
PROFINITE HEYTING ALGEBRAS

G. BEZHANISHVILI AND N. BEZHANISHVILI

Abstract. For a Heyting algebra A, we show that the following conditions are equivalent:
(i) A is profinite; (ii) A is finitely approximable, complete, and completely join-prime gener-
ated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an image-finite poset
X . We also show that A is isomorphic to its profinite completion iff A is finitely approx-
imable, complete, and the kernel of every finite homomorphic image of A is a principal filter
of A.

1. Introduction

An algebra A is called profinite if A is isomorphic to the inverse limit of an inverse family
of finite algebras. It is well-known (see, e.g., [8, Sec. VI.2 and VI.3]) that a Boolean algebra
is profinite iff it is complete and atomic, and that a distributive lattice is profinite iff it
is complete and completely join-prime generated. In [2], a dual description of the profinite
completion of a Heyting algebra was given, and a connection between profinite and canonical
completions of a Heyting algebra was investigated. On the other hand, no characterization
of profinite Heyting algebras was known. In this note we fill in this gap by providing several
equivalent conditions for a Heyting algebra A to be profinite. In particular, we prove that
the following conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable,
complete, and completely join-prime generated; (iii) A is isomorphic to the Heyting algebra
Up(X) of upsets of an image-finite poset X. We also provide a dual description of profinite
Heyting algebras, and show that a Heyting algebra A is isomorphic to its profinite completion
iff A is finitely approximable, complete, and the kernel of every finite homomorphic image
of A is a principal filter of A. These characterizations of profinite Heyting algebras have
many consequences, some known, but with new simpler proofs, and some new. For example,
the description of profinite Boolean algebras is an easy consequence of our results. We
also show that a Boolean algebra, or more generally, a Heyting algebra which belongs to a
finitely generated variety of Heyting algebras is isomorphic to its profinite completion iff it
is finite. Although similar results for distributive lattices are not immediate consequences of
our results for Heyting algebras, they are obtained by a simple modification of our proofs.
Finally, we describe profinite linear Heyting algebras, prove that a finitely generated Heyting
algebra is profinite iff it is finitely approximable and complete, and show that the free 1-
generated Heyting algebra (also known as the Rieger-Nishimura lattice) is up to isomorphism
a unique profinite free finitely generated Heyting algebra.
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2. Complete and completely join-prime generated Heyting algebras

We recall that a Heyting algebra is a bounded distributive lattice (A,∧,∨, 0, 1) with a
binary operation →: A2 → A such that for each a, b, c ∈ A we have

a ∧ c ≤ b iff c ≤ a→ b.

We also recall that a Priestley space is a pair (X,≤) such that X is a compact space, ≤ is a
partial order on X, and for each x, y ∈ X, whenever x 6≤ y, there exists a clopen upset U of
X such that x ∈ U and y /∈ U . A Priestley space is an Esakia space if for each open subset
U of X we have ↓U is open in X.

The same way Priestley spaces serve as duals of bounded distributive lattices [10], Esakia
spaces serve as duals of Heyting algebras [4]. In fact, every bounded distributive lattice or
Heyting algebra A can be represented as the algebra Upτ (X) of clopen upsets of the dual
space X of A. The construction of X is well-known: X is the set of prime filters of A ordered
by inclusion; for a ∈ A, let

φ(a) = {x ∈ X : a ∈ x},

and generate a topology on X by the basis {φ(a) − φ(b) : a, b ∈ A}. Then X becomes a
Priestley space and φ becomes a bounded lattice isomorphism from A to Upτ (X); moreover,
whenever A is a Heyting algebra, we have

φ(a→ b) = (↓(φ(a) − φ(b)))c.

Let DL denote the category of bounded distributive lattices and bounded lattice ho-
momorphisms, and let HA denote the category of Heyting algebras and Heyting algebra
homomorphisms. Let also PS denote the category of Priestley spaces and continuous order-
preserving maps. For posets X and Y , we recall that an order-preserving map f : X → Y
is a bounded morphism if for each x ∈ X and y ∈ Y with f(x) ≤ y, there exists z ∈ X
such that x ≤ z and f(z) = y. Let ES denote the category of Esakia spaces and continuous
bounded morphisms.

Theorem 2.1.

(1) (Priestley [10]) DL is dually equivalent to PS.

(2) (Esakia [4]) HA is dually equivalent to ES.

For a Priestley space X and a subset U of X, let JU denote the largest open upset of
X contained in U , and let DU denote the smallest closed upset of X containing U . The
following lemma, established in [7, Lemmas 3.1 and 3.6], will be useful subsequently.

Lemma 2.2. Let A be a bounded distributive lattice, X be the dual Priestley space of A, and

Y ⊆ X.

(1) JY = (↓(Int(Y ))c)c =
⋃
{φ(a) : φ(a) ⊆ Y }.

(2) DY = ↑Y =
⋂
{φ(a) : Y ⊆ φ(a)}. Moreover, if X is an Esakia space (that is, A is a

Heyting algebra) and Y is an upset of X, then DY = Y .

In order to give a dual characterization of complete distributive lattices and complete
Heyting algebras, we need the following lemma.

Lemma 2.3. Let A be a bounded distributive lattice, B be a subset of A, and X be the dual

Priestley space of A.

(1)
∨
B exists in A iff D(

⋃
b∈B φ(b)) is clopen in X.
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(2) If A is a Heyting algebra, then
∨
B exists in A iff

⋃
b∈B φ(b) is clopen in X.

(3)
∧
B exists in A iff J(

⋂
b∈B φ(b)) is clopen in X.

Proof. (1) First assume that
∨
B exists in A. Then b ≤

∨
B, and so φ(b) ⊆ φ(

∨
B) for each

b ∈ B. Therefore,
⋃
b∈B φ(b) ⊆ φ(

∨
B), and so D(

⋃
b∈B φ(b)) ⊆ φ(

∨
B) since φ(

∨
B) is a

closed upset. Now suppose that x /∈ D(
⋃
b∈B φ(b)). By Lemma 2.2, there is a ∈ A such that

x /∈ φ(a) and
⋃
b∈B φ(b) ⊆ φ(a). Therefore, b ≤ a for each b ∈ B, and so

∨
B ≤ a. It follows

that φ(
∨
B) ⊆ φ(a), and so x /∈ φ(

∨
B). Thus, φ(

∨
B) ⊆ D(

⋃
b∈B φ(b)). Consequently,

φ(
∨
B) = D(

⋃
b∈B φ(b)), and so D(

⋃
b∈B φ(b)) is clopen in X. Now let D(

⋃
b∈B φ(b)) be

clopen in X. Then there exists a ∈ A such that D(
⋃
b∈B φ(b)) = φ(a). But then a is the

least upper bound of B, so a =
∨
B, and so

∨
B exists in A.

(2) If A is a Heyting algebra, then X is an Esakia space, and so, by Lemma 2.2, D(U) = U
for each upset U of X. Now apply (1).

(3) can be proved using an argument dual to (1). �

As an immediate consequence of Lemma 2.3 we obtain the following dual characterization
of complete distributive lattices and complete Heyting algebras (see [11, Sec. 8] and [7,
Remark after Thm. 3.8]).

Theorem 2.4. Let A be a bounded distributive lattice and X be its dual Priestley space.

(1) The following conditions are equivalent:

(a) A is complete.

(b) For every open upset U of X, we have D(U) is clopen in X.

(c) For every closed upset V of X, we have J(V ) is clopen in X.

(2) If A is a Heyting algebra, then A is complete iff for every open upset U of X, its

closure U is clopen in X.

Proof. (1) We prove that (a) is equivalent to (b). That (a) is equivalent to (c) can be proved
similarly. First suppose that A is complete. If U is an open upset of X, then JU = U , and
so, by Lemma 2.2, U =

⋃
{φ(a) : φ(a) ⊆ U}. Let B = {a ∈ A : φ(a) ⊆ U}. Since A is

complete,
∨
B exists in A. Therefore, by Lemma 2.3, D(U) is clopen. Now suppose D(U)

is clopen for each open upset U of X. For a subset B of A,
⋃
b∈B φ(b) is an open upset of

X. Therefore, D(
⋃
b∈B φ(b)) is clopen in X. This, by Lemma 2.3, implies that

∨
B exists.

Thus, A is complete.
(2) follows from (1) and Lemma 2.2. �

Definition 2.5. (Priestley [11]) We call a Priestley space X extremally order-disconnected

if D(U) is clopen for each open upset U of X.

Remark 2.6. In view of Definition 2.5, Theorem 2.4 states that a bounded distributive
lattice A is complete iff its dual space X is extremally order-disconnected. Moreover, if A
is a Heyting algebra, then X is extremally order-disconnected iff U is clopen for each open
upset U of X.

Let A be a bounded distributive lattice. We recall that an element a 6= 0 of A is join-prime

if a ≤ b∨ c implies a ≤ b or a ≤ c for all b, c ∈ A. We also recall that 0 6= a ∈ A is completely

join-prime if for each B ⊆ A such that
∨
B exists in A we have a ≤

∨
B implies there exists

b ∈ B with a ≤ b. Let J(A) denote the set of join-prime elements of A and J∞(A) denote
the set of completely join-prime elements of A.

Theorem 2.7. Let A be a Heyting algebra and let X be its dual space.
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(1) a ∈ J(A) iff there exists x ∈ X such that φ(a) = ↑x.
(2) a ∈ J∞(A) iff there exists an isolated point x ∈ X such that φ(a) = ↑x.

Proof. (1) First suppose that φ(a) = ↑x for some x ∈ X. If a ≤ b ∨ c, then ↑x = φ(a) ⊆
φ(b) ∪ φ(c), so x ∈ φ(b) or x ∈ φ(c), and so ↑x ⊆ φ(b) or ↑x ⊆ φ(c). Therefore, a ≤ b or
a ≤ c, and so a ∈ J(A). Now suppose that a is join-prime. Let min(φ(a)) denote the set
of minimal points of φ(a). By [6, p. 54, Thm. 2.1], for every closed upset U of an Esakia
space, we have U = ↑min(U). Therefore, φ(a) = ↑min(φ(a)). We show that min(φ(a))
is a singleton. Suppose not. Fix two distinct elements x, y ∈ min(φ(a)). Obviously, for
every z ∈ min(φ(a)) with x 6= z we have z 6≤ x. Thus, there exists a clopen upset Uz such
that z ∈ Uz and x /∈ Uz. Also, x 6≤ y implies there exists a clopen upset Ux such that
x ∈ Ux and y /∈ Ux. Then min(φ(a)) ⊆ Ux ∪

⋃
{Uz : z ∈ min(φ(a)) and z 6= x}, and so

φ(a) = ↑min(φ(a)) ⊆ Ux ∪
⋃
{Uz : z ∈ min(φ(a)) and z 6= x}. Since φ(a) is compact, there

exist Uz1, . . . , Uzn
such that φ(a) ⊆ Ux ∪ U , where U = Uz1 ∪ · · · ∪ Uzn

. As both Ux and U
are clopen upsets of X, there exist b, c ∈ A such that Ux = φ(b) and U = φ(c). Therefore,
φ(a) ⊆ φ(b)∪ φ(c), but φ(a) 6⊆ φ(b) (as y ∈ φ(a) but y /∈ φ(b)) and φ(a) 6⊆ φ(c) (as x ∈ φ(a)
but x /∈ φ(c)). Thus, a ≤ b∨c, but a 6≤ b and a 6≤ c, which contradicts to a being join-prime.
Therefore, min(φ(a)) is a singleton, and so φ(a) = ↑x for some x ∈ X.

(2) First suppose that φ(a) = ↑x for an isolated point x ∈ X. If a ≤
∨
B, then by Lemma

2.3, ↑x = φ(a) ⊆
⋃
b∈B φ(b). Therefore, x ∈

⋃
b∈B φ(b). Since x is an isolated point, we

obtain x ∈
⋃
b∈B φ(b). Thus, x ∈ φ(b) for some b ∈ B. It follows that φ(a) = ↑x ⊆ φ(b),

so a ≤ b, and so a ∈ J∞(A). Now suppose that a is completely join-prime. Since every
completely join-prime element is also join-prime, by (1) we get that φ(a) = ↑x for some
x ∈ X. We show that x is an isolated point. Because X is an Esakia space, {x} is closed,
and so U = φ(a) − {x} is an open upset. By Lemma 2.2, U = J(U) =

⋃
{φ(b) : φ(b) ⊆ U}.

If x is not an isolated point, then U = φ(a). Therefore, φ(a) =
⋃
{φ(b) : φ(b) ⊆ U}. By

Lemma 2.3 this means that a =
∨
B. But since x /∈ U , we have that x /∈ φ(b) for each

b ∈ B. Therefore, a 6≤ b for each b ∈ B, implying that a is not completely join-prime. The
obtained contradiction proves that x is an isolated point. �

We note that Theorem 2.7.1 is also true for bounded distributive lattices. On the other
hand, there exist bounded distributive lattices in which Theorem 2.7.2 is not true, as follows
from the following example.

Example 2.8. Let Z− denote the set of negative integers with the discrete topology, and
let α(Z−) = Z−∪{−∞} be the one-point compactification of Z−. Let also X be the disjoint
union of α(Z−) with a one-point space {x}. Define a partial order ≤ on X as it is shown in
Figure 1(a). It is easy to check that X is a Priestley space. The distributive lattice A whose
dual Priestley space is X is shown in Figure 1(b). Clearly x is an isolated point of X and
↑x is clopen in X. Let a ∈ A be such that ↑x = φ(a). Then a ≤ 1 =

∨
n∈N

bn, but a 6≤ bn
for each n ∈ N (see Figure 1(b)). Therefore, a /∈ J∞(A), but φ(a) = ↑x for an isolated point
x ∈ X. Obviously, A is not a Heyting algebra!

We recall that a Heyting algebra A is well-connected if a ∨ b = 1 implies a = 1 or b = 1,
and that A is subdirectly irreducible if there exists a smallest filter properly containing the
filter {1}. Since A is well-connected iff 1 is join-prime and A is subdirectly irreducible iff 1 is
completely join-prime, the following theorem, first established in [5, p. 152], is an immediate
corollary of Theorem 2.7.
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Figure 1

Theorem 2.9. Let A be a Heyting algebra with dual space X.

(1) A is well-connected iff X = ↑x for some x ∈ X.

(2) A is subdirectly irreducible iff X = ↑x for some isolated point x ∈ X.

We call a Heyting algebra A completely join-prime generated if every element of A is a join
of completely join-prime elements of A. Equivalently, A is completely join-prime generated
if for each a, b ∈ A with a 6≤ b, there is p ∈ J∞(A) such that p ≤ a and p 6≤ b. Let X be the
dual space of A. We let Xiso denote the set of isolated points of X, and set

X0 = {x ∈ Xiso : ↑x ∈ Upτ (X)}.

Clearly X0 ⊆ Xiso, but in general, X0 is not equal to Xiso as the following example shows.

Example 2.10. Let X = N ∪ {∞} be the one-point compactification of the set of natural
numbers with the discrete topology. Define a partial order on X as it is shown in Figure
2. Then it is easy to verify that X is an Esakia space, that Xiso = N, and that X0 = ∅.
Therefore, X0 6= Xiso.

As a consequence of Theorem 2.7, we obtain the following characterization of completely
join-prime generated Heyting algebras.

Theorem 2.11. Let A be a Heyting algebra and X be its dual space. Then A is completely

join-prime generated iff X0 is dense in X.

Proof. First suppose that A is completely join-prime generated. We show that X0 is dense
in X. Let φ(a) − φ(b) be a nonempty basic open set. Then a 6≤ b. Since A is completely
join-prime generated, there is p ∈ J∞(A) such that p ≤ a and p 6≤ b. As p ∈ J∞(A), by
Theorem 2.7.2, there is x ∈ X0 such that φ(p) = ↑x. Therefore, x ∈ φ(a) and x /∈ φ(b).
Thus, (φ(a) − φ(b)) ∩X0 6= ∅, and so X0 is dense in X.

Now suppose that X0 is dense in X. We show that A is completely join-prime generated.
Let a 6≤ b. Then φ(a) 6⊆ φ(b), and so φ(a) − φ(b) 6= ∅. Since X0 is dense and φ(a) − φ(b) is
nonempty, so is (φ(a) − φ(b)) ∩ X0. Let x ∈ (φ(a) − φ(b)) ∩ X0. By Theorem 2.7.2, there
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is p ∈ J∞(A) such that φ(p) = ↑x. Therefore, φ(p) ⊆ φ(a) and φ(p) 6⊆ φ(b). Thus, there is
p ∈ J∞(A) such that p ≤ a and p 6≤ a, and so A is completely join-prime generated. �

On the other hand, it may happen that in the dual space X of a Heyting algebra A the set
Xiso of isolated points of X is dense in X, but nevertheless A is not completely join-prime
generated. Indeed, let A be the Heyting algebra of clopen upsets of the space X described
in Example 2.10. Then Xiso is dense in X, but since X0 = ∅, Theorem 2.7.2 implies that
J∞(A) = ∅. Therefore, A is not completely join-prime generated.

As a consequence of Theorems 2.4 and 2.7, we obtain the following characterization of
complete and completely join-prime generated Heyting algebras.

Theorem 2.12. Let A be a Heyting algebra and X be its dual space. Then the following

conditions are equivalent:

(1) A is complete and completely join-prime generated.

(2) X is extremally order-disconnected and X0 is dense in X.

(3) There is a poset Y such that A is isomorphic to Up(Y ).

Proof. (1) ⇒ (2) follows from Theorem 2.4, Remark 2.6, and Theorem 2.11.
(2) ⇒ (3). We show that A is isomorphic to Up(X0). Define α : A → Up(X0) by

α(a) = φ(a) ∩X0. If a ≤ b, then φ(a) ⊆ φ(b), and so α(a) = φ(a) ∩X0 ⊆ φ(b) ∩X0 = α(b).
If a � b, then φ(a) * φ(b). Therefore, φ(a) − φ(b) 6= ∅, so (φ(a) − φ(b)) ∩ X0 6= ∅, and
so α(a) = φ(a) ∩ X0 6⊆ φ(b) ∩ X0 = α(b). Consequently, a ≤ b iff α(a) ⊆ α(b). To see
that α is onto, let U be an upset of X0. We let V =

⋃
x∈U ↑x. Then V is an open upset

of X. Since X is an extremally order-disconnected Esakia space, V is a clopen upset of
X. Moreover, as X0 ⊆ Xiso, we have V ∩X0 = U . Therefore, there exists a ∈ A such that
α(a) = φ(a)∩X0 = V ∩X0 = U , and so α is onto. Thus, α : A→ Up(X0) is an isomorphism.

(3) ⇒ (1). Suppose there is a poset Y such that A is isomorphic to Up(Y ). It is easy
to see that Up(Y ) is complete and that J∞(Up(Y )) = {↑y : y ∈ Y }. Since U =

⋃
u∈U ↑u

for each U ∈ Up(Y ), it follows that Up(Y ) is completely join-prime generated. Thus, A is
complete and completely join-prime generated. �

The equivalence of conditions (1) and (3) of Theorem 2.12 is well-known. It can, in fact, be
extended to the dual equivalence of the category HA+ of complete and completely join-prime
generated Heyting algebras and complete Heyting algebra homomorphisms and the category
Posb of posets and bounded morphisms. The contravariant functors (−)+ : HA+ → Posb

and (−)+ : Posb → HA+ are constructed as follows (see, e.g, [1, Sec. 7]): If A ∈ HA+,
then A+ = (J∞(A),≥), and if h ∈ hom(A,B), then h+ : J∞(B) → J∞(A) is given by
h+(b) =

∧
{a ∈ A : b ≤ h(a)} for each b ∈ B. If X ∈ Posb, then X+ = Up(X), and if

f ∈ hom(X, Y ), then f+ : Up(Y ) → Up(X) is given by f+ = f−1. In the next section we
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define the full subcategory of HA+ which will turn out to be dually equivalent to the full
subcategory of Posb of image-finite posets.

3. Profinite Heyting algebras

We recall that an algebra A is finitely approximable if A is isomorphic to a subalgebra
of a product of finite algebras [9, p. 60]. It follows that A is finitely approximable iff A is
a subdirect product of its finite homomorphic images. We give a dual characterization of
finitely approximable Heyting algebras. Let A be a Heyting algebra and let X be the dual
space of A. Set

Xfin = {x ∈ X : ↑x is finite}.

A version of the next theorem was first established in [5, p. 152]. Our main tool in proving
it is the correspondence between homomorphic images of A and closed upsets of X [4, Thm.
4]. In particular, we have that finite homomorphic images of A correspond to finite upsets
of X, or equivalently, of Xfin.

Theorem 3.1. Let A be a Heyting algebra and let X be the dual space of A. Then A is

finitely approximable iff Xfin is dense in X.

Proof. First suppose that A is finitely approximable. Let {Ai : i ∈ I} be the family of finite
homomorphic images of A. Since A is finitely approximable, A is a subdirect product of
{Ai : i ∈ I}. Let e : A →

∏
i∈I Ai be the embedding. We denote by πj the j-th projection∏

i∈I Ai → Aj . Let Xi be the dual space of Ai. Then, since Ai is a finite homomorphic
image of A, by duality it follows that Xi is a finite upset of X. Therefore,

⋃
i∈I Xi ⊆ Xfin.

We show that
⋃
i∈I Xi is dense in X. Because {φ(a) − φ(b) : a, b ∈ A} forms a basis for the

topology on X, it is sufficient to show that for each a, b ∈ A with φ(a) − φ(b) 6= ∅, there
exists i ∈ I such that (φ(a) − φ(b)) ∩ Xi 6= ∅. From φ(a) − φ(b) 6= ∅ it follows that a 6≤ b.
Therefore, there exists i ∈ I such that πi(e(a)) 6≤ πi(e(b)). Thus, φ(a)∩Xi 6⊆ φ(b)∩Xi, and
so there exists i ∈ I such that (φ(a)−φ(b))∩Xi 6= ∅. It follows that

⋃
i∈I Xi intersects every

nonempty basis element of X, so
⋃
i∈I Xi is dense in X. Consequently, Xfin is also dense in

X.
Now suppose that Xfin is dense in X. Let {Xi : i ∈ I} be the family of finite upsets of

X. Then Xfin =
⋃
i∈I Xi. Let Ai be the Heyting algebra Up(Xi) of upsets of Xi. Define

e : A→
∏

i∈I Ai by e(a) = (φ(a)∩Xi)i∈I . That e is a Heyting algebra homomorphism is easy
to verify. We show that e is 1-1. If a 6≤ b, then φ(a)−φ(b) 6= ∅. Since

⋃
i∈I Xi is dense in X,

(φ(a) − φ(b)) ∩
⋃
i∈I Xi 6= ∅. Therefore, there exists i ∈ I such that (φ(a) − φ(b)) ∩Xi 6= ∅.

Thus, πi(e(a)) 6≤ πi(e(b)), so e(a) 6≤ e(b), and so e is 1-1. It follows that A is finitely
approximable. �

Let A be an algebra, and let I be the set of congruences θ on A such that A/θ is finite. We
denote the image of a ∈ A in A/θ by [a]θ. If ψ ⊆ θ, then there is a canonical projection ϕψθ :
A/ψ → A/θ given by ϕψθ([a]ψ) = [a]θ. Then (I,⊇) is a directed set, and (I, {A/θ}, {ϕψθ})

is an inverse system of algebras. Let Â be the inverse limit of this inverse system. It is
well-known that

Â = {(aθ)θ∈I ∈
∏

θ∈I

A/θ : ϕψθ(aψ) = aθ whenever ψ ⊆ θ}.

Following [2, Def. 2.4], we call Â the profinite completion of A. We define the canonical

homomorphism e : A→ Â by e(a) = ([a]θ)θ∈I .
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Proposition 3.2. The canonical map e : A→ Â is 1-1 iff A is finitely approximable.

Proof. If e is 1-1, then it follows from the definition of Â that A is isomorphic to a subal-
gebra of a product of finite algebras, thus A is finitely approximable. Conversely, if A is
finitely approximable, then A is a subdirect product of the collection {A/θ : θ ∈ I} of finite
homomorphic images of A. Therefore, a 6= b in A implies that there exists θ ∈ I such that
[a]θ 6= [b]θ. Thus, the images of a and b in the inverse limit of (I, {A/θ}, {ϕψθ}) are different,
and so e is 1-1. �

Remark 3.3. Since not every Heyting algebra is finitely approximable, for Heyting algebras

the canonical map e : A→ Â need not be 1-1. For a simple example, see [2, p. 153].

Definition 3.4. We call an algebra A profinite if it is isomorphic to the inverse limit of an

inverse system of finite algebras.

Obvious examples of profinite algebras are profinite completions of algebras. Let A be a
Heyting algebra and let X be its dual space. A characterization of the profinite completion

Â of A was given in [2, Thm. 4.7], where it was shown that Â is isomorphic to the Heyting
algebra of upsets of Xfin. Now we give both the algebraic and dual characterizations of
profinite Heyting algebras.

Definition 3.5. We say that a poset X is image-finite if ↑x is finite for each x ∈ X.

We recall from [2, Prop. 3.4] that if X is a poset, then the dual space of the Heyting
algebra Up(X) of upsets of X is order-homeomorphic to the Nachbin order-compactification
n(X) of X. Thus, for each order-preserving map f from X to an Esakia space Y , there exists
a unique extension nf of f to n(X). Moreover, if f is a bounded morphism, then so is nf
(see [2, Lem. 4.3]). Furthermore, if X is image-finite, then the canonical order-embedding
j : X → n(X) is a bounded morphism (see [2, Lem. 4.5]).

Theorem 3.6. Let A be a Heyting algebra and let X be its dual space. Then the following

conditions are equivalent:

(1) A is profinite.

(2) A is finitely approximable, complete, and completely join-prime generated.

(3) A is finitely approximable, complete, and 1 =
∨
J∞(A).

(4) X is extremally order-disconnected and Xiso is a dense upset of X contained in Xfin.

(5) X is extremally order-disconnected and X0 is a dense upset of X contained in Xfin.

(6) There is an image-finite poset Y such that A is isomorphic to Up(Y ).

Proof. (1) ⇒ (2). Clearly if A is profinite, then A is finitely approximable. That A is also
complete and completely join-prime generated follows from [2, Lemmas 2.5 and 2.7].

(2) ⇒ (3) is trivial.
(3) ⇒ (4). Since A is a complete Heyting algebra, by Theorem 2.4 and Remark 2.6,

X is extremally order-disconnected. Because A is finitely approximable, by Theorem 3.1,
Xfin is dense in X. Thus, Xiso ⊆ Xfin. Let x ∈ Xiso. Since 1 =

∨
J∞(A), by Lemma 2.3,

x ∈
⋃
{φ(a) : a ∈ J∞(A)}. Because x is an isolated point, we have x ∈

⋃
{φ(a) : a ∈ J∞(A)}.

Therefore, there is a ∈ J∞(A) such that x ∈ φ(a). By Theorem 2.7, there is y ∈ X0 ⊆ Xiso

such that φ(a) = ↑y. This means that ↑y is clopen and x ∈ ↑y. Because Xiso ⊆ Xfin, we
have that ↑y is finite. Thus, ↑y is a finite clopen upset, and so every element of ↑y is an
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isolated point. This implies that ↑x ⊆ Xiso. Consequently, Xiso is an upset. We show that
Xiso is dense in X. By Lemma 2.3,

X = φ(1) = φ(
∨

J∞(A)) =
⋃

a∈J∞(A)

φ(a) =
⋃

x∈X0

↑x ⊆
⋃

x∈Xiso

↑x = Xiso.

Thus, Xiso = X, and so Xiso is a dense upset of X contained in Xfin.
(4) ⇒ (5). It follows from the definition of X0 that X0 ⊆ Xiso. On the other hand, since

Xiso is an upset, if x ∈ Xiso, then ↑x ⊆ Xiso. Moreover, as Xiso ⊆ Xfin, ↑x is finite. Therefore,
↑x is a finite subset of Xiso, hence ↑x is clopen. Thus, x ∈ X0. Consequently, X0 = Xiso,
whence the implication follows.

(5) ⇒ (6). Since X0 ⊆ Xfin, X0 is image-finite. We show that A is isomorphic to Up(X0).
Define α : A → Up(X0) by α(a) = φ(a) ∩ X0. The proof of the implication (2) ⇒ (3) of
Theorem 2.12 shows that a ≤ b iff α(a) ⊆ α(b). To see that α is onto is simpler than in the
proof of Theorem 2.12. Let U be an upset of X0. Since X0 is an open upset of X, so is U .
Therefore, U is a clopen upset of X as X is an extremally order-disconnected Esakia space.
Moreover, U ∩X0 = U . Thus, there exists a ∈ A such that α(a) = φ(a)∩X0 = U ∩X0 = U ,
and so α is onto. Consequently, α : A→ Up(X0) is an isomorphism.

(6) ⇒ (1). Suppose that A is isomorphic to Up(Y ) for some image finite-poset Y . We
show that Up(Y ) is profinite. Let {Yi : i ∈ I} be the family of finite upsets of Y . We
can order I by i ≤ j if Yi ⊆ Yj. Let eij : Yi → Yj denote the identity map. Then
(I, {Yi}, {eij}) forms a directed system of finite posets and Y =

⋃
i∈I Yi together with the

inclusions ei : Yi → Y is the direct limit of (I, {Yi}, {eij}). For each i ∈ I, let Up(Yi) denote
the Heyting algebra of upsets of Yi. Clearly αi : Up(Y ) → Up(Yi), given by αi(U) = U ∩ Yi,
and αij : Up(Yj) → Up(Yi), given by αij(U) = U ∩ Yi, are Heyting algebra homomorphisms
(which are dual to the embeddings ei : Yi → Y and eij : Yi → Yj, respectively). Moreover,
since the diagram

Y

Yi eij

//

ei

??��������
Yj

ej

__???????

commutes, so does the diagram

Up(Y )
αi

zzttttttttt αj

%%JJJJJJJJJ

Up(Yi) Up(Yj)
αij

oo

We show that (Up(Y ), {αi}) is the inverse limit of the inverse system (I, {Up(Yi)}, {αij}) of
finite homomorphic images of Up(Y ) by showing that (Up(Y ), {αi}) satisfies the universal
mapping property of an inverse limit. Let B be a Heyting algebra together with Heyting
algebra homomorphisms γi : B → Up(Yi), such that i ≤ j implies αij ◦γj = γi. Let Z be the
dual space of B, and let fi : Yi → Z be the dual of γi : B → Up(Yi). Since Y is the direct
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limit of the Yi, there is f : Y → Z such that f ◦ ei = fi for each i ∈ I.

Y
f

// Z

Yi

fi

??�������
ei

__@@@@@@@

Because each fi is a bounded morphism, so is f . Therefore, by identifying B with Upτ (Z),
we obtain a Heyting algebra homomorphism γ : B → Up(Y ) (the restriction of f−1 to
Upτ (Z)) such that αi ◦ γ = γi for each i ∈ I. Suppose we had a second Heyting algebra
homomorphism γ′ : B → Up(Y ) with αi ◦ γ

′ = γi for each i ∈ I. Since Up(Y ) is isomorphic
to the Heyting algebra Upτ (n(Y )) of clopen upsets of the Nachbin order-compactification
n(Y ) of Y , we would have two Heyting algebra homomorphisms γ, γ′ : B → Upτ (n(Y )), and
so two continuous bounded morphisms from n(Y ) to Z extending f .

n(Y )

!!DD
DD

DD
DD

!!D
DD

DD
DD

D

Y
f

//

j
==zzzzzzzz

Z

However, by the mapping property for n(Y ), there is a unique extension of f . Therefore,
γ = γ′. Thus, by the universal mapping property for inverse limits, we have that Up(Y )
is isomorphic to the inverse limit of (I, {Up(Yi)}, {αij}). Consequently, Up(Y ) is profinite,
implying that A is profinite. �

Remark 3.7. Since every Heyting algebra (A,≤) isomorphic to the Heyting algebra of
upsets of a poset is a bi-Heyting algebra (that is, its order dual (A,≥) is also a Heyting
algebra), we deduce from Theorem 3.6 that every profinite Heyting algebra is a bi-Heyting
algebra.

Example 3.8. As follows from Theorem 3.6, a Heyting algebra A is profinite iff A is finitely
approximable, complete, and 1 =

∨
J∞(A). We sketch a few examples showing that none

of these three conditions can be eliminated.
(1) Free n-generated Heyting algebras, for n > 1, provide examples of Heyting algebras

which are finitely approximable, satisfy 1 =
∨
J∞(A), but are not complete (see Sec. 4 for

details).
(2) To obtain an example of a complete Heyting algebra A such that 1 =

∨
J∞(A), but

A is not finitely approximable, let B be an infinite complete and atomic Boolean algebra
with dual Stone space X. Let Y be the disjoint union of X with a one-point space {y}.
Set y ≤ x for each x ∈ X. Clearly Y is an Esakia space. Let A be the Heyting algebra of
clopen upsets of Y . Since X is extremally disconnected, Y is extremally order-disconnected,
and so A is complete. Moreover, Y = ↑y and y is an isolated point. Therefore, 1 ∈ J∞(A),
and so 1 =

∨
J∞(A). Thus, A is complete and 1 =

∨
J∞(A). However, A is not finitely

approximable because Yfin = X, so Yfin = X, and so Yfin is not dense in Y .
(3) Finally, let A be the Heyting algebra of clopen upsets of the Heyting space X described

in Example 2.10. It is easy to see that X is extremally order-disconnected. Therefore, A is a
complete Heyting algebra. (In fact, A is isomorphic to the Heyting algebra of cofinite subsets
of N together with ∅.) We already observed that J∞(A) = ∅. Therefore, 1 6=

∨
J∞(A).

Moreover, since Xfin = X, A is finitely approximable. Thus, A is a finitely approximable
complete Heyting algebra such that 1 6=

∨
J∞(A).
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Remark 3.9. As we pointed out at the end of Sec. 2, the category HA+ of complete and
completely join-prime generated Heyting algebras and complete Heyting algebra homomor-
phisms is dually equivalent to the category Posb of posets and bounded morphisms. Let
ProHA denote the category of profinite Heyting algebras and complete Heyting algebra ho-
momorphisms. Clearly ProHA is a full subcategory of HA+. Let also ImfPosb denote the
category of image-finite posets and bounded morphisms. Clearly ImfPosb is a full subcate-
gory of Posb. As a consequence of Theorem 3.6, we obtain that ProHA is dually equivalent
to ImfPosb.

As another corollary of Theorem 3.6, we give necessary and sufficient conditions for a

Heyting algebra A to be isomorphic to its profinite completion Â.

Theorem 3.10. Let A be a Heyting algebra and let X be its dual space. Then the following

conditions are equivalent:

(1) A is isomorphic to its profinite completion.

(2) A is finitely approximable, complete, and the kernel of every finite homomorphic

image of A is a principal filter of A.

(3) X is extremally order-disconnected, X0 = Xiso = Xfin, and they are dense in X.

Proof. (1) ⇒ (2). Suppose that A is isomorphic to its profinite completion Â. Then A is
profinite. So, by Theorem 3.6, A is finitely approximable and complete. Moreover, every

finite homomorphic image Aj of A is a finite homomorphic image of Â. Therefore, the kernel

of this homomorphism is a closed (even clopen) filter in the topology Â inherited from the
product topology on

∏
i∈I Ai. Thus, by [2, Lem. 2.6], the kernel of this homomorphism is a

principal filter of A.
(2) ⇒ (3). Since A is finitely approximable and complete, by Theorem 2.4, Remark 2.6,

and Theorem 3.1, X is extremally order-disconnected and Xfin is a dense upset of X. Thus,
X0 ⊆ Xiso ⊆ Xfin. To show the converse inclusions, let x ∈ Xfin. Then ↑x is a finite upset
of X, so the Heyting algebra of upsets of ↑x is a finite homomorphic image of A. By our
assumption, the kernel of this homomorphism is a principal filter. But dually ↑x corresponds
to this filter. Thus, ↑x is clopen. It follows that x is an isolated point because every point
of a finite clopen subset of X is an isolated point of X. Consequently, X0 = Xiso = Xfin.

(3) ⇒ (1) By Theorem 3.6, A is isomorphic to Up(X0) = Up(Xiso), and by [2, Thm. 4.7],

Â is isomorphic to Up(Xfin). Now since X0 = Xiso = Xfin, we obtain that A is isomorphic to

Â. �

Remark 3.11. It follows from Theorems 3.6 and 3.10 that if A is finitely approximable,
complete, and the kernel of every finite homomorphic image of A is a principal filter of A,
then A is automatically completely join-prime generated.

4. Consequences

In this final section we give several consequences of our two main theorems. First we
describe all profinite linear Heyting algebras. We recall that a Heyting algebra A is linear if
for each a, b ∈ A we have a ≤ b or b ≤ a. For each n ≥ 1 let Ln denote the n-element linear
Heyting algebra. Clearly all Ln are profinite. Let L∞ denote the linear Heyting algebra and
X∞ denote its dual space shown in Figure 3.

Lemma 4.1. Up to isomorphism, L∞ is the only infinite profinite linear Heyting algebra.
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L∞ X∞

Figure 3

Proof. Let A be an infinite profinite linear Heyting algebra and let X be its dual space.
Since A is linearly ordered, so is X. By [6, p. 54], the set maxX of maximal points of
X is nonempty. As X is linearly ordered, maxX consists of a single point, say x0. If
x0 /∈ Xiso, then Xiso is not an upset of X, which contradicts to Theorem 3.6. Therefore,
x0 ∈ Xiso. Let X1 = X − {x0}. Then X1 is a clopen subset of X, and because of the
same reason as above, maxX1 consists of a single point, say x1. Since X1 is clopen and
Xiso is dense in X, we have that Xiso ∩ X1 is nonempty, and the same argument as above
guarantees that x1 ∈ Xiso. Continuing this process infinitely, we obtain a decreasing sequence
x0 > x1 > · · · > xn > . . . of isolated points of X. Let x∞ be a limit point of {x0, . . . , xn, . . . }.
We show that X = {x0, . . . , xn, . . . , x∞} and that Xiso = {x0, . . . , xn, . . . }. Let X contain
another point y. Since y 6= xn, we have y < xn for each n. If y > x∞, then there exists a
clopen upset U such that y ∈ U and x∞ /∈ U . But then {x0, . . . , xn, . . . } ⊆ U and x∞ /∈ U ,

contradicting to x∞ ∈ {x0, . . . , xn, . . .}. Therefore, x∞ > y. Since Xiso is an upset of X, it
follows that y /∈ Xiso. This implies that Xiso = {x0, . . . , xn, . . . }. Moreover, from x∞ > y
it follows that there exists a clopen upset V such that x∞ ∈ V and y /∈ V . Therefore,
{x0, . . . , xn, . . .} ⊆ V and y /∈ V . Thus, X − V is a nonempty clopen set having the empty
intersection with Xiso, which contradicts to density of Xiso. Consequently, such a y does not
exist, and so X = {x0, . . . , xn, . . . , x∞}. Therefore, X is order-isomorphic and homeomorphic
to X∞, and so A is isomorphic to L∞. �

As an immediate consequence of Lemma 4.1, we obtain the following description of profi-
nite linear Heyting algebras.

Theorem 4.2. The linear Heyting algebras L∞ and Ln, n ≥ 1, are up to isomorphism the

only profinite linear Heyting algebras.

Now we turn our attention to Boolean algebras. It is known (see, e.g., [8, Sec. VI.2 and
VI.3]) that a Boolean algebra is profinite iff it is complete and atomic. This we obtain as an
immediate corollary of Theorem 3.6.

Theorem 4.3. Let A be a Boolean algebra and let X be its dual Stone space. Then the

following conditions are equivalent:

(1) A is profinite.

(2) A is complete and atomic.
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(3) X is extremally disconnected and Xiso is a dense subset of X.

(4) A is isomorphic to the powerset of some set Y .

Proof. Let A be a Boolean algebra with dual Stone space X. It is enough to notice that
every Boolean algebra is finitely approximable; that a ∈ A is an atom of A iff a is completely
join-prime; that upsets of X are simply subsets of X, so every subset of X is image-finite
and Xfin = X; and that A is complete iff X is extremally disconnected. Now apply Theorem
3.6. �

Since bounded distributive lattice homomorphisms are not necessarily Heyting algebra
homomorphisms, an analogue of Theorem 3.6 for bounded distributive lattices requires some
adjustments. Firstly, like in the Boolean case, we have that every bounded distributive
lattice is finitely approximable. Secondly, since homomorphic images of bounded distributive
lattices dually correspond to closed subsets (and do not correspond to closed upsets), Xfin

plays no role in the case of bounded distributive lattices. Consequently, we obtain the
following analogue of Theorem 3.6.

Theorem 4.4. Let A be a bounded distributive lattice and let X be its dual Priestley space.

Then the following conditions are equivalent:

(1) A is profinite.

(2) A is complete and completely join-prime generated.

(3) There is a poset Y such that A is isomorphic to Up(Y ).

Proof. The proof of the implication (1) ⇒ (2) is the same as in Theorem 3.6. The equivalence
(2) ⇔ (3) is well-known (see, e.g., [8, Sec. VI.2 and VI.3]). For the implication (3) ⇒ (1),
observe that finite homomorphic images of A correspond to finite subsets of X and that X is
their direct limit. Now use the same idea as in proving the implication (6) ⇒ (1) of Theorem
3.6. �

Now we turn our attention to finitely generated Heyting algebras.

Theorem 4.5. A finitely generated Heyting algebra is profinite iff it is finitely approximable

and complete.

Proof. Let A be a finitely generated Heyting algebra and let X be its dual space. If A is
profinite, then it follows from Theorem 3.6 that A is finitely approximable and complete.
Conversely, suppose that A is finitely approximable and complete. Since A is finitely gener-
ated, it is well-known that Xfin ⊆ X0 (see, e.g., [3, Sec. 3.2]). As A is finitely approximable,
by Theorem 3.1, Xfin is dense in X. Consequently, Xfin ⊆ X0 ⊆ Xiso ⊆ Xfin, and so
X0 = Xiso = Xfin. Therefore, X0 is dense in X, which by Theorem 2.11 implies that A is
completely join-prime generated. Thus, A is finitely approximable, complete, and completely
join-prime generated, hence profinite by Theorem 3.6. �

Especially important finitely generated Heyting algebras are the free finitely generated
Heyting algebras. Since every free finitely generated Heyting algebra is in addition finitely
approximable (see, e.g., [3, Sec. 3.2]), from Theorem 4.5 we obtain that a free finitely gen-
erated Heyting algebra is profinite iff it is complete. But the Rieger-Nishimura lattice N –
the free 1-generated Heyting algebra – is the only complete finitely generated free Heyting
algebra (see, e.g., [3, Sec. 3.2]). Thus, N is the only profinite Heyting algebra among the free
finitely generated Heyting algebras. Since in the dual space of N we have in addition that
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X0 = Xiso = Xfin, from Theorem 3.10 we obtain that N is in fact isomorphic to its profinite
completion (see [2, Ex. 4.11]).

We conclude the paper by mentioning several applications of Theorem 3.10. We recall
that a variety V of Heyting algebras is finitely generated if it is generated by a single finite
algebra.

Theorem 4.6. Let A be a Heyting algebra in a finitely generated variety. Then A is iso-

morphic to its profinite completion iff A is finite.

Proof. Let A be a Heyting algebra in a finitely generated variety, and let X be the dual space

of A. Clearly if A is finite, then A ≃ Â. Conversely, suppose that A ≃ Â. Since A belongs
to a finitely generated variety, it follows from [2, Sec. 5] that Xfin = X. This by Theorem
3.10 implies that Xiso = X. Therefore, the topology on X is discrete, and as X is compact,
X is finite. Thus, A is finite. �

As a corollary we obtain that a Boolean algebra is isomorphic to its profinite completion
iff it is finite. The same result holds also for bounded distributive lattices, but the proof is
slightly different.

Remark 4.7. Our main results can also be proved for modal algebras, and more generally,
for Boolean algebras with operators.
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