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Abstract. We study propositional logical systems arising from the lan-
guage of Johansson’s minimal logic and obtained by weakening the re-
quirements for the negation operator. We present their semantics as a
variant of neighbourhood semantics. We use duality and completeness
results to show that there are uncountably many subminimal logics. We
also give model-theoretic and algebraic definitions of filtration for mini-
mal logic and show that they are dual to each other. These constructions
ensure that the propositional minimal logic has the finite model property.
Finally, we define and investigate bi-modal companions with non-normal
modal operators for some relevant subminimal systems, and give infinite
axiomatizations for these bi-modal companions.

1 Introduction

Minimal propositional calculus (Minimalkalkül, denoted here as MPC) is the sys-
tem obtained from the positive fragment of intuitionistic propositional calculus
(equivalently, positive logic [29]) by adding a unary negation operator satisfy-
ing the so-called principle of contradiction (sometimes referred to as reductio
ad absurdum, e.g., in [26]). This system was introduced in this form by Johans-
son [20] in 1937 by discarding ex falso quodlibet from the standard axioms for
intuitionistic logic. The system proposed by Johansson has its roots in Kol-
mogorov’s formalization of intuitionistic logic [22]. The axiomatization proposed
by Johansson preserves the whole positive fragment and most of the negative
fragment of Heyting’s intuitionistic logic. As a matter of fact, many important
properties of negation provable in Heyting’s system remain provable (in some
cases, in a slightly weakened form) in minimal logic.

In this work, we focus on propositional logical systems arising from the lan-
guage of minimal logic and obtained by weakening the requirements for the
negation operator in a ‘maximal way’. More precisely, the bottom element of the
bounded lattice of logics considered here is the system where the unary operator
¬ (that we still call ‘negation’) does not satisfy any conditions except for being
functional. The top element of this lattice is minimal logic. We use the term
N-logic to denote an arbitrary logical system in this lattice. This setting is para-
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consistent, in the sense that contradictory theories do not necessarily contain all
formulas.

In this paper we continue the study of N-logics started in [12, 13]. We in-
vestigate these logics from several different perspectives. In Section 2 we give
an algebraic and model-theoretic presentation of N-logics, and provide a brief
recap of the main duality and completeness results from [12]. We also review the
semantics introduced for the N-logics in [12, 13]—that we call N-semantics—and
show that it is a variant of standard neighbourhood semantics.

In Section 3, we exploit these results to show that the lattice of N-logics has
the cardinality of the continuum. The proofs from this section are obtained by
exporting and adapting techniques of [21, 19, 5].

Section 4 is devoted to a study of the method of filtration for the basic
N-logic. Model-theoretic and algebraic definitions of filtration are introduced
and compared. This leads to the finite model property of the minimal logic.

Finally, Section 5 concludes the article by introducing (bi-)modal systems
that are proved to play the role of modal companions for N-logics. More pre-
cisely, the language of these systems contains a normal (namely, S4) modality
resulting from the positive fragment of intuitionistic logic, and a non-normal
modality resulting from the negation operator. After characterizing these logics
in terms of standard neighbourhood semantics, we continue using the equivalent
N-semantics. We then give a proof that the standard Gödel translation of intu-
itionistic logic into S4 can be extended to translations of certain N-logics into
these bi-modal systems. To the best of our knowledge this is the first use of non-
normal modal operators in the context of the Gödel translation. On the other
hand, modal systems using a mix of normal and non-normal modalities have
been recently explored in the evidence-based semantics of epistemic logic [1, 27].

2 Preliminaries

In this preliminary section we present the main technical tools that will be
used throughout the paper. We start with a brief introduction to the Kripke
semantics of minimal logic (here called N-semantics), in line with the tradition
of intuitionistic logic. Later we present the algebraic semantics, and state some
basic facts. In order to keep the structure of the paper as simple as possible, we
skip the broader and introductory account of the topic and refer the interested
reader to [12, 13]. For a proof-theoretic account, see [7].

Let L(Prop) be the propositional language, where Prop is a countable set of
propositional variables, generated by the following grammar:

p | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ¬ϕ

where p ∈ Prop. We omit ⊥ from the language. We call a formula positive
if it contains only connectives from {∧,∨,→,>}, and we refer to the positive
fragment of intuitionistic logic as positive logic. We start by considering a system
defined by the axioms of positive logic, with the additional axiom (p ↔ q) →
(¬p ↔ ¬q) defining the behaviour of ¬. We call the resulting system N. We fix
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the positive logical fragment, and we strengthen the negation operator up to
reaching minimal propositional logic, which can be seen as the system obtained
by adding the axiom (p → q) ∧ (p → ¬q) → ¬p to positive logic [29]. An
alternative axiomatization of minimal logic is obtained by extending N with the
axiom (p→ ¬p)→ ¬p [12, Proposition 1.2.5].

If we interpret ¬ as a ‘modality’, and disregard the fact that we consider
extensions of positive logic, the basic system N can be seen as an extension of
classical modal logic (see [28]) which is based on the rule p ↔ q /�p ↔ �q.
Thus, N can be regarded as a weak intuitionistic modal logic that—as far as we
know—has not been previously studied. Note that extending it with more of the
properties of a negation would lead to ‘very non-standard’ modal logics. This
relationship with modal logic will be further clarified towards the end of the
paper, where the negation will be interpreted by a full-fledged modal operator.

A first algebraic account of Johansson’s logic can be found in Rasiowa’s work
on non-classical logic [29], where the algebraic counterpart of minimal logic is
identified as the variety of contrapositionally complemented lattices. A contrapo-
sitionally complemented lattice is an algebraic structure 〈A,∧,∨,→,¬, 1〉, where
〈A,∧,∨,→, 1〉 is a relatively pseudo-complemented lattice (which algebraically
characterizes positive logic [29]) and the unary fundamental operation ¬ satis-
fies the identity (x → ¬y) ≈ (y → ¬x). The variety presented by Rasiowa is
term-equivalent to the variety of relatively pseudo-complemented lattices with
a negation operator defined by the algebraic version of the principle of contra-
diction (x → y) ∧ (x → ¬y) → ¬x ≈ 1, originally employed in Johansson’s
axiomatization. Observe that Heyting algebras can be seen as contrapositionally
complemented lattices where ¬1 is a distinguished bottom element 0.

We further generalize the notion of Heyting algebra to that of an N-al-
gebra. An N-algebra is an algebraic structure A = 〈A,∧,∨,→,¬, 1〉, where
〈A,∧,∨,→, 1〉 is a relatively pseudo-completemented lattice and ¬ is a unary
operator satisfying the identity (x ↔ y) → (¬x ↔ ¬y) ≈ 1. The latter can
be equivalently formulated as x ∧ ¬y ≈ x ∧ ¬(x ∧ y). Note that this variety
plays a fundamental role in the attempts of defining a connective over positive
logic. In fact, the considered equation states that the function ¬ is a compat-
ible function (or compatible connective), in the sense that every congruence of
〈A,∧,∨,→, 1〉 is a congruence of 〈A,∧,∨,→,¬, 1〉. This is somehow considered
a minimal requirement when introducing a new connective over a fixed setting
(see, e.g., [9, 14]). Clearly, with every N-logic L we can associate a variety of
N-algebras. Each of these logics is complete with respect to its algebraic seman-
tics [12]. Contrapositionally complemented lattices are the strongest structures
that we consider here, and can be seen as the variety of N-algebras defined by
the equation (x → ¬x) → ¬x ≈ 1, or x → ¬x ≈ ¬x. We also consider the two
varieties of N-algebras defined, respectively, by the identity (x ∧ ¬x)→ ¬y ≈ 1,
and by the identity (x → y) → (¬y → ¬x) ≈ 1. They were studied in detail
in [12], and we shall refer to the corresponding logics as negative ex falso logic
(NeF) and contraposition logic (CoPC). We point out that the logic CoPC has
appeared before under the name ‘Subminimal Logic’ with a completely different
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semantics ([16, 17], [18, Section 8.33]). It was proved in [12, 13] that the following
relations hold between the considered logical systems:

N ⊂ NeF ⊂ CoPC ⊂ MPC,

where the strict inclusion L1 ⊂ L2 means that every theorem of L1 is a theorem
of L2, but there is at least one theorem of L2 that is not provable in L1. Note the
strict inclusion NeF ⊂ CoPC can be seen semantically (through the semantics
we introduce below), by taking 〈W,≤,N〉, with W := {w, v}, ≤ := {(w, v)}, and
N(∅) = N(W ) := {v}, N({v}) := W .

Recall that an intuitionistic Kripke frame F is a partially ordered set (briefly,
poset) 〈W,≤〉, and a Kripke model is a frame F equipped with a valuation
V assigning to every propositional variable p ∈ Prop an upward closed subset
(upset) V (p) ∈ U(W,≤) of F where p is true. In the subminimal setting, we
call an N-frame (sometimes we may call it just a frame) a triple F = 〈W,≤,N〉,
where 〈W,≤〉 is a poset and the function N: U(W,≤) → U(W,≤) satisfies, for
every X,Y ∈ U(W,≤),1

N(X) ∩ Y = N(X ∩ Y ) ∩ Y. (1)

An N-model (sometimes we may call it just a model) is again a pair 〈F, V 〉, where
F is a frame and V a valuation from the set of propositional variables to U(W,≤).
Given a model 〈F, V 〉, we define truth of positive formulas inductively as in the
intuitionistic setting, and say that a negative formula ¬ϕ is true at a node w,
written 〈F, V 〉, w |= ¬ϕ, if w ∈ N(V (ϕ)), where V (ϕ) := {w ∈ W : M, w |= ϕ}.
We use the customary notation and write F |= ϕ if 〈F, V 〉, w |= ϕ holds for every
w ∈ W and every valuation V . Note that F |= (p ∧ ¬p) → ¬q holds on a frame
satisfying property (1) if and only if X∩N(X) ⊆ N(Y ) for arbitrary upsets X,Y ,
and F |= (p → q) → (¬q → ¬p) holds if and only if the function N is antitone
(i.e., X ⊆ Y implies N(Y ) ⊆ N(X)). The least element of a poset, when it exists,
is called a root, and we say that a frame is rooted if its underlying poset has a
root. Given a poset 〈W,≤〉, we use R(w) to denote the set {v ∈ W : w ≤ v} of
successors of w in W . In the rest of the paper, we refer to this ‘Kripke style’
semantics for subminimal logics as N-semantics.

For a frame F = 〈W,≤,N〉, we define the corresponding neighbourhood frame
Fn = 〈W,≤, n〉 by setting a neighbourhood function n : W → P(U(W,≤)) to be
n(w) := {X ⊆ W | w ∈ N(X)}. A model is again a pair 〈F, V 〉 consisting of
a neighbourhood frame, and a valuation V defined in the same way as for the
N-semantics. Then, 〈Fn, V 〉, w |= ¬ϕ if and only if V (ϕ) ∈ n(w) or, equivalently,
w ∈ N(V (ϕ)), that is, 〈F, V 〉, w |= ¬ϕ. Conversely, take a neighbourhood frame
Fn = 〈W,≤, n〉 such that n : W → P(U(W,≤)) is a monotone function (i.e., if
w ≤ v then n(w) ⊆ n(v)) satisfying X ∈ n(w) if and only if X ∩R(w) ∈ n(w) for
every upset X. The triple F = 〈W,≤,N〉 with N(X) := {w ∈ W | X ∈ n(w)} is
an N-frame, and the two definitions are mutually inverse. It will become clear in

1 This property is equivalent to w ∈ N(X) ⇐⇒ w ∈ N(X ∩ R(w)) for every w ∈ W
and X ∈ U(W,≤); see, e.g., [12, Lemma 4.3.1].



5

Section 5 that an approach using the N-semantics is helpful in practice. Further,
the N-semantics is synergic to the algebraic approach, as the next paragraph
shows.

For an N-algebra A, we consider the set WA of prime filters of A, and let
â := {w ∈WA | a ∈ w}. Then the triple FA = 〈WA,⊆,NA〉 is a frame, where

NA(X) := {w ∈WA | (∃¬a ∈ w)(R(w) ∩ â = R(w) ∩X)},

for any upset X ∈ U(WA,⊆). This definition makes sure that NA(̂b) for b ∈ A
includes every filter w which contains ¬a, for any a ∈ A that is equivalent to b
with respect to w (i.e., R(w) ∩ â = R(w) ∩ b̂). Observe that the notion of prime
filter in this context does not require the filter to be proper, i.e., the whole
algebra A is always a prime filter. On the other hand, starting from a frame F,
we obtain an N-algebra AF = 〈U(W,≤),∩,∪,→,N,W 〉 whose universe is the set
of upsets of F equipped with the usual intersection, union, Heyting implication,
and unit W , and with the unary operator given by the function N. Note that
the N-algebra A embeds into the N-algebra AFA

via the map α : a 7→ â. A
consequence of this is that each valuation µ : Prop → A on A gives rise to a
valuation V = α ◦ µ on FA.

In order to obtain a full duality result between algebraic and frame-theoretic
structures, in analogy with intuitionistic logic we introduce general frames. A
general frame is a quadruple F = 〈W,≤,P,N〉, where 〈W,≤〉 is a partially or-
dered set, P ⊆ U(W,≤) containsW and is closed under ∪, ∩, Heyting implication
→, and N: P → P satisfies for all X,Y ∈ P, N(X) ∩ Y = N(X ∩ Y ) ∩ Y . Ele-
ments of P are called admissible sets. Note that ∅ need not be admissible. We
next recall the definition of refined and compact general frames, see e.g., [10]
for analogous definitions in the intuitionistic setting. If a general frame F is re-
fined and compact, we call it a descriptive frame. Finally, a top descriptive frame
F = 〈W,≤,P,N, t〉 is a descriptive frame whose partially ordered underlying set
〈W,≤〉 has a greatest element t included in every admissible upset X ∈ P. Fol-
lowing [6], we call top model a pair 〈F, V 〉 where F is a top descriptive frame and
V is a valuation on F which makes every propositional variable true at the top
node. Every finite frame with a top node is a top descriptive frame with a set of
admissible upsets {X ∈ U(W,≤) : X 6= ∅}.

It can be proved [12, 4] that the correspondence between F and AF, and
between A and FA that holds for every frame and N-algebra, in the case of
top descriptive frames gives rise to a proper duality. More precisely, given a top
descriptive frame F = 〈W,≤,P,N, t〉, the structure AF = 〈P,∩,∪,→,N,W 〉
is the N-algebra dual to F, and the set of prime filters of any N-algebra A =
〈A,∧,∨,→,¬, 1〉 induces a dual top descriptive frame FA = 〈WA,⊆,PA,NA, A〉,
where PA is the set {â : a ∈ A}, and the map NA is defined as NA(â) = (̂¬a).
Moreover, we have F ∼= FAF

and A ∼= AFA
. Observe that the fact that prime

filters of A do not need to be proper ensures that the corresponding frame
structure has a top element.

As in the case of Heyting algebras, for N-algebras there exists a one-to-one
correspondence between congruences and filters. We can therefore characterize
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subdirectly irreducible N-algebras as those N-algebras containing a second great-
est element, or equivalently, as those N-algebras A whose dual frame FA is a
rooted top descriptive frame. We call a top descriptive frame F finitely generated
if AF is a finitely generated N-algebra, thereby obtaining a completeness result
for every N-logic with respect to the class of its finitely generated rooted top
descriptive frames.

3 Continuum Many Logics

In this section, we construct continuum many N-logics by exporting and adapting
techniques of [21, 19, 5]. We start from a countable family of positive formulas
that we adapt so to define uncountably many independent subsystems of minimal
logic containing the basic logic N.

Given two finite rooted posets F,G, we write F ≤ G if F is an order-preserving
image of G, that is, if there is an onto map f : G � F which preserves the order.
This relation can be proved to be a partial order on the set of finite (rooted)
posets [5]. Consider the sequence ∆ = {Fn | n ∈ N} of finite rooted posets with
a top node (Figure 1). The sequence ∆ is obtained from the antichain presented
in [3, Figure 2] by adding three nodes on the top. An argument resembling the
one in [3, Lemma 6.12] shows that the sequence ∆ is a ≤-antichain. We quickly
sketch it here. If f : Fn � Fm with n ≥ m is order-preserving, then the upset
of Fm consisting of points of depth ≤ (m + 1) must be the image of the upset
of Fn consisting of points of depth ≤ (m + 1). Thus, for xm+2 ∈ Fm, there is
y ∈ Fn such that f(y) = xm+2. But then, there is a z ∈ Fn such that y ≤ z and
f(z) = ym+1. Since xm+2 6≤ ym+1, we get a contradiction.

F0

x2

x1

x0

y1

y0

F1

x3

x2

x1

x0

y2

y1

y0

F2

x4

x3

x2

x1

x0

y3

y2

y1

y0

Fig. 1. The sequence ∆

Lemma 1. The sequence ∆ forms a ≤-antichain.

We call a map f : F → G between posets F = 〈W,≤〉 and G = 〈W ′,≤′〉 a p-
morphism if f is order-preserving, and f(w) ≤′ v implies the existence of w′ ∈W
such that w ≤ w′ and f(w′) = v. A partial p-morphism such that dom(f) is a
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downward closed set is called a positive morphism. We write F � G if F is a
positive morphic image of G. Assume F � G and let f be a positive morphism
from G onto F. Extending f by mapping all the points of G \ dom(f) to the top
node of F, we obtain a total order-preserving map, yielding F ≤ G. This ensures
the ≤-antichain ∆ to be also a �-antichain.

Lemma 2. If F � G and F is a finite rooted posets with a top node, then F ≤ G.

Having constructed the desired �-antichain, we now proceed by adjusting the
technique of Jankov-de Jongh formulas. Recall that the universal model U(n)
can be roughly thought of as the upper generated submodel of the descriptive
model dual to the free Heyting algebra on n ∈ N generators. The universal model
(U?(n))+ for positive logic is isomorphic to a generated submodel of U(n), and
is a top model [5, 6]. It was shown in [6] that every finite rooted poset with a
top node, equipped with an appropriate valuation, is isomorphic to a generated
submodel of (U?(m))+ for some m. Note that, for the frames Fn in Figure 1, it
suffices to take m = 3. Hence, we call wn ∈ (U?(3))+ the node in the positive
universal model corresponding to the root of Fn. We can assume without loss of
generality the positive Jankov-de Jongh formula of Fn to be defined as follows [6]:

χ?(Fn) = ψ?
wn

:= ϕ?
wn
→

r∨
i=1

ϕ?
wni

,

where ϕ?
wn
, ϕ?

wni
are defined as in [6] and wn ≺ {wn1

, . . . , wnr
}. So, a rooted

poset G refutes χ?(Fn) if and only if Fn � G. As ∆ is a �-antichain, this means
that, for every n,m ∈ N, the formula χ?(Fm) is valid on the poset Fn if and only
if n 6= m. In fact, the construction of ϕ?

wn
, ϕ?

wni
ensures that the formula ϕ?

wn
is

satisfied at the root wn in (U?(2))+, while none of the formulas ϕ?
wni

is.

Lemma 3. For n,m ∈ N, the formula Fn |= χ?(Fm) if and only if n 6= m.

At this point, we are going to equip each rooted poset Fn with an appropriate
function Nn to make it a top descriptive frame. Moreover, we enhance the defini-
tion of χ?(Fn) in order to obtain formulas θ(Fn) with the same defining property
of the Jankov-de Jongh formulas for the signature of positive logic, but with the
extra addition that the formulas θ(Fn) are theorems of MPC. Given the rooted
poset Fn, we consider the top descriptive frame 〈Fn,Nn, tn〉 where Nn has the
property Nn({tn}) = {tn}, the element tn being the top node of Fn. We denote
the new family of top descriptive frames 〈Fn,Nn, tn〉 by ∆N . Now we consider a
fresh propositional variable p, and define:

θ(Fn) := (p→ ¬p) ∧ ϕ?
wn
→ ¬p ∨

r∨
i=1

ϕ?
wni

.

We note that the formulas θ(Fn) are not the Jankov-de Jongh formulas for the
considered signature. It is nonetheless easy to see that, if n 6= m, the formula
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θ(Fn) is valid on the frame 〈Fm,Nm, tm〉. On the other hand, for checking that
〈Fn,Nn, tn〉 6� θ(Fn) it is enough to consider a valuation Ṽn extending Vn by
Ṽn(p) = {tn}. This way, the root of Fn under the considered valuation makes
(p→ ¬p) ∧ ϕ?

wn
true, while neither ¬p nor

∨r
i=1 ϕ

?
wni

is true at wn.

As a consequence, we obtain the following result.

Theorem 1. There are continuum many N-logics.

Proof. The fact that each θ(Fn) is a theorem of MPC ensures that for each subset
Γ ⊆ ∆N , the logic

L(Γ) := N + {θ(F) | F ∈ Γ}

belongs to the interval [N,MPC]. Finally, observe that for each pair of different
subsets Γ1 6= Γ2 of ∆N , we have L(Γ1) 6= L(Γ2). Indeed, without loss of gen-
erality we may assume that there is F ∈ Γ1 such that F /∈ Γ2. Moreover, we
have F 6� θ(F) and F � θ(G), for each G in Γ2. Therefore, there is a top de-
scriptive frame F which is an L(Γ2)-frame and not an L(Γ1)-frame. Since every
N-logic is complete with respect to top descriptive frames, the latter entails that
L(Γ1) 6= L(Γ2). ut

Observe that the choices of Nn and of the formula (p→ ¬p)→ ¬p that were
made above are arbitrary among the ones that ensure a proof of Theorem 1.
This suggests the question what would have happened if we had made different
choices. As a matter of fact, the result of Theorem 1 can be refined as follows.

Proposition 1.

(1) There are continuum many N-logics between NeF and CoPC.

(2) There are continuum many N-logics below NeF.

(3) There are continuum many N-logics above CoPC.

Proof. The idea is to slightly modify the previous proof by choosing different
theorems of minimal propositional logic, and different functions Nn. Changing
the former allows us to refine the result from above, while changing the latter
from below.

To prove (1), we consider posets Fn, but this time we consider the function
N1

n defined by

N1
n(X) :=

{
Wn \ {wn}, if X 6= Wn \ {wn}
Wn, if X = Wn \ {wn}.

Let p, q be fresh propositional variables. Consider the formulas

θ1(Fn) := (p→ q) ∧ ϕ?
wn
→ (¬q → ¬p) ∨

r∨
i=1

ϕ?
wni

.

Observe that the frame 〈Fn,N
1
n, tn〉 is a frame of the logic NeF. In fact, if we

consider an arbitrary w ∈Wn such that w ∈ X ∩N1
n(X) (this amounts to every



9

w ∈ Wn \ {wn}), then w ∈ N1
n(Y ) for every admissible upset Y . Moreover, it is

easy to see that, if n 6= m, the formula θ1(Fn) is valid on the frame 〈Fm,N
1
m, tm〉.

On the other hand, for checking that 〈Fn,N
1
n, tn〉 6� θ1(Fn) it is enough to con-

sider a valuation Ṽn extending Vn by Ṽn(p) = {tn} and Ṽn(q) = Wn \{wn}. This
way, the root of Fn under the considered valuation makes the whole antecedent
of θ1(Fn) true (since Ṽn(p) ⊆ Ṽn(q)), while the consequent is not true at wn

(since wn ∈ N1
n(Ṽn(q)), while wn 6∈ N1

n(Ṽn(p))).
A proof of (2) is obtained by considering functions:

N2
n(X) :=

{
Wn \ {wn}, if X ⊂W,
Wn, if X = W,

and formulas

θ2(Fn) := (p ∧ ¬p) ∧ ϕ?
wn
→ ¬q ∨

r∨
i=1

ϕ?
wni

,

with fresh propositional variables p, q.
For (3), it is enough to define N3

n(X) := {tn}, for every upset X, and to use
the formulas θ(Fn). ut

4 Filtration

The method of filtration is among the oldest and most used techniques for prov-
ing the finite model property for modal and superintuitionistic logics. If a model
refutes a formula ϕ, then the idea is to filter it out (identify the points that agree
on the subformulas of ϕ) to obtain a finite model that refutes ϕ. Thus the new
model is a quotient of the original one. The method of filtration was originally de-
veloped algebraically [24, 25], and later model-theoretically [30, 23], see also [10].
In this section, we complete the results and constructions from [12], where the
finite model property was proved via model-theoretic filtrations applied to the
canonical models only. A general model-theoretic definition of filtration was miss-
ing in [12]. We give one here, which is a combination of the standard filtration
for intuitionistic logic [10] and the one for non-normal logic [11, 28]. Building
on the ideas of [2, 3], we define algebraic filtrations for N-algebras. As in the
modal and intuitionistic cases, we show, similarly to [2], that the algebraic and
model-theoretic methods turn out to be “two sides of the same coin”.

Let Σ be a finite set of formulas closed under subformulas. Given a model
M, we define an equivalence relation ∼ on W by considering, for w, v ∈W :

w ∼ v if (∀ϕ ∈ Σ)(w ∈ V (ϕ)⇐⇒ v ∈ V (ϕ)).

Consider F∗ = 〈W ∗,≤∗,N∗〉, where W ∗ = W/ ∼, and ≤∗ and N∗ are, respec-
tively, a partial order on W ∗ and a function N∗ : U(W ∗,≤∗)→ U(W ∗,≤∗) satis-
fying the following conditions for all w, v ∈W , X ∈ U(W ∗,≤∗) and ϕ,¬ψ ∈ Σ:

(a) w ≤ v implies [w] ≤∗ [v];
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(b) [w] ≤∗ [v] and w ∈ V (ϕ) imply v ∈ V (ϕ);

(c) [w] ∈ N∗(X) implies w ∈ N(π−1(X)),

where π−1(X) := {w ∈W : [w] ∈ X}; and

(d) w ∈ N(V (ψ)) implies [w] ∈ N∗(π[V (ψ)]),

where π[V (ψ)] := {[w] ∈ W ∗ : w ∈ V (ψ)}. Finally, let V ∗ be a valuation on F∗

such that
V ∗(p) := {[w] ∈W ∗ : w ∈ V (p)} = π[V (p)],

for each p ∈ Σ. We call M∗ = 〈F∗, V ∗〉 a filtration of the model M through Σ.

Theorem 2 (Filtration Theorem). Let M = 〈F, V 〉 be a model. Consider the
filtration M∗ = 〈F∗, V ∗〉 of M through a finite set Σ of formulas closed under
subformulas. Then, for each ϕ ∈ Σ and w ∈W we have

w ∈ V (ϕ) iff [w] ∈ V ∗(ϕ).

Proof. We focus on the case ¬ϕ ∈ Σ. Consider w ∈ V (¬ϕ), i.e., w ∈ N(V (ϕ)). By
induction hypothesis, V ∗(ϕ) = {[w] : w ∈ V (ϕ)} = π[V (ϕ)]. Hence, by (d), we
are able to conclude [w] ∈ N∗(V ∗(ϕ)). On the other hand, assume w 6∈ N(V (ϕ)).
By induction hypothesis, V (ϕ) = {w : [w] ∈ V ′(ϕ)} = π−1(V ∗(ϕ)). Therefore,
by (c), [w] 6∈ N∗(V ∗(ϕ)). ut

Among the filtrations of M = 〈W,≤,N, V 〉 through Σ, there always exists a
greatest filtration. Consider the partial order on W ∗ defined by:

[w] ≤g [v] if (∀ϕ ∈ Σ)(w ∈ V (ϕ)⇒ v ∈ V (ϕ)), (2)

and the map Ng(X) := {[w] ∈ W ∗ : w ∈ N(π−1(X))}. It is easy to check that
F g = 〈W ∗,≤g,Ng〉 is a frame and M g = 〈F g, V ∗〉 is a filtration of M. Consider
now an arbitrary filtration M∗ = 〈F∗, V ∗〉. Suppose [w] ≤∗ [v]. Then w ∈ V (ϕ)
implies v ∈ V (ϕ). Moreover, observe that every upset of 〈W ∗,≤g〉 is an upset
of 〈W ∗,≤∗〉. Furthermore, for a given X ∈ U(W ∗,≤g) such that [w] ∈ N∗(X)
we have then [w] ∈ Ng(X). To see this, assume that [w] ∈ N∗(X). Then, by (c),
w ∈ N(π−1(X)) and hence, [w] ∈ Ng(X).

The rest of this section will be devoted to an algebraic development of the
notion of filtration. Let Σ be a finite set of formulas closed under subformulas,
and consider an N-algebra with a valuation 〈A, µ〉, where µ : Prop → A. Since
Σ is finite, so is µ[Σ] as a subset of A. Let S be the (∧,∨, 1)-reduct of A
generated by µ[Σ]. Observe that (∧,∨, 1)-reducts are locally finite, i.e., every
finitely generated (∧,∨, 1)-structure is finite. Hence, the resulting S is finite and
we can make S an N-algebra by equipping it with operations→S and ¬S defined
as follows:

a→S b :=
∨
{s ∈ S | a ∧ s ≤ b}, (3)

and
¬Sa :=

∨
{s ∈ S | s ≤ ¬a}, (4)
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for every a, b ∈ S. Note that ¬Sa ≤ ¬a, and ¬Sa = ¬a whenever ¬a ∈ µ[Σ], and
a →S b ≤ a → b and a →S b = a → b whenever a → b ∈ µ[Σ]. We call V the
valuation V = α ◦ µ on FA, where α is defined as in Section 2.

Lemma 4. The subset S ⊆ A gives rise to a filtration M∗A = 〈FA, V
∗〉 of the

model MA = 〈FA, V 〉 through Σ.

Proof. Define ∼ on WA by w ∼ v if and only if S ∩ w = S ∩ v. The first step
amounts to proving that w ∼ v is equivalent to w ∩ µ[Σ] = v ∩ µ[Σ]. The proof
follows the one of [2, Lemma 2.5]. Observe that this first step is clearly equivalent
to w ∼ v if and only if (∀ϕ ∈ Σ)(µ(ϕ) ∈ w if and only if µ(ϕ) ∈ v), which in
turn is equivalent to (∀ϕ ∈ Σ)(w ∈ V (ϕ) if and only if v ∈ V (ϕ)).

Now, let W ∗A = WA/ ∼ and define [w] ≤∗ [v]⇐⇒ w ∩ S ⊆ v ∩ S, and

N∗(X) := {[w] ∈W ∗A : w ∈ N(π−1(X))},

for X ∈ U(W ∗A,≤∗). It is straightforward to see that F∗A = 〈W ∗A,≤∗,N∗〉 is a
frame. Let now V ∗ be a valuation on F∗A such that:

V ∗(p) := {[w] ∈W ∗A : w ∈ V (p)}.

The structure 〈F∗A, V ∗〉 is a model, and it satisfies conditions (a)–(d). ut

The construction presented in Lemma 4 can be generalized as follows. Let
〈A, µ〉 be an N-algebra with a valuation and Σ be a finite set of formulas closed
under subformulas. Suppose that L is the universe of a finite sublattice of A with
unit 1A such that µ[Σ] ⊆ L. Consider the N-algebra L = 〈L,∧,∨,→L,¬L, 1A〉,
where→L and ¬L are defined as in (3) and (4). Let µL be a valuation on L such
that µL(p) = µ(p) for each variable p ∈ Σ. We call the pair (L, µL) a filtration
of (A, µ) through Σ.

Theorem 3 (Filtration Theorem). If (L, µL) is a filtration of (A, µ) through
Σ, then µL(ϕ) = µ(ϕ) for each ϕ ∈ Σ.

Proof. The proof goes again by induction, and we focus on the case ¬ϕ ∈ Σ.
But then, ¬µ(ϕ) = µ(¬ϕ) ∈ µ[Σ] ⊆ L. Therefore, ¬µ(ϕ) = ¬Lµ(ϕ). Thus,
µL(¬ϕ) = ¬µL(ϕ) = ¬µ(ϕ) = µ(¬ϕ). ut

Among the filtrations (L, µL) of (A, µ), the filtration (S, µS) is the least one.
The following shows that (S, µS) corresponds to the greatest filtration Mg

A of
MA through Σ. Consider [w], [v] ∈ W ∗A such that [w] ≤g [v]. But then, by (2),
this means that (∀ϕ ∈ Σ)(w ∈ V (ϕ) ⇒ v ∈ V (ϕ)). This is again equivalent to
w ∩ S ⊆ v ∩ S. Hence, we conclude [w] ≤∗ [v].

5 Modal Companions

A normal extension M of S4 is a modal companion of an intermediate logic L if for
each propositional formula ϕ we have L ` ϕ iff M ` ϕ�, where ϕ� is the Gödel
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translation of ϕ. In this section we define (bi-)modal companions of subminimal
logics. The negation operator in N and its extensions behave like a non-normal
modal operator which suggests that bi-modal companions of subminimal logics
must have a non-normal modal operator. For the theory of non-normal modal
logics and neighbourhood semantics we refer the reader to [11, 15, 28].

Consider the bi-modal language L�(Prop), where Prop is a countable set of
propositional variables, generated by the following grammar:

p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | �ϕ | �ϕ

where p ∈ Prop. We write ¬ϕ to denote the implication ϕ→ ⊥. Recall that the
axioms and rules for the modal logic S4 are:

(K) �(p→ q)→ (�p→ �q);

(T) �p→ p;

(4) �p→ ��p,

in addition to all the classical tautologies, and the rules of modus ponens, uniform
substitution, and necessitation (p/�p). Now, consider the following additional
bi-modal axioms:

�(p↔ q)→ (�p↔ �q), (5)

�p→ ��p. (6)

Note that the � modality is not a normal modality, since we do not have the
rule of necessitation for it. As for the notation, we denote the new modality as
a box modality since it behaves as a universal modality from the point of view
of neighbourhood semantics. We denote this bi-modal system by NS4.

A neighbourhood frame for NS4 is a triple F = 〈W,≤, n〉, where 〈W,≤〉 is a
set equipped with a reflexive transitive relation ≤, and n a monotone function
n : W → P(P(W )) (i.e., if w ≤ v then n(w) ⊆ n(v)) such that:

X ∈ n(w)⇐⇒ X ∩R(w) ∈ n(w). (7)

Using the fact that a neighbourhood function n induces the existence of a func-
tion N: P(W )→ U(W,≤) via the equivalence X ∈ n(w) if and only if w ∈ N(X),
we consider the following generalization of N-semantics.

An N-frame for NS4 is a triple F = 〈W,≤,N〉, where 〈W,≤〉 is a set equipped
with a reflexive transitive relation, and N: P(W )→ U(W,≤) is a map such that:

w ∈ N(X)⇐⇒ w ∈ N(X ∩R(w)). (8)

An N-model for NS4 is a pair M = 〈F, V 〉, where F is an N-frame and V is a
valuation V : Prop→ P(W ). Truth of a formula is defined as follows:
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M, w |= p ⇐⇒ w ∈ V (p);

M, w |= ϕ ∧ ψ ⇐⇒M, w |= ϕ and M, w |= ψ;

M, w |= ϕ ∨ ψ ⇐⇒M, w |= ϕ or M, w |= ψ;

M, w |= ϕ→ ψ ⇐⇒M, w |= ϕ implies M, w |= ψ;

M, w |= �ϕ ⇐⇒ R(w) ⊆ V (ϕ);

M, w |= �ϕ ⇐⇒ w ∈ N(V (ϕ)),

where V (ϕ) := {w ∈W : M, w |= ϕ}. A formula ϕ is said to be valid in a model
M if M, w |= ϕ for every w ∈ W , and ϕ is valid in a frame F if every model on
F validates ϕ. We let F denote the class of all N-frames for NS4. We will now
show that NS4 is sound with respect to F .

Theorem 4 (Soundness). The system NS4 is sound with respect to F .

Proof. We only check the cases for the axioms (5) and (6), by proving that
they are valid on each frame. The validity of (6) follows immediately from the
fact that N(X) is upward closed for every X ∈ P(W ). For (5), suppose that
〈F, V 〉, w |= �(p ↔ q). This means that R(w) ⊆ V (p ↔ q), which is in turn
equivalent to V (p) ∩ R(w) = V (q) ∩ R(w). In order to conclude 〈F, V 〉, w |=
�p ↔ �q, we assume without loss of generality that w ∈ N(V (p)). By (8),
this means that w ∈ N(V (p) ∩ R(w)). But then, w ∈ N(V (q) ∩ R(w)), since
V (p) ∩R(w) = V (q) ∩R(w). Thus, again by (8), we conclude w ∈ N(V (q)). ut

We now focus on showing that NS4 is complete with respect to F . To do this,
we follow the standard approach for normal modal logics (see, e.g., [10, 8]), and
combine it with the standard approach for neighbourhood semantics [28]. Recall
that a set Γ of formulas is said to be maximally consistent if it is consistent (in the
sense that it does not contain both ϕ and ¬ϕ, for any ϕ) and, for every formula
ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ. Every consistent set of formulas can be extended to a
maximally consistent set of formulas (Lindenbaum’s Lemma). As a consequence,
it can be proved that every formula that is contained in all maximally consistent
sets of formulas is a theorem. Consider now the setW of all maximally consistent
sets of NS4 formulas. We denote by |ϕ| the set of all maximally consistent sets of
formulas containing ϕ. We define the canonical relation ≤ by: Γ ≤ ∆ if, whenever
�ϕ ∈ Γ, then ϕ ∈ ∆. A map N : P(W) → U(W,≤) is a canonical N-function
provided that for all ϕ ∈ L�(Prop),

Γ ∈ N (|ϕ|)⇐⇒ �ϕ ∈ Γ.

We consider the canonical valuation V : Prop→ P(W) defined by

V(p) = |p| := {Γ ∈ W : p ∈ Γ}.
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The quadruple 〈W,≤,N ,V〉 is called a canonical model. To prove completeness
of NS4, we use the following function

N loc(X) := {Γ ∈ W | (∃�ψ ∈ Γ)(X ∩R(Γ) = |ψ| ∩R(Γ))}.

which makes M = 〈W,≤,N loc,V〉 into a canonical model, and its underlying
frame into an NS4-frame. First of all, it is easy to see that N loc satisfies (8).
Further, the set N loc(X) is upward closed for every X ∈ P(W). In fact, if
�ψ ∈ Γ, then also ��ψ ∈ Γ. But then, Γ ≤ ∆ implies �ψ ∈ ∆. SinceX∩R(∆) =
|ψ|∩R(∆), we conclude. Moreover,M is canonical. In fact, Γ ∈ N loc(|ϕ|) implies
that |ψ| ∩ R(Γ) = |ϕ| ∩ R(Γ) for some �ψ ∈ Γ, which means that for every
successor ∆ of Γ, ϕ ↔ ψ ∈ ∆ and, therefore, �(ϕ ↔ ψ) ∈ Γ. By the axiom (5)
and the fact that �ψ ∈ Γ, we conclude �ϕ ∈ Γ. A canonical function N is
what ensures that membership and truth coincide in the canonical model (Truth
Lemma); the cases for the other formulas proceed by the standard induction.

Theorem 5 (Completeness). The system NS4 is complete with respect to F .

The next step is to show that NS4 is the modal companion of N. We start by
recalling that it is possible to translate formulas from the intuitionistic language
into the modal language via the Gödel translation:

⊥� = ⊥;

p� = �p;

(ϕ ◦ ψ)� = ϕ� ◦ ψ�, where ◦ ∈ {∧,∨};

(ϕ→ ψ)� = �(ϕ� → ψ�).

The celebrated Gödel-McKinsey-Tarski theorem states that for every intuition-
istic formula ϕ,

IPC ` ϕ⇐⇒ S4 ` ϕ�.

The logic S4 is not the only modal companion of IPC (e.g., Grzegorczyk’s logic
Grz is another well-known example). A fundamental fact to be used in the proof
is that any intuitionistic Kripke model M can be seen as a model for S4, and for
every node in the model the following holds:

M, w |= ϕ⇐⇒M, w |=� ϕ�,

where |= denotes the intuitionistic and |=� the modal notion of truth. Similarly,
every N-model has an equivalent NS4-model, as any N-frame 〈W,≤,N〉 induces
a corresponding NS4-frame 〈W,≤,N∗〉, with N∗ : P(W )→ U(W,≤) defined by:

N∗(X) := {w ∈W | (∃Y ∈ U(W,≤))(X ∩R(w) = Y ∩R(w) and w ∈ N(Y ))}.

We start by adapting the Gödel translation in order to obtain a translation of
N into NS4. It is sufficient to add a translation clause for the negation in the
language of N:

(¬ϕ)� = �ϕ�,

and to discard the clause for ⊥. The following preliminary result is easy to prove.
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Lemma 5. Let M = 〈W,≤,N, V 〉 be a model for N, and let M∗ = 〈W,≤,N∗, V 〉
be the corresponding N-model for NS4 defined in the way explained above. Then,
for every formula ϕ,

M, w |= ϕ⇐⇒M∗, w |=� ϕ�,

where |= and |=� are, respectively, the N and the modal notion of truth.

In what follows, we allow ourselves to identify �ϕ∧�ψ and �(ϕ∧ψ) for formulas
ϕ and ψ, omitting thereby some trivial steps in the derivations.

Theorem 6. For every formula ϕ ∈ L(Prop),

N ` ϕ⇐⇒ NS4 ` ϕ�.

Proof. From left to right, we show that NS4 `
(
(p ↔ q) → (¬p ↔ ¬q)

)�
, that

is, NS4 ` �
(
�(�p↔ �q)→ �(��p↔ ��q)

)
. Indeed:

` �(�p↔ �q)→ (��p↔ ��q) By axiom (5)

` ��(�p↔ �q)→ �(��p↔ ��q) By necessitation

` �(�p↔ �q)→ ��(�p↔ �q) By (4)

` �(�p↔ �q)→ �(��p↔ ��q)

` �
(
�(�p↔ �q)→ �(��p↔ ��q)

)
By necessitation

For the other direction, suppose that there exists an N-countermodel of a formula
ϕ. By Lemma 5, this leads to a countermodel for ϕ� in NS4, as desired. ut

The next part of the section aims for a better understanding of the bi-modal
logic NS4 by studying the behaviour of the modality � resulting from the sub-
minimal negation. We hence focus now on proving the following main result.

Theorem 7. The {∧,∨,→,�}-fragment of NS4 is axiomatized by the follow-
ing countably many rules:

(�p1 ∧ · · · ∧�pn)→ (q ↔ r)

(�p1 ∧ · · · ∧�pn)→ (�q ↔ �r)
Rn

for each n ∈ N.

In what follows, we call the logic axiomatized by this countable set of rules EN.
This notation is justified by the fact that classical modal logic is the non-normal
modal logic axiomatized by:

p↔ q

�p↔ �q

and is denoted by E. From the perspective of the N-semantics, the defining rule
of E is expressed by the fact that N lifts to a well-defined function on sets.

First, we give a proof that each of these rules is derivable in NS4. For each
rule, we provide a derivation of the conclusion from the premise in NS4.
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Lemma 6. The rule

(�p1 ∧ · · · ∧�pn)→ (q ↔ r)

(�p1 ∧ · · · ∧�pn)→ (�q ↔ �r)
Rn

is derivable in NS4, for each n ∈ N.

Proof. The case n = 0 is clear. For n > 0, assume (�p1 ∧ · · · ∧�pn)→ (q ↔ r).
But then:

` �pi → ��pi, for i ∈ {1, . . . , n} By axiom (6)

` (�p1 ∧ · · · ∧�pn)→ (��p1 ∧ · · · ∧��pn)

` (�p1 ∧ · · · ∧�pn)→ �(�p1 ∧ · · · ∧�pn) (a)

` �(�p1 ∧ · · · ∧�pn)→ �(q ↔ r) By necessitation

` �(q ↔ r)→ (�q ↔ �r) By axiom (5)

` �(�p1 ∧ · · · ∧�pn)→ (�q ↔ �r) (b)

` (�p1 ∧ · · · ∧�pn)→ (�q ↔ �r) By (a) and (b)

ut

As a consequence, we obtain the following partial result:

Lemma 7. Given a {∧,∨,→,�}-formula ϕ,

EN ` ϕ =⇒ NS4 ` ϕ.

In order to conclude the proof of Theorem 7 we take an EN-countermodel
for a {∧,∨,→,�}-formula ϕ, and build from it an NS4-countermodel for ϕ.
Therefore, we first provide a completeness result for the logic EN.

Consider the modal N-frames 〈W,N〉 where, for every X,Y, Z1, . . . , Zn ∈
P(W ) and n ∈ N, the function N: P(W )→ P(W ) satisfies (En):

N(X)∩N(Z1)∩ · · · ∩N(Zn) = N(X ∩N(Z1)∩ · · · ∩N(Zn))∩N(Z1)∩ · · · ∩N(Zn).

The corresponding notion of model is defined in the standard way. We next show
that Rn is characterized by En.

Proposition 2. For any n ∈ N, a modal N-frame F = 〈W,N〉 satisfies En if
and only if F |= Rn.

Proof. From left to right, consider a frame F = 〈W,N〉 satisfying En, and assume
that for a given valuation V ,

〈F, V 〉 |= (�p1 ∧ · · · ∧�pn)→ (q ↔ r).

This means that:

V (q) ∩N(V (�p1)) ∩ · · · ∩N(V (�pn)) = V (r) ∩N(V (�p1)) ∩ · · · ∩N(V (�pn)).
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Now, suppose 〈F, V 〉, w |= �p1 ∧ · · · ∧�pn, that is,

w ∈ N(V (p1)) ∩ · · · ∩N(V (pn)).

It is now sufficient to prove that w |= �q if and only if w |= �r. Indeed, without
loss of generality, w ∈ N(V (q)) entails

w ∈ N(V (q)) ∩N(V (p1)) ∩ · · · ∩N(V (pn)).

Further, by En we get

w ∈ N(V (q) ∩N(V (p1)) ∩ · · · ∩N(V (pn))) ∩N(V (p1)) ∩ · · · ∩N(V (pn))

that is equivalent to

w ∈ N(V (r) ∩N(V (p1)) ∩ · · · ∩N(V (pn))) ∩N(V (p1)) ∩ · · · ∩N(V (pn))

by our assumption. Therefore, by En again, w ∈ N(V (r)). It follows that F |= Rn.
For the right-to-left direction, we assume F |= Rn, and suppose that there

exist subsets X,Y, Z1, . . . , Zn such that

N(X)∩N(Z1)∩· · ·∩N(Zn) 6= N(X∩N(Z1)∩· · ·∩N(Zn))∩N(Z1)∩· · ·∩N(Zn). (9)

Set V (pi) = Zi for i ∈ {1, . . . , n}, V (q) = X, and V (r) = X∩N(Z1)∩· · ·∩N(Zn),
for propositional variables pi, q, r. But then, V (�pi) = N(Zi), V (�q) = N(X)
and

V (�r) = N(X ∩N(Z1) ∩ · · · ∩N(Zn)).

Take any w ∈ N(Z1) ∩ · · · ∩ N(Zn). Obviously then w ∈ X is equivalent to
w ∈ X ∩N(Z1) ∩ · · · ∩N(Zn), and hence, (�p1 ∧ · · · ∧�pn)→ (q ↔ r) holds in
F. But then, (�p1 ∧ · · · ∧ �pn) → (�q ↔ �r) holds in F as well by Rn, which
contradicts (9). ut

We conclude the completeness proof by means of a canonical model construction.
Consider again the setW of maximally consistent sets of {∧,∨,→,�}-formulas.
For any Γ ∈ W, set R(Γ) := {∆ ∈ W |∀χ(�χ ∈ Γ⇒ �χ ∈ ∆)} and define

N (X) := {Γ ∈ W | (∃�ψ ∈ Γ)(X ∩R(Γ) = |ψ| ∩ R(Γ))}, (10)

for any X ∈ P(W). We need to prove that 〈W,N〉 is an N-frame satisfying En

for each n ∈ N. Consider a sequence of subsets X,Z1, . . . , Zn ⊆ W, and take
Γ ∈ N (Z1) ∩ . . . ∩N (Zn). To show that En holds it will be sufficient to prove

Γ ∈ N (X) if and only if Γ ∈ N (X ∩N (Z1) ∩ · · · ∩ N (Zn)). (11)

By (10), Γ ∈ N (Z1) ∩ . . . ∩ N (Zn) means that, for each i ∈ {1, . . . , n},
there exists �ψi ∈ Γ such that

Zi ∩R(Γ) = |ψi| ∩ R(Γ). (12)
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To prove (11), it suffices to show that ∆ ∈ X ∩ R(Γ) implies ∆ ∈ N (Zi) for
every ∆ ∈ W and every i ∈ {1, . . . , n}. So, assume ∆ ∈ X∩R(Γ). But ∆ ∈ R(Γ)
means, by (12), that for each i ∈ {1, . . . , n}, �ψi ∈ ∆. Moreover, R(∆) ⊆ R(Γ).
So

Zi ∩R(∆) = Zi ∩R(Γ) ∩R(∆) = |ψi| ∩ R(Γ) ∩R(∆) = |ψi| ∩ R(∆),

and hence, ∆ ∈ N (Zi) for each i ∈ {1, . . . , n} by (12) again. By defining now
the canonical valuation as V(p) = |p|, it is standard to prove that ϕ ∈ Γ if and
only if M,Γ |= ϕ, with M = 〈W,N ,V〉. Therefore:

Proposition 3. The logic EN is sound and complete with respect to the N-models
satisfying {En : n ∈ N}.

Now, we endow the canonical model of EN with a reflexive transitive relation
so as to obtain an NS4-model. Set Γ ≤ ∆ if and only if ∆ ∈ R(Γ). It is clear
that N (X) ∈ U(W,≤), for any X ∈ P(W). It suffices to show that Γ ∈ N (X) is
equivalent to Γ ∈ N (X∩R(Γ)), for Γ ∈ W. Indeed, we have Γ ∈ N (X∩R(Γ)) if
and only if X ∩R(Γ)∩R(Γ) = |ψ| ∩R(Γ) for some �ψ ∈ Γ, that is, X ∩R(Γ) =
|ψ| ∩ R(Γ). Therefore, Γ ∈ N (X). The following is now immediate:

Lemma 8. Given a {∧,∨,→,�}-formula ϕ,

NS4 ` ϕ =⇒ EN ` ϕ.

At this point, Theorem 7 follows from Lemmas 7 and 8.

Theorem 7. The {∧,∨,→,�}-fragment of NS4 is axiomatized by the following
countably many rules:

(�p1 ∧ · · · ∧�pn)→ (q ↔ r)

(�p1 ∧ · · · ∧�pn)→ (�q ↔ �r)
Rn

for each n ∈ N.

We conclude the section, and the whole article, with a brief sketch of how
to obtain a modal companion for contraposition logic CoPC. We recall that it
is defined by the axiom (p → q) → (¬q → ¬p). We consider the bi-modal logic
CoS4 obtained by replacing the axiom (5) by

�(p→ q)→ (�q → �p). (13)

The corresponding N-semantics is given by frames F = 〈W,≤,N〉, where 〈W,≤〉
is a poset, and N is antitone, i.e., for X,Y ∈ P(W ),

X ⊆ Y =⇒ N(Y ) ⊆ N(X).

The logic CoPC can be translated into the system obtained by replacing (5)
by (13) via the translation defined at the beginning of the section.
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Theorem 8. For every formula ϕ we have

N ` ϕ⇐⇒ CoS4 ` (ϕ)�.

Proof. For the left-to-right direction, consider the translation of the axiom (p→
q)→ (¬q → ¬p), i.e., �

(
�(�p→ �q)→ �(��q → ��p)

)
. We have:

` �(�p→ �q)→ (��q → ��p) By axiom (13)

` ��(�p→ �q)→ �(��q → ��p) By necessitation

` �(�p→ �q)→ ��(�q → �p) By (4)

` �(�p→ �q)→ �(��q → ��p)

` �
(
�(�p→ �q)→ �(��q → ��p)

)
By necessitation

For the reverse direction, it suffices again to observe that from any N-frame for
CoPC we can obtain an N-frame for CoS4. ut

We finish by highlighting a few further questions and research directions.
First, it is reasonable to expect the {∧,∨,→,�}-fragment of CoS4 to be axiom-
atized by the following countably many rules

(�p1 ∧ · · · ∧�pn)→ (q → r)

(�p1 ∧ · · · ∧�pn)→ (�r → �q)

for n∈N, the argument being similar to the one for Theorem 7. This raises the
question whether there exist finite axiomatizations for the {∧,∨,→,�}-frag-
ments of the considered bi-modal systems.

More generally, the notion and properties of bi-modal companions of sub-
minimal logics naturally lead to the question whether the theory of modal com-
panions of intermediate logics ([10, Section 9.6]) can be paralleled in this case.
For example, do there always exist the least and greatest bi-modal companions
of subminimal logics? Can one prove an analogue of the Blok-Esakia theorem in
this setting? Also the study of the interplay between the two modalities could
be taken further through a comparison with widely studied non-normal modal
logics, such as classical modal logic E and monotonic modal logic M.

Finally, it will be interesting to investigate the relations between our seman-
tics for the logic CoPC and the one proposed by Hazen [17].
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