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Abstract. For a topological space X, let L(X) be the modal logic of X where � is inter-
preted as interior (and hence ♦ as closure) in X. It was shown in [6] that the modal logics
S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), and their intersections arise as L(X) for
some Stone space X. We give an example of a scattered Stone space whose logic is not such
an intersection. This gives an affirmative answer to [6, Question 6.2]. On the other hand,
we show that a scattered Stone space that is in addition hereditarily paracompact does not
give rise to a new logic; namely we show that the logic of such a space is either S4.Grz or
S4.Grzn for some n ≥ 1. In fact, we prove this result for any scattered locally compact open
hereditarily collectionwise normal and open hereditarily strongly zero-dimensional space.

1. Introduction

Topological semantics for intuitionistic logic was first developed by Stone [24] and Tarski
[25], and for modal logic by Tsao-Chen [26], McKinsey [15], and McKinsey and Tarski
[16, 17, 18]. In topological semantics for intuitionistic logic formulas are interpreted as open
sets, and in topological semantics for modal logic modal box is interpreted as topological
interior, and hence modal diamond as topological closure. For a topological space X, let
L(X) be the set of formulas in the basic modal language that are valid in X. It is well
known that L(X) is a normal extension of Lewis’ modal system S4. Much effort has been
put into axiomatizing L(X) for a given topological space X with good separation properties.
To name a few results in this direction:

• McKinsey and Tarski [16] developed an algebraic treatment of topological spaces via
closure algebras. Their key result establishes that the variety of all closure algebras
is generated by the closure algebra of any dense-in-itself separable metrizable space.
Since closure algebras serve as algebraic models of S4, their result is often phrased
as S4 = L(X) for any dense-in-itself separable metrizable space X.
• Rasiowa and Sikorski [21, Sections III.7 and III.8] showed that separability can be

dropped from the McKinsey-Tarski theorem, and that L(X) = S4 for any dense-in-
itself metrizable space X.
• These results were utilized in [5] to axiomatize L(X) for every metrizable space X.

Let Iso(X) be the set of isolated points of X. If Iso(X) is not dense in X, then
L(X) = S4; if Iso(X) is dense in X and X is not scattered, then L(X) = S4.1; and
if X is scattered, then L(X) is S4.Grz or S4.Grzn for some n ≥ 1 depending on the
Cantor-Bendixson rank of X.

One of the most studied classes of topological spaces is that of compact Hausdorff spaces.
A natural but quite complicated question is to axiomatize L(X) for an arbitrary compact
Hausdorff space X. This question was taken up in [6] in the setting of zero-dimensional
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compact Hausdorff spaces, also known as Stone spaces. It was shown in [6] that each of the
logics S4, S4.1, S4.2, S4.1.2, S4.Grz, S4.Grzn (n ≥ 1), and their intersections can be realized
as L(X) where X is a metrizable Stone space or an extremally disconnected Stone space.
We note that for the extremally disconnected setting, these results utilize a set-theoretic
assumption beyond ZFC. Thus, upon leaving the setting of metrizable spaces, whether one
works within ZFC or an extension of it matters, revealing interesting ties with set theory.

In [6, Question 6.2] it was posed as an open question whether there is a Stone space whose
logic is not one of the previously mentioned logics. The goal of the present paper is to answer
this question in the affirmative by proving that the Čech-Stone compactification of a space
studied by Mrowka [19, 20] is a scattered Stone space whose logic differs from the above
logics.

On the other hand, we prove that if X is a scattered Stone space that in addition is
hereditarily paracompact, then L(X) is S4.Grz or S4.Grzn for some n ≥ 1 depending on the
Cantor-Bendixson rank of X. In fact, we prove a stronger result that if X is a scattered
locally compact open hereditarily collectionwise normal and open hereditarily strongly zero-
dimensional space, then L(X) is either S4.Grz or S4.Grzn for some n ≥ 1 depending on the
Cantor-Bendixson rank of X. Our results are proved within ZFC, with key technical tool
being the notion of modal Krull dimension introduced in [3].

The axiomatization of L(X) for X a Stone space, or more generally a compact Hausdorff
space, remains a challenging open problem, already in the restricted setting of scattered
spaces. Indeed, the logic L(X) of the space X alluded to above which answers [6, Ques-
tion 6.2] is difficult to axiomatize due to combinatorial complexity of the frames for L(X). It
is likely that there will be different solutions of the problem based on set-theoretic assump-
tions beyond ZFC.

The paper is organized as follows. In Section 2 we provide the necessary background for
the paper. Section 3 presents some basic results about modal Krull dimension for compact
Hausdorff spaces, and Section 4 generalizes some of these results to locally compact Haus-
dorff spaces. In Section 5 we answer [6, Question 6.2] affirmatively by utilizing the work of
Mrowka. In particular, we exhibit a scattered Stone space whose logic is not one of S4.Grz
or S4.Grzn for n ≥ 1. The rest of the paper answers negatively the question obtained from
modifying [6, Question 6.2] by replacing Stone space with scattered locally compact heredi-
tarily paracompact space. Section 6 contains necessary technical background for Section 7,
where a classification of the logics arising as L(X) for a scattered locally compact hereditarily
paracompact space X is given. In fact, we prove the same classification by weakening the
hereditarily paracompact condition to the open hereditarily collectionwise normal and open
hereditarily strongly zero-dimensional conditions. The final section of the paper closes with
a list of open problems.

2. Background

In this section we briefly recall the modal logics of interest, as well as their relational
and topological semantics. We also recall the modal Krull dimension of a topological space,
which will be one of our key tools in what follows.

2.1. Modal logics. The modal logic S4 is the least set of formulas in the basic modal
language containing the classical tautologies, the formulas

• �(p→ q)→ (�p→ �q),
• �p→ p,
• �p→ ��p,
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and closed under the inference rules of modus ponens ϕ, ϕ→ψ
ψ

, substitution ϕ(p1,...,pn)
ϕ(ψ1,...,ψn)

, and

necessitation ϕ
�ϕ . A normal extension of S4 is a set of formulas that contains S4 and is closed

under modus ponens, substitution, and necessitation.
As is customary, we use the abbreviation ♦ϕ := ¬�¬ϕ. We will consider the following

well-known normal extensions of S4:

• S4.1 = S4 + �♦p→ ♦�p,
• S4.2 = S4 + ♦�p→ �♦p,
• S4.1.2 = S4 + �♦p↔ ♦�p,
• S4.Grz = S4 + �(�(p→ �p)→ p)→ p,
• S4.Grzn = S4.Grz + bdn for n ≥ 1,

where bd1 = ♦�p1 → p1 and bdn+1 = ♦(�pn+1 ∧ ¬bdn)→ pn+1.

2.2. Relational semantics. An S4-frame is a pair F = (W,R) where W is a nonempty set
and R is a reflexive and transitive relation on W . The modal language is interpreted in F
as usual (see, e.g., [9] or [8]). We only point out that

w 
 �ϕ iff (∀v)(wRv ⇒ v 
 ϕ),

and hence

w 
 ♦ϕ iff (∃v)(wRv and v 
 ϕ).

We say that ϕ is valid in F, and write F 
 ϕ, if for each valuation and each w ∈ W we have
w 
 ϕ. It is well known that S4 ` ϕ iff F 
 ϕ for every S4-frame F.

For an S4-frame F = (W,R) we have that ∼R:= {(w, v) | wRv and vRw} is an equivalence
relation on W , whose equivalence classes are called clusters. A singleton cluster is called
simple. The skeleton of F is the partially ordered set of clusters of F, see Figure 1.
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Figure 1. An S4-frame F and its skeleton.

For w, v ∈ W , we write w~Rv if wRv and ¬(vRw). The depth of F is n, denoted depth(F) =

n, if there is a sequence w1, . . . , wn in W such that wi ~Rwi+1 for 1 ≤ i < n and no longer
sequence has this property.

A root of F is a point r ∈ W such that rRw for all w ∈ W . We say that F is rooted if F
has a root. We call F a tree provided that F is a rooted partially ordered set such that for
all w, v, u ∈ W , if vRw and uRw, then vRu or uRv. We say that F is a quasi-tree provided
its skeleton is a tree.

A quasi-maximal point of F is w ∈ W such that for any v ∈ W , if wRv, then vRw. By
max(F) we denote the set of quasi-maximal points of F. The following result is well-known
(see, e.g., [6, Proposition 2.5] for references and details):

Proposition 2.1.
(1) S4 is the logic of the class of all finite quasi-trees.
(2) S4.1 is the logic of the class of all finite quasi-trees such that the cluster of each

quasi-maximal point is simple.
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(3) S4.2 is the logic of the class of all finite S4-frames F such that max(F) is a single
cluster and the subframe W \max(F) is a quasi-tree.

(4) S4.1.2 is the logic of the class of all finite S4-frames F such that max(F) is a singleton
and the subframe W \max(F) is a quasi-tree.

(5) S4.Grz is the logic of the class of all finite trees.
(6) S4.Grzn is the logic of the class of all finite trees of depth ≤ n.

2.3. Topological semantics. For a topological space X, we denote the interior, closure,
and derivative operators of X by iX , cX , and dX . We briefly recall that for each A ⊆ X and
x ∈ X, we have:

x ∈ iXA iff there is an open neighborhood U of x, such that U ⊆ A,

x ∈ cXA iff for each open neighborhood U of x, we have U ∩ A 6= ∅,
x ∈ dXA iff for each open neighborhood U of x, we have (U \ {x}) ∩ A 6= ∅.

We often omit the subscript when the context is clear. The modal language is interpreted in
X by assigning to each modal formula a subset of X, interpreting the classical connectives as
the Boolean operations, � as interior, and hence ♦ as closure. Thus, under a given valuation
of the propositional variables, we have:

x 
 �ϕ iff for some open neighborhood U of x, each y ∈ U satisfies y 
 ϕ,

x 
 ♦ϕ iff for each open neighborhood U of x, there is y ∈ U such that y 
 ϕ.

We say that a formula ϕ is valid in X, written X 
 ϕ, if for each valuation and each x ∈ X
we have x 
 ϕ. It is well known that the set L(X) := {ϕ | X 
 ϕ} is a normal extension of
S4.

Topological semantics generalizes relational semantics for S4. Given an S4-frame F =
(W,R), call U ⊆ W and R-upset if w ∈ U and wRv imply v ∈ U . Then the collection τR of R-
upsets is a topology on W such that F 
 ϕ iff (W, τR) 
 ϕ. Such spaces are called Alexandroff
spaces, and they have the additional property that an arbitrary intersection of open sets is
open; equivalently, each point w has a least open neighborhood, namely ↑w := {v | wRv}.
Consequently, the closure of A in an Alexandroff space is ↓A := {v | vRw for some w ∈ A}.
We write ↓w for ↓{w}.

For a topological space X, a subset A ⊆ X is dense if cA = X and it is nowhere dense
if icA = ∅. A point x ∈ X is an isolated point if {x} is open in X. Let Iso(X) be the set
of isolated points of X. Then X is dense-in-itself if Iso(X) = ∅, X is weakly scattered if
Iso(X) is dense, and X is scattered if every nonempty subspace Y of X has an isolated point
(relative to Y ). We say that X is extremally disconnected if the closure of each open set is
open.

Definition 2.2 ([3]). The modal Krull dimension of a topological spaceX, denoted mdim(X),
is defined recursively as follows:

mdim(X) = −1 if X = ∅,
mdim(X) ≤ n if mdim(Y ) ≤ n− 1 for each nowhere dense subspace Y ⊆ X,
mdim(X) = n if mdim(X) ≤ n and mdim(X) 6≤ n− 1,
mdim(X) =∞ if mdim(X) 6≤ n for all n = −1, 0, 1, 2, . . .

We point out two characterizations of finite modal Krull dimension for nonempty spaces
(see [3, Theorem 3.6] for a larger list of equivalent conditions).

Proposition 2.3 ([3]). Let X be a nonempty space X and n ≥ 1. The following are
equivalent:

(1) X 
 bdn.
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(2) mdim(X) ≤ n− 1.
(3) There does not exist a sequence F0, . . . , Fn of nonempty closed subsets of X such that

F0 = X and Fi+1 is nowhere dense in Fi for each 0 ≤ i < n.

For an S4-frame F = (W,R), we have depth(F) = mdim(W, τR) + 1. As pointed out in [3,
Section 2], the difference of 1 arises because depth counts the elements in a longest chain of
F while modal Krull dimension counts the links between elements of such a chain, which is
1 less. It follows that the modal Krull dimension is the topological analogue of the depth of
an S4-frame. The following result is well known (see, e.g., [6, Section 2] for references and
details):

Proposition 2.4.
(1) S4 is the logic of the class of all (finite) spaces.
(2) S4.1 is the logic of the class of all (finite) weakly scattered spaces.
(3) S4.2 is the logic of the class of all (finite) extremally disconnected spaces.
(4) S4.1.2 is the logic of the class of all (finite) extremally disconnected weakly scattered

spaces.
(5) S4.Grz is the logic of the class of all (finite) scattered spaces.
(6) S4.Grzn is the logic of the class of all (finite) scattered spaces of modal Krull dimension
≤ n− 1.

3. Compact Hausdorff spaces of finite modal Krull dimension

In this section we present some results about modal Krull dimension for compact Hausdorff
spaces that will be utilized later. In particular, we show that continuous surjections between
compact Hausdorff spaces do not increase modal Krull dimension, and we prove that if X
is a compact Hausdorff space of finite modal Krull dimension, then X is scattered. This
result was also obtained in [4, Remark 6.12] using the machinery of point-free topology. For
the benefit of the reader, we give a direct topological proof of this result that requires no
knowledge of point-free topology.

We recall that a map f : X → Y between topological spaces is continuous if f−1[V ] is
open in X whenever V is open in Y , that f is open if f [U ] is open in Y whenever U is
open in X, and that f is closed if f [F ] is closed in Y whenever F is closed in X. It is well
known that a continuous mapping between compact Hausdorff spaces is closed. We call f
irreducible provided f is a continuous closed surjection such that f [A] is a proper subset of
Y whenever A is a proper closed subset of X.

Lemma 3.1. If f : X → Y is irreducible and Z is nowhere dense in Y , then f−1[Z] is
nowhere dense in X.

Proof. Let N = f−1[Z] and A = X \N . Since f is continuous and onto, we have:

f [ciA] ⊇ f [iA] = f [i(X \N)]

= f [if−1[Y \ Z]] ⊇ f [f−1[i(Y \ Z)]] = i(Y \ Z).

As f is closed, f [ciA] is a closed set containing i(Y \ Z). Because Z is nowhere dense in Y ,
we have that i(Y \ Z) is dense in Y , so f [ciA] = Y . Since f is irreducible, ciA = X. Thus,
icN = ∅, and hence f−1[Z] = N is nowhere dense in X. �

Lemma 3.2. Suppose X, Y are compact Hausdorff, f : X → Y is a continuous surjection,
and for n ≥ 1, Z0, . . . , Zn are nonempty closed subsets of Y such that Z0 = Y and Zi+1 is
nowhere dense in Zi for 0 ≤ i < n. Then there are nonempty closed subsets N0, . . . , Nn of
X such that N0 = X and Ni+1 is nowhere dense in Ni for 0 ≤ i < n.
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Proof. We construct recursively N0, . . . , Nn that satisfy the conditions of the lemma.
Basis step: Set N0 = X. Since Z0 is nonempty and f is onto, we have that N0 is

nonempty. Clearly N0 is closed in X. It is well known (see, e.g., [14, page 102]) that there
is a closed subspace X0 of X such that f0 : X0 → Z0 restricting f is irreducible.

Recursive step: Let 0 ≤ i < n. Then nonempty Ni closed in X, Xi closed in Ni, and an
irreducible surjection fi : Xi → Zi restricting f are given. Set Ni+1 = f−1i [Zi+1]. Since fi is
onto and Zi+1 6= ∅, we have that Ni+1 6= ∅. Clearly Ni+1 is closed in X. By Lemma 3.1, Ni+1

is nowhere dense in Xi. Therefore, Ni+1 is nowhere dense in Ni. The map gi+1 : Ni+1 → Zi+1

restricting fi is a continuous surjection. Since both Ni+1 and Zi+1 are compact Hausdorff
spaces, there is a closed subspace Xi+1 of Ni+1 such that fi+1 : Xi+1 → Zi+1 restricting gi+1

is irreducible. The result follows. �

Lemma 3.3. If X, Y are compact Hausdorff and f : X → Y is a continuous surjection,
then mdim(X) ≥ mdim(Y ).

Proof. First suppose that Y has finite modal Krull dimension, say mdim(Y ) = n. If n = −1,
then Y = ∅, so X = ∅, giving mdim(X) = −1 = mdim(Y ). Suppose n ≥ 0. Then Y 6= ∅.
Since f is onto, X 6= ∅, and so mdim(X) ≥ 0. Clearly if n = 0, then mdim(X) ≥ mdim(Y ).
Suppose that n ≥ 1. Then Proposition 2.3 is applicable, and so there are nonempty closed
subsets Z0, . . . , Zn of Y such that Z0 = Y and Zi+1 is nowhere dense in Zi for 0 ≤ i < n. By
Lemma 3.2, there are nonempty closed subsets N0, . . . , Nn of X such that N0 = X and Ni+1

is nowhere dense in Ni for 0 ≤ i < n. Therefore, mdim(X) ≥ n by Proposition 2.3. Thus,
mdim(X) ≥ mdim(Y ).

Next suppose that mdim(Y ) =∞. Then mdim(Y ) ≥ n for all n ≥ 1. By Proposition 2.3,
for each n ≥ 1, there are nonempty closed subsets Z0, . . . , Zn of Y such that Z0 = Y
and Zi+1 is nowhere dense in Zi for 0 ≤ i < n. By Lemma 3.2, there are nonempty
closed subsets N0, . . . , Nn of X such that N0 = X and Ni+1 is nowhere dense in Ni for
0 ≤ i < n. Applying Proposition 2.3 again yields mdim(X) ≥ n for each n ≥ 1. Thus,
mdim(X) =∞ = mdim(Y ). �

Remark 3.4. By [3, Lemma 3.3], taking subspaces does not increase modal Krull dimension.
Lemma 3.3 shows the same for taking continuous images in the class of compact Hausdorff
spaces. As the following examples demonstrate, neither compact nor Hausdorff can be
dropped from the hypothesis of Lemma 3.3.

For the first example, let X be the real line R with the discrete topology, Y be R with
the usual topology, and f : X → Y be the identity map. Then f is a continuous surjection,
but mdim(X) = 0 (since the only nowhere dense subset of any nonempty discrete space is
∅) whereas mdim(Y ) =∞ by [3, Example 3.7.1].

For the second example, let X and Y be the Alexandroff spaces and f : X → Y the map
between them depicted in Figure 2. Then f is a continuous surjection, but mdim(X) =
depth(X)− 1 = 2− 1 = 1 while mdim(Y ) = depth(Y )− 1 = 3− 1 = 2.

•

•L
LL

�
�
�
�
��
•

X Y

•

•

•

-

-

-

Figure 2. Depiction of f : X → Y .

Theorem 3.5. If X is a compact Hausdorff space of finite modal Krull dimension, then X
is scattered.
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Proof. If X is not scattered, then there is a continuous surjection f : X → [0, 1] (see, e.g., [22,
Theorem 8.5.4]). Since mdim([0, 1]) = ∞, by Lemma 3.3, mdim(X) = ∞, a contradiction.
Thus, X is scattered. �

4. Locally compact Hausdorff spaces of finite modal Krull dimension

This section generalizes Theorem 3.5 by replacing the assumption of compactness with
local compactness. We also point out a connection between finite modal Krull dimension
and the Cantor-Bendixson rank.

For a noncompact locally compact Hausdorff space X, let αX = X ∪ {∞} be the one-
point compactification of X (see, e.g., [10, Theorem 3.5.11]). The following lemma is useful
in relating mdim(X) and mdim(αX).

Lemma 4.1.
(1) Let X be a topological space and A,B,C ⊆ X. If C is closed in X and A is nowhere

dense in B, then A \ C is nowhere dense in B \ C.
(2) Let X be a noncompact locally compact Hausdorff space and A,B ⊆ αX. If A is

nowhere dense in B, then A \ {∞} is nowhere dense in B \ {∞}.

Proof. (1) Let U be open in B \ C and U ⊆ cB\C(A \ C). Since C is closed in X, we have
that B \C is open in B. Therefore, U is open in B. Since A is nowhere dense in B, we have
that A \ C is nowhere dense in B. So U ⊆ cB\C(A \ C) ⊆ cB(A \ C) yields that U = ∅.
Thus, A \ C is nowhere dense in B \ C.

(2) Observe that {∞} is closed in αX and apply (1). �

Lemma 4.2. Let X be a noncompact locally compact Hausdorff space and n ∈ ω. If
mdim(X) ≤ n, then mdim(αX) ≤ n+ 1.

Proof. Suppose mdim(αX) > n+ 1. By Proposition 2.3, there are nonempty closed subsets
F0, F1, . . . , Fn+2 of αX such that F0 = αX and Fi+1 is nowhere dense in Fi for 0 ≤ i < n+2.
Put F ′i = Fi\{∞} for 0 ≤ i < n+2. Then F ′i = Fi∩X is closed inX for 0 ≤ i < n+2, F ′0 = X,
and by Lemma 4.1(2), F ′i+1 is nowhere dense in F ′i for 0 ≤ i < n+1. If F ′n+1 = ∅, then Fn+1 =
{∞}. However, ∅ 6= Fn+2 ⊆ Fn+1 = {∞} gives that Fn+2 = {∞} = Fn+1, contradicting
that Fn+2 is nowhere dense in Fn+1. Therefore, F ′n+1 6= ∅, and hence mdim(X) > n by
Proposition 2.3. �

Remark 4.3. Let X be a noncompact locally compact Hausdorff space. Since X is a
subspace of αX, by [3, Lemma 3.3], mdim(X) ≤ mdim(αX). Therefore, if mdim(X) is finite,
then Lemma 4.2 yields that mdim(X) ≤ mdim(αX) ≤ mdim(X) + 1. However, mdim(αX)
could take on both values. For example, if X is the ordinal space ω, then mdim(X) = 0
(since X is discrete) and mdim(αX) = mdim(ω + 1) = 1 by [3, Example 3.7.3]. On the
other hand, if X is the ordinal ω2, then αX = ω2 + 1. It follows from [3, Lemma 3.3 and
Example 3.7] that mdim(X) = mdim(αX) = 1 since ω + 1 ⊆ X ⊆ αX ⊆ ω2.

Lemma 4.4. Let X be a noncompact locally compact Hausdorff space. If X is scattered,
then αX is scattered.

Proof. Let Y be a nonempty subspace of αX. If ∞ 6∈ Y , then Y is a nonempty subspace
of X, and since X is scattered, Y has an isolated point. Suppose ∞ ∈ Y . If Y = {∞},
then Y consists of a single isolated point. If Y 6= {∞}, then Y \ {∞} is a nonempty
subspace of X, and hence has an isolated point, say x. So there is U open in X such that
{x} = (Y \ {∞})∩U . Therefore, {x} = Y ∩U . But U open in X and X open in αX imply
that U is open in αX. Thus, Y has an isolated point, and so αX is scattered. �
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Theorem 4.5. Let X be locally compact Hausdorff.

(1) If X is of finite modal Krull dimension, then X is scattered.
(2) If X is scattered, then X is zero-dimensional.

Proof. (1) If X is compact, then apply Theorem 3.5. Suppose X is noncompact. By
Lemma 4.2, αX is of finite modal Krull dimension. Since αX is compact Hausdorff, αX is
scattered by Theorem 3.5. Therefore, X is a scattered space as it is a subspace of αX.

(2) If X is compact, then it is well known that X is zero-dimensional (see, e.g., [22,
Theorem 8.5.4]). Suppose X is noncompact. By Lemma 4.4, αX is scattered. Being a
scattered compact Hausdorff space, αX is zero-dimensional. But then X is zero-dimensional
as it is a subspace of αX. �

The rest of this section relates finite modal Krull dimension and the Cantor-Bendixson
rank. Let X be a topological space and let A ⊆ X. For an ordinal α define dαA by

d0A = A,

dα+1A = d(dαA),

dαA =
⋂
{dβA | β < α} if α is a limit ordinal.

The Cantor-Bendixson rank of X is the least ordinal γ satisfying dγX = dγ+1X. Setting
D = dγX and S = X \ D gives the Cantor-Bendixson decomposition of X into the dense-
in-itself closed subspace D and the scattered open subspace S of X. If X is scattered, then
D = ∅ and X = S. Similarly, if X is dense-in-itself, then X = D and S = ∅.

Recall that if Y is a subspace of X, then dnYA = dnX(A) ∩ Y for A ⊆ Y and n ∈ ω.

Lemma 4.6. If Y is an open subspace of X, then dnX(X) ∩ Y = dnY Y for each n ∈ ω.

Proof. By induction on n ∈ ω. The base case follows from

d0X(X) ∩ Y = X ∩ Y = Y = d0Y Y.

Suppose dnX(X) ∩ Y = dnY Y . We have:

dn+1
Y Y = dY (dnY Y ) = dX(dnY Y ) ∩ Y

= dX(dnX(X) ∩ Y ) ∩ Y ⊆ dX(dnXX) ∩ Y = dn+1
X (X) ∩ Y.

Let x ∈ dn+1
X (X) ∩ Y . Suppose U is an open neighborhood of x in Y . Since Y is open,

so is U in X. As x ∈ dX(dnXX), there is y ∈ U \ {x} such that y ∈ dnXX. Therefore,
y ∈ dnX(X) ∩ Y = dnY Y , giving that x ∈ dY (dnY Y ) = dn+1

Y Y . Thus, dn+1
X (X) ∩ Y ⊆ dn+1

Y Y ,
and the result follows. �

Lemma 4.7. Let X be weakly scattered.

(1) For each n ∈ ω and A ⊆ X, the set dn+1A is nowhere dense in X.
(2) dX is the largest nowhere dense subset of X.

Proof. (1) Since dn+1A ⊆ dn+1X ⊆ dX, it is sufficient to show that dX is nowhere dense in
X. Let U be a nonempty open set in X. Since X is weakly scattered, Iso(X) is dense, so
U ∩ Iso(X) 6= ∅. Therefore, U 6⊆ X \ Iso(X) = dX. Since dX is closed, it follows that dX is
nowhere dense in X.

(2) Let N be nowhere dense in X. Then Iso(X)∩N = ∅. Therefore, N ⊆ X\Iso(X) = dX,
and so dX is the largest nowhere dense subset of X. �

Remark 4.8. Since a scattered space is weakly scattered, Lemma 4.7 applies to scattered
spaces.
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Theorem 4.9. Let X be a nonempty scattered Hausdorff space and n ∈ ω. Then mdim(X) =
n iff dn+1X = ∅ and dnX 6= ∅.

Proof. By induction on n ∈ ω.
Base case: Let n = 0. Since X is a nonempty Hausdorff space, by [3, Remark 4.8

and Theorem 4.9], mdim(X) = 0 iff X is discrete, which happens iff X = Iso(X), which is
equivalent to d1X = X \ Iso(X) = ∅ and d0X = X 6= ∅.

Inductive case: Let n ≥ 0 and for every nonempty scattered Hausdorff space Y , we have
mdim(Y ) = n iff dn+1

Y Y = ∅ and dnY Y 6= ∅.
Suppose mdim(X) = n + 1. Set Y = dXX. By Lemma 4.7(1), Y is nowhere dense in

X, so mdim(Y ) ≤ n. By Proposition 2.3, there are nonempty closed F0, . . . , Fn in X such
that F0 = X and Fi+1 is nowhere dense in Fi for 0 ≤ i < n. By Lemma 4.7(2), F1 ⊆ Y ,
so F2 is nowhere dense in Y . Therefore, Y, F2, . . . , Fn are closed in Y , F2 is nowhere dense
in Y , and Fi+1 is nowhere dense in Fi for 2 ≤ i < n. Applying Proposition 2.3 again yields
mdim(Y ) ≥ n. Thus, mdim(Y ) = n. Since Y is a nonempty closed scattered subspace of X,
by the inductive hypothesis, we have:

dn+2
X X = dn+1

X (dXX) = dn+1
X Y = dn+1

X (Y ) ∩ Y = dn+1
Y Y = ∅

and
dn+1
X X = dnX(dXX) = dnXY = dnX(Y ) ∩ Y = dnY Y 6= ∅.

Conversely, suppose dn+2
X X = ∅ and dn+1

X X 6= ∅. Set Fi = diXX for 0 ≤ i ≤ n + 1.
Then each Fi is a nonempty closed scattered subspace of X. Therefore, by Lemma 4.7(1),
Fi+1 = dX(diXX) = dXFi = dFi

Fi is nowhere dense in Fi. Thus, X = F0, . . . , Fi+1 are
nonempty closed subsets of X with Fi+1 nowhere dense in Fi for 0 ≤ i < n + 1. By
Proposition 2.3, mdim(X) ≥ n+ 1. Since F1 is closed in X, we have:

dn+1
F1

F1 = dn+1
X (F1) ∩ F1 = dn+1

X F1 = dn+1
X (dXX) = dn+2

X X = ∅
and

dnF1
F1 = dnX(F1) ∩ F1 = dnXF1 = dnX(dXX) = dn+1

X X 6= ∅.
So, by the inductive hypothesis, mdim(F1) = n. Let N be nowhere dense in X. By
Lemma 4.7(2), N ⊆ F1, so mdim(N) ≤ mdim(F1) = n by [3, Lemma 3.3]. Thus, mdim(X) ≤
n+ 1, and so mdim(X) = n+ 1. �

Corollary 4.10. Let X be a nonempty locally compact Hausdorff space of finite modal Krull
dimension. Then the Cantor-Bendixson rank of X is mdim(X) + 1.

Proof. Let mdim(X) = n ∈ ω. By Theorem 4.5, X is scattered; and by Theorem 4.9, dnX 6=
∅ and dn+1X = ∅. Thus, the Cantor-Bendixson rank of X is n+ 1 = mdim(X) + 1. �

5. A new logic arising from a scattered Stone space

If X is a scattered space, then X 
 S4.Grz, so S4.Grz ⊆ L(X). Moreover, S4.Grz and
S4.Grzn for each n ≥ 1 arise as L(X) for some scattered Stone space X. In this section
we construct a scattered Stone space whose logic is not one of these logics, thus obtaining
an affirmative answer to [6, Question 6.2]. Our construction utilizes the work of Mrowka
[19, 20]. Recall that a family R of infinite subsets of the natural numbers N is almost disjoint
provided the intersection of any two distinct members of R is finite.

Definition 5.1. A Mrowka space is X := N∪R where R is almost disjoint and the topology
on X is generated by the basis consisting of:

• O(n) := {n} for n ∈ N,
• O(R,F ) := {R} ∪ (R \ F ) for R ∈ R and F ⊂ N finite.
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It is a consequence of [19] that every Mrowka space X has the following properties:

Proposition 5.2.
(1) N is open and dense in X.
(2) R is closed and discrete in X.
(3) O(R) := O(R,∅) is a clopen subset of X.
(4) O(R) is homeomorphic to the one-point compactification αN of N.

Consequently, a Mrowka space X is a scattered locally compact Hausdorff space. If R is
infinite, then X is not compact. By [20], there is an infinite almost disjoint family R such
that the Čech-Stone compactification βX of X is the one-point compactification αX of X.
From now on, we will assume that X is a Mrowka space such that βX = αX, see Figure 3.

βX
X

N

R

{∞}

• • • • • • • • • •

• • • • • • • • • •

•

•

· · ·

· · ·

· · ·
R

R

J
J
J
J
J
J
JJ















O(R)

Figure 3. Depiction of βX = αX for a Mrowka space X, and of O(R) for R ∈ R.

Lemma 5.3. The space βX = X∪{∞} is compact, scattered, and has modal Krull dimension
2.

Proof. Clearly βX is compact. Since X is scattered, αX is scattered by Lemma 4.4. So
βX = αX is scattered. Let d be the derivative operator in βX. Because N is the set of
isolated points of βX, we have d(βX) = R ∪ {∞}. Since R is discrete in X and ∞ is a
limit point of R, the set of isolated points of d(βX) is R . Therefore, d2(βX) = {∞} and
d3(βX) = ∅. Thus, mdim(βX) = 2 by Theorem 4.9. �

Recall that a function f : X → Y between topological spaces is interior if f is continuous
and open. Equivalently, f is interior provided f−1[cYA] = cXf

−1[A] for each A ⊆ Y (see,
e.g., [21, Section III.3]). We say that Y is an interior image of X provided that f is an
interior surjection. We call a function f : X → F from a topological space X to an S4-
frame F = (W,R) interior provided that f : X → (W, τR) is interior, where (W, τR) is the
Alexandroff space associated with F.

Lemma 5.4. Let Y be a space and F = (W,R) a partially ordered S4-frame such that there
is m ∈ max(F). If F is an interior image of a clopen subspace Z of Y , then F is an interior
image of Y .

Proof. Let Z be a clopen subspace of Y and f : Z → F an interior surjection. Extend f to
g : Y → F by setting g(x) = m for x ∈ Y \ Z. Clearly g is a well-defined surjection. Let
U be open in Y . Then both U ∩ Z and U \ Z are open in Y , and U ∩ Z is open in Z. So
g[U ] = g[U ∩ Z] ∪ g[U \ Z] = f [U ∩ Z] ∪ g[U \ Z]. Now f [U ∩ Z] is open in F since f is
interior and U ∩ Z is open in Z. Also g[U \ Z] is either ∅ or {m}, both of which are open
in F. Thus, g[U ] is open in F, and hence g is an open mapping.

Let U be an open subset of F. Then f−1[U ] is open in Z, and so is open in Y . If m /∈ U ,
then g−1[U ] = f−1[U ] is open in Y . If m ∈ U , then g−1[U ] = (Y \ Z) ∪ f−1[U ] is a union of
two open subsets of Y , and hence is open in Y . Thus, g is continuous, and so F is an interior
image of Y . �
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Lemma 5.5. Suppose that X is a Mrowka space such that βX = αX and F is a finite rooted
partially ordered S4-frame. Then F is an interior image of βX iff F is an interior image of
an open subspace of βX.

Proof. One implication is obvious. For the other, suppose that F is an interior image of
an open subspace U of βX, say via f : U → F. Let x ∈ f−1(r) where r is the root of F.
Since βX = αX is scattered, it is zero-dimensional. So there is V clopen in βX such that
x ∈ V ⊆ U . Then V is open in U , and hence f |V is interior. It is onto since f [V ] is open
in F and r = f(x) ∈ f [V ], giving that f [V ] = F. Applying Lemma 5.4 yields that F is an
interior image of βX. �

Let F be a finite rooted partially ordered S4-frame of depth 2. Then F is isomorphic to a
k-fork Fk depicted in Figure 4.

r
•HH

H
HH

@
@
@

�
�
�

��
�
��

• •• •· · ·
m1 m2 mk−1 mk

Figure 4. The k-fork Fk.

Lemma 5.6. For any k ∈ N, the k-fork Fk is an interior image of βX.

Proof. Choose and fix R ∈ R. The subspace O(R) is homeomorphic with the ordinal space
ω+ 1. For each k ∈ N, the k-fork Fk is an interior image of ω+ 1 (see, e.g., [7, Lemma 3.4]),
and hence Fk is an interior image of O(R). Since O(R) is open in βX and Fk is a finite
poset, the result follows from Lemma 5.5. �

Consider the tree F depicted in Figure 5.

r
•@

@@

�
��

• •

•

m1

m2

w

Figure 5. The tree F.

Lemma 5.7. Let F be as in Figure 5.

(1) F is not an interior image of βX.
(2) F is not an interior image of any open subspace of βX.

Proof. (1) Suppose there is an onto interior map f : βX → F. Since N consists of isolated
points and f is open, we have f [N] ⊆ {m1,m2}. Let R ∈ R. Since O(R) is open in βX, we
have that f [O(R)] is open in F. If f(R) = r, then

f [O(R)] = f [{R} ∪R] = {f(R)} ∪ f [R] ⊆ {r} ∪ f [N] ⊆ {r} ∪ {m1,m2} = F \ {w},
which is not open in F. Therefore, f(R) 6= r, and so f−1(r) = {∞}.

Put A = f−1(m1) and B = f−1[{w,m2}]. Then A and B are disjoint open subsets of X
such that A ∪ B = X. Thus, A and B are clopen, and hence completely separated subsets
of X. By [10, Corollary 3.6.2], cA ∩ cB = ∅, where c is closure in βX. But

cA = cf−1(m1) = f−1[cF{m1}] = f−1[↓m1] = f−1[{m1, r}] = A ∪ {∞}
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and

cB = cf−1[{w,m2}] = f−1[cF{w,m2}] = f−1[↓{w,m2}] = f−1[{r, w,m2}] = B ∪ {∞},

yielding a contradiction as ∞ ∈ cA ∩ cB = ∅. Thus, no such f exists.
(2) follows immediately from (1) and Lemma 5.5. �

We will utilize the above lemmas to show that if X is a Mrowka space such that βX = αX,
then L(X) is different from S4.Grz and S4.Grzn for every n ≥ 1. For this we recall the so-called
Fine-Jankov formula χF of a finite rooted S4-frame F = (W,R) (see [11]). Suppose that W
has n elements, say w1, . . . , wn where w1 is a root of F, and define χF as the conjunction of
the formulas:

• p1
• �(p1 ∨ · · · ∨ pn)
• �(pi → ¬pj) for distinct 1 ≤ i, j ≤ n
• �(pi → ♦pj) when wiRwj
• �(pi → ¬♦pj) when ¬(wiRwj).

The formula χF encodes the structure of the frame F in such a way that for any S4-frame
G we have G 
 ¬χF iff F is not a p-morphic image of a generated subframe of G [11,
Section 2, Lemma I]. The following generalizes Fine’s result to the topological setting (see
[3, Lemma 3.5]):

Proposition 5.8. For a topological space X and a finite rooted S4-frame F we have X 
 ¬χF

iff F is not an interior image of any open subspace of X.

We are ready to give an affirmative answer to [6, Question 6.2].

Theorem 5.9. For any Mrowka space X such that βX = αX we have that

S4.Grz3 + ¬χF ⊆ L(βX) ⊂ S4.Grz2

where χF is the Fine-Jankov formula of the tree F depicted in Figure 5.

Proof. Since βX is scattered, S4.Grz ⊆ L(βX). By Lemma 5.3, mdim(βX) = 2. So by
Proposition 2.3, βX 
 bd3 and βX 6
 bd2. It follows from Lemma 5.7(2) and Proposition 5.8
that βX 
 ¬χF. Therefore, S4.Grz3 + ¬χF ⊆ L(βX).

Since S4.Grz2 is the logic of the k-forks Fk, k ≥ 1, and by Lemma 5.6, each Fk is an
interior image of βX, we have that L(βX) ⊆ S4.Grz2. The containment is strict since
L(βX) 6` bd2. �

Remark 5.10. It is well known (see, e.g., [9, Sec. 9.4]) that in the intuitionistic setting, the
negation of the Fine-Jankov formula of the tree F depicted in Figure 5 axiomatizes the Scott
logic obtained by adding to the intuitionistic propositional calculus the Scott axiom

((¬¬p→ p)→ (p ∨ ¬p))→ (¬p ∨ ¬¬p).

Thus, the logic S4.Grz3 + ¬χF can alternatively be axiomatized by adding to S4.Grz3 the
Gödel translation of the Scott axiom.

The remainder of the paper shows that no new logics arise upon imposing an additional
condition on a scattered Stone space. In particular, the logic arising from a scattered hered-
itarily paracompact Stone space is either S4.Grz or S4.Grzn for some n ≥ 1. In fact, we prove
a stronger result by relaxing compact to locally compact and hereditarily paracompact to
open hereditarily collectionwise normal and open hereditarily strongly zero-dimensional.
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6. Basic cardinality results about locally compact Hausdorff spaces

In this section we present basic cardinality results about locally compact Hausdorff spaces
that will be utilized in Section 7. In what follows we will freely use the Axiom of Choice and
view cardinal numbers as initial ordinal numbers. For a topological space X and x ∈ X, let
χ(x) be the least cardinal number of a local base at x. The following result is well known.

Theorem 6.1 (Alexandroff and Urysohn [1]). Let X be locally compact Hausdorff. Then
for every x ∈ X and every open neighborhood U of x, we have χ(x) ≤ |U |.

The next lemma follows from the well-known technique in the theory of resolvability
developed by Hewitt [13] (see Theorems 42, 46, and 47). For convenience, we present a
sketch of the proof.

Lemma 6.2. Let X be a locally compact Hausdorff space, x ∈ dX, and n ≥ 2. Then there
exist pairwise disjoint A1, . . . , An ⊆ X \ {x} such that x ∈ dAi for each i = 1, . . . , n.

Proof. (Sketch) If X is finite, then since X is Hausdorff, dX = ∅, and there is nothing to
prove. Suppose X is infinite. Let γ := χ(x). Then there is a local base at x which can be
enumerated as {Uα | α < γ}. Since X is Hausdorff and x ∈ dX, each Uα is infinite, and
by the Alexandroff and Urysohn theorem, γ ≤ |Uα| for each α < γ. We build the Ai by
transfinite recursion.

Base step (α = 0): Since U0 \ {x} is infinite, choose distinct a01, . . . , a
0
n ∈ U0 \ {x},

and let A0
1 = {a01}, . . . , A0

n = {a0n}. Then A0
1, . . . , A

0
n ⊆ X \ {x} are pairwise disjoint and

|A0
i | = 1 < γ for each i = 1, . . . , n.
Recursive step: Let β < γ be nonzero. Assume for each α < β that the pairwise disjoint

sets Aα1 , . . . , A
α
n ⊆ X \ {x} have already been chosen so that |Aαi | < γ for each i = 1, . . . , n.

For each i = 1, . . . , n, we have that
∣∣∣⋃α<β A

α
i

∣∣∣ < γ because β < γ and |Aαi | < γ for each

α < β. Since γ ≤ |Uβ|, we may choose distinct

aβ1 , . . . , a
β
n ∈ (Uβ \ {x}) \

(⋃
α<β

Aα1 ∪ · · · ∪
⋃

α<β
Aαn

)
,

and set

Aβ1 =
(⋃

α<β
Aα1

)
∪ {aβ1}, . . . , Aβn =

(⋃
α<β

Aαn

)
∪ {aβn}.

We then have that |Aβi | < γ for each i = 1, . . . , n. Define

A1 =
⋃

β<γ
Aβ1 , . . . , An =

⋃
β<γ

Aβn.

Then A1, . . . , An ⊆ X \ {x} are pairwise disjoint.
Let U be an open neighborhood of x. Because {Uα | α < γ} is a local base at x, there is

α < γ such that Uα ⊆ U . For each i we have that aαi ∈ (Uα \ {x}) ∩ Ai. This yields that
(U \ {x}) ∩ Ai 6= ∅. Thus, x ∈ dAi for each i = 1, . . . , n. �

Remark 6.3. In Lemma 6.2, we can replace n by an arbitrary cardinal κ strictly less than
γ.

Recall that a family F of subsets of a space X is discrete provided for each x ∈ X there is
an open neighborhood that has nonempty intersection with at most one member of F . Note
that a discrete family is pairwise disjoint. Also recall that a T1-space X is collectionwise
normal provided if {Fi | i ∈ I} is a discrete family of closed subsets of X, then there is a
discrete family {Ui | i ∈ I} of open subsets of X such that Fi ⊆ Ui for all i ∈ I. Clearly a
collectionwise normal space is normal (and hence also Hausdorff).
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Lemma 6.4. Let X be a locally compact collectionwise normal space of modal Krull dimen-
sion n ∈ ω. Then there is a family {Bx | x ∈ dnX} of pairwise disjoint clopen subsets of X
such that Bx ∩ dnX = {x} for each x ∈ dnX.

Proof. Theorem 4.5 yields that X is scattered and zero-dimensional. By Theorem 4.9, dnX 6=
∅ and dn+1X = ∅. Therefore, dnX is discrete in X, and so {{x} | x ∈ dnX} is a discrete
family of closed subsets of X. Since X is collectionwise normal, there is a discrete family
{Ux | x ∈ dnX} of open subsets of X such that {x} ⊆ Ux for each x ∈ dnX. Being discrete,
{Ux | x ∈ dnX} is pairwise disjoint. Because X is zero-dimensional, there is a family
{Bx | x ∈ dnX} of clopen subsets of X such that x ∈ Bx and Bx ⊆ Ux for each x ∈ dnX.
Clearly {Bx | x ∈ dnX} is pairwise disjoint since {Ux | x ∈ dnX} is pairwise disjoint. Let
x ∈ dnX. Obviously Bx ∩ dnX ⊇ {x}. Let y ∈ Bx ∩ dnX. Then y ∈ Bx ⊆ Ux, giving that
Ux ∩ Uy 6= ∅. Thus, x = y and so Bx ∩ dnX = {x}. �

7. Logics arising from scattered locally compact HP spaces

The main results of this section are a mapping theorem for scattered locally compact open
hereditarily collectionwise normal and open hereditarily strongly zero-dimensional spaces
and a classification of the logics arising as L(X) for such an X. As a corollary, we classify
the logics arising as L(X) for X a scattered locally compact hereditarily paracompact space.

We recall that a Tychonoff space X is strongly zero-dimensional if βX is zero-dimensional
(see, e.g., [10, Section 6.2]). Clearly being zero-dimensional is a hereditary property, but
strong zero-dimensionality is not hereditary. We call a strongly zero-dimensional space X
open hereditarily strongly zero-dimensional (OHSZ) provided every nonempty open subspace
of X is strongly zero-dimensional. Similarly, we call a T1-space X open hereditarily collec-
tionwise normal (OHCN) whenever each open subspace of X is collectionwise normal.

Theorem 7.1. Let n ∈ ω, X be a locally compact OHCN OHSZ space of modal Krull
dimension n, and F be a finite tree of depth at most n + 1. Then there is an interior
surjection f : X → F that maps each x ∈ dnX to the root of F.

Proof. Proof by induction on n ∈ ω. If n = 0, then mdim(X) = 0, giving that X is discrete.
Since F consists of only the root, there is only one mapping of X onto F (sending every
element of X to the root of F), and it is clearly interior. This establishes the base case.

Let n > 0. Suppose for every locally compact OHCN OHSZ space Y of modal Krull
dimension n− 1 and every finite tree F of depth at most n, there is an interior mapping of
Y onto F sending dn−1Y Y to the root of F.

Let X be a locally compact OHCN OHSZ space of modal Krull dimension n. Then X is
scattered by Theorem 4.5. Let F be a finite tree of depth at most n + 1 and let r be the
root of F. If r has no children, then there is only one mapping of X onto F, and it is clearly
interior. Suppose c1, . . . , cm are the children of r. For i = 1, . . . ,m, let Fi be the subtree of
F whose underlying set is ↑ci, see Figure 6. Then the depth of each Fi is at most n.

•b
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bb
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"
""
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•
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F1

•
cm

Fm

· · ·L
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L
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L

�
�
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�
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Figure 6. The subtrees Fi of F.
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By Lemma 6.4, there is a pairwise disjoint family {Bx | x ∈ dnX} of clopens in X such
that Bx ∩ dnX = {x} for each x ∈ dnX. Since X is locally compact, so is each subspace
Bx ∩ dn−1X. By Lemma 6.2, there are pairwise disjoint Ax1 , . . . , A

x
m ⊆ Bx ∩ dn−1X such that

x ∈ d(Axi ) for each i = 1, . . . ,m. Set Fi =
⋃
x∈dnX A

x
i for i = 1, . . . ,m, see Figure 7.

X \ dn−1X

AxmFm

Ax1F1

dn−1X \ dnX

dnX

· · · · · ·

· · · · · ·

· · · · · ·•
x

...
...

Bx

Figure 7. Depiction of the families Bx, A
x
i , and Fi.

Clearly Fi ⊆ dn−1X and Fi ∩ dnX = ∅ for each i. It is also obvious that dnX ⊆ cFi
which yields that Fi ∪ dnX ⊆ cFi. To see the reverse inclusion, suppose x 6∈ Fi ∪ dnX. Then
x 6∈ d(dn−1X), so there is an open neighborhood U of x such that (U \ {x}) ∩ dn−1X = ∅.
Therefore, U ∩ Fi ⊆ U ∩ dn−1X ⊆ {x}, yielding that U ∩ Fi = ∅. Thus, x 6∈ cFi, and so
cFi = Fi ∪ dnX. Because Fi and dnX are disjoint, we have that Fi = (Fi ∪ dnX) \ dnX =
cFi ∩ (X \ dnX) is closed in X \ dnX. Consequently, F1, . . . , Fm is a pairwise disjoint family
of nonempty closed subsets of the subspace X \ dnX of X.

Since X is a locally compact OHCN OHSZ space, so is X \ dnX (since X \ dnX is open in
X). Therefore, X \ dnX is a normal strongly zero-dimensional space. Thus, [5, Lemma 3.2]
is applicable, and so there is a clopen partition {Yi | 1 ≤ i ≤ m} of X \ dnX such that
Fi ⊆ Yi for each i = 1, . . . ,m, see Figure 8.

F1 Fm

Y1 Ym

X \ dnX

dnX

· · ·

Figure 8. Depiction of the family Yi.

Fix i = 1, . . . ,m. Clearly dnX ⊆ cFi ⊆ cYi, which gives that Yi ∪ dnX ⊆ cYi. Also
Ui :=

⋃
j 6=i Yj is open in X since Ui is open in X \ dnX and X \ dnX is open in X. Because

{Y1, . . . , Ym, dnX} is a partition of X, we have that Yi ∪ dnX = X \Ui. Therefore, Yi ∪ dnX
is a closed subset of X containing Yi and contained in cYi. Thus, cYi = Yi ∪ dnX.

Because Yi is clopen in X \ dnX, which is open in X, we have that Yi is open in X. Since
X is a locally compact OHCN OHSZ space, so is Yi. By Lemma 4.6,

dnYiYi = dn(X) ∩ Yi ⊆ dn(X) ∩ (X \ dnX) = ∅
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and
dn−1Yi

Yi = dn−1(X) ∩ Yi ⊇ Fi 6= ∅.
Since X is scattered Hausdorff, so is Yi. Therefore, Theorem 4.9 yields that mdim(Yi) = n−1,
and so the inductive hypothesis is applicable to Yi. Let fi : Yi → Fi be an onto interior
mapping sending dn−1Yi

Yi to ci.
Define f : X → F by f(x) = r when x ∈ dnX and f(x) = fi(x) when x ∈ Yi, see Figure 9.

Then f is a well defined surjection since {Y1, . . . , Ym, dnX} is a partition of X, each fi maps
Yi onto Fi, and f [dnX] = {r}. It is left to show that f is interior.

Y1
YmX \ dnX

dnX

· · ·

•b
b

bb

"
"
""

r

•
c1

F1

•
cm

Fm

· · ·L
L
L
L

L
L
L
L

�
�
�
�

�
�
�
�

-
-

-

f1
fm

Figure 9. Depiction of f : X → F.

First we show that f is continuous. Let w ∈ F. If w = r, then f−1[↑w] = f−1[F] = X is
open in X. If w 6= r, then ↑w ⊆ Fi for some i = 1, . . . ,m. Therefore, f−1[↑w] = (fi)

−1[↑w]
is open in Yi. But Yi is open in X, and so f−1[↑w] is open in X. Thus, f is continuous.

Next we show that f is open. Let U be open in X. We have:

f [U ] = f [U ∩X] = f [U ∩ (Y1 ∪ Y2 ∪ · · · ∪ Ym ∪ dnX)]

= f [(U ∩ Y1) ∪ (U ∩ Y2) ∪ · · · ∪ (U ∩ Ym) ∪ (U ∩ dnX)]

= f [U ∩ Y1] ∪ f [U ∩ Y2] ∪ · · · ∪ f [U ∩ Ym] ∪ f [U ∩ dnX]

= f1[U ∩ Y1] ∪ f2[U ∩ Y2] ∪ · · · ∪ fm[U ∩ Ym] ∪ f [U ∩ dnX].

Since U ∩ Yi is open in Yi, we have fi[U ∩ Yi] is open in Fi, and hence is open in F. If
U ∩ dnX = ∅, then f [U ∩ dnX] = ∅, and so f [U ] is a union of open subsets of F, hence an
open subset of F. Suppose x ∈ U ∩ dnX. Then for each i = 1, . . . ,m we have that x ∈ cFi,
giving that ∅ 6= U ∩ Fi ⊆ U ∩ dn−1Yi

Yi. Therefore, ci ∈ fi[U ∩ dn−1Yi
Yi] ⊆ fi[U ∩ Yi], yielding

that fi[U ∩ Yi] = Fi. Thus, f [U ] = F1 ∪ F2 ∪ · · · ∪ Fm ∪ {r} = F is open in F. Consequently,
f is open. �

Corollary 7.2. Let n ∈ ω, X be a scattered locally compact OHCN OHSZ space, and F
a finite tree of depth at most n + 1. If dnX 6= ∅, then there is an interior surjection
f : X \ dn+1X → F that maps each x ∈ dnX to the root of F.

Proof. Let Y = X \ dn+1X. Then Y is an open scattered locally compact OHCN OHSZ
subspace of X. By Lemma 4.6,

dnY Y = dn(X) ∩ Y = dn(X) ∩ (X \ dn+1X) = dnX \ dn+1X 6= ∅
because dnX \ dn+1X = Iso(dnX), and since dnX is a nonempty subspace of a scattered
space, Iso(dnX) 6= ∅. Also,

dn+1
Y Y = dn+1(X) ∩ Y = dn+1(X) ∩ (X \ dn+1X) = ∅.

Therefore, mdim(Y ) = n by Theorem 4.9. Now apply Theorem 7.1 to Y . �

Theorem 7.3. Let X be a nonempty scattered locally compact OHCN OHSZ space.

(1) If mdim(X) =∞, then L(X) = S4.Grz.
(2) If mdim(X) = n ∈ ω, then L(X) = S4.Grzn+1.
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Proof. Since X is scattered, S4.Grz ⊆ L(X). To prove (1), let ϕ be a modal formula such
that S4.Grz 6` ϕ. Then there is a finite tree F refuting ϕ. Suppose the depth of F is n ≥ 1.
Since mdim(X) =∞, by Theorem 4.9, dnX 6= ∅ for all n ∈ ω. As dn−1X 6= ∅, Corollary 7.2
yields that F is an interior image of the open subspace X \dnX of X. Because interior images
reflect refutations (see, e.g., [2, Proposition 2.9]), X \ dnX refutes ϕ. Since open subspaces
reflect refutations (see, e.g., [2, Proposition 2.9]), X refutes ϕ. Thus, L(X) = S4.Grz.

To prove (2), suppose mdim(X) = n ∈ ω. Then X 
 bdn+1 by Proposition 2.3. Therefore,
S4.Grzn+1 ⊆ L(X). Conversely, let ϕ be a modal formula such that S4.Grzn+1 6` ϕ. Then
there is a finite tree F of depth at most n + 1 refuting ϕ. By Theorem 7.1, F is an interior
image of X. Thus, X refutes ϕ, and hence L(X) = S4.Grzn+1. �

An important class of spaces that simultaneously generalizes both the class of metrizable
spaces and the class of compact Hausdorff spaces is that of paracompact spaces (see, e.g.,
[10, Section 5.1] for a detailed account). A space X is hereditarily paracompact (HP) if each
subspace of X is paracompact. It turns out that a space is HP iff it is open hereditarily
paracompact.

Lemma 7.4. A scattered locally compact HP space X is both OHCN and OHSZ.

Proof. Since every paracompact space is collectionwise normal [10, Theorem 5.1.18], we
have that an HP space is hereditarily collectionwise normal, and hence OHCN. Let Y be a
nonempty open subspace of X. Then Y is a scattered locally compact paracompact space. It
follows from Theorem 4.5 that Y is zero-dimensional. By [10, Theorem 6.2.10], Y is strongly
zero-dimensional. Thus, X is OHSZ. �

We use Lemma 7.4 to obtain the following corollaries to Theorem 7.1, Corollary 7.2, and
Theorem 7.3.

Corollary 7.5. If in Theorem 7.1 OHCN OHSZ is replaced by HP, then the conclusion still
holds.

Proof. A locally compact HP space of finite modal Krull dimension is scattered by Theo-
rem 4.5. The result now follows from Lemma 7.4 and Theorem 7.1. �

Corollary 7.6. If in Corollary 7.2 OHCN OHSZ is replaced by HP, then the conclusion still
holds.

Proof. The result follows immediately from Lemma 7.4 and Corollary 7.2. �

Corollary 7.7. If in Theorem 7.3 we replace OHCN OHSZ by HP, the conclusion still holds.

Proof. The result follows immediately from Lemma 7.4 and Theorem 7.3. �

As follows from the next example, there are some well studied spaces to which Theorem 7.3
applies but Corollary 7.7 does not.

Example 7.8. Let ω1 be the least uncountable ordinal with the interval topology. It follows
from [23] that ω1 is OHCN, and it follows from [12, Theorem 5.1] that ω1 is OHSZ. On the
other hand, ω1 is not paracompact (see, e.g., [10, Example 5.1.21]).

8. Concluding remarks

We conclude the paper with some, seemingly challenging, open problems:
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• Is there a Mrowka space X satisfying βX = αX such that L(βX) = S4.Grz3 + ¬χF?
We conjecture there is such a Mrowka space. To prove this conjecture, we point out
that S4.Grz3 +¬χF is complete with respect to the following class K of frames. Recall
that an S4-frame F = (W,R) is path connected provided for any w, v ∈ W there
are w1, . . . , wn ∈ W such that w1 = w, wn = v, and either wiRwi+1 or wi+1Rwi for
each 1 ≤ i < n. The Alexandroff space of a path connected S4-frame is a connected
topological space. The class K consists of finite rooted posets of depth ≤ 3 such that
those of depth 3 satisfy

(†) the subframe obtained by deleting the root is path connected.

Thus, it is enough to show that every finite rooted poset of depth 3 satisfying (†) is
an interior image of βX. While we have a candidate for X and can construct interior
mappings for a number of examples, the task in general remains elusive due to the
combinatorial complexity of these posets.
• Classify the logics arising as L(βX) where X is an arbitrary Mrowka space (satisfying
βX = αX).
• What is the logic of an arbitrary scattered Stone space?
• What is the logic of an arbitrary Stone space?
• What is the logic of an arbitrary compact Hausdorff space?
• What is the logic of an arbitrary locally compact Hausdorff space?

The same questions can be asked in the intuitionistic setting. Note that the logics S4, S4.1,
and S4.Grz are modal companions of the intuitionistic propositional calculus IPC. Thus, in
the intuitionistic setting we obtain IPC and the logics IPCn (n ≥ 1), which are the intuition-
istic analogues of the logics S4.Grzn. In addition, as follows from Remark 5.10, we obtain
the Scott logic of depth 3. A complete classification remains a challenging open problem in
the intuitionistic setting as well.
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