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Abstract

We give a sufficient condition for deciding admissibility of non-standard inference
rules inside a modal calculus S with the universal modality. The condition requires
the existence of a model completion for the discriminator variety of algebras which
are models of S. We apply the condition to the case of symmetric strict implication
calculus, i.e., to the modal calculus axiomatizing contact algebras. Such an applica-
tion requires a characterization of duals of morphisms which are embeddings (in the
model-theoretic sense). We supply also an explicit infinite set of axioms for the class
of existentially closed contact algebras. The axioms are obtained via a classification
of duals of finite minimal extensions of finite contact algebras.

Keywords: Contact Algebras, Non-Standard Inference Rules, Model Completeness,
Existentially Closed Structures.

1 Introduction
The use of non-standard rules has a long tradition in modal logic starting
from the pioneering work of Gabbay [18], who introduced a non-standard rule
for irreflexivity. Non-standard rules have been employed in temporal logic in
the context of branching time logic [7] and for axiomatization problems [19]
concerning the logic of the real line in the language with the Since and Until
modalities. General completeness results for modal languages that are suffi-
ciently expressive to define the so-called difference modality have been obtained
in [32]. For the use of the non-standard density rule in many-valued logics we
refer to [27] and [29].
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Recently, there has been a renewed interest in non-standard rules in the
context of the region-based theories of space [30]. One of the key algebraic
structures in these theories is that of contact algebras. These algebras form
a discriminator variety, see e.g., [4]. Compingent algebras are contact alge-
bras satisfying two ∀∃-sentences (aka Π2-sentences) [4,15]. De Vries [15] estab-
lished a duality between complete compingent algebras and compact Hausdorff
spaces. This duality led to new logical calculi for compact Hausdorff spaces in
[2] for two-sorted modal language and in [4] for a uni-modal language with a
strict implication. Key to these approaches is a development of logical calculi
corresponding to contact algebras. In [4] such a calculus is called the strict
symmetric implication calculus and is denoted by S2IC. The extra Π2-axoms
of compingent algebras then correspond to non-standard Π2-rules, which turn
out to be admissible in S2IC. This generates a natural question of investigating
admissibility of Π2-rules in S2IC and in general in logical calculi correspond-
ing to discriminator varieties of modal algebras. This is the question that we
address in this paper. We connect admissibility of non-standard Π2-rules with
the model completion of the first-order theory of the corresponding algebraic
structures. Motivated by this connection, we then provide (an infinite) axiom-
atization of the model completion of the theory of contact algebras. As far as
we are aware this is a first systematic study of admissibility in the context of
non-standard inference rules.

The definition of Π2-rules we give below is taken from [4] and is close to
that of Balbiani et al. [2].

Definition 1.1 [Π2-rule] A Π2-rule is a rule of the form

(ρ)
F (ϕ/x, p)→ χ

G(ϕ/x)→ χ

where F,G are formulas, ϕ is a tuple of formulas, χ is a formula, and p is a
tuple of propositional letters which do not occur in ϕ and χ.

Little is known about the problem of recognizing admissibility for non-
standard rules, although this problem was already raised in [32]. An immediate
easy computation shows that whenever a system S admits local uniform inter-
polants, then the above rule (ρ) is admissble iff the formula G(x)→ EpF (x, p)

is provable in S, where EpF (x, p) is the uniform pre-interpolant of F (x, p) wrt
the variables p. 1

Local uniform interpolants rarely exist: among the systems where they
are available we list K, GL, S4.Grz, S5 [6,20,22,28,33]. From the structural
point of view, global uniform interpolants (i.e. uniform interpolants for the
global consequence relation) are more informative, due to their relationship to

1 We consider part of the definition of uniform pre- and post- interpolants, the fact that
they are stable under substitution: in other words, substituing ϕ for the p in EpF (x, p) must
give the same result as computing EpF (ϕ/x, p) after the substitution (see [20] for a careful
analysis).
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compact congruences and model completions [22,24,31]. However, the above
simple argument for recognizing admissibility of non-standard rules seems not
to go through via global uniform interpolants. There is no direct implication
(in both senses) between the existence of local and of global uniform inter-
polants: global uniform interpolants fail to exists for K [24] whereas local
ones exists. Conversely, there are cases where global interpolants exist and
local interpolants do not (this is easily seen from the results of [26] for lo-
cally tabular S4-logics, where existence of uniform local/global interpolants
reduces to existence of ordinary local/global interpolants and hence to super-
amalagamation/amalgamation properties).

Non-standard rules are usually investigated in a system S of modal logic
with a global modality. The global modality is known to supply a discriminator
term for the class of S-algebras [23]. In such contexts, by the results of [22], ex-
istence of uniform interpolants imply (actually it is equivalent to) existence of a
model completion for the equational class of S-algebras. An easy modification
of the arguments in [22], shows also that the existence of global uniform inter-
polants for S implies the existence of a model completion TS? for the theory
TS axiomatizing the universal class of simple S-algebras. In this paper, we first
show that the latter condition (namely existence of a model completion TS

?

for TS) is sufficient to characterize non-standard S-rules. This characterization
yields effective recognizability of non-standard rules, if quantifier elimination in
T ?S is effective. The latter is certainly the case when S is decidable and locally
tabular. We apply this general result to the case of contact algebras, where
we show that the model completion of the theory of simple algebras exists and
provide also an axiomatization for it.

2 Π2-rules and model completions
A modal signature Σ is a finite signature comprising Boolean operators ∧,∨,→
,↔,¬ as well as additional operators of any arity called the modal operators.
Among modal operators, there is a distinguished unary operator [∀], called
the global or universal modality. Out of Σ-symbols and out of a countable
set of variables x, y, z, . . . , p, q, r, . . . one can build the set of propositional Σ-
formulae. Σ-formulae might be indicated both with the greek letters φ, ψ, . . .
and the latin capital letters F,G, . . . . Notations such as F (x) mean that the
Σ-formula F contains at most the variables from the tuple x. A modal system
S (over the modal signature Σ) is a set of Σ-formulae comprising tautologies,
the axioms:

[∀]φ→ φ, [∀]φ→ [∀][∀]φ,
φ→ [∀]¬[∀]¬φ, [∀](φ→ ψ)→ ([∀]φ→ [∀]ψ),∧
i

[∀](φi ↔ ψi)→ (O(...φi...)↔ O(...ψi...)) (for all O ∈ Σ).

and closed under the rules of modus ponens (MP) (form φ and φ → ψ infer
ψ), uniform substitution (US) (from F (x) infer F (ψ/x)), and necessitation (N)
(from φ infer [∀]φ). We often write S ` Φ or `S φ for φ ∈ S. We let a
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modal signature Σ and a modal system S be fixed for the remaining part of this
section. Formulas in S will be called S-axioms. We say that S is decidable
iff the relation S ` φ is decidable. We also say that S is locally tabular iff for
every finite tuple of propositional variables x there are finitely many formulae
ψ(x), . . . , ψn(x) such that for every further formula φ(x) there is some i in
1, . . . , n such that S ` φ↔ ψi.

We now consider the effect of the addition of Π2-rules (see Definition 1.1)
to a system S.
Definition 2.1 [Proofs with Π2-rules] Let Θ be a set of Π2-rules. For a formula
ϕ, we say that ϕ is derivable in S using the Π2-rules in Θ, and write `S+Θ ϕ,
provided there is a proof ψ1, . . . , ψn such that ψn = ϕ and each ψi is an instance
of an axiom of S, or is obtained either by (MP) or (N) from some previous ψj ’s,
or there is j < i such that ψi is obtained from ψj by an application of one of
the Π2-rules ρ ∈ Θ. The latter means the following, for ρ like in Definition 1.1:
ψj = F (ξ/x, p) → χ and ψi = G(ξ/x) → χ, where F,G are formulas, ξ is a
tuple of formulas, χ is a formula, and p is a tuple of propositional letters not
occurring in ξ, χ.

We are interested in characterizing those Π2-rules that can be freely used
in a system without affecting its deductive power.

Definition 2.2 A rule ρ is admissible in the system S if for each formula ϕ,
from `S+ρ ϕ it follows that `S ϕ.

We may view our modal signature Σ as a first-order signature and Σ-
formulae as terms in such a signature. For a modal system S, an S-algebra
is a Boolean algebra with operations (one operation of suitable arity for each
O ∈ Σ) satisfying [∀]> = > and φ = > for every S-axioms φ. We call an
S-algebra simple iff the universal first-order condition ∀x ([∀]x = >∨ [∀]x = ⊥)
holds. This agrees with the standard definition from universal algebra, be-
cause it can be shown that congruences in a S-algebra bijectively correspond
to [∀]-filters, i.e. to filters F satisfying the additional condition that a ∈ F
implies [∀]a ∈ F . We call TS the equational first-order theory of simple non
degenerate S-algebras (an S-algebra is non degenerate iff ⊥ 6= >). A standard
Lindenbaum construction proves the algebraic completeness theorem, namely
that for every φ we have S ` φ iff the identity φ = > holds in all S-algebras
(and hence iff φ = > holds in all simple S-algebras, because S-algebras are a
discriminator variety).

With each Π2-rule ρ given in Definition 1.1, we can associate the following
∀∃-statement in the first-order language of S-algebras:

Π(ρ) := ∀x, z
(
G(x) � z ⇒ ∃y : F (x, y) � z

)
.

Theorem 2.3 Suppose that the universal theory TS has a model completion
T ?S . Then a Π2-rule ρ is admissible in S iff T ?S |= Π(ρ).

Proof. In our general setting [4, Theorem 6.12] holds, replacing the system SIC
mentioned there with our generic system S (the proof of this generalization is
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reported in the Appendix below as Theorem A.4 and follows the very same
arguments as the analogous result of [4]). Using that theorem, we have to show
that T ?S |= Π(ρ) holds iff every simple S-algebra B can be embedded into some
simple S-algebra C which satisfies Π(ρ). This is shown below using the fact
that Π(ρ) is a Π2-sentence. Recall that models of T ?S are just the existentially
closed simple S-algebras (see [12, Proposition 3.5.15]).

Suppose for the left to right direction that T ?S |= Π(ρ) holds and let B be any
simple S-algebra. Then B embeds into an existentially closed simple S-algebra
C (this is a general model-theoretic fact [12]); as mentioned above, since TS
has a model completion T ?S , the existentially closed simple S-algebras are an
elementary class and are precisely the models of T ?S . Thus B embeds into C
and C satisfies Π(ρ), because T ?S |= Π(ρ).

Conversely, suppose that every simple S-algebra B can be embedded into
some simple S-algebra C which satisfies Π(ρ). Pick B such that B |= T ?S and
let Π(ρ) be ∀x∃yH(x, y), where H is quantifier free. Let b be a tuple from the
support of B. Then we have C |= ∃yH(b, y) for some extension C of B. As B is
existentially closed, this immediately entails that B |= ∃yH(b, y). Since the b
was arbitrary, we conclude that B |= Π(ρ), as required. 2

Checking whether a Π2-rule is admissible or not now amounts to check-
ing whether T ?S |= Π(ρ) holds or not. The latter can be done via quantifier
elimination in T ?S . We give sufficient conditions for this to be effective.

Corollary 2.4 Let S be decidable and locally tabular. Assume also that simple
S-algebras enjoy the amalgamation property. Then admissibility of Π2-rules in
S is effective.

Proof. Local tabularity of S implies local finiteness 2 of TS . For universal
locally finite theories in a finite language, amalgamability is a necessary and
sufficient condition for existence of a model completion [25,34]. Quantifier
elimination in T ?S is effective because there are only finitely many non-equivalent
formulae in a fixed finite number of variables, because of Lemma A.3 from the
Appendix and because of the following folklore lemma. 2

Lemma 2.5 The quantifier-free formula R(x) provably equivalent in T ?S to an
existential formula ∃yH(x, y) is the strongest quantifier free formula G(x) im-
plied (modulo TS) by H(x, y).

Proof. Recall that TS and T ?S are co-theories [12], i.e. they prove the same
universal formulae. Thus we have the following chain of equivalences:

TS ` H(x, y)→ G(x)

T ?S ` H(x, y)→ G(x)

T ?S ` ∃yH(x, y)→ G(x)

T ?S ` R(x)→ G(x)
TS ` R(x)→ G(x)

2 Recall that a class of algebras is locally finite if every finitely generated algebra in this class
if finite, see [11, Section 14.2] for the connection between local finiteness and local tabularity.
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yielding the claim. 2

We point out that there might be different ways (other than Corollary 2.4)
to exploit Theorem 2.3 in order to decide admissibility of Π2-rules (for instance,
as mentioned in the introduction, computability of global interpolants offers a
powerful opportunity, given the relationship between model completions and
uniform global interpolants [22]). However Corollary 2.4 gives a simple cri-
terion, independent of more sophisticated machinery, which is useful for the
application of this paper. In Section 4, we give an example of the application
of Corollary 2.4 for recognizing an admissible rule.

The usefulness of Corollary 2.4 lies in the fact that its only real require-
ment is the amalgamation property, besides local tabularity. Whenever local
tabularity holds, finitely presented algebras are finite, thus it is sufficient to es-
tablish amalgamability for finite algebras (this is easily seen by compactness of
first-order logic, because, in the end, amalgamation property can be established
by showing the consistency of some joined Robinson diagrams). Whenever a
“good” duality is established, amalgamation of finite algebras turns out to be
equivalent to dual amalgamation for finite frames, which is usually much easier
to check. We will now give a couple of simple (non-)examples.

Example 2.6 If the modal signature contains only the global modality [∀],
we have the locally tabular logic S5. Finite simple non degenerate S5-algebras
are dual to finite nonempty sets and onto maps, for which dual amalgamation
trivially holds (by standard pullback construction), see, e.g., [11, Thm. 14.23].

Example 2.7 The logic of difference [14,32] has in addition to the global
modality a unary operator D subject to the axioms

[∀]φ↔ (φ ∧ ¬D¬φ), φ→ D¬D¬φ, DDφ→ φ ∨Dφ.

This logic axiomatizes Kripke frames where the accessibility relation is in-
equality. Local finiteness can be established for instance by the method of
irreducible models [21]. Amalgamation however fails. To see this, notice
that the simple frames for this logic are sets endowed with a relation E such
that w1 6= w2 → w1Ew2. Now let X = {x1, . . . , x5}, Y = {y1, . . . , y5} and
Z = {z1, z2}. Let xiEXxj iff i 6= j for 1 ≤ i, j ≤ 5, yiEY yj iff i 6= j
for 1 ≤ i, j ≤ 5 and ziEZzj for i, j = 1, 2. Let also f : X → Z and
g : Y → Z be such that f(x1) = f(x2) = f(x3) = g(y1) = g(y2) = z1 and
f(x4) = f(x5) = g(y3) = g(y4) = g(y4) = z5. Then it is easy to see that f and
g are p-morphisms. If a dual amalgam exists, then there must exist a frame
(U,EU ) and onto p-morphims h : U → X and j : U → Y such that f ◦h = g◦j.
However, an easy argument shows that U should contain more than 5 points.
Moreover, for u, v ∈ U with u 6= v we should have uEUv. But then there will
be distinct points in U mapped by f to some xi, which would entail that xi is
reflexive, which is a contradiction.
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3 Symmetric Strict Implication and Contact Algebras
In this section we first review some material from [4]. Let us consider the
modal signature comprising, besides the global modality [∀], a binary operator
;, which we call strict implication, subject to the following axioms (we keep
the same numeration as in [4] and add axiom (A0) which is seen as a definition
of [∀] in [4]).
(A0) [∀]ϕ↔ (>; ϕ),
(A1) (⊥; ϕ) ∧ (ϕ; >),
(A2) [(ϕ ∨ ψ) ; χ]↔ [(ϕ; χ) ∧ (ψ ; χ)],
(A3) [ϕ; (ψ ∧ χ)]↔ [(ϕ; ψ) ∧ (ϕ; χ)],
(A4) (ϕ; ψ)→ (ϕ→ ψ),
(A5) (ϕ; ψ)↔ (¬ψ ; ¬ϕ),
(A8) [∀]ϕ→ [∀][∀]ϕ,
(A9) ¬[∀]ϕ→ [∀]¬[∀]ϕ,
(A10) (ϕ; ψ)↔ [∀](ϕ; ψ),
(A11) [∀]ϕ→ (¬[∀]ϕ; ⊥),
Inference rules are modus ponens and necessitation. It can be shown (see [4])
that this system (called symmetric strict implication calculus S2IC) matches
our requirements from Section 2. Moreover S2IC is locally tabular and simple
S2IC-algebras are those S2IC-algebras B where we have that a ; b is either ⊥
or >. Thus in a simple non-degenerate S2IC-algebra, the operation ; is in fact
the characteristic function of a binary relation ≺. It can be proved that the
characteristic function of a binary relation ≺ on a Boolean algebra gives rise
to an S2IC-algebra structure iff it satisfies the following conditions:
(S1) 0 ≺ 0 and 1 ≺ 1;
(S2) a ≺ b, c implies a ≺ b ∧ c;
(S3) a, b ≺ c implies a ∨ b ≺ c;
(S4) a ≤ b ≺ c ≤ d implies a ≺ d;
(S5) a ≺ b implies a ≤ b;
(S6) a ≺ b implies ¬b ≺ ¬a.

Non-degenerate Boolean algebras endowed with a relation ≺ satisfying the
above conditions (S1)-(S6) are called contact algebras. 3 Since the theory of non
degenerate simple S2IC-algebras is essentially the same (in fact, it is a syntactic
variant) as the universal theory Con of contact algebras, we shall investigate
the latter in order to apply Corollary 2.4. What we have to show in order to
check the hypotheses of such a corollary is just that Con is amalgamable.

To prove amalgamability, we need a duality theorem. In [5,10,16] a duality
theorem is established for the category of contact algebras and ≺-maps (a map
µ : (B,≺) → (C,≺) among contact algebras is said to be a ≺-map iff it is a
Boolean homomorphism such that a ≺ b implies µ(a) ≺ µ(b)). We shall make
use of that theorem but we shall modify it, because for amalgamation we need

3 It is more common to use in contact algebras the contact relation δ [30] which is given by
aδb iff a 6≺ ¬b. However, we stick with our notation to stay close to our main reference [4].
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a duality for contact algebras and embeddings in the model theoretic sense (this
means that an embedding is an injective map that not only preserves but also
reflects the relation ≺). We first recall the duality theorem of [5], giving just
the minimum information that is indispensable for our purposes.

We say that a binary relation R on a topological space X is closed if R is
a closed subset of X × X in the product topology. Let StR be the category
having (i) as objects the pairs (X,R), where X is a (non empty) Stone space
and R is a closed, reflexive and symmetric relation on X, and (ii) as arrows
the continuous maps f : (X,R) → (X ′, R′) which are stable (i.e. such that
xRy implies f(x)R′f(y) for all points x, y in the domain of f). We define a
contravariant functor

(−)? : StRop → Cons

into the category Cons of contact algebras and ≺-maps as follows:
• for an object (X,R), the contact algebra (X,R)? has Clop(X) the clopens
of X as carrier set (with union, intersection and complement as Boolean
operations) and its relation ≺ is given by C ≺ D iff R[C] ⊆ D (here we
used the abbreviation R[C] = {x ∈ X | sRx for some s ∈ C});

• for a stable continuous map f : (X,R) → (X ′, R′), the map f? is the
inverse image along f .

Theorem 3.1 ([5,16]) The functor (−)? establishes an equivalence of cate-
gories.

We now intend to restrict this equivalence to the category Cone of contact
algebras and embeddings. To this aim we need to identify a suitable subcat-
egory StRe of StR. Now StRe has the same objects as StR, however a stable
continuous map f : (X1, R1)→ (X2, R2) is in StRe iff it satisfies the following
additional condition:

∀x, y ∈ X2 [xR2y ⇔ ∃x̃, ỹ ∈ X1 s.t. f(x̃) = x, f(ỹ) = y & x̃R1ỹ] (1)

Notice that, since R2 is reflexive, it turns out that a map satisfying (1) must be
surjective. We call the stable maps satisfying (1) regular stable maps, because it
can be shown that these maps are just the regular epimorphisms in the category
StR.

Theorem 3.2 The functor (−)?, suitably restricted in its domain and
codomain, establishes an equivalence of categories between StRe and Cone.

Proof. We need to show that f satisfies condition (1) above iff f? is an em-
bedding between contact algebras, i.e. iff it satisfies the condition

(R1[f−1(U)] ⊆ f−1(V ) ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2) (2)

where Clop(X2) is the set of clopens of the Stone space X2. We tranform
condition (2) up to equivalence. First notice that, by the adjunction between
direct and inverse image, (2) is equivalent to

(f(R1[f−1(U)]) ⊆ V ⇔ R2[U ] ⊆ V ) ∀ U, V ∈ Clop(X2) (3)
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Now, in compact Hausdorff spaces, closed relations and continuous functions
map closed sets to closed sets, hence f(R1[f−1(U)]) is closed and so, since
clopens are a base for closed sets, (3) turns out to be equivalent to

(f(R1[f−1(U)]) = R2[U ]) ∀ U ∈ Clop(X2) (4)

We now claim that (4) is equivalent to

f(R1[f−1({x})]) = R2[{x}] ∀x ∈ X2 (5)

In fact, (5) implies (4) because all operations f(−), R[−], f−1(−) preserve set-
theoretic unions. The converse implication holds because of Esakia’s lemma
below applied to the down-directed system {U ∈ Clop(X2) | x ∈ U}. Notice
that Esakia’s lemma applies because f◦R1◦fop and R2 are symmetric relations,
since R1 and R2 are symmetric (here we view f and f−1 = fop as relations via
their graphs).

Now it is sufficient to observe that (5) is equivalent to the conjunction of (1)
and stability. 2

We will now prove a version of Esakia’s lemma for our spaces. Esakia’s
lemma normally speaks about the inverse of a relation R, but here we need a
version which holds for R-images because our relation is symmetric.

Lemma 3.3 (Esakia, Lemma 3.3.12 in [17]) Let X be a compact Haus-
dorff space, and R a point-closed 4 symmetric binary relation on X. Then
for each downward directed family C ={Ci}i∈I of nonempty closed subsets of
X, we have R[

⋂
i∈I
Ci] =

⋂
i∈I
R[Ci].

Proof. The inclusion R[
⋂
i∈I
Ci] ⊆

⋂
i∈I
R[Ci] is trivial. Now suppose x ∈

⋂
i∈I
R[Ci].

Then x ∈ R[Ci] for each Ci and, by symmetry, R[x] ∩Ci is nonempty for each
i ∈ I. But as Ci-s are downward directed, all the finite intersections R[x] ∩
Ci1 ∩ ... ∩ Cin (with ij ∈ I for j ∈ {1, ..., n}) are nonempty. By compactness,
the infinite intersection (which equals R[x] ∩

⋂
i∈I
Ci) is nonempty and so, by

symmetry, x ∈ R[
⋂
i∈I
Ci]. 2

Now we are ready to show that Corollary 2.4 applies.

Theorem 3.4 The universal theory Con of contact algebras has the amalgama-
tion property. Therefore, as it is also locally finite, Con has a model completion.

Proof. As we observed in Section 2, it is sufficient to prove amalgamation for
finite algebras (by local finiteness and by a compactness argument based on
Robinson diagrams). Finite algebras are dual to discrete Stone spaces, hence
it is sufficient to show the following.

4 A binary relation R on a topological space X is said to be point-closed if ∀x ∈ X R[x] is
closed in X. A closed relation in a compact Hausdorff space maps closed sets to closed sets
via R[−], hence it is point-closed.
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(+) Given finite nonempty sets XA, XB , XC endwed with reflexive and sym-
metric relations RA, RB , RC and given regular stable maps f : (XB , RB) →
(XA, RA), g : (XB , RB) → (XA, RA), there exist (XD, RD) (with reflexive
and symmetric RD) and regular stable maps π1 : (XD, RD) → (XB , RB),
π2 : (XD, RD)→ (XC , RC), such that f ◦ π1 = g ◦ π2.

Statement (+) is easily proved by taking as (XD, RD), π1, π2 the obvious
pullback with the two projections. 2

4 A Set of Axioms for Con?

Theorem 3.4 gives the possibility of applying Corollary 2.4 to recognize ad-
missible rules. We give here another algorithm, slightly different from that of
Corollary 2.4. We recall that Con? is the theory of existentially closed contact
algebras [12]. The following result (given that Con is locally finite) is folklore
(a detailed proof of the analogous statement for Brouwverian semilattices is in
the ArXiv version of [9] as [8, Proposition 2.16]).

Theorem 4.1 Let (B,≺) be a contact algebra. We have that (B,≺) is exis-
tentially closed iff for any finite subalgebra (B0,≺) ⊆ (B,≺) and for any finite
extension (C,≺) ⊇ (B0,≺) there exists an embedding (C,≺) ↪→ (B,≺) such that
the following diagram commutes

(B0,≺) (B,≺)

(C,≺)

Example 4.2 Consider the Π2-rule:

(ρ9)
(p; p) ∧ (ϕ; p) ∧ (p; ψ)→ χ

(ϕ; ψ)→ χ

This rule is admissible in S2IC [4, Theorem 6.15]. We will now give an alter-
native and more automated proof of this result. Translating Π(ρ9) into the
equivalent language of contact algebras, we obtain (see statement (S9) from
Section 6.3 of [4])

x ≺ y ⇒ ∃z (z ≺ z ∧ x ≺ z ≺ y) (6)

According to Theorem 2.3, we have to show that (6) is provable in Con?.
Note that (6) expresses interesting (order-)topological properties. It is valid
on (X,R) iff R is a Priestley quasi-order [5, Lemma 5.2]. Also it is valid on a
compact Hausdorff space X iff X is a Stone space [3, Lemma 4.11].

If we follow the procedure of Corollary 2.4 (which is based on Lemma 2.5),
we first compute the quantifier-free formula equivalent in Con? to ∃z (z ≺ z ∧
x ≺ z ≺ y) by taking the conjunction of the (finitely many) quantifier-free first-
order formulae φ(x, y) which are implied (modulo Con) by z ≺ z ∧ x ≺ z ≺ y:
this is, up to equivalence, x ≺ y. Now, in order to show the admissibility of
(ρ9) is sufficient to observe that Con |= x ≺ y ⇒ x ≺ y.
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As an alternative, we can rely on Theorem 4.1 and show that (6) is true
in every existentially closed contact algebra. To this aim, it is sufficient to
enumerate all contact algebras B0 generated by two elements a, b such that
B0 |= a ≺ b and to show that all such algebras embed in a contact algebra C
generated by three elements a, b, c such that C |= c ≺ c∧ a ≺ c ≺ b (this can be
done automatically for instance using a model finder tool). Both of the above
procedures are heavy and not elegant, but they are nevertheless mechanical and
do not require ingenious ad hoc constructions (such as e.g., the construction of
Lemma 5.4 in [4]).

Theorem 4.1 implicitly supplies an infinite set of axioms for the model com-
pletion of the theory of contact algebras. Such an axiomatization is not however
very informative, as it comes from generic model-theoretic facts. In this section,
we supply a better axiomatization, following the same strategy used in [13] for
the case of amalgamable locally finite varieties of Heyting algebras and in [9]
for the case of Brouwverian semilattices. The strategy consists of classifying
minimal extensions via the so-called ‘signatures’.

It is evident that the Theorem 4.1 still holds if we limit its statement to
finite minimal extensions (C,≺) of (B0,≺) (such an extension (C,≺) is said
to be minimal iff it is proper and every proper extension contains it, up to
isomorphism). Using our Duality Theorem 3.2 restricted to the finite discrete
case, we can characterize the dual spaces (XC , RC) and (XB0

, RB0
) and the

dual stable map f : (XC , RC) → (XB0
, RB0

) corresponding to such minimal
extensions.

Proposition 4.3 Let (B0,≺) ↪→ (C,≺) be an embedding between finite contact
algebras, with dual regular stable map f : (XC , RC)→ (XB0

, RB0
). The embed-

ding is minimal iff (up to isomorphism) there are a finite set Y , finite subsets
S1, S2 ⊆ Y and elements x ∈ XB0 , x1 ∈ XC , x2 ∈ XC such that:

(i) XB0
is the disjoint union Y ⊕ {x};

(ii) XC is the disjoint union Y ⊕ {x1, x2};
(iii) f restricted to Y is the identity map and f(x1) = f(x2) = x;
(iv) the restrictions of RC and of RB0 to Y coincide;
(v) RC [x1] \ {x1} = S1 and RC [x2] \ {x2} = S2;
(vi) RB0

[x] \ {x} = S1 ∪ S2.

Proof. First notice that, as a consequence of (1), if the cardinality of XB0 and
of XC are the same, then f is an isomorphism. This is seen as follows: we
already observed that condition (1) implies surjectivity and in case of the same
finite cardinality surjectivity implies injectivity. Preservation and reflection of
the relation follow by stability and (1) again.

In addition, if the cardinality of XC is equal to the cardinality of XB0 plus
one (this is precisely the case mentioned in the statement of the proposition),
then f cannot be properly factored, hence it is minimal. We show that all
minimal maps arise in this way.
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In general, if the cardinality of XC is bigger than the cardinality of XB0 ,
we can define the following factorization of f . Pick some x ∈ XB0

having more
than one preimage and split f−1({x}) as T1 ∪T2, where T1, T2 are disjoint and
non-empty. We have that XC is the disjoint union X ⊕ T1 ⊕ T2 for some set X
and XB0 is the disjoint union Y ⊕ {x} for some set Y . Define a discrete dual
space (Z,RZ) as follows. Z is the disjoint union Y ⊕{x1, x2} for new x1, x2 and
RZ is the reflexive and symmetric closure of the following sets of pairs: (i) the
pairs (z1, z2) for z1RB0

z2 and z1, z2 ∈ Y ; (ii) the pairs (xi, u) for u ∈ f(RC [Ti])
(i = 1, 2); (iii) the pair (x1, x2), but only in case T1 ∩ RC [T2] 6= ∅. Then it is
easily seen that f factorizes as h ◦ f̃ in StRe, where: (I) f̃ maps T1 to x1, T2 to
x2 and acts as f on X; (II) h is the identity on Y and maps both x1, x2 to x.

Now h produces the data required by the proposition and f̃ must be an
isomorphism if f is minimal. 2

Notice that the above conditions (i)-(vi) determine uniquely the finite min-
imal extension over the contact algebras dual to (XB0

, RB0
) except for a detail:

they do not specify whether we have x1RCx2 or not. So the data x, S1, S2 and
Y = XB0 \ {x} (lying inside XB0) determine in fact two minimal expansions of
the contact algebra dual to (XB0

, RB0
).

The next step is to re-dualize the data of Proposition 4.3 inside a given
finite contact algebra. We first need some notation.

Definition 4.4 Let (B0,≺B0) be a finite subalgebra of the contact algebra
(B,≺B). Then, for b ∈ B, we define [b]≺B0 :=

⋂
{x ∈ B0 | b ≺B x}.

The notion of a signature given below dualizes and internalizes the data
of Proposition 4.3 (the further bit ? is used to distinguish the two possible
minimal extensions).

Definition 4.5 Let (B0,≺B0
) be a finite contact algebra. We call a signature

in (B0,≺B0
) a tuple (b, c̃1, c̃2), where b ∈ B0 is an atom, and c̃1, c̃2 ∈ B0 are

such that [b]≺B0 ∧ ¬b = c̃1 ∨ c̃2. A marked signature in (B0,≺B0
) is a tuple

(b, c̃1, c̃2, ?), where (b, c̃1, c̃2) is a signature and ? ∈ {0, 1}.
We are now ready to produce our first-order axiomatization of existentially

closed contact algebras.

Theorem 4.6 A contact algebra (B,≺B) is existentially closed if and only if,
for any finite subalgebra (B0,≺B0) ⊆ (B,≺B), the following conditions hold:

(i) for every marked signature (b, c̃1, c̃2, 1) in (B0,≺B0
), there exist b1, b2 ∈

B \ {0} such that b = b1 ∨ b2, b1 ∧ b2 = ⊥, [bi]
≺B0 = c̃i ∨ b for i ∈ {1, 2}

and b1 6≺B ¬b2;
(ii) for every marked signature (b, c̃1, c̃2, 0) in (B0,≺B0

), there exist b1, b2 ∈
B \ {0} such that b = b1 ∨ b2, b1 ∧ b2 = ⊥, [bi]

≺B0 = c̃i ∨ b for i ∈ {1, 2}
and b1 ≺B ¬b2.

Proof. (⇒) Let (B0,≺B0
) ↪→ (B,≺B) be a finite subalgebra, and let (b, c̃1, c̃2, ?)

be a signature in (B0,≺B0
). Let (B0,≺B0

) ↪→ (C,≺C) be the finite minimal
extension whose dual satisfies the conditions (i)-(vi) of Proposition 4.3 (and
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also x1RCx2 iff ? = 1). Then it is clear that there exist b1, b2 satisfying (i) (for
the case ? = 1) or (ii) (for the case ? = 0) inside (C,≺C). Thanks to Theorem
4.1, we know that there exists an embedding (C,≺C) ↪→ (B,≺B) that fixes
(B0,≺B0

). Via this embedding, the required b1, b2 are moved to (B,≺B): they
still satisfy the conditions required by (i) and (ii) because such conditions can
be expressed as first-order ground conditions with parameters in (B0,≺B0) 5

and hence they are preserved through embeddings.
(⇐) Here we use our Duality Theorem 3.2. We are given a finite contact

subalgebra (B0,≺B0
) of (B,≺B) and a finite minimal extension (C,≺C) of its.

The situation, in the dual category is the following:

(XB0 , RB0) (XB, RB)

(XC , RC)

f̄

f̃
f

where f̄ is dual to the inclusion (B0,≺B0
) ↪→ (B,≺B) and f satisfies the condi-

tions (i)-(vi) of Proposition 4.3. We need to define f̃ so that the above triangle
commutes in the category StRe. Recall that the two spaces XB0

, XC are dis-
crete, but XB is not.

By hypothesis, we know that there exist non empty disjoint clopens
Ub1 , Ub2 ∈ Clop(XB) such that f̄−1({x}) = Ub1 ∪ Ub2 . According to Defini-
tion 4.4, we have that the clopen defined by [bi]

≺B0 is the intersection of the
family f̄−1(T ) varying T among the subsets ofXB0

such thatRB[Ubi ] ⊆ f̄−1(T ),
i.e. varying T among the subsets of XB0 such that f̄(RB[Ubi ]) ⊆ T . Since this
intersection is precisely f̄−1(f̄(RB[Ubi ])), according to our hypothesis, we have
f̄−1(f̄(RB[Ubi ])) = f̄−1(Si) ∪ f̄−1({x}). Since f̄−1 is injective, we conclude

f̄(RB[Ub1 ])) = S1 ∪ {x} and f̄(RB[Ub2 ])) = S2 ∪ {x}. (7)

In case x1RCx2 holds, we use hypothesis (i) and in case it does not hold, we use
hypothesis (ii). To sum up, recalling that b1 6≺ ¬b2 dualizes to RB[Ub1 ]∩Ub2 6=
∅, we get

x1RCx2 ⇐⇒ RB[Ub1 ] ∩ Ub2 6= ∅. (8)

We define f̃ as follows: f̃(z) = f̄(z) for z 6∈ Ub1 ∪Ub2 , f̃(z) = x1 for z ∈ Ub1 ,
f̃(z) = x2 for z ∈ Ub2 . By Proposition 4.3(iii), it is clear that f̃ ◦ f = f̄ . The
continuity of f̃ is also immediate.

Let us check stability, namely that for y1, y2 ∈ XB such that y1RBy2, we
have f̃(y1)RC f̃(y2). We distinguish three cases:

1. y1, y2 6∈ Ub1 ∪ Ub2
2. y1 ∈ Ub1 , y2 6∈ Ub1 ∪ Ub2
3. y1, y2 ∈ Ub2 ∪ Ub2

5 If a1, . . . , an are the elements of B0, then [bi]
≺B0 = c̃i ∨ b can be written as∧n

j=1 (bi ≺ aj ↔ (c̃i ∨ b ≤ aj)).
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(by the symmetry of RB, this enumeration is exhaustive, up to exchanging the
role of Ub1 and of Ub2). Case 1 is covered by the stability of f̄ and Proposi-
tion 4.3(iv). Case 3 is covered by the reflexivity of RC and (8). In Case 2,
we have y2 ∈ RB[Ub1 ], thus f̃(y2) = f̄(y2) ∈ S1 by (7) (and by the fact that
f̄(y2) 6= x). Thus we conclude x1 = f̃(y1)RC f̃(y2) by Proposition 4.3(v).

It remains to prove that for all z1, z2 ∈ XC such that z1RCz2 we have

∃y1, y2 ∈ XB s.t. f̃(y1) = z1 & f̃(y2) = z2 & y1RBy2 (9)

(this is condition (1)). Again we distinguish three cases:

a. z1, z2 6∈ {x1, x2}
b. z1 = x1, z2 6∈ {x1, x2}
c. z1 = x1, z2 = x2.

Case a is covered by Proposition 4.3(iii) and by the fact that f̄ satisfies con-
dition (1). Case c is covered by (8). In Case b, z2 ∈ S1 by Proposition 4.3(v)
and by (7) there are y1 ∈ Ub1 and y2 such that y1RBy2 and f̄(y2) = z2. Then,
f̃(y1) = x1 = z1 and f̃(y2) = f̄(y2) = z2 (we have f̃(y2) = f̄(y2) because
f̄(y2) = z2 6= x, so that y2 6∈ Ub1 ∪ Ub2). 2

Theorem 4.6 gives a first order axiomatization because the reference to
finite subalgebras can be replaced by a suitable string of universal quantifiers.
However, the above axiomatization is infinite, thus determining whether there
exists a finite axiomatization (and supplying one, in case of a positive answer)
remains at the moment an open question.

In principle, the axiomatization supplied by Theorem 4.6 should be natu-
rally convertible (using Lemma A.3 below) into a basis for admissible Π2-rules
for the symmetric strict implication calculus, once the notion of a basis for
admissible Π2-rules is suitably defined. We leave this task for future research.
Connections with the literature on admissibility of standard inference rules in
contact algebras [1] should also be developed: our non-standard rules have the
particular shape (ρ) outlined in Definition 1.1 and they trivialize if they are
standard (i.e., if p does not occur in the formula F from the premise); however
it could be interesting to analyze more general formats for non-standard rules
encompassing standard inference rules.
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Appendix
A An Admissibility Criterion
We report here the statement and the proof of Theorem 6.12 of [4], generalized
to a system S satisfying the conditions of Section 2. We need the same series
of results as in [4], starting from Theorem 6.6 of [4] (we need only a slightly
simplified version of the last theorem because we do not consider proofs with
assumptions):

Theorem A.1 For every set of Π2-rules Θ and for every formula ψ, we have
that TS ∪ {Π(ρ) | ρ ∈ Θ} |= ψ = > ⇐⇒ `S+Θ ψ.

Proof. The right-to-left direction is a trivial induction on the length of a proof
witnessing `S+Θ ψ. For the other side, we need a modified Lindembaum con-
struction. Suppose that 6`S+Θ ψ. For each rule ρi ∈ Θ, we add a countably
infinite set of fresh propositional letters to the set of existing propositional
letters. Then we build the Lindenbaum algebra B over the expanded set of
propositional letters, where the elements are the equivalence classes [ϕ] under
provable equivalence in S + Θ. Next we construct a maximal [∀]-filter M of B
such that ¬[∀]ψ ∈M and for every rule ρi ∈ Θ

(ρi)
Fi(ϕ/x, p)→ χ

Gi(ϕ/x)→ χ

and formulas ϕ, χ:

(†) if [Gi(ϕ)→ χ] 6∈M , then there is a tuple p such that [Fi(ϕ, p)→ χ] 6∈M .

To constructM , let ∆0 := {¬[∀]ϕ}, a consistent set. We enumerate all formulas
ϕ as (ϕk : k ∈ N) and all tuples (i, ϕ, χ) where i ∈ N and ϕ, χ are as in the
particular rule ρi, and we build the sets ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆n ⊆ . . . as follows
(notice that, according to the construction below, for all n and θ ∈ ∆n, we
have `S+Θ θ ↔ [∀]θ).
• For n = 2k, if 6`S+Θ

∧
∆n → [∀]ϕk, let ∆n+1 = ∆n ∪ {¬[∀]ϕk}; otherwise

let ∆n+1 = ∆n.
• For n = 2k+ 1, let (l, ϕ, χ) be the k-th tuple. If 6`S+Θ

∧
∆n → (Gl(ϕ)→

χ), let ∆n+1 = ∆n ∪ {¬[∀](Fl(ϕ, p) → χ)}, where p is a tuple of proposi-
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tional letters for ρl not occurring in ϕ, χ, and any of θ with θ ∈ ∆n (we can
take p from the countably infinite additional propositional letters which
we have reserved for the rule ρl). Otherwise, let ∆n+1 = ∆n.

Let M be

{ [θ] | there are θ1, . . . , θn ∈
⋃
n∈N

∆i such that `S+Θ θ1 ∧ · · · ∧ θn → θ} .

It is clear that M is a proper [∀]-filter not containing [ψ]. 6 Also, by the even
steps of the construction of the sets ∆n, it contains either [[∀]θ] or [¬[∀]θ] for
every θ, thusM is a maximal [∀]-filter. Finally, the odd steps of the construction
of the sets ∆n ensure that M satisfies (†): in fact, if [Gi(ϕ)→ χ] 6∈M , then by
step n = 2k+ 1, we have [¬[∀](Fl(ϕ, p)→ χ)] ∈M and if also [Fi(ϕ, p)→ χ] ∈
M , then [[∀](Fi(ϕ, p) → χ)] ∈ M (because M is a [∀]-filter) and so M would
not be proper, a contradiction. Therefore, we can conclude that M satisfies all
the desired properties.

By (†), the quotient of B by M satisfies each Π(ρi); such a quotient is a
simple algebra, because M is maximal as a [∀]-filter. Moreover, since [¬[∀]ψ] ∈
M , we have that [¬[∀]ψ] maps to >, so [[∀]ψ] maps to ⊥ in the quotient. Thus,
[ϕ] does not map to > in the quotient, and hence TS ∪ {Π(ρ) | ρ ∈ Θ} 6|= ψ =
>. 2

Definition A.2 Given a quantifier-free first-order formula Φ(x), we associate
with it the term (aka the propositional modal formula) Φ∗(x) as follows:

(t(x) = u(x))∗ = [∀](t(x)↔ u(x))

(¬Ψ)∗(x) = ¬Ψ∗(x)

(Ψ1(x) ∧Ψ2(x)∗ = Ψ∗1(x) ∧Ψ∗2(x).

The following lemma is immediate:

Lemma A.3 Let B be a simple S-algebra and let Φ(x) be a quantifier-free
formula. Then we have B |= Φ(a/x) iff B |= (Φ(a/x))∗ = >, for every tuple a
from B.
Theorem A.4 (Admissibility Criterion) A Π2-rule ρ is admissible in S
iff for each simple S-algebra B there is a simple S-algebra C such that B is a
substructure of C and C |= Π(ρ).

Proof. (⇒) Suppose that the rule ρ

(ρ)
F (ϕ/x, p)→ χ

G(ϕ/x)→ χ

6 The fact that M is proper comes from the fact that 6`S+Θ
∧

∆n → ⊥. This is clear for
even n and for n = 0. For odd n = 2k + 1, suppose that `S+Θ

∧
∆k → [∀](Fl(ϕ, p) → χ)

and that 6`S+Θ
∧

∆k → (Gl(ϕ) → χ). Then, by the axiom [∀]φ → φ from Section 2,
we have `S+Θ Fl(ϕ, p) → (

∧
∆k → χ) and also (applying the rule ρl of the k-th tuple)

`S+Θ Gl(ϕ)→ (
∧

∆k → χ), yielding a contradiction.



18 Model Completeness and Π2-rules:the case of Contact Algebras

is admissible in S. It is sufficient to show that there exists a model C of the
theory

T = TS ∪ {Π(ρ)} ∪∆(B)

where ∆(B) is the diagram of B [12, p. 68]. Suppose for a contradiction that
T has no models, hence is inconsistent. Then, by compactness, there exists a
quantifier-free first-order formula Ψ(x) and a tuple x of variables corresponding
to some a ∈ B such that

TS ∪ {Π(ρ)} |= ¬Ψ(a/x) and B |= Ψ(a/x).

By Theorem A.1, S + ρ is complete with respect to the simple S-algebras sat-
isfying Π(ρ). Therefore, by Lemma A.3, we have TS ∪{Π(ρ)} |= (¬Ψ(x))∗ = >
and also `S+ρ (¬Ψ(x))∗, where (−)∗ is the translation given in Definition A.2.
By admissibility, `S (¬Ψ(x))∗. Thus, for the valuation v into B that maps x to
a, we have v((¬Ψ(x))∗) = 1, so v((Ψ(x))∗) = 0. This contradicts the fact that
B |= Ψ(a/x). Consequently, T must be consistent, and hence it has a model.

(⇐) Suppose `S F (ϕ, p) → χ with p not occurring in ϕ, χ. Let B be a
simple S-algebra and let v be a valuation on B. By assumption, there is a
simple S-algebra C such that B is a substructure of C and C |= Π(ρ). Let
i : B ↪→ C be the inclusion. Then v′ := i ◦ v is a valuation on C. For any
c ∈ C, let v′′ be the valuation that agrees with v′ except for the fact that it
maps the p into the c. Since `S F (ϕ/x, p)→ χ, by the algebraic completeness
theorem 7 we have v′′(F (ϕ/x, p) → χ) = >. This means that for all c ∈ C,
we have F (v′(ϕ), c) ≤ v′(χ). Therefore, C |= ∀y

(
F (v′(ϕ), y) ≤ v′(χ)

)
. Since

C |= Π(ρ), we have C |= G(v′(ϕ)) ≤ v′(χ). Thus, as G(v′(ϕ)) ≤ v′(χ) holds in
C, we have that G(v(ϕ)) ≤ v(χ) holds in B. Consequently, v(G(ϕ)→ χ) = >.
Applying the algebraic completeness theorem again yields that `S G(ϕ) → χ
because B is arbitrary, and hence ρ is admissible in S. 2

7 This is Theorem A.1 for Θ = ∅.
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