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Abstract. We prove an analogue of the McKinsey and Tarski theorem
for the recently introduced dense-interior semantics of topological evi-
dence logics. In particular, we show that in this semantics the modal
logic S4.2 is sound and complete for any dense-in-itself metrizable space.
As a result S4.2 is complete with respect to the real line R, the rational
line Q, the Baire space B, the Cantor space €, etc. We also show that an
extension of this logic with the universal modality is sound and complete
for any idempotent dense-in-itself metrizable space, obtaining as a result
that this logic is sound and complete with respect to Q, B, €, etc.

1 Introduction

Epistemic logics (i.e. the family of modal logics concerned with what an epistemic
agent believes or knows) has by now a well-established semantics in the form of
Kripke frames [11]. Hintikka [11] reasonably claims that the accessibility relation
encoding knowledge must be minimally reflexive and transitive, which on the
syntactic level translates to the corresponding logic of knowledge containing
the axioms of S4. This, paired with the fact (proven by McKinsey and Tarski
[14]) that S4 is the logic of topological spaces under the interior semantics, lays
the ground for a topological treatment of knowledge. Moreover, treating the
knowledge modality as the topological interior operator, and the open sets as
“pieces of evidence” adds an evidential dimension to the notion of knowledge
that one cannot obtain within the framework of Kripke frames.

Reading epistemic sentences using the interior semantics might be too sim-
plistic: it equates “knowing” and “having evidence”. In addition, the attempts
to bring the notion of belief into this framework have not been very successful.

Following [18], a logic that allows us to talk about knowledge, belief and the
relation thereof, about evidence (both basic and combined) and justification is
introduced in [2]. This is the framework of topological evidence models (topo-e-
models) and this paper builds on it.

McKinsey and Tarski also proved in [14] a stronger result—their celebrated
theorem—namely, that there are single spaces (dense-in-themselves and metriz-
able) such as the real line, whose logic is S4. The present paper aims to translate
the spirit of this theorem to the framework of topo-e-models. To this respect, we
introduce a notion of generic models over a language £, which are topological



spaces whose logic is precisely the sound and complete L-logic of topo-e-models,
and provide several examples of generic models for the different fragments of
the language. More precisely, we show that in this new semantics the modal
logic S4.2 is sound and complete for any dense-in-itself metrizable space. As a
result S4.2 is complete with respect to the real line R, the rational line Q, the
Baire space B, the Cantor space €, etc. We also show that extensions of this
logic (e.g., with the global modality) are sound and complete for any idempo-
tent dense-in-itsef metrizable space such as Q, B, €, etc. Our proofs rely on a
recent topological proof of the McKinsey and Tarski theorem [5]. Namely, an
open and continuous onto map from any dense-in-itself metrizable space onto a
finite rooted S4-frame defined in [5] can be used to define an open and continu-
ous onto map from such a space but now with the dense-interior topology onto
a finite rooted S4.2-frame.

This paper is structured as follows: in the present section we show how to use
topological spaces to model epistemic sentences and introduce the framework of
topological evidence models. In Section 2, we explain how McKinsey and Tarski’s
theorem encodes a notion of generic model which we then use to state and prove
our main results. These results also include different fragments of the language
within the framework of topo-e-models. Finally, we conclude in Section 3.

1.1 Logics of knowledge and belief

Below we list some logics of belief and knowledge which were mentioned in the
introduction and will be used throughout this paper.

The modal logic S4 is the least set of formulas in the language £ which
contains all the propositional tautologies, is closed under uniform substitution
and the rules of modus ponens (from ¢ and ¢ — ¢ infer ¥) and necessitation
(from ¢ infer O¢) and contains the axioms:

(K) O(¢ = ¢) = (¢ — O¢);

(T) O¢ — ¢ (factivity of knowledge);

(4) D¢ — Od¢ (positive introspection).

The modal logic S5 contains the axioms and rules of S4 plus the axiom:
(5) "0¢ — O-0¢ (negative introspection).

54.2 is S4 plus the axiom:

(.2) ~O0-0¢ — O-0-.

KD45 has the (K), (4) and (5) axioms plus:

(D) O¢ — ~O-¢.

The logic Stal, with respect to a language with the K and B modalities, adds
the axioms in Table 1 to the S4 axioms for K.



) Bo— KB
1) -B¢ — K—-Bo;
) K¢ — By
) Bé — ~Bg;
(FB) B¢ — BK¢.
Table 1. Extra axioms for Stal

1.2 The Interior Semantics: the McKinsey-Tarski Theorem

Let Prop be a countable set of propositional variables and consider a modal
language £ defined as follows: ¢ :=p|d A ¢ | ¢ | O, with p € Prop.

A topological model is a topological space (X, 7) together with a valuation
V : Prop — 2%. The semantics of a formula ¢ is defined recursively as follows:
el = V(p)ille Agll = lloll v i[¢]l, [[-¢ll = X\l I0¢]] = Int [|¢[|, where Int is
the interior operator of the topology.

We now give some examples of topological spaces (which will be used through-
out the remainder of this paper) in which we model epistemic sentences.

Ezample 1. (The real line) Let R be the set of real numbers. We define the
natural topology Tk on R, as the topology generated by the basis of open intervals

B={(a,b) :a,b € R,a < b}.

Equivalently, U C R is an open set if, for each € U, there exists some € > 0
such that (x —e,z+¢) CU.

Ezample 2. (The rational numbers) The natural topology g on the set of rational
numbers Q is simply the subspace topology® r|g or, equivalently, the topology
generated on Q by the basis of open intervals {(a,b) : a,b € R,a < b}, where
(a,b) ={r €Q:a<z<b}.

Ezample 3. (The Baire space and the Cantor space) Let w* be the set of infinite
sequences of natural numbers, and w* be the set of finite such sequences. For
s € w" and o € w¥ we say s <« whenever s is an initial segment of «, i.e.,
whenever s = (s1,...,8,) with s; = «a(i) for 1 < i < n. For s € w*, let O(s)
denote the set of sequences of natural numbers that have s as an initial segment,
ie. O(s) = {a € w¥ : s<a}. The Baire space B = (w*,7p) is the topological
space that has w” as its underlying set together with the topology 7 generated
by the basis
By ={O0(s) : s € w*}.
We can analogously define the Cantor space € on the set 2“ of countable

sequences of zeros and ones. The Cantor space has a visual representation in

3 Civen a topological space (X, 7) and aset Y C X, we can define the subspace topology
7|y on Y as the set
Tly ={UNY :U e}

Note that (Y, 7|y) is trivially a topological space.



the form of the infinite binary tree. This is a tree whose nodes are the finite
sequences of zeros and ones. It has the empty sequence as the root and each
node (i1, ...,i,) € 2* has exactly two successors, namely (i1, ...,i,,0) as its left
successor and (i1, ...,4n, 1) as its right successor. The elements of the Cantor
space can be identified with branches of this tree, where a branch is a countable
collection of nodes {so, s1, $2, ...} such that so is the empty sequence (i.e. the
root of the tree) and each siy1 is an immediate successor of s;. The basic open
sets O(s) are identified with “fans”, each fan being the subtree that spurs from
one node. An open set is any union of some of these fans. & € 2 is in a basic
open set O(s) whenever the corresponding branch “enters” the fan.

Ezample 4. (The binary tree Tz) If we consider the nodes of the infinite binary
tree instead of its branches to be the points of our space, we can equip it with
a topology by setting the basic open sets to be those of the form O(s), where
s = {ag, ...,an) and t € O(s) if and only if ¢ is a finite sequence of length greater
than or equal to n + 1 with its n + 1 first elements being ag, ..., .

The interior semantics on topological spaces generalises the Kripke semantics
on preordered frames*. If we are reading [J as an epistemic operator, we can
translate the semantics of [11] into this topological framework, with the addition
that having a topological space allows us to have an evidential view of knowledge.
Indeed, if we read [ as a knowledge modality, we interpret the open sets in the
topology to be pieces of evidence the agent has, and we say that P entails @
whenever P C @, then the interior semantics defined above gives us that the
agent knows ¢ whenever she has a piece of evidence which entails ¢.

Let us revisit some of the examples above in this light.

Ezxample 5. An underfunded ornithologist measures the weight of a bird. Her
devices of measurement produce results with a margin of error of +10g. Let us
code the set of possible worlds with the positive real numbers (0, 00), where at
world x the weight of the bird is precisely = grams. Now, suppose the actual
world is g = 509 and the ornithologist obtains a measurement of 500g £ 10g.
Then the open interval (490,510) is her piece of evidence. With this, there are
things she knows and things she does not know. She does not know, for instance,
the proposition “the bird is heavier than 500g” to be true. She knows, however,
that the bird is heavier than 400g. This proposition can be interpreted as the
set of worlds P = (400, 00) and she has a piece of evidence which includes the
actual world and entails this proposition: z € (490,510) C P.

Ezample 6. Let us equate a world with an infinite stream of data, represented
by a sequence of natural numbers. We are thus in our Baire space. Our epistemic
agent this time is a scientist, and her evidence comes in the form of observations,

4 Given a preordered set (X, <), the collection of upwards-closed sets defines an
Alexandroff topology on X, i.e., a topology closed under infinite intersections. Con-
versely, given an Alexandroff topological space (X, 7) the relation x < y iff x € U
implies y € U, for all U € 7, defines a preorder. This correspondence is 1-1 and
moreover z € Int P iff y € P for all y > z. For details, see, e.g., [3].



which are finite streams of data that the scientist is able to grasp. A world
is compatible with her observation whenever the stream of data is an initial
segment of said world. If she observes s = (a1, ...,a,), then the set of worlds
compatible with it (the corresponding piece of evidence in our sense) is precisely
the basic open set O(s).

In this setting, open sets correspond to verifiable propositions: if P is an open
set and the actual world x¢ is in P, then there exist a basic open set O(s) such
that xp € O(s) C P. Thus this scientist can potentially make an observation,
s, which will allow her to know P. Similarly, closed sets correspond to refutable
propositions and clopen sets to decidable propositions. For more details on this
interpretation, see [12].

1.3 McKinsey and Tarski: S4 as a topological logic of knowledge

Modelling knowledge as topological interior gives us an intuitive, evidence-based
idea of what knowledge amounts to. Moreover, the interior semantics generalises
the Kripke semantics for preorders and:

Theorem 1 (McKinsey and Tarski, [14]). S4 is sound and complete with
respect to topological spaces under the interior semantics.

McKinsey and Tarski also proved a stronger result. We do not need to consider
the class of all topological spaces to obtain the logic S4. They showed that,
instead, we can take some particular, “natural” topological space used to model
knowledge, whose logic is S4.

Definition 1. A topological space (X, T) is called dense-in-itself if no singleton
is an open set, i.e., if {x} ¢ 7 for all x € X. We say (X, 7) is metrizable if
there exists a metric> d on X which generates T.

Remark 1. All the spaces presented as examples in subsection 1.2 are both dense-
in-themselves and metrizable. The corresponding metric for the spaces R, I and
Qis d(z,y) = |x —y|, and clearly no singleton contains an open interval in these
spaces. The binary tree 75 clearly has no open singletons and it is a regular
space with a countable basis and thus metrizable. B and ¢ are homeomorphic
to dense-in-themselves metrizable subspaces of R (for details on these claims,
see [7,15]).

Theorem 2 (McKinsey and Tarski, [14]). S4 is the logic of any dense-in-
itself metrizable space.%

®Le.amapd: X x X — [0,00) satisfying for all z,y,z € X: (i.) d(z,y) = 0 iff z = y;
(ii.) d(z,y) = d(y, z); (iii.) d(z, z) < d(z,y) + d(y,2). A metric d on X induces a
topology 74: we say that a set U C X is open if, for every x € U, there exists some
€ > 0 such that d(z,y) < € implies y € U.

5 The original formulation of this theorem talked about dense-in-itself, metrizable,
separable spaces. It was shown in [16] that the separability condition can be dropped.



We thus have a semantics based on evidence that allows us to talk about
knowledge and whose logic is a philosophically suitable epistemic logic. More-
over, we have some specific spaces which provide “nice” ways to conceptualise
knowledge and whose logic is still S4.

This semantics, however, is not the topic of this paper. Instead, we will
be working with the dense interior semantics. Understanding the conceptual
reasons to move away from the interior and introducing this semantics is the
aim of the next subsection.

1.4 Dense interior

The relation between belief and knowledge has historically been a main focus
of epistemology. One would want to have a formal system that accounts for
knowledge and belief together, which requires careful consideration regarding
the way in which they interact. Canonically, knowledge has been thought of
as “true, justified belief”. However, Gettier’s counterexamples of cases of true,
justified belief which do not amount to knowledge shattered this paradigm [8].

Stalnaker [18] argues that a relational semantics is insufficient to capture
Gettier’s considerations in [8] and, trying to stay close to most of the intuitions
of Hintikka in [11], provides an axiomatisation for a system of knowledge and
belief. This system, Stal, has two modal operators, B and K, and on top of the
S4 axioms and rules for K it adds the axioms of Table 1.

In this logic, knowledge is an S4.2 modality, belief is a KD45 modality and the
following formulas can be proven: B¢ <+ ~K—K¢ and B¢ <> BK¢. “Believing
p” is the same as “not knowing you don’t know p” and belief becomes “subjective
certainty”, in the sense that the agent cannot distinguish whether she believes
or knows p, and believing amounts to believing that one knows.

Now, modelling epistemic sentences via the interior semantics defined above
forces us to equate “knowing” with “having evidence”. Moreover, attempts to
introduce belief in this framework have had some flagrant issues. To give some
examples, the framework considered in [19], in which knowledge is interior and
belief is read as the dual of the derived set operator”, makes knowledge amount to
true belief, which clearly falls short. [1] takes a Stalnakerian stand but it confines
us to work with hereditarily extremally disconnected spaces (h.e.d)®, which seems
to be a rather restricted class of spaces. None of the “natural” spaces provided
above as examples are h.e.d.

In [2] a new semantics is introduced, building on the idea of evidence models
of [4] which exploits the notion of evidence-based knowledge allowing to account
for notions as diverse as basic evidence versus combined evidence, factual, mis-
leading and nonmisleading evidence, etc. It is a semantics whose logic maintains
a Stalnakerian spirit with regards to the relation between knowledge and belief,

" BP = —d(—P), where d(P) = {x : YU € 7(x € U implies Iy € PN U,y # )}
8 A space is extremally disconnected (e.d.) if the closure of an open set is open, and
hereditarily so if all its subspaces are e.d.



which behaves well dynamically and which does not confine us to work with
“strange” classes of spaces.
This is the dense interior semantics, defined on topological evidence models.

1.5 The logic of topological evidence models

We briefly present here the framework introduced in [2]. Our language is now
Ly po0,, which includes the modalities K (knowledge), B (belief), [V] (infallible
knowledge), Oy (basic evidence), O (combined evidence).

Definition 2 (The dense interior semantics). We interpret sentences on
topological evidence models (i.e. tuples (X, 7, Eg, V) where (X, 7,V) is a topo-
logical model and Ey is a subbasis of T) as follows: x € [K¢] iff x € Int[4] and
Int[@] is dense®; x € [Bo] iff Int[¢] is dense; x € [[V]¢] iff [¢] = X; z € [Tod]
iff there is e € Ey with x € e C [¢]; € [O¢] iff = € Int[@]. Validity is defined
in the standard way.

We see that “knowing” does not equate “having evidence”in this framework,
but it is rather something stronger: in order for the agent to know P, she needs
to have a piece of evidence for P which is dense, i.e., which has nonempty
intersection with (and thus cannot be contradicted by) any other potential piece
of evidence she could gather.

Fragments of the logic. The following logics are obtained by considering certain
fragments of the language (i.e. certain subsets of the modalities above).

“K-only”, Lx S4.2.
“Knowledge”, Ly S5 axioms and rules for [V], plus S4.2 for K, plus
V)¢ — K¢ and —[V]-K¢ — [V]~K—¢.
“Combined evidence”, Ly S5 for [V], S4 for O, plus [V]¢ — 0.
“Evidence”, Lyom, S5 for [V], S4 for O, plus the axioms
Do — ToTlos, [Mé — Coe, Do — 0,
(Ooo A [V]) = o(o A [V]4).

We will refer to these logics respectively as S4.2, Logicy, Logicy and Logicy, -
K and B are definable in the evidence fragments'®, thus we can think of the
logic of Lygn, as the “full logic”.

2 Generic spaces for the logic of topo-e-models

McKinsey and Tarski’s theorem [14] stating that S4 is the logic of any dense-
in-itself metrizable space (such as the real line R) under the interior semantics
tells us that we have a space which gives a somewhat “natural” way of capturing

9 A set U C X is dense whenever C1U = X or equivalently whenever U NV # @ for
all nonempty open set V.
0 K¢ =0¢ A V][O0 and B = ~K-K¢.



knowledge yet it is “generic” enough so that its logic is precisely the logic of all
topological spaces. Whatever is not provable in the logic of knowledge S4 will
find a refutation in R and whatever is true in S4 will hold in every model based
on the topology of the real line.

Translating this idea to the framework of topo-e-models is the aim of this
paper. We wish to find topological evidence models which capture the logics
presented in the preceding chapter, that is, special spaces whose logic under
the dense interior semantics is exactly the logic of topo-e-models. We start by
formalising the idea of “generic”.

Definition 3 (Generic models). Let £ be a language and (X, 7) a topological
space. We will say that (X, T) is a generic model for £ if the sound and complete
L-logic over the class of all topological evidence models is sound and complete
with respect to the family

{(X,7,Ey) : Ey is a subbasis of T}.

If Oy is not in the language, then a generic model is simply a topological space
which is sound and complete with respect to the corresponding L-logic.

Since McKinsey and Tarski’s original paper (which appeared in 1944), a number
of simplified proofs of this result have been obtained. For an overview, we refer
to [3]. Many of these proofs are built on the following idea. It is a well-known fact
that S4 is sound and complete with respect to finite rooted preorders (see e.g.
[6]). One then constructs an interior map (a surjective map which is continuous
and open'!) from a dense-in-itself metrizable space (X, 7) onto any such preorder
(W, <). It can be proven that given such a map f : X — W and a valuation V
on (W, <), if we define V/(p) := {x € X : fa € V(p)} it is the case that, for
any formula ¢ in the language of S4, z |= ¢ in (X, 7, V7) if and only if fz = ¢
in (W, <, V). Completeness is then a straightforward consequence, for if S4 1/ ¢,
then there is a model based on a finite rooted preorder (W, <, V') refuting ¢ and
thus we can refute ¢ on (X, 7, V/). The next subsection builds on a recent proof
of the McKinsey-Tarski theorem, contained in [5], which is purely topological.

2.1 SA4.2 as the logic of R

This section is devoted to the proof of our analogue of McKinsey and Tarski’s
theorem:

Theorem 3. S4.2x is the logic of any dense-in-itself metrizable space if we read
K as dense interior. That is, for any formula ¢ in the language Ly, and any
dense-in-itself metrizable space (X, T), we have that S4.2x & ¢ if and only if
(X, 7) |E ¢ with the dense interior semantics.

YA map f: (X,7) = (Y,0) is continous is U € o implies f~'[U] € 7 and open if
U € 7 implies f[U] € 0.



Before tackling this proof, we will need to introduce some auxiliary notions.
Given a topological space (X, 7) define 77 to be the collection of dense open
sets in (X, 7) plus the empty set:

T+:{U€TZCIU:X}U{®}'

Recall that a topological space is extremally disconnected if the closure of any
open set is an open set. The following is straightforward to check.

Lemma 1. (X,77) is an extremally disconnected topological space and, for any
valuation V' and any formula ¢ in the modal language L we have that [[QS]](X’T’V)

V)

under the dense interior semantics coincides with ||| X7 V) under the interior

semantics.

Lemma 2. For any topological space (X, T), we have that (X,71) = S4.2 under
the interior semantics.

Proof. Follows from the above together with the soundness and completeness of
S4.2 with respect to extremally disconnected spaces (see, e.g., [3,1]).

Now, we will be using the known result that S4.2 is sound and complete with
respect to the class of finite rooted frames (W, <) in which < is a reflexive,
transitive and weakly directed'? relation [6]. Note that if a frame is rooted and
weakly directed, for every pair of points x,y € W, and given that r < x,y where
r is the root of W, weak directedness grants us the existence of some z such that
z > x,y. But this means that, for every pair of points x and y, the set Tx N Ty
is nonempty, and thus for every pair of nonempty upsets U and V' we have that
U NV # @. This means that every nonempty upset is dense in such a frame,
and therefore that the topology of upsets 7 = Up(W) coincides with 7. This
fact, paired with the previous lemma, immediately gives us the folowing result.

Lemma 3. Let § = (W, <) be a reflexive, transitive and weakly directed rooted
frame. Then the dense interior semantics on (W, Up(W)) coincides with the inte-
rior semantics on it, which in turn coincides with the standard Kripke semantics
on (W, <). In other words, in any model based on such a frame

x| K¢ if and only if y = ¢ for ally > x.

Moreover, we have the following:

Lemma 4. Let (X, 1) be some topological space and (W, <, V') be a finite, rooted,
reflexive, transitive and weakly directed Kripke model. Let

[ (X, 1) = (W, Up(W))
be an onto interior map and define
VIip)={zxeX: frecV(p))}

Then for every x € X we have that (X,7,V/),x = ¢ under the dense interior
semantics if and only if (W, <, V), fx |= ¢ under the Kripke semantics.

12°A relation < is weakly directed whenever x < y, z implies that there exists ¢ > y, 2.



Proof. Straightforward induction on the structure of ¢.

Definition 4. Given topological spaces (X,7) and (Y,o), we will refer to an
open (resp. continuous, interior) map f : (X,7t) — (Y,0) as a dense-open
(resp. dense-continuous, dense-interior) map f: (X,7) — (Y, 0).

Given all the above, in order to prove completeness it suffices to show that there
exists a dense-interior map from any dense-in-itself metrizable space (X, 7) onto
any finite S4.2 frame. This way, if a formula ¢ is not a theorem of S4.2, then it
will be refuted on some such frame and therefore, by using this map plus Lemma
4, we can construct a valuation on (X, 7) which refutes ¢. And indeed:

Theorem 4. Given a dense-in-itself metrizable space (X,T) and a finite rooted

S4.2 frame (W, <) there exists an onto dense-interior map f: (X, 7) — (W, <).
Proof. See Appendix A.1.
This finishes the proof of Theorem 3.

2.2 Adding belief

The logic Stal introduced in Section 1.1 is the logic of topo-e-models for the
belief and knowledge fragment. The formula B¢ <> ~K—K¢ is provable in Stal
(see [18]). In particular, for any formula ¢ in the language Lk p, there exists
a formula % in the language Lk such that Fsw ¢ <> ¥ (indeed, we get ¥ by
substituting every instance of B in ¢ with ~K-K).

And thus we have the following:

Theorem 5. Stal is sound and complete with respect to any dense-in-itself metri-
zable space with the dense interior semantics.

Proof. Soundness follows from the fact that Stal is sound with respect to topo-
e-models. For completeness, suppose Stal I/ ¢ and take v in the language Lg
such that =gt @ +> . Then S4.2 1/ 1), hence by Theorem 3, for any dense-in-
itself metrizable space (X, 7), there is a point € X and valuation V' such that
(X,7T,V),x £ 1. By soundness and the fact that |=sw ¢ < 1), we conclude
that ¢ is false at x as well.

2.3 The global modality [V] and the logic of Q

Three fragments including the global modality [V] will be considered in the
present subsection: the knowledge fragment (the one which includes the K and
[V] modalities), the factive evidence fragment (including O and [V]) and the evi-
dence fragment (including [V], O and Og).
First let us concentrate on the factive evidence fragment. Recall that the logic
of this fragment, Logic,, consists of S5y plus S4g plus the axiom [V]¢ — Teo.
This logic is not complete with respect to R. Consider the following formula:

[V](Op v O=p) — ([V]p V [V]-p) (Con)

It is the case that (Con) is not derivable in the logic yet it is always true in R.
More generally:



Theorem 6 (Shehtman, [17]). A topological space (X, T) satisfies (Con) if
and only if it is connected3.

Instead of considering connected spaces and adding (Con) as an axiom to our
logic (an axiom which would be hard to justify epistemically), we will show
completeness of this fragment (plus the other two mentioned above which include
the global modality) with respect to a dense-in-itself, metrizable yet disconnected
space, namely Q. This parallels a similar result of [17] stating that Q is sound
and complete with respect to S4 with the global modality.

The knowledge fragment Lyg. Similarly to Subsection 2.1, we will use
completeness of the logic with respect to a class of finite frames, namely:

Lemma 5 ([9]). Logicyy is sound and complete with respect to finite models of
the form (W, R, V) where W is a finite set, R is a preorder with a final cluster**
and K and V] are respectively interpreted as the Kripke modality for R and the
universal modality.

Once again, we can easily check the following statement.

Lemma 6. Let M = (W, R, V) be a finite preordered model with a final cluster,
(X,7T) a topological space and f : X — W an onto dense-interior map. Then
for any formula ¢ we have (X,7,Vy),x = ¢ iff M, fx = ¢, where Vi(p) =
V)l

Then, to prove completeness, it suffices to find such a map from Q. And indeed:

Theorem 7. Given a finite preorder with a final cluster (W, R), there exists an
onto dense-interior map f : (Q,7q) - (W, R).

Proof. See Appendix A.2.

The factive evidence fragment Lyg It is proved in [9] that Logic,q is sound
and complete with respect to finite relational models of the form (X, <, V') where
< is a preorder.

Thus, to prove completeness of this logic with respect to Q it suffices to find
a suitable open and continuous map from Q onto any such finite frame. And
indeed (by a proof similar to the one of Theorem 7) we obtain:

Theorem 8. Let (W, <) be any finite preordered frame. Then there exists an
open, continuous and surjective map f : (Q,q) — (W, Up(W)).

Again, noting that if we define V/(p) = {z € Q : fx € V(p)} we obtain = |= ¢
in (Q, g, V¥) if and only if fz |= ¢ in (W, <, V), completeness follows.

13 A space X is connected if there is no proper subset A C X such that both A and
X\A are open. R is a connected space.
14 Te. aset AC W such that wRa for all a € A and all w € W.



Adding basic evidence: the evidence fragment £Lyon,. Let us now account
for basic evidence. We take the fragment consisting of the modal operators [J, [V]
and Op. Recall that we interpret formulas of this fragment on topo-e-models
(X, 7, Eo, V), where Ey is a subbasis for (X, 7), in the following way: x € [Hod]
if and only if there exists e € Ey with 2 € e C [¢].

The logic of this fragment is Logicym,, as discussed in Section 1.5. It is
proven in [2] that this logic is sound and complete with respect to finite pseudo-
models, i.e., structures of the form (X, <, Eg, V), where < is a preorder and E5
is a subbasis for Up(X) with X € Ej.

Completeness is an immediate corollary of the following result:

Theorem 9. Let M = (X, <, EL, V) be a pseudo-model as defined above and
f:Q — X be an onto interior map. Then if we define V@(p) = f~1[V(p)] and
Eé? ={e CQ: fle] € E}, we have that Nt = (Q, g, Eé?, VQ) is a topo-e-model
and, for every ¢ in the language, M,z = ¢ iff M, fz | ¢.

Proof. See Appendix A.3.
To summarise the results in this subsection we obtain:
Theorem 10. (Q, q) is a generic model for the fragments Lya, Lyk and Lyon, -

Proof. The result follows from Theorems 7, 8 and 9, respectively.

A condition for generic models. We will now generalize the results in the
present subsection to a class of spaces. One can easily see that the only part in
the proof of Theorem 7 which uses a special property of Q which R does not have
is that we partition Q in n subspaces which are homeomorphic to Q itself. Given
a dense-in-itself metrizable space which admits such partition, all the proofs in
the present subsection will work mutatis mutandis. We will now give a necessary
and sufficient condition for such a space to have this property.

Definition 5 (Idempotent spaces). A topological space (X, 7) is idempotent
whenever (X, T) is homeomorphic to the sum (X,7) ® (X, 7).15

Then the following holds:

Lemma 7. A topological space (X,T) is idempotent if and only if it can be
partitioned in n subspaces homeomorphic to itself for each n > 1.

Proof. It (X,7) admits a partition in two subspaces homeomorphic to itself,
since these are disjoint their union (which is X) is homeomorphic to their sum,
which is homeomorphic to X & X.

Conversely, if (X, 7) is idempotent we can reason recursively to find that X
is homeomorphic to the sum X; & ... & X,, where each X; is a copy of X. Let
f:X19®...8X,, = X be a homeomorphism. Then {f[X1], ..., f[X,]} constitutes
a partition of X in n subspaces, each of them homeomorphic to X.

15 (X, 7)® (Y, o) is the space which has the disjoint union (X x {1}) U (Y x {2}) as its
underlying set and 7 @ o = {(U x {1}) U(V x {2}): U € 7,V € o} as its topology.



And thus, we have the general result:

Corollary 1. Any dense-in-itself idempotent metrizable space is sound and com-
plete with respect to Logicy g, Logicyg and Logicygn, -

All the spaces introduced in Section 1, except for R and 73, are dense-in-
themselves, metrizable and idempotent spaces. And thus:

Theorem 11. The rational line Q, the Cantor space € and the Baire space B
are generic spaces for the fragments L, Lxp, Lyn, Lvkx and Lyon, .

Completeness of Logicy, with respect to Q with a particular sub-
basis. While so far in the present section we have shown several of the logics
in [2] to be sound and complete with respect to single generic models, we failed
to provide a single topo-e-model for the fragment involving the basic evidence
modality. Instead, we showed that the corresponding logic is sound and complete
with respect to the class of topological evidence models based on (Q,7g) with
arbitrary subbases. But can we find one subbasis S such that the logic of the
single space (Q, g, S) is precisely Logicynm,?

This would need to be a subbasis which is not a basis (for otherwise (¢ «»
Oo¢ would be a theorem of the logic). One obvious candidate is perhaps the
most paradigmatic case of subbasis-which-is-not-a-basis, namely

S ={(a,00),(—00,b) : a,b € Q}.

We will show that this subbasis does not lead to a complete logic. To show
why, consider the following formula, with three propositional variables p1, pa, p3:

Y= /\ (Oopi A [F]00—p:) /\ [3](Bopi A =Uop;),
i=1,2,3 i#je{1,2,3}

where [3] is the dual of [V] (i.e. [3]¢p = =[V]=¢). Then + is consistent in the logic
yet it cannot be satisfied by any model based on Q with the aforementioned
subbasis.

Indeed, note that, in any topo-e-model, [(y@] is a union of elements in the
subbasis. In particular, with the subbasis S as defined above, we have that [(y¢]
is always of the form [dg¢] = (—o0,a) U (b, 00) for some a,b € R U {—o0, 00}
(here, we call (—o0, —00) = (00,00) = & and (—o0,00) = Q).

Moreover, if the set [Oo@ A [0p—¢] is nonempty, then it is straightforward
to see that [(y¢] has to be either of the form (a, 00) or of the form (—oo,a) for
some a € R.

By this observation, the first conjunct of 7 gives that [Cop;] is of the form
(a,00) or (—o0,a) for some a € R. By the second conjunct, the sets [Hop;] and
[Oop;] need to be incomparable for ¢ # j. But of course, at least two of the sets
[Cop:] have to be of the same form (either (—oo,a;) and (—oo,a;) or (a;, o)
and (aj,00)), and thus it obviously cannot be the case that three such sets are
incomparable. Therefore (Q, 7g,S) = —.



However, v is consistent. To show this, we use the fact (see [2]) that the logic is
complete with respect to quasi-models, i.e. structures of the form (X, <, Fy, V),
where < is a preorder and Ej is a collection of <-upsets. [V] is interpreted
globally, O is interpreted as the Kripke modality for < and z € [0y¢] if and
only if there is some e € Fy with z € e C [¢]. Let (X, <) be the following poset:

z

[ )
Tl T2 T3 Yy

and call e; = {w;, 2} for i =1,2,3. Let Ey = {e1,e2,€3,{y}, X} and V(p;) = ¢;
for i = 1,2,3. It is clear that (X, <, Eg, V) is a quasi-model and that z = Ogp;,
z; = Oop; A =Oop; for j # 4, and y |= Oo—p;. Thus z |= v and + is therefore
consistent in the logic. Since every model based on Q with Ey as a subbasis
makes —y true yet —y ¢ Logicyr,, incompleteness follows.

We conjecture that no particular subbasis will give us completeness. Proving
this result, or otherwise finding such a subbasis, constitutes an interesting line
of future work.

3 Conclusions and future work

We have shown that there are topological spaces which are generic enough to
capture the logic of topological evidence models, mirroring the McKinsey-Tarski
theorem within the framework of topological evidence logics.

A number of questions still remain open. One potential direction for future
work is to see whether the completeness results in this paper extend to strong
completeness (it is shown in [13] that, under the interior semantics, S4 is strongly
complete with respect to any dense-in-itself metrizable space).

It will also be interesting to add a dynamic dimension to this work: one of
the advantages of topo-e-models over other topological treatments of evidence
logics is how well these models behave dynamically. In [2], dynamic extensions
for these logics which include modalities for public announcement or evidence
addition are given, along with sound an complete axiomatisations. Thus, one
may wonder whether our models are also generic for these logics.

Acknowledgements. We would like to thank Guram Bezhanishvili for helpful
discussions and for suggesting the proof of Theorem 2.8. We are also grateful to
the reviewers of WoLLIC 2019 for useful comments, which improved the presen-
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A Appendices

A.1 Proof of Theorem 4

Let us take a finite rooted preorder § = (W, <) and a dense-in-itself metrizable
space (X, 7) and construct a dense-interior onto map f : (X,7) — (W, <).1¢ For
this construction, we will use the following two lemmas. Their proofs'” can be
found respectively in [5, Lemmas 4.13 and 4.22] and [10, Thm. 41].

16 We wish to thank Guram Bezhanishvili for the idea of this construction.
17 Lemma 8 is a cornerstone of the proof of McKinsey and Tarski’s theorem.



Lemma 8. (i) If § = (W, <) is a finite rooted preorder, and (G, T) is a dense-
in-itself metrizable space, there exists a continuous, open and surjective map

f:(G,7) = (W, Up(W)).

(i) (Partition Lemma) Let X be a dense-in-itself metrizable space and n > 1.
Then there is a partition {G,Uy, ...,U,} of X such that G is a dense-in-itself
closed subspace of X with dense complement and each U; is an open set.

Lemma 9. Given a dense-in-itself metrizable space X and n > 1, X can be
partitioned in n dense sets.

Note that § has a final cluster, i.e., a set A C W with the property that w < a
for all w € W and all a € A. Indeed, let r € W be the root and let =,y € W
be any two maximal elements (which exist, on account that § is finite). Since
r < x and r < y, by weak directedness, there is a z such that x,y < z. But by
maximality of z and y, we have that z < z and z < y, hence, by transitivity,
z <y and y < z: the maximal elements of § form a final cluster. Let this cluster
be A= {a1,...,an}.

If W = A, then we simply partition X in n dense sets {A1,..., A,} as per
Lemma 9 and we take f to map each 2 € A; to a;. It is a straightforward check
that f is dense-open (the image of a dense open set is W) and dense-continuous
(the preimage of a nonempty upset is X). Otherwise, let us call B := W\ A,
which is a finite rooted preorder. Let {G, Uy, ...,U,} be a partition of X as given
by the Partition Lemma. Since G is a dense-in-itself metrizable space and B is
a finite rooted preorder, by Lemma 8(i), there exists an onto interior map (with
respect to the subspace topology of G) f : G — B. We extend this map to
f: X — W by mapping each z € U; to a;.

We now show that f is the desired map. It is surjective by construction. It
is dense-open, for given a nonempty dense open set U C X, we have that UNG
is an open set in the subspace topology of G and therefore f[U NG| = f[U N G]
is an upset in B. On the other hand, U\ G = U N (X \ G) is the intersection of
two dense open sets and therefore is dense open, which means it has nonempty
intersection with each of the U; and hence f[U \ G] = A. Therefore, f[U] is the
union of an upset in B with A, and thus is an upset in W.

To see that f is dense-continuous, take a nonempty upset U C W, which will
be a disjoint union U = B’ U A, with B’ being an upset in B. Then f~![B'] =
f~Y[B’] is an open set in X and f~!'[A] = U; U...UU, = X \ G. Therefore,
f71[U] is the union of an open set and a dense open set and thus a dense open
set. This concludes the proof.

A.2 Proof of Theorem 7
Let (W, <) be a finite preorder with a final cluster. We have the following:

Lemma 10. (W, <) is a p-morphic image of a finite disjoint union of finite
rooted S4.2 frames, via a dense-open and dense-continuous p-morphism.



Proof. Let x4, ..., x, be the minimal elements of W. Now, for 1 < ¢ < n take
W/ =1tz; x {i}. Define an order on W' = W{U...UW,, by: (z,i) < (y,j) iff i =3
and x < y. Then W/, ..., W/ are pairwise disjoint finite rooted S4.2 frames (with
A x {i} as a final cluster) and (z,7) — x is a p-morphism from W’ onto W. It
is easy to see that this mapping is dense-open (for every nonempty open set is
dense in W) and dense-continuous (for the preimage of a nonempty W-upset is
a W’ -upset which contains all the final clusters, and thus is dense).

We can use Lemma 10 to construct the map: let W7, ..., W/ be the family of
pairwise disjoint finite rooted S4.2 frames whose union W’ has (W, <) as a p-
morphic image.

Take z1,...,2n—1 € R\Q and consider the intervals A; = (—o0,21), 4, =
(zn—1,00) and A; = (z;_1,2;) for 1 < i < n. Now, each A;, as a subspace,
is homeomorphic to Q (and thus a dense-in-itself metrizable space). From each
(A;,7|a,) we can find a dense-open, dense-continuous and surjective map f; onto
W/. Then f = f1U...Uf, is a dense-interior map onto W’ which, when composed
with the p-morphism in Lemma 10, gives us the desired map.

A.3 Proof of Theorem 9

We show that EJ is a subbasis for Q. First, given that X € EY and f[Q] = X,
we have that Q € EZ, thus |J E} = Q.

Now, suppose p € U € 7g. We show that there exist ef,...,el € E{? such
that p € ef N ...Nel C U. Note that fp € f[U] which is an open set. Since
Eg is a subbasis for (X, <) this means that there exist e?,....,e2 € Eg with
fpeefn..nek C fIU]. Now set

ef = fef\y ¢ U+ fy € fU]}.

The fact that ¢! € E follows from the fact that f[e!] = e¥. Indeed, if y € f[e]
then y € ff~1[e¥] = ¥ and conversely if y € e?, then either y € f[U] (in which
case y = fz for some 2z € U and thus z € f~![e?] and therefore 2 ¢ {2’ ¢ U :
[z € flU]}, which implies z € e!) or y ¢ f[U] (in which case y = fz for some
z by surjectivity and z ¢ {2’ ¢ U : fz' € f[U]}, thus z € €). In either case,
y € flef].

Finally, note that ef N...NeZ C U. Indeed, for any z € ef N...N €% we have
that fo € efN...Nel C f[U], and thus by the definition of the e!’s it cannot be
the case that x ¢ U.

So for p € U € 7g we have found elements e, ...el
eln..Nel CU, and therefore ESQ is a subbasis.

Now set a valuation V@(p) = {z € Q : f € V(p)} and let us show that, for
any formula ¢ in the language and any = € Q, we have that (Q, g, EEJQ, VO 2
¢ if and only if (X, <, EX, V), fx |= ¢. This is done by an induction on formulas;
the only induction step that requires some attention is the one referring to Clg.

Let = = Opt. This means that there exists some e € E(? with ¢ € e and
y =1 for all y € e. But then fz € fle] € B and by the induction hypothesis we

€ Eé? such that p €



have fy = 1 for all fy € fle] and thus fz = Ogy. Conversely, if fz € e/ C [¢]*
for some ¢’ € E, we have that 2 € f~'[¢/] € EZ and fy |= 1 for eachy € f~[¢/]
and thus, by induction hypothesis, y = 1. Therefore z = Ogt).



	The McKinsey-Tarski Theorem for Topological Evidence Logics 

