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Abstract. We introduce a new topological semantics for belief logics in which
the belief modality is interpreted as the interior of the closure of the interior op-
erator. We show that the system wKD45, a weakened version of KD45, is sound
and complete with respect to the class of all topological spaces. While general-
izing the topological belief semantics proposed in [1, 2] to all spaces, we model
conditional beliefs and updates and give complete axiomatizations of the corre-
sponding logics with respect to the class of all topological spaces.
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1 Introduction

Understanding the relation between knowledge and belief is an issue of central impor-
tance in formal epistemology. Especially after the birth of the knowledge-first episte-
mology in [36], the question of what exactly distinguishes an item of belief from an item
of knowledge and how one can be defined in terms of the other has become even more
pertinent. This problem has been tackled from two rather opposite perspectives in the
literature. On the one hand, there has been proposals in the line of justified true belief
account of knowledge (JTB), accepting the conceptual priority of belief over knowl-
edge. According to this approach, one starts with a weak notion of belief (which is at
least justified and true) and tries to reach knowledge by making the chosen notion of
belief stronger in such a way that the defined notion of knowledge would no longer be
subject to Gettier-type counterexamples [15]. Among this category, we can mention the
conception of knowledge as correctly justified belief : not only the content of belief has
to be true, but its justification has to be correct. This approach can be formalized via
topologies under the interior-based semantics (see, e.g., Section 2.2). Other responses
falling under the first category include the defeasibility analysis of knowledge [21, 20],
the sensitivity account [24], the contextualist account [12] and the safety account [29]3.
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The second perspective, on the other hand, challenges the ‘conceptual priority of
belief over knowledge’ [36] and reverts the relation by giving priority to knowledge.
When knowledge has priority, other attitudes (e.g. beliefs) should be explainable or
definable in terms of it. One of the few philosophers who has worked out a formal
system that ties in with this second approach is Stalnaker. In [30], Stalnaker uses a
relational semantics for knowledge based on reflexive, transitive and directed Kripke
models. In his work, he analyses the relation between knowledge and belief and builds
a combined modal system for these notions with the axioms extracted from this analysis.
He intends to capture a strong notion of belief based on the conception of ‘subjective
certainty’

Bϕ→ BKϕ

meaning that believing implies believing that one knows [30, p. 179]. Stalnaker refers
to this concept as ‘strong belief’, but following our previous work [1, 2] we prefer to
call it full belief. In fact, the above axiom holds biconditionally in his system and be-
lief therefore becomes subjectively indistinguishable from knowledge: an agent (fully)
believes ϕ iff she (fully) believes that she knows ϕ [1, 2]. Moreover, Stalnaker argues
that the ‘true’ logic of knowledge is S4.2 and that (full) belief can be defined as the
epistemic possibility of knowledge. More precisely,

Bϕ = ¬K¬Kϕ

meaning that an agent believes ϕ iff she does’t know that she does’t know ϕ4. He more-
over states that his system embeds the logic of belief KD45 when B is defined as 〈K〉K5

(and K is an S4.2 modality).
In [1, 2] Stalnaker’s semantics was generalized from a relational setting to a topo-

logical setting. In particular, a topological semantics was given for full belief extending
the interior semantics for knowledge with a semantic clause for the belief modality via
the closure of the interior operator and it was shown that the proposed semantics on
extremally disconnected spaces constitutes the canonical (most general) semantics for
Stalnaker’s axiom. In this way, Stalnaker’s formalization was generalized by making
it independent from its relational semantics. [1, 2] focused on the unimodal cases for
knowledge and belief and proved that while the knowledge logic of extremally discon-
nected spaces under the interior-based semantics is indeed S4.2, its belief logic under
the proposed topological semantics is KD45. In this paper (Section 3), we give a brief
overview of the work done in [1, 2]. We refer to [1, 2] for a more detailed discussion.
This framework, however, comes with a problem when extended to a dynamic setting
by adding update modalities in order to capture the action of learning (conditioning
with) new ‘hard’ (true) information P, as also elaborated in [2]. Conditioning with new
‘hard’ (true) information P is commonly modelled by deleting the ‘non-P’ worlds from
the initial model. Its natural topological analogue, as recognized in [5, 6, 38] (among
others) and also applied in [2], is a topological update operator, using the restriction of
the original topology to the subspace induced by the set P. In order for this interpre-
tation to be successfully implemented, the subspace induced by the new information

4 For a more detailed discussion on Stalnaker’s approach, we refer the reader to [2].
5 〈K〉 denotes the dual of K, i.e., ¬K¬ϕ := 〈K〉ϕ.



P should possess the same structural properties as the initial topology that renders the
axioms of the underlying knowledge/belief system sound. More precisely, we demand
the subspace induced by the new information P to be in the class of structures with re-
spect to which the (static) knowledge/belief logics in questions are sound and complete.
However, extremally disconnectedness is not a hereditary property. In other words, it
is not guaranteed that an arbitrary subspace of a given extremally disconnected space
is extremally disconnected. Therefore, the aforementioned topological interpretation of
conditioning with true, hard information cannot be implemented on extremally discon-
nected spaces. In [2], we present a solution for this problem by modelling updates on the
topological spaces whose every subspace is extremally disconnected, i.e., by modelling
updates on hereditarily extremally disconnected spaces.

In this paper, we propose another solution for this problem via arbitrary topological
spaces. More precisely, we do it by introducing a topological semantics for belief based
on all topological spaces in terms of the interior of the closure of the interior operator.
It is important that this semantics coincides with the topological belief semantics intro-
duced in [1, 2] on extremally disconnected space, thus, we here generalize the semantics
proposed in [1, 2] to all topological spaces. Further, while the complete logic of knowl-
edge is actually S4 (McKinsey and Tarski [23]), we show that the complete logic of be-
lief is a weaker system than KD45, namely the logic wKD45. The latter result follows
by translating S4 fully and faithfully into wKD45. The restriction of this translation
to S4.2 coincides with Stannaker’s embedding of KD45 into S4.2. We also formalize
a notion of conditional belief Bϕψ by relativizing the semantic clause for simple belief
modality to the extension of the learnt formula ϕ. We moreover formalize updates 〈!ϕ〉ψ
again as a topological update operator using the restriction of the initial topology to its
subspace induced by the new information ϕ and show that we no longer encounter the
problem about updates risen in the case of extremally disconnected spaces: updates on
all topological spaces are ‘well-behaved’.

We note that the interior of the closure of the interior operator is also interesting
from a purely topological point of view. This operation can be seen as a regulariza-
tion of an open set. Geometrically this operation ‘patches up cracks’ of an open region
(see Section 4.1 for more details on this as well as for an epistemic interpretation of
this operation). Furthermore, from a purely syntactical point of view, part of our work
can be seen as studying the B := K〈K〉K-fragment of the system S4 for K and provid-
ing a complete axiomatization for this modality (which is interpreted as belief (B) in
this particular setting). Given that our work is inspired by Stalnaker’s [30], one natural
question to ask is why we are interested in the K〈K〉K-fragment of S4 rather than the
〈K〉K-fragment as a belief system. In fact, the latter approach, namely logics of belief as
epistemic possibility of knowledge, stemming from knowledge modalities of different
strength, has been of interest in recent years. Klein et al. [19] investigate this fragment
when K is not positively introspective, more precisely, when K is of type KT.2. To the
best of our knowledge, finding a complete axiomatization of the 〈K〉K-fragment of S4
is still an open and interesting question from a proof theoretical perspective. However,
we know that it is neither a normal modal logic nor does it include the (D)-axiom. It
therefore does not form a ‘good’ logic of belief in this particular setting with highly
idealized agents. The K〈K〉K-fragment on the other hand is equivalent to the 〈K〉K-



fragment when K is of S4.2 type. Moreover, it is the only non-empty, positive modality
that is normal in S4 and not equivalent to the knowledge modality K (see e.g., [10,
Ex. 3.14, p.102]). Hence, it is the only alternative for Stalnaker’s belief as subjective
certainty that can satisfy most of the standard axioms of belief.

The paper is structured as follows. In Section 2 we introduce the topological prelim-
inaries used in this paper and present the interior-based topological semantics as well as
its connection to the standard Kripke semantics and to the topological interpretation of
knowledge. Section 3 gives a brief overview of the previous related work. Section 4 and
Section 5 constitute the main parts of this paper: while the former presents a topologi-
cal semantics for belief based on all topological spaces, the latter is concerned with the
topological interpretation of conditional beliefs and updates. In Section 6 we conclude
by giving a summary of our results and pointing out a number of directions for future
research.

2 Background

2.1 Topological Preliminaries

In this section, we introduce the basic topological concepts that will be used throughout
this paper. For more detailed discussion we refer the reader to [13, 14].

A topological space is a pair (X, τ), where X is a non-empty set and τ is a family
of subsets of X containing X and ∅ and is closed under finite intersections and arbitrary
unions. The set X is called a space. The subsets of X belonging to τ are called open
sets (or opens) in the space; the family τ of open subsets of X is called a topology on X.
Complements of open sets are called closed sets. An open set containing x ∈ X is called
an open neighbourhood of x. The interior Int(A) of a set A ⊆ X is the largest open set
contained in A whereas the closure Cl(A) of A is the least closed set containing A. It is
easy to see that Cl is the De Morgan dual of Int (and vice versa) and can be written as
Cl(A) = X \ Int(X \ A). Moreover, the set of boundary points of a set A ⊆ X, denoted by
Bd(A), is defined as Bd(A) = Cl(A) \ Int(A).

2.2 The Interior Semantics for Modal (Epistemic) Logic

In this section we provide the formal background for the aforementioned interior-based
topological semantics for modal (epistemic) logic that originated in the work of McK-
insey and Tarski [23]. Moreover, we present important completeness results concerning
logics of knowledge S4, S4.2 and S4.3 based on the interior semantics, explain the
connection between the interior and standard Kripke semantics, and focus on the topo-
logical (evidence-based) interpretation of knowledge.
Syntax. We consider the standard unimodal (epistemic) language LK with a countable
set of propositional letters Prop, Boolean operators ¬ and ∧ and a modal operator K.
Formulas of LK are defined as usual by the following grammar

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ

where p ∈ Prop. Abbreviations for the connectives ∨,→,↔ are standard. Moreover, the
existential modal operator 〈K〉 and ⊥ are defined as 〈K〉ϕ := ¬K¬ϕ and ⊥ := p ∧ ¬p,



Semantics. Given a topological space (X, τ), we define a topological model (or simply
a topo-model) asM = (X, τ, ν) where ν : Prop→ P(X) is a valuation function.

Definition 1 Given a topo-model M = (X, τ, ν), we define the interior semantics for
the language LK recursively as:

M, x |= p iff x ∈ ν(p)
M, x |= ¬ϕ iff notM, x |= ϕ
M, x |= ϕ ∧ ψ iff M, x |= ϕ andM, x |= ψ
M, x |= Kϕ iff (∃U ∈ τ)(x ∈ U ∧ ∀y ∈ U, M, y |= ϕ)

where p ∈ Prop 6.

We let [[ϕ]]M = {x ∈ X | M, x |= ϕ} denote the extension of a modal formula ϕ in a
topo-modelM, i.e., the extension of a formula ϕ in a topo-modelM is defined as the set
of points inM satisfying ϕ. We skip the index when it is clear in which model we are
working. It is now easy to see that [[Kϕ]] = Int([[ϕ]]) and [[〈K〉ϕ]] = Cl([[ϕ]]). We use this
extensional notation throughout the paper as it makes clear the fact that the modalities,
K and 〈K〉, are interpreted in terms of specific and natural topological operators. More
precisely, K and 〈K〉 are modelled as the interior and the closure operators, respectively.

We say that ϕ is true in a topo-modelM = (X, τ, ν) if [[ϕ]]M = X, and that ϕ is valid
in (X, τ) if [[ϕ]]M = X for all topo-modelsM based on (X, τ), and finally we say that ϕ
is valid in a class of topological spaces if ϕ is valid in every member of the class [33].
Soundness and completeness with respect to the interior semantics are defined as usual.

Theorem 1 ([23]) S4 is sound and complete with respect to the class of all topological
spaces under the interior semantics.

Topological interpretation of knowledge: open sets as pieces of evidences. One of
the reasons as to why the interior operator is interpreted as knowledge is that the Ku-
ratowski properties (see, e.g., [13, 14]) of the interior operator amount to S4 axioms
written in topological terms. This implies that (as we can also read from Theorem 1),
topologically, knowledge is Truthful

Kϕ→ ϕ,

Positively Introspective
Kϕ→ KKϕ,

but not necessarily Negatively Introspective

¬Kϕ→ K¬Kϕ.

From a philosophical point of view, the principle of Negative Introspection is arguably
the most controversial axiom regarding the characterization of knowledge. It leads to
some undesirable consequences, such as Voorbraak’s paradox (see e.g., [35, 1]), and
is rejected by some prominent people in the field such as Hintikka [17], Lenzen [22],
Stalnaker [30] (among others).

6 Originally, McKinsey and Tarski [23] introduce the interior semantics for the basic modal
language. Since we talk about this semantics in the context of knowledge, we use the basic
epistemic language.



Another argument in favour of knowledge as the interior operator conception is
of a more ‘semantic’ nature: the interior semantics provides a deeper insight into the
evidence-based interpretation of knowledge. We can interpret opens in a topological
model as ‘pieces of evidence’ and, in particular, open neighborhoods of a state x as
the pieces of true (sound, correct) evidence that are observable by the agent at state x.
If an open set U is included in the extension of a proposition ϕ in a topo-model M,
i.e. if U ⊆ [[ϕ]]M, we say that the piece of evidence U entails (supports, justifies) the
proposition ϕ. Recall that, for any topo-modelM = (X, τ, ν), any x ∈ X and any ϕ ∈ LK ,
we have

x ∈ [[Kϕ]]M iff (∃U ∈ τ)(x ∈ U ∧ U ⊆ [[ϕ]]M).

Thus, taking open sets as pieces of evidence and in fact open neighbourhoods of a point
x as true pieces of evidence (that the agent can observe at x), we obtain the following
evidence-based interpretation for knowledge: the agent knows ϕ iff she has a true piece
of evidence U that justifies ϕ. In other words, knowing ϕ is the same as having a correct
justification for ϕ. The necessary and sufficient conditions for one’s belief to qualify as
knowledge consist in it being not only truthful, but also in having a correct (evidential)
justification. Therefore, the interior semantics implements the widespread intuitive re-
sponse to Gettier’s challenge: knowledge is correctly justified belief (rather than being
simply true justified belief) [1, 2].

Connection between Kripke frames and topological spaces. The interior semantics
is closely related to the standard Kripke semantics of S4 (and of its normal extensions):
every reflexive and transitive Kripke frame corresponds to a special kind of (namely,
Alexandroff) topological spaces.

Let us now fix some notation and terminology. We denote a Kripke frame by F =

(X,R), a Kripke model by M = (X,R, ν) and ‖ϕ‖M denotes the extension of a formula
ϕ in a Kripke model M = (X,R, ν)7. A topological space (X, τ) is called Alexandroff
if τ is closed under arbitrary intersections, i.e.,

⋂
A ∈ τ for any A ⊆ τ. Equivalently,

a topological space (X, τ) is Alexandroff iff every point in X has a least neighborhood.
As mentioned, there is a one-to-one correspondence between reflexive and transitive
Kripke frames and Alexandroff spaces. More precisely, given a reflexive and transitive
Kripke frame F = (X,R), we can construct a topological space, indeed an Alexandroff

space, X = (X, τR) by defining τR to be the set of all upsets8 of F . Moreover, the
evaluation of modal formulas in a reflexive and transitive Kripke model coincides with
their evaluation in the corresponding (Alexandroff) topological space (see e.g., [26, p.
306]). As a result of this connection, the Kripke completeness of the normal extensions
of S4 implies topological completeness under the interior semantics (see, e.g., [33]).
Normal extensions of S4: the logics S4.2 and S4.3. There are two other knowledge
systems, namely S4.2 and S4.3 , that are of particular interest for us. Both S4.2 and S4.3
are strengthenings of S4 which are defined as

S4.2 := S4 + 〈K〉Kϕ→ K〈K〉ϕ, and
S4.3 := S4 + K(Kϕ→ ψ) ∨ K(Kψ→ ϕ)

7 The reader who is not familiar with the standard Kripke semantics is referred to [8, 11] for an
extensive introduction to the topic.

8 A set A ⊆ X is called an upset of (X,R) if for each x, y ∈ X, xRy and x ∈ A imply y ∈ A.



where L + ϕ denotes the smallest logic containing L and ϕ.
We recall that a topological space (X, τ) is extremally disconnected if the closure

of every open subset of X is open and it is hereditarily extremally disconnected if
every subspace of (X, τ) is extremally disconnected. We here would like to remind that
extremally disconnectedness is, in general, not a hereditary property9.

Theorem 2 (cf. [33]) S4.2 is sound and complete with respect to the class of extremally
disconnected spaces under the interior semantics.

Theorem 3 ([2, 7]) S4.3 is sound and complete with respect to the class of hereditarily
extremally disconnected spaces under the interior semantics.

We note that the completeness parts of Theorems 2 and 3 follow from the Kripke
completeness of S4.2 and S4.3 (which is a direct consequence of the Sahlqvist theorem)
and the fact that Alexandroff spaces corresponding to transitive, reflexive and directed
Kripke frames (S4.2-frames) are extremally disconnected and Alexandroff spaces cor-
responding to reflexive and transitive Kripke frames with no branching to the right
(S4.3-frames) are hereditarily extremally disconnected. The soundness with respect to
the topological semantics, however, needs some argumentation. The detailed proofs
can be found in [33, p. 253] and [7, Proposition 3.1]. The logical counterpart of the
fact that extremally disconnected spaces (S4.2-spaces) are not closed under subspaces
is that S4.2 is not a subframe logic [10, Sec. 9.4]. The logical counterpart of the fact
that hereditarily extremally disconnected spaces (S4.3-spaces) are extremally discon-
nected spaces closed under subspaces is that the subframe closure of S4.2 is S4.3, see
[37, Sec. 4.7]. For examples of extremally disconnected and hereditarily extremally
disconnected spaces, we refer to [2, 7, 28].

3 The Topology of Full Belief: Overview of [1]

3.1 Stalnaker’s Combined Logic of Knowledge and Belief

In his paper [30], Stalnaker focuses on the properties of knowledge and belief and the
relation between the two and he approaches the problem of understanding the con-
crete relation between knowledge and belief from an unusual perspective. Unlike most
research in the formal epistemology literature, he starts with a chosen notion of knowl-
edge and weakens it to obtain belief. He bases his analysis on a conception of belief as
‘subjective certainty’: from the point of the agent in question, her belief is subjectively
indistinguishable from her knowledge [1]. In this section, we briefly recall Stalnaker’s
proposal of the ‘true’ logic of knowledge and belief. Throughout this paper, following
[1, 2, 25], we will refer to Stalnaker’s notion as ‘full belief’.

The bimodal language LKB of knowledge and (full) belief is obtained by extending
LK by a belief modality B:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ.

We define the doxastic possibility modality 〈B〉ϕ by ¬B¬ϕ. We call Stalnaker’s system,
given in the following table, KB:

9 A topological property is said to be hereditary if for any topological space (X, τ) that has the
property, every subspace of (X, τ) also has it [14, p. 68].



Stalnaker’s Axioms
(K) K(ϕ→ ψ)→ (Kϕ→ Kψ) Knowledge is additive
(T) Kϕ→ ϕ Knowledge implies truth

(KK) Kϕ→ KKϕ Positive introspection for K
(CB) Bϕ→ ¬B¬ϕ Consistency of belief
(PI) Bϕ→ KBϕ (Strong) positive introspection of B
(NI) ¬Bϕ→ K¬Bϕ (Strong) negative introspection of B
(KB) Kϕ→ Bϕ Knowledge implies Belief
(FB) Bϕ→ BKϕ Full Belief

Inference Rules
(MP) From ϕ and ϕ→ ψ infer ψ. Modus Ponens

(K-Nec) From ϕ infer Kϕ. Necessitation

Table 1. Stalnaker’s System KB

We refer to [1, 2, 25] for a discussion on the axioms of KB and continue with some
conclusions of philosophical importance derived by Stalnaker in [30] and stated in the
following proposition:

Proposition 1 (Stalnaker [30]) The following equivalence is provable in the system
KB:

Bϕ↔ 〈K〉Kϕ. (1)

Moreover, the axioms (K) B(ϕ → ψ) → (Bϕ → Bψ), (D) Bϕ → 〈B〉ϕ, (4) Bϕ → BBϕ,
(5) ¬Bϕ → B¬Bϕ of the system KD45 and the (.2)-axiom 〈K〉Kϕ → K〈K〉ϕ of the
system S4.2 are provable in KB.

Proposition 1 thus shows that full belief is definable in terms of knowledge as ‘epis-
temic possibility of knowledge’ via equivalence (1), the ‘true’ logic of belief is KD45
and the ‘true’ logic of knowledge is S4.2 (see [2] for the proof).

3.2 The Topological Semantics of Full Belief

In [1, 2, 25], a topological semantics for full belief and knowledge is proposed by ex-
tending the interior semantics for knowledge with a semantic clause for belief. The
belief modality B is interpreted as the closure of the interior operator on extremally
disconnected spaces. Several topological soundness and completeness results for both
bimodal and unimodal cases, in particular for KB and KD45, with respect to the pro-
posed semantics are also proved. We now briefly overview the topological semantics
for full belief introduced in [1, 2, 25] and state the completeness results. The proofs can
be found in [2, 25].

Definition 2 (Topological Semantics for Full Belief and Knowledge) Given a topo-
modelM = (X, τ, ν), the semantics for the formulas inLKB is defined for Boolean cases
and Kϕ the same way as in the interior semantics. The semantics for Bϕ is defined as

[[Bϕ]]M = Cl(Int([[ϕ]]M)).



Truth and validity of a formula, soundness and completeness are defined the same way
as in the interior semantics.

Proposition 2 A topological space validates all the axioms and rules of Stalnaker’s
system KB (under the semantics given above) iff it is extremally disconnected.

Theorem 4 The sound and complete logic of knowledge and belief on extremally dis-
connected spaces is given by Stalnaker’s system KB.

Besides, as far as full belief is concerned, the above topological semantics con-
stitutes the most general extensional semantics for Stalnaker’s system KB [1, 2, 25].
Moreover, Stalnaker’s combined logic of knowledge and belief yields the system S4.2
as the unimodal logic of knowledge and the system KD45 as the unimodal logic of
belief (see Proposition 1). It has been already proven that S4.2 is complete with respect
to the class of extremally disconnected spaces under the interior semantics. This raises
the question of topological soundness and completeness for KD45 under the proposed
semantics for belief in terms of the closure and the interior operator:

Theorem 5 ([1, 2, 25]) KD45 is sound and complete with respect to the class of ex-
tremally disconnected spaces under the topological belief semantics.

Theorem 5 therefore shows that the belief logic of extremally disconnected spaces
is KD45 when B is interpreted as the closure of the interior operator. These results on
extremally disconnected spaces, however, encounter problems when extended to a dy-
namic setting by adding update modalities formalized as model restriction by means of
subspaces.

Topological semantics for update modalities. We now consider the language L!KB

obtained by adding to the language LKB (existential) dynamic update modalities 〈!ϕ〉ψ
meaning that ϕ is true and after the agent learns ϕ, ψ becomes true. As also observed
in [5, 6, 38], the topological analogue of updates corresponds to taking the restriction of
a topology τ on X to a subset P ⊆ X, i.e., it corresponds to the restriction of the original
topology to its subspace induced by the new, true information P.

Given a topological space (X, τ) and a non-empty set P ⊆ X, a space (P, τP) is called
a subspace of (X, τ) where τP = {U ∩ P : U ∈ τ}.

For a topo-model (X, τ, ν) and ϕ ∈ L!KB, we denote by Mϕ the restricted model
Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]]) where [[ϕ]] = [[ϕ]]M and ν[[ϕ]](p) = ν(p) ∩ [[ϕ]] for any p ∈
Prop. Then, the semantics for the dynamic language L!KB is obtained by extending the
semantics for LKB with:

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .

To explain the problem: Given that the underlying static logic of knowledge and
belief is the logic of extremally disconnected spaces (see e.g., Theorems 2, 4 and 5) and
extremally disconnectedness is not inherited by arbitrary subspaces, we cannot guar-
antee that the restricted model induced by an arbitrary formula ϕ remains extremally
disconnected. Under the topological belief semantics, both the (K)-axiom (also known
as the axiom of Normality) B(ϕ ∧ ψ) ↔ (Bϕ ∧ Bψ) and the (D)-axiom (also named as



the Consistency of Belief ) Bϕ→ 〈B〉ϕ characterize extremally disconnected spaces [25,
2]. Therefore, if the restricted model is not extremally disconnected, the agent comes to
have inconsistent beliefs after an update with true information: the formula Bϕ ∧ B¬ϕ
is satisfiable in a non-extremally disconnected topo-model. For an example illustrating
this problem, we refer to [2, p. 21].

One possible solution for this problem is a further limitation on the class of spaces
we work with: we can restrict our attention to hereditarily extremally disconnected
spaces, thereby, we guarantee that no model restriction leads to inconsistent beliefs.
As the logic of hereditarily extremally disconnected spaces under the interior semantics
is S4.3, the underlying static logic, in this case, would consist in S4.3 as the logic of
knowledge but again KD45 as the logic of belief. In [2], we examine this solution. In
this paper, we present another solution which approaches the issue from the opposite
direction: we propose to work with all topological spaces instead of working with a
restricted class. This solution, unsurprisingly, leads to a weakening of the underlying
static logic of knowledge and belief. As we already mentioned earlier, it is a classic
result that the knowledge logic of all topological spaces is S4 and here we will explore
the (weak) belief logic of all topological spaces under the topological belief semantics.

4 The Topology of Weak Belief

4.1 Topological semantics of weak belief

Recall that given an extremally disconnected space (X, τ), we have

Cl(Int(A)) = Int(Cl(Int(A)))

for any A ⊆ X. Hence, given a topo-model M = (X, τ, ν), the semantic clause for the
belief modality can be written in the following equivalent forms

[[Bϕ]]M
(1)
= Cl(Int([[ϕ]]M))

(2)
= Int(Cl(Int([[ϕ]]M)))

if (X, τ) is an extremally disconnected space. However, Cl(Int(A)) = Int(Cl(Int(A))) is
not always the case for all topological spaces and all A ⊆ X; the equation demands
the restriction to extremally disconnected spaces. Besides, if we evaluate B as the clo-
sure of the interior operator on all topological spaces, we obtain that neither the (K)-
axiom nor the (D)-axiom is sound. Syntactically speaking, B defined as 〈K〉K does not
yield a ‘good’ logic of belief when K is an S4-type modality: 〈K〉K is neither nor-
mal nor does satisfy the (D)-axiom. Moreover, purely S4-type knowledge could not
have been what Stalnaker had in mind while considering B as 〈K〉K since this would
violate his principles (CB) and (PI). Moreover, given that K is interpreted as the inte-
rior operator on topological spaces, equation (1) makes the schema Bϕ ↔ 〈K〉Kϕ and
equation (2) makes the schema Bϕ ↔ K〈K〉Kϕ valid on all topological spaces. While
S4.2 ` 〈K〉Kϕ ↔ K〈K〉Kϕ, we have S4 0 〈K〉Kϕ ↔ K〈K〉Kϕ and B as K〈K〉K is
the only alternative holding the property of being equivalent to 〈K〉K in S4.2 and being
not equivalent to 〈K〉K in S4. Moreover, K〈K〉K is the only non-empty and positive
modality that is normal and is not equivalent to knowledge in S4 [10, Ex. 3.14, p.102].
Therefore, a notion of belief that works well on all topological spaces and coincides



with Stalnaker’s belief as subjective certainty on extremally disconnected spaces de-
mands the alternative interpretation of belief in terms of the interior of the closure of
the interior operator. We thus concentrate on the latter equation: we interpret B as the
interior of the closure of the interior operator on all topological spaces.
Semantics. Let M = (X, τ, ν) be a topo-model. The semantic clauses for the proposi-
tional variables and the Boolean connectives are the same as in the interior semantics.
For the modal operator B, we put

[[Bϕ]]M = Int(Cl(Int([[ϕ]]M)))

and the semantic clause for 〈B〉 is easily obtained as

[[〈B〉ϕ]]M = Cl(Int(Cl([[ϕ]]M))).

Validity of a formula is defined as usual. We call this semantics w-topological belief
semantics referring to the system wKD45 for which we will prove soundness and com-
pleteness. This way we distinguish it from the topological belief semantics presented
in Section 3.2 w.r.t. to which we proved the soundness and completeness of the system
KD45.

Our new topological interpretation of belief also comes with intrinsic philosoph-
ical motivation that fits well with the topologically defined notions of closeness and
small/negligible sets. To elaborate, it is well-known that the closure operator represents
a topological conception of ‘closeneess’. Intuitively speaking, we can read x ∈ Cl(A)
as x is very close to the set A, i.e., it cannot be sharply distinguished from the elements
of A via an open set. Therefore, recalling that K is interpreted as the interior modal-
ity, according to the semantics for (full) belief in terms of the closure and the interior
operator introduced in Section 3.2, ‘the agent fully believes ϕ at a state x iff she can-
not sharply distinguish x from the worlds in which she has knowledge of ϕ’ [2, p. 24].
Therefore, full belief is very close to knowledge when ‘close’ is interpreted topologi-
cally [2]. This interpretation in fact captures the notion of belief as subjective certainty.
Our new interpretation of belief in terms of the interior of the closure of the interior op-
erator [[Bϕ]] = Int(Cl([[Kϕ]])), on the other hand, makes the connection between these
two notions even stronger: the belief operator interpreted this way comes even closer to
knowledge, yet does not coincide with it. According to the new interpretation of belief,
the agent believes ϕ at a state x iff there exists an open neighbourhood U of x such that
U ⊆ Cl([[Kϕ]]). This implies, since [[Kϕ]] is open, that x ∈ U ⊆ [[Kϕ]] ∪ Bd([[Kϕ]]),
where Bd([[Kϕ]]) is the set of boundary points of [[Kϕ]]. As U ⊆ [[Kϕ]] ∪ Bd[[Kϕ]],
the set U ∩ [[¬Kϕ]] = U ∩ Bd([[Kϕ]]) and it is possibly non-empty. Thus, it is still not
guaranteed that the agent can distinguish the states in which she knows ϕ from the ones
in which she does not. However,

U ∩ [[¬Kϕ]] = U ∩ Bd([[Kϕ]]) ⊆ Bd([[Kϕ]])

and, since [[Kϕ]] = Int[[ϕ]] is an open set, Bd([[Kϕ]]) is nowhere dense10. Therefore, U∩
[[¬Kϕ]] is also nowhere dense. As nowhere dense sets constitute one of the topological
notions of ‘small, negligible sets’ and U ⊆ [[Kϕ]]∪Bd([[Kϕ]]), we can say that the agent
believes ϕ at x iff she can almost sharply distinguish x from the states in which she does

10 A subset A ⊆ X is called nowhere dense in (X, τ) if Int(Cl(A)) = ∅.



not know ϕ. The part of U that is consistent with ¬Kϕ is topologically negligibly small.
We therefore further argue that this is the “closest-to-knowledge” notion of belief that
can be defined in terms of the topological tools at hand and that is not identical with the
notion of knowledge taken as the primitive operator.

Topologically, our new belief operator behaves like a ‘regularization’ operator for
the opens in a topology. Given a topological space (X, τ), we can define B : τ→ τ such
that B(U) = Int(Cl(U)). Therefore, B takes an open set and makes it regular open11. In
fact, for any open set U ∈ τ, the set Int(Cl(U)) is the smallest regular open such that
U ⊆ Int(Cl(U))12. Therefore, this operator extends an open set in a minimal way by
gluing its holes and cracks together. To illustrate, consider the natural topology on the
real line (R, τ) and let P = [−2, 3) ∪ (3, 5) ∪ {7}.

[
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Fig. 1. (R, τ)

We have Int(P) = (−2, 3)∪(3, 5) and Int(P) is not regular open. However, B(Int(P)) =

Int(Cl(Int(P))) = (−2, 5), which is the smallest regular open containing Int(P). Simi-
larly, on the Euclidean plane, the belief operator patches up the cracks of an open set
(see Figure 2).

=⇒

IntCl

Fig. 2. From U to Int(Cl(U))

4.2 The axiomatization of wKD45

We define the logic wKD45 as

wKD45 = K + (Bϕ→ 〈B〉ϕ) + (Bϕ→ BBϕ) + (B〈B〉Bϕ→ Bϕ)

and call it weak KD45. This logic is weaker than KD45 since it is obtained by replacing
the (5)-axiom with the axiom B〈B〉Bϕ→ Bϕ, and while B〈B〉Bϕ→ Bϕ is a theorem of

11 A subset A ⊆ X of a topological space (X, τ) satisfying the condition A = Int(Cl(A) is called
regular open [14].

12 In fact, for any A ⊆ X, the set Int(Cl(A)) is regular open, however, it is not always the case that
A ⊆ Int(Cl(A)).



KD45, the (5)-axiom is not a theorem of wKD45. More precisely, KD45 ` B〈B〉Bϕ→
Bϕ but wKD45 0 〈B〉ϕ→ B〈B〉ϕ. We find it hard to give a direct and clear interpretation
for this axiom as is given for the axiom of Negative Introspection, since it is too complex
in the sense that it includes three consecutive modalities. However, we can interpret it on
the basis of the axioms that we have already given an interpretation, in particular, based
on the interpretation of Negative Introspection. It is easier to see the correspondence if
we state the weak axiom in the following equivalent form:

¬Bϕ→ 〈B〉B¬Bϕ.

Recall that the principle of Negative Introspection says that if an agent does not believe
ϕ, then she believes that she does not believe ϕ. On the other hand, taking the reading
of Negative Introspection as the reference point, a direct doxastic reading for this ax-
iom is if the agent does not believe ϕ, then it is doxastically possible to her that she
believes that she does not believe ϕ. Therefore, in this section, we work with consistent,
positively introspective yet not fully negatively introspective belief. This weakened sys-
tem wKD45 stands between KD4 and KD45. While the latter is commonly used as the
standard logic for belief, the former has also been studied as a belief system [16, 31,
32].

4.3 Soundness and Completeness of wKD45

In this section, we prove that wKD45 for B is sound and complete with respect to the
class of all topological spaces. Soundness proof can be presented in a standard way
by checking the validity of the axioms and inference rules of wKD45 with respect
to the w-topological belief semantics. We leave this proof to the reader and argue for
soundness in a different way. For completeness, we follow a technique which allows us
to reduce the completeness problem of wKD45 to the topological completeness of S4
in the interior semantics. We do this so by defining a translation (.)~ from the doxastic
language LB to the epistemic language LK such that for any ϕ ∈ LB, we obtain

S4 ` ϕ~ iff wKD45 ` ϕ.

Although we only need the direction from left-to-right for completeness, the other di-
rection comes almost for free and we use this direction to argue for soundness. The
above implication can be seen as the key intermediate result for the topological com-
pleteness proof of wKD45. In order to reach this result, we also make use of soundness
and completeness of S4 and wKD45 in the standard Kripke semantics. Moreover, we
believe that the full and faithful translation of wKD45 into S4 given by (.)~ is also of
interest from a purely modal logical perspective. It implies that the K〈K〉K-fragment
of S4 is wKD45. In the same way, a full and faithful translation of KD45 into S4.2
given by the 〈K〉K-modality implies that the 〈K〉K-fragment of S4.2 is KD45 [2]. To
the best of our knowledge it is still an (interesting) open question how to axiomatize the
(non-normal) modal logic L which is the 〈K〉K-fragment of S4.

Throughout this section, we use the notation [ϕ]M for the extension of a formula
ϕ ∈ LK w.r.t. the interior semantics in order to make clear in which semantics we work.
We reserve the notation [[ϕ]]M for the extensions of the formulas ϕ ∈ LB w.r.t. the
w-topological belief semantics. We skip the index when confusion is unlikely to occur.



Definition 3 (Translation (.)~ : LB → LK) For any ϕ ∈ LB, the translation (ϕ)~ of ϕ
into LK is defined recursively as follows:

1. (p)~ = p, where p ∈ Prop 3. (ϕ ∧ ψ)~ = ϕ~ ∧ ψ~

2. (¬ϕ)~ = ¬ϕ~ 4. (Bϕ)~ = K〈K〉Kϕ~

Note that (〈B〉ϕ)~ = 〈K〉K〈K〉ϕ~.

Proposition 3 For any topo-modelM = (X, τ, ν) and for any formula ϕ ∈ LB we have

[[ϕ]]M = [ϕ~]M.

Proof. We prove the lemma by induction on the complexity of ϕ. The cases for the
propositional variables and Booleans are straightforward. Now let ϕ = Bψ, then

[[ϕ]]M =[[Bψ]]M

=Int(Cl(Int([[ψ]]M))) (by the w-topological belief semantics for LB)

=Int(Cl(Int([ψ~]M))) (by I.H.)

=[K〈K〉Kψ~]M (by the interior semantics for LK)

=[(Bψ)~]M (by the translation ~)

=[ϕ~]M.

We now recall some frame conditions concerning the relational completeness of the
respective systems.

Let (X,R) be a transitive Kripke frame. Recall that a cluster is an equivalence class
wrt the equivalence relation ∼ defined by x ∼ y if xRy and yRx for each x, y ∈ X. We
denote the set of final clusters of (X,R) by CR. A transitive Kripke frame (X,R) having
at least one final cluster is called weakly cofinal if for each x ∈ X there is a C ∈ CR

such that for all y ∈ C we have xRy. In fact, every finite reflexive and transitive frame is
weakly cofinal. We call a weakly cofinal frame a weak brush if X\

⋃
CR is an irreflexive

anti-chain, i.e., for each x, y ∈ X \
⋃
CR we have ¬(xRy). A weak brush with a singleton

X \
⋃
CR is called a weak pin.13 By definition, every weak brush and every weak pin is

transitive and also serial. A transitive frame (X,R) is called rooted, if there is an x ∈ X,
called a root, such that for each y ∈ X with x , y we have xRy. Finally, we say that a
transitive frame (X,R) is of depth n if there is a chain of points x1Rx2R . . .Rxn such that
¬(xi+1Rxi) for any i ≤ n and there is no chain of greater length satisfying this condition.
It is hard to draw a generic picture of a weak brush, but the following figures illustrate
weak pins and how a weak brush could look like (where top squares correspond to final
clusters).

It is well-known that the (D)-axiom corresponds to seriality and the (4)-axiom cor-
responds to transitivity of a Kripke frame, under the standard Kripke interpretation
(see, e.g, [8, Chapter 4]). It is not very hard to see that the contraposition equivalent
〈B〉ϕ→ 〈B〉B〈B〉ϕ of our new axiom B〈B〉Bϕ→ Bϕ is a Sahlqvist formula and the first
order property corresponding to this axiom is

∀x∀y(xRy ⇒ ∃z(xRz ∧ ∀w(zRw⇒ wRy))). (wE)
13 Brushes and pins are introduced in [25] and a similar terminology is used in this paper.
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Fig. 3.
Weak pin

Fig. 4.
An example of a weak brush

Therefore, a wKD45 frame is a serial and transitive Kripke frame satisfying the above
property (wE). We refer the reader to [8, Chapter 3.6] for a more detailed discussion on
Sahlqvist formulas.

Let us recall that a point y in a reflexive and transitive Kripke frame (X,R) is called
quasi-maximal if yRz for some z ∈ X implies zRy.

Lemma 1 A rooted Kripke frame F = (X,R) is a wKD45 frame iff it is a cluster or it
is a weak pin.

Proof. The right-to-left direction is trivial. For the other direction, suppose F = (X,R)
is a rooted wKD45 frame that is not a cluster and assume x ∈ X is the root. As F is
serial, every quasi-maximal point of it is in a final cluster. Hence, for any y ∈ X, y is
a quasi-maximal point iff there is a final cluster C of F such that y ∈ C, i.e. the set of
quasi-maximal points of F is

⋃
CR. Recall that a weak pin is a weakly cofinal frame

with a singleton irreflexive X \
⋃
CR. We hence need to show that (1) x is an irreflexive

point and (2) every successor of x is a quasi-maximal point. Since x is the root and
F = (X,R) is not a cluster, there exists y ∈ X such that xRy and ¬(yRx).

For (1), suppose that we have xRx. Then, by (wE), there exists z0 ∈ X such that
xRz0 and for all w ∈ X with z0Rw, we have wRx. Since R is serial, z0 has at least one
successor w, therefore, it is guarateed that there is at least one element w ∈ X such that
wRx. Since wRxRy and R is transitive, we obtain wRy implying, again by taransitivity,
that z0Ry. Therefore, by (wE), we have yRx, contradicting ¬(yRx). So x is irreflexive.

For (2), suppose there exists y0 ∈ X such that xRy0 and y0 is not a quasi-maximal
element. This means that there is t0 ∈ X such that y0Rt0 but ¬(t0Ry0). By (wE), xRy0 im-
plies that there exists z0 ∈ X such that xRz0 and for all w ∈ X with z0Rw, we have wRy0.
Similarly to the argument above, since it is guaranteed that z0 has at least one successor
w, R is transitive and z0RwRy0Rt0 implies z0Rt0. Therefore, again by (wE), t0Ry0 con-
tradicting our assumption. Thus, every successor of x is a quasi-maximal point. Finally,
(1) and (2) together yield that (X,R) is a weak pin.

Lemma 2

1. Each reflexive and transitive weakly cofinal frame is an S4-frame. Moreover, S4 is
sound and complete w.r.t. the class of finite rooted reflexive and transitive weakly
cofinal frames.

2. Each weak brush is a wKD45-frame. Moreover, wKD45 is sound and complete
w.r.t. the class of finite weak brushes, indeed, w.r.t. the class of finite weak pins.



Proof. (1) is well known, see e.g., [8, 10]. For (2), we proved in Lemma 1 that the
wKD45-frames are of finite depth. It is well known that every logic over K4 that
has finite depth is locally tabular and has the finite model property (e.g., [10, Theo-
rem 12.21]). This implies that wKD45 as well has the finite model property and thus it
has the finite model property w.r.t. finite rooted wKD45-frames. Then by Lemma 1, we
have that wKD45 is in fact complete w.r.t. finite weak brushes and weak pins.

For any reflexive and transitive weakly cofinal frame (X,R) we define RB on X by

xRBy if y ∈
⋃
CR(x)

for each x, y ∈ X, where
⋃
CR(x) = R(x) ∩

⋃
CR. In other words, RB(x) =

⋃
CR(x) for

each x ∈ X. Moreover, we have the following equivalence.

Lemma 3 For any reflexive and transitive weakly cofinal frame (X,R) we have⋃
CRB =

⋃
CR.

Proof. Let (X,R) be a reflexive and transitive weakly cofinal frame and x ∈ X.
(⊆) Suppose x ∈

⋃
CRB and x <

⋃
CR. Then x ∈

⋃
CRB means that x ∈ C for

some C ∈ CRB . As C is a final cluster, there is no y ∈ X such that xRBy and ¬(yRBx).
On the other hand, since (X,R) is a weakly cofinal frame, there is a C′ ∈ CR such
that xRz for all z ∈ C′. Hence, C′ ⊆

⋃
CR(x). Thus, by the definition of RB, we have

C′ ⊆ RB(x). However, as x <
⋃
CR, we have that ¬(zRx) and thus ¬(zRBx) for any

z ∈ C′ contradicting x ∈ C for a final cluster C of (X,RB). In fact, there is a unique
C ∈ CRB such that RB(x) = C since C is a final cluster.

(⊇) Suppose x ∈
⋃
CR. Then, there is a (unique) C ∈ CR such that x ∈ C and

in fact R(x) = C. Also suppose that x <
⋃
CRB . Hence, there is a y0 ∈ X such that

xRBy0 and ¬(y0RBx). Then, y0 ∈
⋃
CR(x) but x <

⋃
CR(y0) by definition of RB. By

definition of RB, we have that xRBy0 implies xRy0. Hence, as y0 ∈ R(x), we also have
R(y0) = R(x) = C. Thus,

⋃
CR(y0) =

⋃
CR(x). As R is reflexive, x ∈

⋃
CR(x) and hence

x ∈
⋃
CR(y0) contradicting ¬(y0RBx).

Lemma 4 For any reflexive and transitive weakly cofinal Kripke modelM = (X,R, ν),
any ϕ ∈ LK and any x ∈ X, we have⋃

CR(x) ⊆ ‖ϕ‖
M iff x ∈ ‖K〈K〉Kϕ‖M.

Proof. Let M = (X,R, ν) be a reflexive and transitive weakly cofinal model, ϕ ∈ LK

and x ∈ X.
(⇒) Suppose

⋃
CR(x) ⊆ ‖ϕ‖

M. Let y ∈ X be such that xRy. As R is transitive and
xRy, we have R(y) ⊆ R(x) implying that

⋃
CR(y) ⊆

⋃
CR(x). Hence, by our assumption,⋃

CR(y) ⊆ ‖ϕ‖
M. Thus, there is a C ∈ CR such that C ⊆ R(y) and C ⊆ ‖ϕ‖M. Since for

all z ∈ C, we have R(z) = C and C ⊆ ‖ϕ‖M, we obtain C ⊆ ‖Kϕ‖M. As C ⊆ R(y), we
have y ∈ ‖〈K〉Kϕ‖M. Therefore, as y has been chosen arbitrarily from R(x) we obtain
x ∈ ‖K〈K〉Kϕ‖M.

(⇐) Suppose
⋃
CR(x) * ‖ϕ‖

M. This implies that there exists a y ∈
⋃
CR(x) such that

y < ‖ϕ‖M. Now y ∈
⋃
CR(x) implies that there is a C ∈ CR such that R(y) = C and

R(y) ⊆ R(x). As zRy for all z ∈ C and y < ‖ϕ‖M, we have z < ‖Kϕ‖M for all z ∈ C. Then,
R(y) = C yields y < ‖〈K〉Kϕ‖M. Finally, since xRy, we obtain x < ‖K〈K〉Kϕ‖M.



Lemma 5 For any reflexive and transitive weakly cofinal frame (X,R),

1. (X,RB) is a weak brush.
2. For any valuation ν on X and for each formula ϕ ∈ LB we have ‖ϕ~‖M = ‖ϕ‖MB ,

whereM = (X,R, ν) andMB = (X,RB, ν).

Proof. Let (X,R) be a reflexive and transitive weakly cofinal frame.

1. – Transitivity: Let x, y, z ∈ X such that xRBy and yRBz. This means that y ∈⋃
CR(x) and z ∈

⋃
CR(y). As R is transitive and xRy we have

⋃
CR(y) ⊆

⋃
CR(y).

Hence, z ∈
⋃
CR(x), i.e., xRBz.

– Seriality: Let x ∈ X. Since (X,R) is weakly cofinal, there is a y ∈
⋃
CR(x), i.e.,

xRBy.
– Irreflexive, antichain: Suppose there is an x ∈ X \

⋃
CRB such that xRBx. This

implies, x ∈
⋃
CR(x), thus, x ∈

⋃
CR. By Lemma 3, x ∈

⋃
CRB which contra-

dicts our assumption. Moreover, suppose that X \
⋃
CRB is not an antichain,

i.e., there are x, y ∈ X \
⋃
CRB such that either xRBy or yRBx. W.l.o.g., assume

xRBy. Hence, by definition of RB, we have y ∈
⋃
CR(x). Thus, y ∈

⋃
CR and, by

Lemma 3, y ∈
⋃
CRB contradicting y ∈ X \

⋃
CRB .

2. We prove this item by induction on the complexity of ϕ. Let M = (X,R, ν) be a
model on (X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are straightfor-
ward. Now let ϕ = Bψ.
(⊆) Let x ∈ ‖(Bψ)~‖M = ‖K〈K〉Kψ~‖M. Then, by Lemma 4,

⋃
CR(x) ⊆ ‖ψ

~‖M. By
I.H, we obtain

⋃
CR(x) ⊆ ‖ψ‖

MB . Since
⋃
CR(x) = RB(x), we have RB(x) ⊆ ‖ψ‖MB

implying that x ∈ ‖Bψ‖MB .
(⊇) Let x ∈ ‖Bψ‖MB . Then, by the standard Kripke semantics, we have RB(x) ⊆
‖ψ‖MB . By I.H, we obtain RB(x) ⊆ ‖ψ~‖M. Since

⋃
CR(x) = RB(x), we have

⋃
CR(x) ⊆

‖ψ~‖M. Thus, by Lemma 4, x ∈ ‖K〈K〉Kψ~‖M = ‖(Bψ)~‖M.

Lemma 6 For any weak brush (X,R),

1. (X,R+) is a reflexive and transitive weakly cofinal frame.
2. For any valuation ν on X and for each formula ϕ ∈ LB we have ‖ϕ‖M = ‖ϕ~‖M

+

,
whereM = (X,R, ν) andM+ = (X,R+, ν).

Proof. Let (X,R) be a serial weak brush.

1. Since R is transitive, R+ is also transitive and it is reflexive by definition. Moreover,
(X,R+) is weakly cofinal since (X,R) is a weak brush.

2. We prove (2) by induction on the complexity of ϕ. LetM = (X, τ, ν) be a model on
(X,R). The cases for ϕ = ⊥, ϕ = p, ϕ = ¬ψ, ϕ = ψ ∧ χ are straightforward. Let
ϕ = Bψ.
(⊆) Let x ∈ ‖Bψ‖M. Then, by the standard Kripke semantics, we have R(x) ⊆ ‖ψ‖M.
Hence, by I.H., R(x) ⊆ ‖ψ~‖M

+

. Since (X,R) is a weak brush, R(x) =
⋃
CR(x) ⊆⋃

CR+(x). Hence, x ∈
⋃
CR+(x). Then, by Lemma 4, x ∈ ‖K〈K〉Kψ~‖M

+

.
(⊇) Let x ∈ ‖K〈K〉Kψ~‖M

+

. Then, by Lemma 4,
⋃
CR+(x) ⊆ ‖ψ

~‖M
+

. Thus, by I.H.,⋃
CR+(x) ⊆ ‖ψ‖

M. Then, as above, R(x) ⊆ ‖ψ‖M implying that x ∈ ‖Bψ‖M.



Theorem 6 For each formula ϕ ∈ LB, S4 ` ϕ~ iff wKD45 ` ϕ.

Proof. Let ϕ ∈ LB.

(⇒) Suppose wKD45 0 ϕ. By Lemma 2(2), there exists a Kripke model M =

(X,R, ν), where (X,R) is a finite weak pin such that ‖ϕ‖M , X. Then, by Lemma 6,
M+ is a model based on the finite reflexive and transitive weakly cofinal frame
(X,R+) and ‖ϕ~‖M

+

, X. Hence, by Lemma 2(1), we have S4 0 ϕ~.
(⇐) Suppose S4 0 ϕ~. By Lemma 2(1), there exists a Kripke modelM = (X,R, ν)
where (X,R) is a finite reflexive and transitive weakly cofinal frame such that
‖ϕ~‖M , X. Then, by Lemma 5,MB is a model based on the (finite) weak brush
(X,RB) and ‖ϕ‖MB , X. Hence, by Lemma 2(2), we have wKD45 0 ϕ.

Theorem 7 wKD45 is sound and complete w.r.t. the class of all topological spaces in
the w-topological belief semantics.

Proof. As we noted in the beginning of this section, soundness can be proven directly.
Another way of arguing for the topological soundness of wKD45 is via Theorem 6:
let ϕ ∈ LB such that wKD45 ` ϕ. Then, by Theorem 6, S4 ` ϕ~. By the topological
soundness of S4 w.r.t. the class of all topological spaces in the interior semantics, we
obtain that for any topological space (X, τ) we have (X, τ) |= ϕ~. Then, by Proposition
3, we conclude that in the w-topological belief semantics (X, τ) |= ϕ.

For completeness, let ϕ ∈ LB be such that wKD45 0 ϕ. By Theorem 6, S4 0 ϕ~.
Hence, by topological completeness of S4 w.r.t. the class of all topological spaces in the
interior semantics, there exists a topo-modelM = (X, τ, ν) such that [ϕ~]M , X. Then,
by Proposition 3, [[ϕ]]M , X. Thus, we found a topological space (X, τ) which refutes ϕ
in the w-topological belief semantics. Hence, wKD45 is complete w.r.t. the class of all
topological spaces in the w-topological belief semantics.

We point out that the above completeness proof crucially uses reasoning in Kripke
frames rather than topology. However, as already mentioned earlier in the paper, topo-
logical (and geometrical) reading of our belief modality is key for its intuitive under-
standing as well as for viewing it as a Stalnaker-like belief operator.

5 The Topology of Static and Dynamic Belief Revision

5.1 Static Belief Revision: conditional beliefs

In this section, we explore the topological analogue of static conditioning by providing
a topological semantics for conditional belief modalities based on arbitrary topological
spaces14. We obtain the semantics for a conditional belief modality Bϕψ in a natural and
standard way, as in [2], by relativizing the semantics for the simple belief modality to the
extension of the learnt formula ϕ. Unlike model restriction in the case of updates, our
conditional belief semantics does not lead to a change in the initial model. Conditional

14 In [2], we propose topological semantics for conditional beliefs based on hereditarily ex-
tremally disconnected spaces.



belief modalities intend to capture the hypothetical belief changes of an agent in case
she would receive new information (see, e.g., [2] for a more detailed discussion on the
topological interpretation of conditional beliefs).
Syntax and Semantics. We now consider the language LKCB obtained by adding con-
ditional belief modalities Bϕψ to LKB, where Bϕψ reads if the agent would learn ϕ, then
she would come to believe that ψ was the case before the learning [4, p. 12].

For any subset P of a topological space (X, τ), we can generalize the belief modality
B on the topo-models by relativizing the closure and the interior operators to the set P.
More precisely, given a topological modelM = (X, τ, ν), the additional semantic clause
reads

[[Bϕψ]]M = Int([[ϕ]]M → Cl([[ϕ]]M ∩ Int([[ϕ]]M → [[ψ]]M)))

where [[ϕ]]M → [[ψ]]M := (X \ [[ϕ]]M) ∪ [[ψ]]M.
One possible justification for the above semantics of conditional belief is that it

validates an equivalence that generalizes the one for belief in a natural way:

Proposition 4 The following equivalence is valid in all topological spaces wrt the re-
fined topological semantics for conditional beliefs and knowledge

Bϕψ ↔ K(ϕ→ 〈K〉(ϕ ∧ K(ϕ→ ψ))).

This shows that, just like simple beliefs, conditional beliefs can be defined in terms
of knowledge and this identity corresponds to the definition of the “conditional connec-
tive⇒” in [9]. Moreover, as a corollary of Proposition 4, we obtain that the equivalences

B>ψ
(1)
↔ K(> → 〈K〉(> ∧ K(> → ψ))

(2)
↔ K〈K〉Kψ

(3)
↔ Bψ

valid in all topological spaces, and thus our semantics for conditional beliefs and simple
beliefs (in terms of the interior of the closure of the interior operator) are perfectly
compatible with each other. Last but not least, we obtain the complete logic KCB of
knowledge and conditional beliefs w.r.t. all topological spaces in the following way.

Theorem 8 The logic KCB of knowledge and conditional beliefs is axiomatized com-
pletely by the system S4 for the knowledge modality K together with the following equiv-
alences:

1. Bϕψ↔ K(ϕ→ 〈K〉(ϕ ∧ K(ϕ→ ψ)))
2. Bϕ↔ B>ϕ.

5.2 Dynamic Belief Revision: updates on all topological spaces

In this section, we implement updates on arbitrary topological spaces and show that
the problems occurred when we work with extremally disconnected spaces do not arise
here: we in fact obtain a complete dynamic logic of knowledge and conditional beliefs
with respect to the class of all topological spaces.

We now consider the language L!KCB obtained by adding (existential) dynamic
modalities 〈!ϕ〉ψ to LKCB and we model 〈!ϕ〉ψ by means of subspaces exactly the same



way as formalized in Section 3.2 , i.e., by using the restricted modelMϕ with the se-
mantic clause

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .

In this setting, however, as the underlying static logic KCB is the logic of all topo-
logical spaces, we implement updates on arbitrary topological spaces. Since the result-
ing restricted modelMϕ is always based on a topological (sub)space and no additional
property of the initial topology needs to be inherited by the corresponding subspace
(unlike the case for extremally disconnected spaces), we do not face the problem of
loosing some validities of the corresponding static system: all the axioms of KCB (and,
in particular, of S4 and wKD45) will still be valid in the restricted space. Moreover, we
obtain a complete axiomatization of the dynamic logic of knowledge and conditional
beliefs:

Theorem 9 The complete and sound dynamic logic !KCB of knowledge and condi-
tional beliefs with respect to the class of all topological spaces is obtained by adding
the following reduction axioms to any complete axiomatization of the logic KCB:

1. 〈!ϕ〉p ↔ (ϕ ∧ p) 4. 〈!ϕ〉Kψ ↔ (ϕ ∧ K(ϕ→ 〈!ϕ〉ψ))
2. 〈!ϕ〉¬ψ ↔ (ϕ ∧ ¬〈!ϕ〉ψ) 5. 〈!ϕ〉Bθψ ↔ (ϕ ∧ B〈!ϕ〉θ〈!ϕ〉ψ)
3. 〈!ϕ〉(ψ ∧ θ) ↔ (〈!ϕ〉ψ ∧ 〈!ϕ〉θ) 6. 〈!ϕ〉〈!ϕ〉θ ↔ 〈!〈!ϕ〉ψ〉θ

Proof. Proof of this theorem follows, in a standard way, by the soundness of the re-
duction axioms with respect to all topological spaces. For proof details, we refer to [2,
Theorem 12].

6 Conclusion and Future Work

In this paper, we proposed a new topological semantics for belief in terms of the inte-
rior of the closure of the interior operator which coincides with the one introduced in
[1, 2, 25] on extremally disconnected spaces and diverges from it on arbitrary topologi-
cal spaces. This new topological semantics for belief comes with significant advantages
especially concerning static and dynamic belief revision (in particular, concerning con-
ditional belief and update semantics) and a few disadvantages compared to the setting
in [1, 2].

In [1, 2], we worked with the knowledge system S4.2 and the standard belief sys-
tem KD45, however, on a restricted class of topological spaces, namely on extremally
disconnected spaces. Although the framework of [1, 2] provides a solid ground for the
static systems of knowledge and belief and the relation between the two, the topological
semantics based on extremally disconnected spaces falls short of dealing with updates
as shown in Section 3.2. In particular, in order to deal with updates one needs to further
restrict the class of extremally disconnected spaces to hereditarily extremely discon-
nected spaces.

In this paper, we did not only provide a semantics for belief based on all topological
spaces but we also showed that its natural extension to conditional beliefs and updates
gave us a ‘well-behaved’ semantics. In other words, while extending the class of topo-
models we could work within the context of knowledge and belief, we also resolved the



problem about updates present in the previous setting. The price we had to pay for these
results, however, was a weakening of the underlying static knowledge and belief logics:
we weakened the knowledge logic S4.2 to S4 and the belief logic KD45 to a slightly
weaker one wKD45.

This paper can be seen as a continuation of the research program that we have
been pursuing on a topological semantics for belief: in [1] we proposed a topological
belief semantics based on extremally disconnected spaces and in [2] we investigated a
topological belief semantics on hereditarily extremally disconnected spaces and further
extended this setting with conditional beliefs and updates. The current work takes a
broader perspective and examines belief, conditional beliefs and updates on arbitrary
topological spaces.

In on-going work, we investigate a more natural axiomatization of the logic of
knowledge and conditional beliefs KCB and its dynamic counterpart with respect to ar-
bitrary topological spaces. Moreover, we also investigate the topological semantics for
evidence and evidence-based justification in connection with topological interpretations
of knowledge and belief in [3] and, following [34], we further explore the dynamics of
evidence in a topological setting in the extended version of [3].
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