequently, $\min (f R(x)) \notin \mathfrak{D}_{U}$, and it follows from the definition of \mathfrak{D}_{U} that f satisfies (CDC) for \mathfrak{D}_{U}.

REmARK 4.4. As follows from Lemma 4.3, a partial continuous p-morphism f satisfies (CDC) for \mathfrak{D}_{U} iff $x \notin \operatorname{dom}(f)$ implies $f R(x) \cap U=\emptyset$. Therefore, we could take the latter condition as the definition of (CDC). We chose the former condition as the definition of (CDC) because we wanted to keep our approach close to that of Zakharyaschev.

Next we give an algebraic analogue of Lemma 4.3.
Theorem 4.5. Let A and B be K4-algebras, $\eta: A \rightarrow B$ be a relativized homomorphism, and $a \in A$. Then the following two conditions are equivalent:

1. $\eta(\diamond a)=\diamond \eta(a)$.
2. $\eta_{*}: B_{*} \rightarrow A_{*}$ satisfies $(C D C)$ for $\mathfrak{D}_{\varphi(a)}$.

Proof. The result follows from Lemmas 3.3.1, 4.3, and Theorem 3.4.
Corollary 4.6. Let A and B be K4-algebras, $\eta: A \rightarrow B$ be a relativized homomorphism, and $D \subseteq A$. Then the following two conditions are equivalent:

1. $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$.
2. $\eta_{*}: B_{*} \rightarrow A_{*}$ satisfies $(C D C)$ for $\mathfrak{D}=\bigcup\left\{\mathfrak{D}_{\varphi(a)}: a \in D\right\}$.

Proof. Apply Theorem 4.5.
Next we recall the definitions of cofinal and dense partial continuous p-morphisms and give their dual algebraic descriptions.

Definition 4.7. Let (X, R) be a transitive space. We call $Y \subseteq X$ cofinal if $X=\left(R^{+}\right)^{-1}(Y)$.

Definition 4.8. Let X and Y be transitive spaces and let $f: X \rightarrow Y$ be a partial continuous p-morphism.

1. We say that f is cofinal if $\operatorname{dom}(f)$ is cofinal in X.
2. We say that f is dense if $\operatorname{dom}(f)$ is a downset; that is, $x \in \operatorname{dom}(f)$ and $y R x$ imply $y \in \operatorname{dom}(f)$. In other words, f is dense if $x \notin \operatorname{dom}(f)$ implies $R(x) \cap \operatorname{dom}(f)=\emptyset$.

Lemma 4.9. Let X and Y be transitive spaces and let $f: X \rightarrow Y$ be a partial continuous p-morphism. Then f is cofinal iff $\diamond_{R^{+}}(\operatorname{dom} f)=X$.

Proof. We have f is cofinal iff $X=\left(R^{+}\right)^{-1} \operatorname{dom}(f)$ iff $\diamond_{R^{+}}(\operatorname{dom} f)=X$.

Definition 4.10. Let A and B be K4-algebras and let $\eta: A \rightarrow B$ be a relativized homomorphism.

1. We say that η is cofinal if $\nabla^{+} \eta(1)=1$.
2. We say that η is dense if $\diamond \eta(1) \leq \eta(1)$.

Lemma 4.11. Let A and B be K4-algebras and let $\eta: A \rightarrow B$ be a relativized homomorphism. Then:

1. η is cofinal iff $\eta_{*}: B_{*} \rightarrow A_{*}$ is cofinal.
2. η is dense iff $\eta_{*}: B_{*} \rightarrow A_{*}$ is dense.

Proof. (1) We recall that $\varphi(\eta(1))=\operatorname{dom}\left(\eta_{*}\right)$. Therefore, η is cofinal iff $\diamond^{+} \eta(1)=1$ iff $\varphi\left(\diamond^{+} \eta(1)\right)=B_{*}$ iff $\diamond_{R^{+}} \operatorname{dom}\left(\eta_{*}\right)=B_{*}$, which, by Lemma 4.9, holds iff η_{*} is cofinal.
(2) We have:
η is dense iff $\diamond \eta(1) \leq \eta(1)$
iff $\diamond_{R}\left(\operatorname{dom}\left(\eta_{*}\right)\right) \subseteq \operatorname{dom}\left(\eta_{*}\right)$
iff $B_{*}-\operatorname{dom}\left(\eta_{*}\right) \subseteq B_{*}-\diamond_{R}\left(\operatorname{dom}\left(\eta_{*}\right)\right)$
iff $x \notin \operatorname{dom}\left(\eta_{*}\right) \Rightarrow R(x) \cap \operatorname{dom}\left(\eta_{*}\right)=\emptyset$
iff η_{*} is dense.

Lemma 4.12. If A and B are K4-algebras and $\eta: A \rightarrow B$ is a cofinal and dense relativized homomorphism, then η is a modal algebra homomorphism.

Proof. Since η is cofinal, $\diamond^{+} \eta(1)=1$. Therefore, $\eta(1) \vee \diamond \eta(1)=1$. But as η is dense, $\diamond \eta(1) \leq \eta(1)$. Thus, $\eta(1)=1$, and so η is a modal algebra homomorphism.

Next lemma is an immediate consequence of Lemmas 4.11 and 4.12 and Theorem 3.4. Nevertheless, its direct proof is simple enough that we give it below.

Lemma 4.13. If X and Y are transitive spaces and $f: X \rightarrow Y$ is a cofinal and dense partial continuous p-morphism, then f is a total continuous p morphism.

Proof. It is sufficient to show that $\operatorname{dom}(f)=X$. If not, then there exists $x \notin \operatorname{dom}(f)$. As f is cofinal, there exists $y \in \operatorname{dom}(f)$ such that $x R^{+} y$. Since $x \notin \operatorname{dom}(f)$, we have $x \neq y$. Therefore, $x R y$, and so $R(x) \cap \operatorname{dom}(f) \neq \emptyset$. As f is dense, x must be in $\operatorname{dom}(f)$. The obtained contradiction proves that $\operatorname{dom}(f)=X$, and so f is a total continuous p-morphism.

Next lemma will play an important role in Section 5. Let A be a K4algebra and (X, R) be the dual space of A. We recall that $Y \subseteq X$ is an upset of X if $x \in Y$ and $x R y$ imply $y \in Y$, and that homomorphic images of A dually correspond to closed upsets of X (see, e.g., [5, Sec. 8.5]).

Lemma 4.14. Let A and B be K4-algebras, $s \in A$, and $\eta: A_{s} \rightarrow B$ be an onto homomorphism. Then there exists a K4-algebra C and an onto homomorphism $\theta: A \rightarrow C$ such that B is isomorphic to the relativization of C to $\theta(s)$. Moreover, if s is cofinal in A, then $\theta(s)$ is cofinal in C.

Proof. Let (X, R) be the dual space of A and let R_{s} be the restriction of R to $\varphi(s)$. Then $\left(\varphi(s), R_{s}\right)$ is homeomorphic to the dual space of A_{s}. Since B is a homomorphic image of A_{s}, the dual space of B is homeomorphic to a closed upset Y of $\varphi(s)$. Let $Z=Y \cup R(Y)$. Then Z is a closed upset of X. Therefore, $\left(Z, R_{Z}\right)$ is a transitive space. Let C be the K4-algebra of clopen subsets of $\left(Z, R_{Z}\right)$. Then C is a homomorphic image of A. Let $\theta: A \rightarrow C$ be the onto homomorphism. As Y is an upset of X, we have $Y=Z \cap \varphi(s)=\varphi(\theta(s))$. Therefore, Y is a clopen subset of Z, and so B is isomorphic to the relativization of C to $\theta(s)$. In addition, if s is cofinal in A, then $\varphi(s)$ is cofinal in X. Thus, Y is cofinal in Z, and so $\theta(s)$ is cofinal in C.

We conclude this section by comparing our approach to that of Zakharyaschev. We will mostly follow [5, Sec. 9], which is a streamlined version of Zakharyaschev's earlier results. We point out that Zakharyaschev works with transitive general frames, whereas we work with transitive spaces. Although transitive spaces form a proper subcategory of the transitive general frames, they are sufficient for our purposes as they are duals of K4-algebras. Note that for transitive spaces, the notion of subreduction [5, p. 287] coincides with that of onto partial continuous p-morphism.

Definition 4.15. Let X and Y be transitive spaces and let $f: X \rightarrow Y$ be an onto partial continuous p-morphism.

1. [5, p. 295] We call f a cofinal subreduction if

$$
R(\operatorname{dom}(f)) \subseteq\left(R^{+}\right)^{-1}(\operatorname{dom}(f)) .
$$

2. [5, p. 293] We call f a dense subreductionif

$$
R^{+}(\operatorname{dom}(f)) \cap\left(R^{+}\right)^{-1}(\operatorname{dom}(f))=\operatorname{dom}(f)
$$

For an onto partial continuous p-morphism $f: X \rightarrow Y$, it is easy to see that if f is cofinal (resp. dense) in our sense (Definition 4.8), then it is cofinal (resp. dense) in Zakharyaschev's sense (Definition 4.15). However, the converse is clearly not true (see, e.g., [1, Ex. 4.3 and 4.6]). Nevertheless, each cofinal (resp. dense) subreduction $f: X \rightarrow Y$ gives rise to a cofinal (resp. dense) partial continuous p-morphism from the closed upset $R^{+}(\operatorname{dom}(f))$ of X onto Y. For a proof, we refer to [1, Lem. 4.5 and 4.7]. Note that [1] discusses only the intuitionistic case, but the proof for the modal case is unchanged.

Next we address Zakharyaschev's (CDC). We point out that Zakharyaschev only considers subreductions onto finite transitive frames. The main reason for this, of course, is that the canonical formulas he defines are associated with finite (rooted) transitive frames rather than any transitive space. On the other hand, our (CDC) applies to the infinite case as well (although the canonical formulas we will define will also be associated only with finite subdirectly irreducible K4-algebras). Therefore, we will not assume that the target space is finite. In addition, Zakharyaschev works with antichains, while we prefer to work with quasi-antichains. But as we mentioned earlier in this section, it is only a matter of convenience. Thus, we will modify Zakharyaschev's definition by replacing antichains by quasi-antichains.

Definition 4.16. [5, p. 298] Let Y be a transitive space and \mathfrak{D} be a (possibly empty) set of quasi-antichains in Y. We say that a partial continuous pmorphism f from a transitive space X to Y satisfies Zakharyaschev's closed domain condition $(Z C D C)$ for \mathfrak{D} if:

$$
x \in R(\operatorname{dom}(f)) \text { and } f(R(x))=R^{+}(\mathfrak{d}) \text { for some } \mathfrak{d} \in \mathfrak{D} \text { imply } x \in \operatorname{dom}(f)
$$

Clearly (CDC) implies (ZCDC). However, the converse is not true in general. Nevertheless, (ZCDC) implies (CDC) for the restriction of f to $R^{+}(\operatorname{dom}(f))$. Again, the proof is the same as in the intuitionistic case $[1$, Cor. 4.9] and we skip it.

5. Canonical formulas for K4

In this section we give an algebraic description of canonical formulas. Our canonical formulas generalize the Jankov-Rautenberg formulas. The main result of the section is a new algebraic proof of Zakharyaschev's theorem that each logic over K4 is axiomatizable by these formulas.

5.1. An algebraic description of canonical formulas

We assume that modal formulas are built from propositional variables and the constants \top and \perp by means of the connectives \neg, \vee and the modal operator \diamond. We also treat the connectives $\wedge, \rightarrow, \leftrightarrow$ and the modal operator \square as derived operations in the standard way; that is, $p \wedge q=\neg(\neg p \vee \neg q)$, $p \rightarrow q=\neg p \vee q, p \leftrightarrow q=(p \rightarrow q) \wedge(q \rightarrow p)$, and $\square p=\neg \diamond \neg p$. For modal formulas α and β, we use the following abbreviations: $\neg_{\alpha} \beta=\alpha \wedge \neg \beta$ and $\diamond_{\alpha} \beta=\alpha \wedge \diamond \beta$.

Let A be a finite subdirectly irreducible K4-algebra. Then it is well known that $H=\square^{+}(A)$ is a subdirectly irreducible Heyting algebra, hence H has the second largest element which we denote by t. Let D be a subset of A. For each $a \in A$ we introduce a new variable p_{a} and define the canonical formula $\alpha(A, D)$ associated with A and D as follows:

$$
\begin{aligned}
\alpha(A, D)=\square^{+} & {\left[\left(\top \leftrightarrow \diamond^{+} p_{1}\right) \wedge\left(\perp \leftrightarrow p_{0}\right) \wedge\right.} \\
& \bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond_{p_{1}} p_{a}: a \in A\right\} \wedge \\
& \left.\bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond p_{a}: a \in D\right\}\right] \rightarrow\left(p_{1} \rightarrow p_{t}\right)
\end{aligned}
$$

If we let

$$
\begin{aligned}
\Gamma= & \left(\top \leftrightarrow \diamond^{+} p_{1}\right) \wedge\left(\perp \leftrightarrow p_{0}\right) \wedge \\
& \bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond_{p_{1}} p_{a}: a \in A\right\} \wedge \\
& \bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond p_{a}: a \in D\right\},
\end{aligned}
$$

then

$$
\alpha(A, D)=\square^{+} \Gamma \rightarrow\left(p_{1} \rightarrow p_{t}\right)
$$

Lemma 5.1. Let A be a finite subdirectly irreducible K4-algebra, $H=\square^{+}(A)$, t be the second largest element of H, and D be a subset of A. Then $A \not \vDash$ $\alpha(A, D)$.

Proof. Define a valuation ν on A by $\nu\left(p_{a}\right)=a$ for each $a \in A$. Then

$$
\nu(\alpha(A, D))=\square^{+} 1 \rightarrow(1 \rightarrow t)=1 \rightarrow t=t
$$

Therefore, $A \not \vDash \alpha(A, D)$.
Theorem 5.2. Let A be a finite subdirectly irreducible K4-algebra, $D \subseteq A$, and B be a K4-algebra. Then $B \not \vDash \alpha(A, D)$ iff there exist a homomorphic image C of B and a 1-1 modal algebra homomorphism η from A into a cofinal relativization C_{s} of C such that $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$.

Proof. First assume that there exist a homomorphic image C of B and a 1-1 modal algebra homomorphism η from A into a cofinal relativization C_{s} of C such that $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$. By Lemma 5.1, there is a valuation ν on A refuting $\alpha(A, D)$. We define a valuation μ on C by $\mu\left(p_{a}\right)=\eta \circ \nu\left(p_{a}\right)=\eta(a)$ for each $a \in A$. We show that $\mu(\alpha(A, D))=\eta(t)$. Since s is cofinal in C, we have $1_{C}=\diamond^{+} \eta\left(1_{A}\right)$. Therefore,

$$
\mu\left(\top \leftrightarrow \diamond^{+} p_{1}\right)=\mu(\top) \leftrightarrow \diamond^{+} \mu\left(p_{1}\right)=1_{C} \leftrightarrow \diamond^{+} \eta\left(1_{A}\right)=\diamond^{+} \eta\left(1_{A}\right)=1_{C}
$$

As C_{s} is a relativization of C and $\eta: B \rightarrow C_{s}$ is a Boolean algebra homomorphism, $\eta\left(0_{A}\right)=0_{C}, \eta(a \vee b)=\eta(a) \vee \eta(b), \eta(a \wedge b)=\eta(a) \wedge \eta(b)$ for each $a, b \in A$. Thus,

$$
\begin{aligned}
& \mu\left(\perp \leftrightarrow p_{0}\right)=0_{C} \leftrightarrow \mu\left(p_{0}\right)=0_{C} \leftrightarrow \eta\left(0_{A}\right)=1_{C} \\
& \mu\left(p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}\right)=\mu\left(p_{a \vee b}\right) \leftrightarrow \mu\left(p_{a}\right) \vee \mu\left(p_{b}\right)=\eta(a \vee b) \leftrightarrow \eta(a) \vee \eta(b)=1_{C},
\end{aligned}
$$

$$
\mu\left(p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}\right)=\mu\left(p_{a \wedge b}\right) \leftrightarrow \mu\left(p_{a}\right) \wedge \mu\left(p_{b}\right)=\eta(a \wedge b) \leftrightarrow \eta(a) \wedge \eta(b)=1_{C}
$$

Also, since $\eta: A \rightarrow C_{s}$ is a modal algebra homomorphism, for each $a \in A$ we have $\eta(\diamond a)=\diamond_{\eta\left(1_{A}\right)} \eta(a)$. Therefore,

$$
\mu\left(p_{\diamond a} \leftrightarrow \diamond_{p_{1}} p_{a}\right)=\mu\left(p_{\diamond a}\right) \leftrightarrow \diamond_{\eta\left(1_{A}\right)} \mu\left(p_{a}\right)=\eta(\diamond a) \leftrightarrow \diamond_{\eta\left(1_{A}\right)} \eta(a)=1_{C}
$$

Moreover, $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$ implies

$$
\mu\left(p_{\diamond a} \leftrightarrow \diamond p_{a}\right)=\mu\left(p_{\diamond a}\right) \leftrightarrow \diamond \mu\left(p_{a}\right)=\eta(\diamond a) \leftrightarrow \diamond \eta(a)=1_{C}
$$

for each $a \in D$. Thus, $\mu(\Gamma)=1_{C}$, and so $\mu\left(\square^{+} \Gamma\right)=\square^{+} \mu(\Gamma)=\square^{+} 1_{C}=1_{C}$. We also have that $\mu\left(p_{t}\right)=\eta(t)$. This yields

$$
\begin{aligned}
& \mu(\alpha(A, D))=\square^{+} \mu(\Gamma) \rightarrow\left(\mu\left(p_{1}\right) \rightarrow \mu\left(p_{t}\right)\right)=1_{C} \rightarrow\left(\eta\left(1_{A}\right) \rightarrow \eta(t)\right)= \\
& \eta\left(1_{A}\right) \rightarrow \eta(t) .
\end{aligned}
$$

It is obvious that $\eta(t) \leq \eta\left(1_{A}\right)$. If $\eta\left(1_{A}\right) \rightarrow \eta(t)=1_{C}$, then $\eta\left(1_{A}\right) \leq \eta(t)$, so $\eta\left(1_{A}\right)=\eta(t)$, and so η is not $1-1$, a contradiction. Therefore, $\eta\left(1_{A}\right) \not \leq \eta(t)$, yielding $\eta\left(1_{A}\right) \rightarrow \eta(t) \neq 1_{C}$. Consequently, $\alpha(A, D)$ is refuted on C. Now as C is a homomorphic image of B, we also have that $\alpha(A, D)$ is refuted on B.

Conversely, let $B \not \vDash \alpha(A, D)$. Then there exists a valuation μ on B such that $\mu(\alpha(A, D)) \neq 1_{B}$. Therefore, $\mu(\alpha(A, D))=\square^{+} \mu(\Gamma) \rightarrow\left(\mu\left(p_{1}\right) \rightarrow\right.$ $\left.\mu\left(p_{t}\right)\right) \neq 1_{B}$. Thus, $\square^{+} \mu(\Gamma) \not \leq \mu\left(p_{1}\right) \rightarrow \mu\left(p_{t}\right)$. By Lemma 4.1, there exist a subdirectly irreducible K4-algebra C and an onto homomorphism $\theta: B \rightarrow C$ such that $\theta\left(\square^{+} \mu(\Gamma)\right)=1_{C}$ and $\theta\left(\mu\left(p_{1}\right) \rightarrow \mu\left(p_{t}\right)\right) \neq 1_{C}$. Clearly $\nu=\theta \circ \mu$ is a valuation on C such that $\square^{+} \nu(\Gamma)=1_{C}$ and $\nu\left(p_{1}\right) \rightarrow \nu\left(p_{t}\right) \neq 1_{C}$. It follows that $\nu(\Gamma)=1_{C}$.

Next define a map $\eta: A \rightarrow C$ by $\eta(a)=\nu\left(p_{a}\right)$ for each $a \in A$. Let $s=\eta\left(1_{A}\right)$. First we show that s is cofinal in C. Since $\nu(\Gamma)=1_{C}$ and $\nu(\Gamma) \leq$ $\nu\left(\top \leftrightarrow \diamond^{+} p_{1}\right)$, we obtain that $\nu\left(\top \leftrightarrow \diamond^{+} p_{1}\right)=1_{C}$. But $\nu\left(\top \leftrightarrow \diamond^{+} p_{1}\right)=$ $\nu(\top) \leftrightarrow \diamond^{+} \nu\left(p_{1}\right)=1_{C} \leftrightarrow \diamond^{+} \nu\left(p_{1}\right)$, which implies that $\nabla^{+} \nu\left(p_{1}\right)=1_{C}$. But $\nu\left(p_{1}\right)=\eta\left(1_{A}\right)=s$. Therefore, $\diamond^{+} s=\diamond^{+} \eta\left(1_{A}\right)=1_{C}$, and so s is cofinal in C. Next we show that η is a 1-1 modal algebra homomorphism from A into C_{s} such that $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$.

Let $a, b \in A$. Since $\nu(\Gamma)=1_{C}$ and $\nu(\Gamma) \leq \nu\left(p_{a \wedge b}\right) \leftrightarrow\left(\nu\left(p_{a}\right) \wedge \nu\left(p_{b}\right)\right)$, we obtain that $\nu\left(p_{a \wedge b}\right) \leftrightarrow\left(\nu\left(p_{a}\right) \wedge \nu\left(p_{b}\right)\right)=1_{C}$. Therefore, $\nu\left(p_{a \wedge b}\right)=\nu\left(p_{a}\right) \wedge$ $\nu\left(p_{b}\right)$. By a similar argument,

$$
\begin{aligned}
& \nu\left(p_{a \vee b}\right)=\nu\left(p_{a}\right) \vee \nu\left(p_{b}\right), \\
& \nu\left(p_{0}\right)=0_{C} \\
& \nu\left(p_{\diamond a}\right)=\diamond_{\nu\left(p_{1}\right)} \nu\left(p_{a}\right), \text { and }
\end{aligned}
$$

$$
\nu\left(p_{\diamond a}\right)=\diamond \nu\left(p_{a}\right) \text { for } a \in D
$$

But $\nu\left(p_{a}\right)=\eta(a)$ for each $a \in A$. Therefore, for each $a, b \in A$, we have:

$$
\begin{aligned}
& \eta(a \wedge b)=\eta(a) \wedge \eta(b) \\
& \eta(a \vee b)=\eta(a) \vee \eta(b) \\
& \eta\left(0_{A}\right)=0_{C} \\
& \eta(\diamond a)=\diamond_{\eta\left(1_{A}\right)} \eta(a)=\diamond_{s} \eta(a), \text { and } \\
& \eta(\diamond a)=\diamond_{\eta}(a) \text { for } a \in D
\end{aligned}
$$

By Lemma 3.1, η is a relativized Boolean algebra homomorphism, and hence η is a modal algebra homomorphism from A to C_{s} such that $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$. It is left to be shown that η is $1-1$. Let $a, b \in A$ with $a \not \leq b$. Then $a \rightarrow b \neq 1_{A}$, and so $\square^{+}(a \rightarrow b) \leq t$. Therefore, $\eta\left(\square^{+}(a \rightarrow\right.$ $b)) \leq \eta(t)$. Thus, $\square_{s}^{+}\left(\eta(a) \rightarrow_{s} \eta(b)\right) \leq \eta(t) \leq \eta\left(1_{A}\right)=s$. If $\eta\left(1_{A}\right) \leq \eta(t)$, then $\nu\left(p_{1}\right) \leq \nu\left(p_{t}\right)$. So $\nu\left(p_{1}\right) \rightarrow \nu\left(p_{t}\right)=1_{C}$, a contradiction. Consequently, $\eta(t)<\eta\left(1_{A}\right)=s$, and so $\square_{s}^{+}\left(\eta(a) \rightarrow_{s} \eta(b)\right)<s$. If $\eta(a) \rightarrow_{s} \eta(b)=s$, then $\square_{s}^{+}\left(\eta(a) \rightarrow_{s} \eta(b)\right)=\square_{s}^{+}(s)=\square_{s}^{+}\left(\eta\left(1_{A}\right)\right)=\eta\left(\square^{+} 1_{A}\right)=\eta\left(1_{A}\right)=s$, a contradiction. Thus, $\eta(a) \rightarrow_{s} \eta(b)<s$, so $\eta(a) \not \leq \eta(b)$, and hence η is $1-1$.

As an immediate consequence of Theorems 3.4, 5.2, and Corollary 4.6, we obtain:

Corollary 5.3. Let A be a finite subdirectly irreducible K4-algebra, $D \subseteq A$, and $\mathfrak{D}=\bigcup\left\{\mathfrak{D}_{\varphi(a)}: a \in D\right\}$ be the set of quasi-antichains in A_{*} associated with D. Then for each transitive space X, we have $X \not \vDash \alpha(A, D)$ iff there exist a closed upset Y of X and an onto cofinal partial continuous p-morphism $f: Y \rightarrow A_{*}$ such that f satisfies $(C D C)$ for \mathfrak{D}.

REmARK 5.4. For an intuitionistic version of Theorem 5.2 see [1, Thm. 5.3]. Corollary 5.3 corresponds to [5, Thm. 9.39(i)]. Its intuitionistic analogues are [5, Thm. $9.40(\mathrm{i})]$ and [1, Cor. 5.5]. Also note that a transitive space X validates our canonical formulas iff X validates Zakharyachev's canonical formulas. Since the proof of this fact is the same as in the intuitionistic case, we refer the reader to [1, Rem. 5.6].

5.2. Axiomatization

We are ready to give a new algebraic proof of Zakharyaschev's theorem that every logic over K4 is axiomatizable by canonical formulas. For this we first
show that the refutability of a modal formula α in a $\mathbf{K} 4$-algebra B can be "coded" by means of finitely many pairs $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}, D_{m}\right)$, where each A_{i} is a subdirectly irreducible $\mathbf{K} 4$-algebra and $D_{i} \subseteq A_{i}$.

Theorem 5.5. If $\mathbf{K} \mathbf{4} \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}\right.$, $\left.D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible $\mathbf{K 4}$-algebra, $D_{i} \subseteq A_{i}$, and for each K4-algebra B we have $B \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$ iff there exist $i \leq m$, a homomorphic image C of B, and a modal algebra homomorphism η_{i} from A_{i} into a cofinal relativization C_{u} of C such that $\eta_{i}\left(\diamond_{i} a\right)=\diamond \eta_{i}(a)$ for each $a \in D_{i}$.

Proof. Let F_{n} be the free n-generated $\mathbf{K 4}$-algebra and let g_{1}, \ldots, g_{n} be the generators of F_{n}. Since $\mathbf{K} 4 \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, we have $F_{n} \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$. Therefore, $\alpha\left(g_{1}, \ldots, g_{n}\right) \neq 1_{F_{n}}$. By [3, Main Lemma], there exist a cofinal $s \in$ F_{n} and a finite modal subalgebra B_{s} of $\left(F_{n}\right)_{s}$ such that $B_{s} \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$. We briefly recall the construction of s. Let B_{α} be the Boolean subalgebra of F_{n} generated by the subpolynomials of $\alpha\left(g_{1}, \ldots, g_{n}\right)$. Then B_{α} is finite. Let A_{α} denote the set of atoms of B_{α}. Let also $H_{n}=\square^{+}\left(F_{n}\right)$. Then H_{n} is a Heyting algebra, where $\underset{H_{n}}{\longrightarrow}$ denotes the Heyting implication in H_{n}. Let H_{α} be the $\left(\wedge, \overrightarrow{H_{n}}\right)$-subalgebra of H_{n} generated by $\square^{+}\left(B_{\alpha}\right)$. By Diego's Theorem, H_{α} is finite. Let

$$
s=\bigvee_{a \in A_{\alpha}} \bigwedge_{h \in H_{\alpha}}\left(h_{a} \vee \square_{a}^{+} \neg_{a} h_{a}\right)
$$

By [3, Lem. 5.3], s is cofinal. Finally, let B be the Boolean subalgebra of F_{n} generated by $B_{\alpha} \cup H_{\alpha}$, and let $B_{s}=\left\{b_{s}: b \in B\right\}$, where $b_{s}=s \wedge b$. Clearly B_{s} is finite. By [3, Rem. 5.8], B_{s} is a modal subalgebra of $\left(F_{n}\right)_{s}$ and $B_{s} \not \models \alpha\left(p_{1}, \ldots, p_{n}\right)$.

Let A_{1}, \ldots, A_{m} be the subdirectly irreducible homomorphic images of B_{s} refuting $\alpha\left(p_{1}, \ldots, p_{n}\right)$, and let $\theta_{i}: B_{s} \rightarrow B_{i}$ be the corresponding onto homomorphisms. Since each A_{i} refutes $\alpha\left(p_{1}, \ldots, p_{n}\right)$, there exist $a_{1}, \ldots, a_{n} \in$ A_{i} such that $\alpha\left(a_{1}, \ldots, a_{n}\right) \neq 1_{A_{i}}$. Let A_{i}^{α} be the Boolean subalgebra of A_{i} generated by the subpolynomials of $\alpha\left(a_{1}, \ldots, a_{n}\right)$. We set $D_{i}=\left\{\neg a \in A_{i}^{\alpha}\right.$: $\left.\diamond_{i} a \in A_{i}^{\alpha}\right\} .{ }^{1}$

Given a K4-algebra B, we need to show that $B \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$ iff there is $i \leq m$, a homomorphic image C of B, and a modal algebra homomorphism η_{i} from A_{i} into a cofinal relativization C_{u} of C such that $\eta_{i}\left(\diamond_{i} d\right)=\diamond \eta_{i}(d)$ for each $d \in D_{i}$.

[^1]First suppose there exist $i \leq m$, a homomorphic image C of B, and a modal algebra homomorphism η_{i} from A_{i} into a cofinal relativization C_{u} of C such that $\eta_{i}\left(\diamond_{i} d\right)=\diamond \eta_{i}(d)$ for each $d \in D_{i}$. Since $\eta_{i}: A_{i} \rightarrow C_{u}$ is a 1-1 modal algebra homomorphism, the formula $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is refuted on C_{u}. We show that $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is also refuted on C.

LEmma 5.6. Suppose that B is a K4-algebra, $u \in B$, and $\diamond^{+} u=1$. Let B_{u} be the relativization of B to u. Let also A be a K4-algebra such that $\alpha\left(a_{1}, \ldots, a_{n}\right) \neq 1_{A}$ for some $a_{1}, \ldots, a_{n} \in A$. We let A_{α} be the Boolean subalgebra of A generated by the subpolynomials of $\alpha\left(a_{1}, \ldots, a_{n}\right)$, and $D=\{\neg a \in$ $\left.A_{\alpha}: \diamond a \in A_{\alpha}\right\}$. If there is a 1-1 modal algebra homomorphism η from A into B_{u} satisfying $\diamond \eta(d)=\eta(\diamond d)$ for each $d \in D$, then $\alpha\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)\right) \neq 1_{B}$.

Proof. Since $\alpha\left(a_{1}, \ldots, a_{n}\right) \neq 1_{A}$ and there is a 1-1 modal algebra homomorphism $\eta: A \rightarrow B_{u}$, we have that $\alpha_{B_{u}}\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)\right) \neq u$. As $\diamond \eta(d)=\eta(\diamond d)$ for each $d \in D$, by Corollary 4.6, $\eta_{*}: B_{*} \rightarrow A_{*}$ satisfies $(C D C)$ for $\mathfrak{D}=\bigcup\left\{\mathfrak{D}_{\varphi(d)}: d \in D\right\}$. Therefore, $x \notin \operatorname{dom}\left(\eta_{*}\right)$ implies $\eta_{*} R(x) \cap \varphi(d)=\emptyset$ for each $d \in D$. As $\operatorname{dom}\left(\eta_{*}\right)=\varphi(u)$ and $\eta_{*} R(x) \cap \varphi(d)=\emptyset$ iff $R(x) \cap \varphi(u) \cap \eta_{*}^{-1} \varphi(d)=\emptyset$ iff $R(x) \cap \varphi(u) \cap \varphi(\eta(d))=\emptyset$, we obtain:

$$
\begin{array}{ll}
\eta_{*}: B_{*} \rightarrow A_{*} \text { satisfies }(\mathrm{CDC}) \text { for } \mathfrak{D}=\bigcup\left\{\mathfrak{D}_{\varphi(d)}: d \in D\right\} & \text { iff } \\
R(x) \cap \varphi(u) \cap \varphi(\eta(d))=\emptyset \text { for each } d \in D \text { and } x \notin \varphi(u) & \text { iff } \\
R(x) \cap \varphi(u) \subseteq \varphi(u)-\varphi(\eta(d)) \text { for each } d \in D \text { and } x \notin \varphi(u) & \text { iff } \\
R(x) \cap \varphi(u) \subseteq \varphi(\eta(1))-\varphi(\eta(d)) \text { for each } d \in D \text { and } x \notin \varphi(u) & \text { iff } \\
R(x) \cap \varphi(u) \subseteq \varphi(\neg \eta(1) \eta(d)) \text { for each } d \in D \text { and } x \notin \varphi(u) & \text { iff } \\
R(x) \cap \varphi(u) \subseteq \varphi(\eta(\neg d)) \text { for each } d \in D \text { and } x \notin \varphi(u) . &
\end{array}
$$

That $\alpha\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)\right) \neq 1_{B}$ now follows from the following claim.
Claim 5.7. Let B_{u}^{α} be the Boolean subalgebra of B_{u} generated by the subpolynomials of $\alpha_{B_{u}}\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)\right)$. If $R(x) \cap \varphi(u) \subseteq \varphi(\neg d)$ for each $d \in D$ and $x \notin \varphi(u)$, then

$$
u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)
$$

for each $b_{1}, \ldots, b_{n} \in B_{u}^{\alpha}$. Consequently, if there exist $b_{1}, \ldots, b_{n} \in B_{u}^{\alpha}$ such that $\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right) \neq u$, then $\alpha\left(b_{1}, \ldots, b_{n}\right) \neq 1_{B}$.

Proof. Induction on the complexity of $\alpha\left(b_{1}, \ldots, b_{n}\right)$.
If $\alpha\left(b_{1}, \ldots, b_{n}\right)=1$, then

$$
u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=u \wedge 1=1_{u}=\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)
$$

The case when $\alpha\left(b_{1}, \ldots, b_{n}\right)=0$ is proved similarly.
If $\alpha\left(b_{1}, \ldots, b_{n}\right)=b_{i}$, then

$$
u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=u \wedge b_{i}=b_{i}=\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)
$$

If $\alpha\left(b_{1}, \ldots, b_{n}\right)=\beta \vee \gamma$, then
$u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=u \wedge(\beta \vee \gamma)=(u \wedge \beta) \vee(u \wedge \gamma)=\beta_{u} \vee \gamma_{u}=\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)$.
If $\alpha\left(b_{1}, \ldots, b_{n}\right)=\neg \beta$, then
$u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=u \wedge \neg \beta=u \wedge(\neg u \vee \neg \beta)=u \wedge \neg(u \wedge \beta)=\neg u \beta_{u}=$ $\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)$.
Lastly, let $\alpha\left(b_{1}, \ldots, b_{n}\right)=\diamond \beta$. Then

$$
u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=u \wedge \diamond \beta
$$

and

$$
\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)=\diamond_{u} \beta_{u}=u \wedge \diamond(u \wedge \beta)
$$

We show that $u \wedge \diamond \beta=u \wedge \diamond(u \wedge \beta)$. It is obvious that $u \wedge \diamond(u \wedge \beta) \leq u \wedge \diamond \beta$. Conversely, let $x \in \varphi(u \wedge \diamond \beta)$. Then $x \in \varphi(u)$ and $R(x) \cap \varphi(\beta) \neq \emptyset$. So there exists $y \in B_{*}$ such that $x R y$ and $y \in \varphi(\beta)$. If $y \in \varphi(u)$, then $x \in \varphi(u \wedge$ $\diamond(u \wedge \beta))$. If $y \notin \varphi(u)$, then as $\diamond^{+} u=1_{B}$, there exists $z \in \varphi(u)$ such that $y R z$. As R is transitive, $x R z$. Since $\diamond \beta \in B_{u}^{\alpha}$, we have $\neg \beta \in D$. Therefore, $R(y) \cap \varphi(u) \subseteq \varphi(\beta)$. Thus, $z \in \varphi(\beta)$, and so $x \in \varphi(u \wedge \diamond(u \wedge \beta))$. This implies that $u \wedge \diamond \beta \leq u \wedge \diamond(u \wedge \beta)$. Consequently, $u \wedge \diamond \beta=u \wedge \diamond(u \wedge \beta)$, and hence by induction we can conclude that $u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)$.

Finally, if $\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right) \neq u$, then as $u \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=\alpha_{B_{u}}\left(b_{1}, \ldots, b_{n}\right)$ $\neq u$, we obtain that $\alpha\left(b_{1}, \ldots, b_{n}\right) \neq 1_{B}$.

This concludes the proof of Lemma 5.6.
Lemma 5.6 yields that $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is refuted on C. Since C is a homomorphic image of B, it follows that $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is also refuted on B.

Conversely, suppose that $B \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$. Then there exist a_{1}, \ldots, $a_{n} \in B$ such that $\alpha\left(a_{1}, \ldots, a_{n}\right) \neq 1_{B}$. Let S_{n} be the subalgebra of B generated by a_{1}, \ldots, a_{n}. Then S_{n} is an n-generated $\mathbf{K} 4$-algebra, and so S_{n} is a homomorphic image of F_{n}. Let $\theta: F_{n} \rightarrow S_{n}$ be the onto homomorphism and let S_{α} be the Boolean subalgebra of S_{n} generated by the subpolynomials of $\alpha\left(a_{1}, \ldots, a_{n}\right)$. We construct a cofinal u and B_{u} in S_{n} exactly the same way we constructed s and B_{s} in F_{n}. We also let $D=\left\{\neg a \in S_{\alpha}: \diamond a \in S_{\alpha}\right\}$. Clearly $\theta(s)=u$. Also, by [3, Lem. 5.7], $\nabla_{u} b_{u}=u \wedge \diamond b$ for each $b \in S_{\alpha}$.

Let $k: B_{u} \rightarrow\left(S_{n}\right)_{u}, l:\left(S_{n}\right)_{u} \rightarrow S_{n}$, and $m: S_{n} \rightarrow B$ be the corresponding embeddings. Then k and m are modal algebra homomorphisms, while l is a relativized modal algebra homomorphism. Moreover, the embedding $m \circ l \circ k: B_{u} \rightarrow B$ satisfies $\diamond m l k(a)=m l k\left(\diamond_{u} a\right)$ for each $a \in S_{\alpha}$.

Since $\theta: F_{n} \rightarrow S_{n}$ is an onto homomorphism and $\theta(s)=u$, the restriction of θ to B_{s} is a homomorphism from B_{s} onto B_{u}. As $B_{u} \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$, there is a subdirectly irreducible homomorphic image of B_{u} refuting $\alpha\left(p_{1}, \ldots, p_{n}\right)$. Since each homomorphic image of B_{u} is also a homomorphic image of B_{s}, we obtain that the subdirectly irreducible homomorphic image of B_{u} refut$\operatorname{ing} \alpha\left(p_{1}, \ldots, p_{n}\right)$ is A_{i} for some $i \leq m$. Let $\theta_{i}: B_{u} \rightarrow A_{i}$ be the onto homomorphism. Then, by Lemma 2.1, there exists a $\mathbf{K} 4$-algebra T, an onto homomorphism $\zeta:\left(S_{n}\right)_{u} \rightarrow T$, and a 1-1 homomorphism $n: A_{i} \rightarrow T$ such that $\zeta \circ k=n \circ \theta_{i}$. By Lemma 4.14, there exists a K4-algebra E and an onto homomorphism $\xi: S_{n} \rightarrow E$ such that T is isomorphic to the relativization of E to $\xi(u)$. Moreover, as u is cofinal in S_{n}, we also have that $\xi(u)$ is cofinal in E. Let $p: T \rightarrow E$ be the corresponding relativized modal algebra homomorphism from T into E. Then $\xi \circ l=p \circ \zeta$. Applying Lemma 2.1 again, we obtain a K4-algebra C, an onto homomorphism $\eta: A \rightarrow C$, and a 1-1 homomorphism $q: E \rightarrow C$ such that $\eta \circ m=q \circ \xi$. Therefore, we arrive at the following commutative diagram.

Let $\eta_{i}=q \circ p \circ n$ and let $\left(A_{i}\right)_{\alpha}$ be the Boolean subalgebra of A_{i} generated by the subpolynomials of $\alpha\left(\theta_{i}\left(a_{1}\right), \ldots, \theta_{i}\left(a_{n}\right)\right)$. Then $\left(A_{i}\right)_{\alpha}=\theta_{i}\left[S_{\alpha}\right]$. Let $a \in\left(A_{i}\right)_{\alpha}$. Then there exists $b \in S_{\alpha}$ such that $a=\theta_{i}(b)$. As the diagram commutes and $\diamond_{B} m l k(b)=m l k\left(\diamond_{u} b\right)$ for each $b \in S_{\alpha}$, we have $\eta_{i}\left(\diamond_{i} a\right)=$ $\eta_{i}\left(\diamond_{i} \theta_{i}(b)\right)=\eta_{i} \theta_{i}\left(\diamond_{u} b\right)=\eta m l k\left(\diamond_{u} b\right)=\eta \diamond_{B} m l k(b)=\diamond_{C} \eta m l k(b)=$ $\diamond_{C} \eta_{i} \theta_{i}(b)=\diamond_{C} \eta_{i}(a)$. In particular, $\eta_{i}\left(\diamond_{i} d\right)=\diamond_{C} \eta_{i}(d)$ for each $d \in D$. Thus, we have found $i \leq m$, a homomorphic image C of B, and a relativized modal algebra homomorphism η_{i} from A_{i} into a cofinal relativization $C_{\eta(u)}$ of C such that $\eta_{i}\left(\diamond_{i} d\right)=\diamond \eta_{i}(d)$ for each $d \in D_{i}$.

As an immediate consequence of Theorems 3.4, 5.5, and Corollary 4.6, we obtain:

Corollary 5.8. If $\mathbf{K} 4 \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}\right.$, $\left.D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible $\mathbf{K 4}$-algebra, $D_{i} \subseteq A_{i}$,
and for each transitive space X, we have $X \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$ iff there exist $i \leq m$, a closed upset Y of X, and a cofinal partial continuous p-morphism f_{i} from Y onto $\left(A_{i}\right)_{*}$ satisfying $(C D C)$ for $\mathfrak{D}_{i}=\bigcup\left\{\mathfrak{D}_{\varphi(a)}: a \in D_{i}\right\}$.

Corollary 5.9. If $\mathbf{K} \mathbf{4} \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}\right.$, $\left.D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible $\mathbf{K} 4$-algebra, $D_{i} \subseteq A_{i}$, and for each K4-algebra B, we have:

$$
B \models \alpha\left(p_{1}, \ldots, p_{n}\right) \text { iff } B \models \bigwedge_{i=1}^{m} \alpha\left(A_{i}, D_{i}\right) .
$$

Proof. Suppose that K4 $\vdash \alpha\left(p_{1}, \ldots, p_{n}\right)$. Then, by Theorem 5.5, there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}, D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible $\mathbf{K} 4$-algebra, $D_{i} \subseteq A_{i}$, and for each $\mathbf{K} 4$-algebra B, we have $B \not \vDash$ $\alpha\left(p_{1}, \ldots, p_{n}\right)$ iff there exist $i \leq m$, a homomorphic image C of B, and a modal algebra homomorphism η_{i} from A_{i} into a cofinal relativization C_{u} of C such that $\eta_{i}\left(\diamond_{i} a\right)=\diamond \eta_{i}(a)$ for each $a \in D_{i}$. The result now follows from Theorem 5.2.

Corollary 5.10. If $\mathbf{K} 4 \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}\right.$, $\left.D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible $\mathbf{K} 4$-algebra, $D_{i} \subseteq A_{i}$, and for each transitive space X, we have:

$$
X \models \alpha\left(p_{1}, \ldots, p_{n}\right) \text { iff } X \models \bigwedge_{i=1}^{m} \alpha\left(A_{i}, D_{i}\right) .
$$

Remark 5.11. For an intuitionistic version of Theorem 5.5 see [1, Thm. 5.7]; Lemma 5.6 corresponds to [5, Thm. 9.30]; Corollary 5.8 corresponds to [5, Thms. 9.34 and $9.36(\mathrm{i})]$; for its intuitionistic version see [1, Cor. 5.5]; Corollary 5.9 corresponds to [5, Thm 9.43(i)]; for intuitionistic versions of Corollaries 5.9 and 5.10 see [1, Cor. 5.10 and 5.11].

As a consequence of Corollary 5.9, we obtain that every logic over $\mathbf{K} 4$ is axiomatizable by canonical formulas.

Corollary 5.12 (Zakharyaschev's theorem). Each logic L over K4 is axiomatizable by canonical formulas. Moreover, if L is finitely axiomatizable, then L is axiomatizable by finitely many canonical formulas.

Proof. Let L be a logic over K4. Then L is obtained by adding $\left\{\alpha_{i}: i \in I\right\}$ to $\mathbf{K} 4$ as new axioms. Therefore, $\mathbf{K} 4 \nvdash \alpha_{i}$ for each $i \in I$. By Corollary 5.9, for each $i \in I$, there exist $\left(A_{i 1}, D_{i 1}\right), \ldots,\left(A_{i m_{i}}, D_{i m_{i}}\right)$ such that $A_{i j}$ is
a finite subdirectly irreducible $\mathbf{K} 4$-algebra, $D_{i j} \subseteq A_{i j}$, and for each K4algebra B, we have $B \models \alpha_{i}$ iff $B \models \bigwedge_{j=1}^{m_{i}} \alpha\left(A_{i j}, D_{i j}\right)$. Thus, $B \models L$ iff $B \models\left\{\alpha_{i}: i \in I\right\}$, which happens iff $B \models\left\{\bigwedge_{j=1}^{m_{i}} \alpha\left(A_{i j}, D_{i j}\right): i \in I\right\}$. Consequently, $L=\mathbf{K} 4+\left\{\bigwedge_{j=1}^{m_{i}} \alpha\left(A_{i j}, D_{i j}\right): i \in I\right\}$, and so L is axiomatizable by canonical formulas. In particular, if L is finitely axiomatizable, then L is axiomatizable by finitely many canonical formulas.

6. Negation-free canonical formulas, Jankov-Rautenberg, subframe, and cofinal subframe formulas for K4

In this section we consider negation-free canonical formulas. We show that all the results of the previous section hold for negation-free formulas if we remove the word "cofinal" in all the statements. We also show that JankovRautenberg, subframe, and cofinal subframe formulas are particular cases of canonical formulas. This leads to a new axiomatization of subframe and cofinal subframe logics over K4 with "algebra-based" formulas, as opposed to frame-based formulas.

6.1. Negation-free canonical formulas for K 4

Suppose that A is a finite subdirectly irreducible K4-algebra, $H=\square^{+}(A)$, t is the second largest element of H, and $D \subseteq A$. For each $a \in A$, we introduce a new variable p_{a} and define the negation-free canonical formula $\beta(A, D)$ associated with A and D as

$$
\begin{aligned}
\beta(A, D)=\square^{+} & {\left[\left(\perp \leftrightarrow p_{0}\right) \wedge\right.} \\
& \bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond_{p_{1}} p_{a}: a \in A\right\} \wedge \\
& \left.\bigwedge\left\{\diamond p_{a} \leftrightarrow p_{\diamond a}: a \in D\right\}\right] \rightarrow\left(p_{1} \rightarrow p_{t}\right) .
\end{aligned}
$$

Thus, $\beta(A, D)$ is obtained from $\alpha(A, D)$ by deleting the conjunct $\top \leftrightarrow \diamond^{+} p_{1}$.
Theorem 6.1. Let A be a finite subdirectly irreducible K4-algebra, $D \subseteq A$, and B be a K4-algebra. Then $B \not \vDash \beta(A, D)$ iff there exist a homomorphic image C of B and a relativized modal algebra homomorphism η from A into a relativization C_{s} of C satisfying $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in D$.

Proof. The proof is a simplified version of the proof of Theorem 5.2.

As an immediate consequence, we obtain:
Corollary 6.2. Let A be a finite subdirectly irreducible K4-algebra, $D \subseteq A$, and $\mathfrak{D}=\bigcup\left\{\mathfrak{D}_{\varphi(a)}: a \in D\right\}$ be the set of quasi-antichains in A_{*} associated with D. Then for each transitive space X, we have $X \not \vDash \beta(A, D)$ iff there exist a closed upset Y of X and an onto partial continuous p-morphism $f: Y \rightarrow A_{*}$ such that f satisfies $(C D C)$ for \mathfrak{D}.

We recall [5] that a modal formula α is negation-free if α is built from propositional variables and constants by means of \wedge, \vee, and \diamond. The next theorem is an analogue of Theorem 5.5 for negation-free canonical formulas.

Theorem 6.3. If $\mathbf{K} \mathbf{4} \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, where $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is negation-free, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}, D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible K4-algebra, $D_{i} \subseteq A_{i}$, and for each $\mathbf{K 4}$-algebra B, we have $B \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$ iff there exist $i \leq m$, a homomorphic image C of B, and a modal algebra homomorphism η from A_{i} into a relativization C_{s} of C.

Proof. The proof is virtually the same as the proof of Theorem 5.5 with the only exception that we need to prove a version of Lemma 5.6 for negation-free canonical formulas. This we do in the next lemma.

Lemma 6.4. Let $\alpha\left(p_{1}, \ldots, p_{n}\right)$ be a negation-free formula, A, B be K4-algebras, and $s \in B$. Suppose there exist $a_{1}, \ldots, a_{n} \in A$ such that $\alpha\left(a_{1}, \ldots, a_{n}\right)$ $\neq 1_{A}$. Let also A_{α} denote the Boolean subalgebra of A generated by the subpolynmials of $\alpha\left(a_{1}, \ldots, a_{n}\right)$, and let $D=\left\{\neg a \in A_{\alpha}: \diamond a \in A_{\alpha}\right\}$. If there exists a 1-1 relativized modal algebra homomorphism η from A into B_{s} satisfying $\eta(\diamond d)=\diamond \eta(d)$ for each $d \in D$, then $\alpha\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)\right) \neq 1_{B}$.

Proof. Since $\alpha\left(a_{1}, \ldots, a_{n}\right) \neq 1_{A}$ and there is a 1-1 modal algebra homomorphism $\eta: A \rightarrow B_{s}$, we have that $\alpha_{B_{s}}\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right) \neq s\right.$. As $\eta(\diamond d)=\diamond \eta(d)$ for each $d \in D$, we have that $\eta_{*}: B_{*} \rightarrow A_{*}$ satisfies ($C D C$) for $\mathfrak{D}=\bigcup\left\{\mathfrak{D}_{\varphi(d)}: d \in D\right\}$. But $\eta_{*}: B_{*} \rightarrow A_{*}$ satisfies $(C D C)$ for \mathfrak{D} iff $R(y) \cap \varphi(u) \subseteq \varphi(\eta(a))$ for each $\neg a \in D$ (see the proof of Lemma 5.6). Therefore, the result follows from the following claim.

Claim 6.5. Let B_{s}^{α} be the Boolean subalgebra of B_{s} generated by the subpolynomials of $\alpha_{B_{s}}\left(\eta\left(a_{1}\right), \ldots, \eta\left(a_{n}\right)\right)$. If $R(x) \cap \varphi(s) \subseteq \varphi(\neg d)$ for each $d \in D$ and $x \notin \varphi(s)$, then

$$
s \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=\alpha_{B_{s}}\left(b_{1}, \ldots, b_{n}\right)
$$

for each $b_{1}, \ldots, b_{n} \in B_{s}^{\alpha}$. Consequently, if there exist $b_{1}, \ldots, b_{n} \in B_{s}^{\alpha}$ such that $\alpha_{B_{s}}\left(b_{1}, \ldots, b_{n}\right) \neq s$, then $\alpha\left(b_{1}, \ldots, b_{n}\right) \neq 1_{B}$.

Proof. We prove the claim by induction on the complexity of $\alpha\left(b_{1}, \ldots, b_{n}\right)$. The cases $\alpha\left(b_{1}, \ldots, b_{n}\right)=1, \alpha\left(b_{1}, \ldots, b_{n}\right)=0, \alpha\left(b_{1}, \ldots, b_{n}\right)=b_{i}$, and $\alpha\left(b_{1}, \ldots, b_{n}\right)=\beta \vee \gamma$ are proved as in Claim 5.7. The case $\alpha\left(b_{1}, \ldots, b_{n}\right)=$ $\beta \wedge \gamma$ is proved similarly.

Let $\alpha\left(b_{1}, \ldots, b_{n}\right)=\diamond \beta$. It is sufficient to prove that $s \wedge \diamond \beta \leq s \wedge \diamond(s \wedge \beta)$. Let $x \in \varphi(s \wedge \diamond \beta)$. Then $x \in \varphi(s)$ and there exists $y \in B_{*}$ such that $x R y$ and $y \in \varphi(\beta)$. If $y \in \varphi(s)$, then we are done. Suppose that $y \notin \varphi(s)$. If $R(y) \cap \varphi(s) \neq \emptyset$, we proceed as in the proof of Claim 5.7. On the other hand, since $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is negation-free, an easy induction on the complexity of subpolynomials γ of $\alpha\left(b_{1}, \ldots, b_{n}\right)$ shows that for each $z \notin \varphi(s)$ with $R(z) \cap \varphi(s)=\emptyset$, we have $z \notin \varphi(\gamma)$. Therefore, if $R(y) \cap \varphi(s)=\emptyset$, as β is a subpolynomial of $\alpha\left(b_{1}, \ldots, b_{n}\right)$, we obtain $y \notin \varphi(\beta)$, which is a contradiction. Thus, $s \wedge \diamond \beta=s \wedge \diamond(s \wedge \beta)$, and so by induction we can conclude that $s \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=\alpha_{B_{s}}\left(b_{1}, \ldots, b_{n}\right)$. Finally, if $\alpha_{B_{s}}\left(b_{1}, \ldots, b_{n}\right) \neq s$, then as $s \wedge \alpha\left(b_{1}, \ldots, b_{n}\right)=\alpha_{B_{s}}\left(b_{1}, \ldots, b_{n}\right) \neq s$, we obtain that $\alpha\left(b_{1}, \ldots, b_{n}\right) \neq 1_{B}$.

Thus, Lemma 6.4 is proved.

Consequently, Theorem 6.3 is also proved.

Theorem 6.3 has a number of useful corollaries. The proofs are similar to the ones given in the previous section, and we skip them.

Corollary 6.6. If $\mathbf{K} 4 \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, where $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is negationfree, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}, D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible K4-algebra, $D_{i} \subseteq A_{i}$, and for each transitive space X, we have $X \not \vDash \alpha\left(p_{1}, \ldots, p_{n}\right)$ iff there exist $i \leq m$, a closed upset Y of X, and a partial continuous p-morphism f_{i} from Y onto $\left(A_{i}\right)_{*}$ satisfying $(C D C)$ for $\mathfrak{D}_{i}=\bigcup\left\{\mathfrak{D}_{\varphi(a)}: a \in D_{i}\right\}$.

Corollary 6.7. If $\mathbf{K} 4 \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, where $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is negationfree, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}, D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible K4-algebra, $D_{i} \subseteq A_{i}$, and for each K4-algebra B, we have:

$$
B \models \alpha\left(p_{1}, \ldots, p_{n}\right) \text { iff } B \models \bigwedge_{i=1}^{m} \beta\left(A_{i}, D_{i}\right)
$$

Corollary 6.8. If $\mathbf{K} 4 \nvdash \alpha\left(p_{1}, \ldots, p_{n}\right)$, where $\alpha\left(p_{1}, \ldots, p_{n}\right)$ is negationfree, then there exist $\left(A_{1}, D_{1}\right), \ldots,\left(A_{m}, D_{m}\right)$ such that each A_{i} is a finite subdirectly irreducible K4-algebra, $D_{i} \subseteq A_{i}$, and for each transitive space

X, we have:

$$
X \models \alpha\left(p_{1}, \ldots, p_{n}\right) \text { iff } X \models \bigwedge_{i=1}^{m} \alpha\left(A_{i}, D_{i}\right)
$$

Corollary 6.9. Each logic L over K4 axiomatizable by negation-free formulas is axiomatizable by negation-free canonical formulas. Moreover, if L is axiomatizable by finitely many negation-free formulas, then L is axiomatizable by finitely many negation-free canonical formulas.

REmARK 6.10. Corollary 6.2 corresponds to [5, Thm. 9.39(ii)]; Lemma 6.4 corresponds to [5, Thm. 9.31]; Corollary 6.6 corresponds to [5, Thms. 9.34 and 9.36(ii)]; and Corollary 6.8 corresponds to [5, Thm. 9.43(ii)]. For an algebraic treatment of negation-free canonical formulas in the setting of intuitionistic logic see [1, Sec. 5.2].

6.2. Jankov-Rautenberg formulas for K 4

Next we show that the Jankov-Rautenberg formulas are a particular case of our canonical formulas. Let A be a finite subdirectly irreducible K4-algebra, $H=\square^{+}(A)$, and t be the second largest element of H. We recall that the Jankov-Rautenberg formula of A is

$$
\begin{aligned}
\chi(A)=\square^{+} & {\left[\bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge\right.} \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{\neg a} \leftrightarrow \neg p_{a}: a \in A\right\} \wedge \\
& \left.\bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond p_{a}: a \in A\right\}\right] \rightarrow p_{t}
\end{aligned}
$$

It is well known that a K4-algebra B refutes $\chi(A)$ iff A is a subalgebra of a homomorphic image of B. We show that $\alpha(A, A)$ is equivalent to $\chi(A)$. Let

$$
\begin{aligned}
\chi^{\prime}(A)=\square^{+} & {\left[\left(\top \leftrightarrow p_{1}\right) \wedge\left(\perp \leftrightarrow p_{0}\right) \wedge\right.} \\
& \bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \left.\bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond p_{a}: a \in A\right\}\right] \rightarrow p_{t}
\end{aligned}
$$

Lemma 6.11. Let A be a finite subdirectly irreducible K4-algebra and let B be a K4-algebra. The following three conditions are equivalent:

1. $B=\chi(A)$,
2. $B \models \chi^{\prime}(A)$,
3. $B=\alpha(A, A)$.

Proof. It is easy to see that (1) is equivalent to (2) as any lattice homomorphism between Boolean algebras is a Boolean algebra homomorphism iff it preserves 0 and 1 .
$(1) \Rightarrow(3)$: Suppose that $B \not \vDash \alpha(A, A)$. Then by Theorem 5.2 , there exist a homomorphic image C of B and a 1-1 modal algebra homomorphism η from A into a cofinal relativization C_{s} of C such that $\eta(\diamond a)=\diamond \eta(a)$ for each $a \in A$. Then $1_{C}=\diamond^{+} \eta\left(1_{A}\right)=\eta\left(1_{A}\right) \vee \diamond \eta\left(1_{A}\right)=\eta\left(1_{A}\right) \vee \eta\left(\diamond 1_{A}\right)=$ $\eta\left(1_{A} \vee \diamond 1_{A}\right)=\eta\left(1_{A}\right)$. Therefore, η is a modal algebra homomorphism, and so $B \not \vDash \chi(A)$.
$(3) \Rightarrow(1)$: This is straightforward as every modal algebra homomorphism is also a cofinal relativized modal algebra homomorphism.

As a direct consequence of Lemma 6.11, we obtain:
Corollary 6.12. Let A be a finite subdirectly irreducible K4-algebra.

1. For each K4-algebra B, we have $B \not \vDash \alpha(A, A)$ iff A is a subalgebra of a homomorphic image of B.
2. For each transitive space X, we have $X \not \vDash \alpha(A, A)$ iff there exists a closed upset Y of X and a continuous p-morphism from Y onto A_{*}.

6.3. Subframe and cofinal subframe formulas for K 4

We conclude the paper by showing that the subframe and cofinal subframe formulas for K4 can be obtained from our canonical formulas by taking $D=\emptyset$. This yields a new axiomatization of subframe and cofinal subframe logics over K4 using "algebra-based" formulas.

Let A be a finite subdirectly irreducible K4-algebra, $H=\square^{+}(A)$, and t be the second largest element of H. Let

$$
\begin{aligned}
\alpha_{c s}(A)=\square^{+} & {\left[\left(\top \leftrightarrow \diamond^{+} p_{1}\right) \wedge\left(\perp \leftrightarrow p_{0}\right) \wedge\right.} \\
& \bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \left.\bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond_{p_{1}} p_{a}: a \in A\right\}\right] \rightarrow\left(p_{1} \rightarrow p_{t}\right)
\end{aligned}
$$

Note that $\alpha_{c s}(A)=\alpha(A, \emptyset)$.

Corollary 6.13. Let A be a finite subdirectly irreducible K4-algebra.

1. For each K4-algebra B, we have $B \not \vDash \alpha_{c s}(A)$ iff there exist a homomorphic image C of B and a 1-1 cofinal relativized homomorphism from A into C.
2. For each transitive space X, we have $X \not \vDash \alpha_{c s}(A)$ iff there exist a closed upset Y of X and a cofinal partial continuous p-morphism from Y onto A_{*}.

Proof. Apply Theorem 5.2 and Corollary 5.3.
Subframe formulas are obtained from cofinal subframe formulas by removing the conjunct $T \leftrightarrow \diamond^{+} p_{1}$. Thus, the subframe formula of a finite subdirectly irreducible K4-algebra A is

$$
\begin{aligned}
\alpha_{s}(A)=\square^{+} & {\left[\left(\perp \leftrightarrow p_{0}\right) \wedge\right.} \\
& \bigwedge\left\{p_{a \vee b} \leftrightarrow p_{a} \vee p_{b}: a, b \in A\right\} \wedge \\
& \bigwedge\left\{p_{a \wedge b} \leftrightarrow p_{a} \wedge p_{b}: a, b \in A\right\} \wedge \\
& \left.\bigwedge\left\{p_{\diamond a} \leftrightarrow \diamond_{p_{1}} p_{a}: a \in A\right\}\right] \rightarrow\left(p_{1} \rightarrow p_{t}\right)
\end{aligned}
$$

Note that $\alpha_{s}(A)=\beta(A, \emptyset)$.
Corollary 6.14. Let A be a finite subdirectly irreducible K4-algebra.

1. For each K4-algebra B, we have $B \not \vDash \alpha_{s}(A)$ iff there exist a homomorphic image C of B and a 1-1 relativized homomorphism from A into C.
2. For each transitive space X, we have $X \not \vDash \alpha_{c s}(B)$ iff there exist a closed upset Y of X and a partial continuous p-morphism from Y onto A_{*}.

Proof. Apply Theorem 6.1 and Corollary 6.2.
Remark 6.15. Frame-based versions of subframe and cofinal subframe formulas are due to Fine [9] and Zakharyaschev [17]. An algebraic approach to subframe and cofinal subframe logics is developed in [3]. For an algebraic treatment of subframe and cofinal subframe formulas in the intuitionistic setting see [2], [1, Sec. 5.4], and [4, Sec. 3.3.3].

Let X be a transitive space. We recall that $Y \subseteq X$ is a subframe of X if Y is a clopen subset of X. If in addition $R(Y) \subseteq\left(R^{+}\right)^{-1}(Y)$, then Y is a cofinal subframe of X. (Note that the notion of a subframe in the intuitionistic setting is different; see [5, Sec 9.1] and [2].)

Let L be a logic over K4. We recall that L is a subframe logic if for each transitive space X and a subframe Y of X, from $X \models L$ it follows that $Y \equiv L$. We also recall that L is a cofinal subframe logic if for each transitive space X and a cofinal subframe Y of X, from $X \models L$ it follows that $Y \models L$.

It was proved by Fine [9] that each subframe logic over $\mathbf{K 4}$ is axiomatizable by subframe formulas, and by Zakharyaschev [17] that each cofinal subframe logic over K4 is axiomatizable by cofinal subframe formulas. It follows that each subframe logic over K4 is axiomatizable by the formulas of the form $\alpha_{s}(A)$, and that each cofinal subframe logic over $\mathbf{K 4}$ is axiomatizable by the formulas of the form $\alpha_{s c}(A)$. This yields a new "algebra-based" axiomatization of subframe and cofinal subframe logics.

Acknowledgments. The second author was partially supported by the UK EPSRC grant EP/F032102/1.

References

[1] Bezhanishvili, G., and N. Bezhanishvili, 'An algebraic approach to canonical formulas: Intuitionistic case'. Rev. Symb. Log. 2(3):517-549, 2009.
[2] Bezhanishvili, G., and S. Ghilardi, 'An algebraic approach to subframe logics. Intuitionistic case'. Ann. Pure Appl. Logic 147(1-2):84-100, 2007.
[3] Bezhanishvili, G., S. Ghilardi, and M. Jibladze, 'An algebraic approach to subframe logics. Modal case'. Notre Dame Journal of Formal Logic 52(2):187-202, 2011.
[4] Bezhanishvili, N., Lattices of Intermediate and Cylindric Modal Logics. PhD thesis, University of Amsterdam, 2006.
[5] Chagrov, A., and M. Zakharyaschev, Modal Logic, volume 35 of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York, 1997.
[6] De Jongh, D., Investigations on the Intuitionistic Propositional Calculus. PhD thesis, University of Wisconsin, 1968.
[7] Esakia, L., Heyting Algebras I. Duality Theory (Russian). "Metsniereba", Tbilisi, 1985.
[8] Fine, K., 'An ascending chain of S4 logics'. Theoria 40(2):110-116, 1974.
[9] Fine, K., 'Logics containing K4. II'. J. Symbolic Logic 50(3):619-651, 1985.
[10] Jankov, V., 'On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures'. Dokl. Akad. Nauk SSSR 151:1293-1294, 1963.
[11] Jankov, V., 'The construction of a sequence of strongly independent superintuitionistic propositional calculi'. Soviet Math. Dokl. 9:806-807, 1968.
[12] Kracht, M., Tools and techniques in modal logic, volume 142 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.
[13] Rautenberg, W., 'Splitting lattices of logics'. Arch. Math. Logik Grundlag. 20(3-4):155-159, 1980.
[14] Venema, Y., 'Algebras and coalgebras'. In P. Blackburn, J. van Benthem, and F. Wolter (eds.), Handbook of modal logic, volume 3 of Studies in Logic and Practical Reasoning, Elsevier, 2007, pp. 331-426.
[15] Wronski, A., 'Intermediate logics and the disjunction property'. Reports on Mathematical Logic 1:39-51, 1973.
[16] Zakharyaschev, M., 'Canonical formulas for K4. I. Basic results'. J. Symbolic Logic 57(4):1377-1402, 1992.
[17] Zakharyaschev, M., 'Canonical formulas for K4. II. Cofinal subframe logics'. J. Symbolic Logic 61(2):421-449, 1996.

Guram Bezhanishvili

Department of Mathematical Sciences
New Mexico State University
Las Cruces NM 88003-8001, USA
gbezhani@math.nmsu.edu
Nick Bezhanishvili
Department of Computing
Imperial College London
180 Queen's Gate
London SW7 2AZ, UK
nbezhani@doc.ic.ac.uk

[^0]: Special issue in honor of Ryszard Wójcicki on the occasion of his 80th birthday Edited by J. Czelakowski, W. Dziobiak, and J. Malinowski
 Received April 30, 2011; Accepted July 23, 2011

[^1]: ${ }^{1} D_{i}$ could alternatively be defined as $\left\{a \in A_{i}^{\alpha}: \square_{i} a \in A_{i}^{\alpha}\right\}$.

