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ABSTRACT. By de Vries duality, the category of compact Hausdorff spaces
is dually equivalent to the category of de Vries algebras (complete Boolean
algebras endowed with a proximity-like relation). We provide an alternative
“modal-like” duality by introducing the concept of a Gleason space, which is a
pair (X, R), where X is an extremally disconnected compact Hausdorff space
and R is an irreducible equivalence relation on X. Our main result states
that the category of Gleason spaces is equivalent to the category of compact
Hausdorff spaces, and is dually equivalent to the category of de Vries algebras.

1. INTRODUCTION

By the celebrated Stone duality [29], the category of Boolean algebras and
Boolean homomorphisms is dually equivalent to the category of Stone spaces (com-
pact Hausdorff zero-dimensional spaces) and continuous maps. De Vries [14] gen-
eralized Stone duality to the category of compact Hausdorff spaces and continuous
maps. Objects of the dual category are complete Boolean algebras B with a binary
relation < (called by de Vries a compingent relation) satisfying certain conditions
that resemble the definition of a proximity on a set [26].

Another extension of Stone duality is central to modal logic. We recall that
modal algebras are Boolean algebras B with a unary function O : B — B preserving
finite meets, and modal spaces (descriptive frames) are Stone spaces X with a
binary relation R satisfying certain conditions. Stone duality then generalizes to
a duality between the categories of modal algebras and modal spaces (see, e.g.,
[12, 24, 11]). The dual of a modal algebra (B, 0) is the modal space (X, R), where
X is the Stone dual of B (the space of ultrafilters of B), while the binary relation
R c X x X is the Jénsson-Tarski dual of O [23]. Unlike the modal case, in de Vries
duality we do not split the dual space of (B, <) in two components, the Stone dual
of B and the relation R. Instead we work with the space of “<-closed” filters which
are maximal with this property.

The aim of this paper is to develop an alternative “modal-like” duality for de
Vries algebras, in which we do split the dual space of a de Vries algebra (B, <) in two
parts: the Stone dual of B and the dual of <. If X is the de Vries dual of (B, <), then
the Stone dual Y of B is the Gleason cover of X [3]. We show that the irreducible
map 7 : Y — X gives rise to what we call an irreducible equivalence relation R
on Y, which is the dual of <. It follows that compact Hausdorff spaces are in 1-1
correspondence with pairs (Y, R), where Y is an extremally disconnected compact
Hausdorff space and R is an irreducible equivalence relation on Y. We call such pairs
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Gleason spaces, and introduce the category of Gleason spaces, where morphisms are
relations rather than functions, and composition is not relation composition. We
prove that the category of Gleason spaces is equivalent to the category of compact
Hausdorff spaces and continuous maps, and is dually equivalent to the category of
de Vries algebras and de Vries morphisms, thus providing an alternate “modal-like”
duality for de Vries algebras.

The paper is organized as follows. In Section 2, to set the scene, we recall modal
algebras and quasi-modal algebras, as well as precontact relations, and introduce
their dual concept of subordinations. Among many examples of subordinations,
one of the key examples is that of de Vries’ compingent relations. As follows from
[13, 16] (see also [17, 8]), subordinations on a Boolean algebra B correspond to
closed relations on the Stone space of B. We extend this correspondence to a
full categorical duality, which subsumes the duality of [13] (see Remark 2.23). In
Section 3 we show that on objects the duality of Section 2 can be derived from the
generalized Jénsson-Tarski duality. In Section 4 we prove that modally definable
subordinations are dually described by means of Esakia relations. As a corollary,
we derive the well-known duality between the categories of modal algebras and
modal spaces. In Section 5 we show that a subordination is a lattice subordination
iff its dual relation is a Priestley quasi-order. The duality result of [5] follows as
a corollary. Finally, in Section 6 we introduce irreducible equivalence relations,
Gleason spaces, and we give a “modal-like” alternative to de Vries duality.

2. PRECONTACT, SUBORDINATION, AND QUASI-MODAL ALGEBRAS

One of the central concepts in the algebraic theory of modal logic is that of modal
algebra. We recall (see, e.g., [12, 24, 11]) that a modal operator on a Boolean algebra
B is a unary function O : B - B preserving finite meets (including 1), and that
a modal algebra is a pair (B,0), where B is a Boolean algebra and O is a modal
operator on B. This concept was generalized in several directions.

Celani [13] generalized the concept of a modal operator to that of a quasi-modal
operator. Let Z(B) be the lattice of ideals of a Boolean algebra B.

Definition 2.1. ([13, Sec. 3]) A quasi-modal operator on B is a function A: B -
Z(B) preserving finite meets, and a quasi-modal algebra is a pair (B,A), where B
is a Boolean algebra and A is a quasi-modal operator on B.

With a different (more geometric) motivation in mind, Dintsch and Vakarelov
[18] (see also Dimov and Vakarelov [16]) introduced the concept of a precontact
relation, generalizing that of a contact relation.

Definition 2.2. ([18, Sec. 3]) A proximity or a precontact relation on a Boolean
algebra B is a binary relation & satisfying

(P1) ad b = a,b#0.

(P2) ad (bve) < adboradec.

(P3) (avb)dc < adcordbie.

The dual concept of a precontact relation is that of a subordination or a strong
inclusion.

Definition 2.3. A subordination or a strong inclusion on a Boolean algebra B is
a binary relation < satisfying
(S1) 0<0 and 1 <1 (equivalently 0 <a <1 for each a € B);
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(S2) a<b,c implies a<bnac;
(S3) a,b<c implies avb<c;
(S4) a<b<c<d implies a<d.

Remark 2.4. As was pointed out to us by the referee, the name “subordination”
was first introduced by Aleksandrov and Ponomarev [1] for the binary relations
on the powerset of a set that are dual to Efremovic’s proximities [26, Def. 1.7].
A pointfree version of this concept appeared in de Vries [14] under the name of
a compingent relation (see Definition 2.11 below). Definition 2.3 generalizes this
concept. We feel that it is convenient to keep the name subordination for this
more general concept, and add additional adjectives when a stronger concept is
introduced (see, for example, Definitions 2.10 and 2.11 below).

Remark 2.5. It is easy to see that precontact and subordination are dual concepts.
Indeed, if § is a precontact relation on B, then define <5 by a <5 b iff a § -b. It is
routine to check that <5 is a subordination on B. Conversely, if < is a subordination
on B, then define d. by ad.b iff a ¥« =b. Again, it is routine to verify that J- is a
precontact relation on B. Moreover, adb iff ad.;b, and a < b iff @ <5, b. Thus,
precontact relations and subordinations on B are in 1-1 correspondence.

Remark 2.6. Precontact relations and subordinations are also in 1-1 correspon-
dence with quasi-modal operators on B. Let < be a subordination on B. For S ¢ B,
let

1S {be B:3a €S with a <b}

S {beB:3JaeS with b<a}.
Define A.: B - Z(B) by A.(a) = {a. It is easy to check that A. is a quasi-modal
operator on B. Conversely, if A is a quasi-modal operator on B, then define <a
by a <a b iff a € A(b). Again, it is easy to verify that <a is a subordination on
B. Moreover, A(a) = A, (a), and a < b iff a <a_ b. Thus, subordinations and
quasi-modal operators on B are in 1-1 correspondence.

Instead of quasi-modal operators or precontact relations, we will mainly work
with subordinations. Therefore, our ambient category will be that of Boolean
algebras with subordinations.

Definition 2.7. Let Sub be the category whose objects are pairs (B, <), where B is
a Boolean algebra and < is a subordination on B, and whose morphisms are Boolean
homomorphisms h satisfying a < b implies h(a) < h(b).

Remark 2.8. It is easy to check that Sub is isomorphic to the category PCon whose
objects are precontact algebras and whose morphisms are Boolean homomorphisms
h satisfying h(a) ¢ h(b) implies a 6 b. Another category isomorphic to Sub is the
category qMA whose objects are quasi-modal algebras and whose morphisms are
Boolean homomorphisms h satisfying h[Aa] ¢ Ah(a).

We next show that modal operators give rise to special subordinations. Let O
be a modal operator on a Boolean algebra B. Set a <g b provided a < Ob. Since
01 =1, it is clear that <p satisfies (S1). As O(b A c¢) = Ob A Oc, we also have that
<p satisfies (S2). That <g satisfies (S3) is obvious, and since O is order-preserving,
<p satisfies (S4). Therefore, <o is a subordination on B. Note that <g is a special
subordination on B that in addition satisfies the following condition: for each a € B,
the element Oa is the largest element of the set {z € B:z <g a}.
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Definition 2.9. We call a subordination < on B modally definable provided the
set {x e B:x <a} has a largest element for each a € B.

We already saw that if O is a modal operator, then <5 is a modally definable
subordination. The converse is also true. If < is a modally definable subordination
on a Boolean algebra B, then define O, : B - B by

O.a = the largest element of {z € B:x <a}.

By (S1), 0.1 = 1. In addition, by (S4), O<(aAb) < O.aAO.b, and by (S2) and (S4),
O.an0<b < O (anb). Therefore, O is a modal operator on B. Moreover, O.;a = Oa
and a <g_ b iff a < b. Thus, modal operators on B are in 1-1 correspondence with
modally definable subordinations on B.

Other examples of subordinations are the lattice subordinations of [5] and the
compingent relations of [14].

Definition 2.10. ([5, Def. 2.1]) A subordination < on a Boolean algebra B is a
lattice subordination if in addition < satisfies

a < b implies that there exists ce€ B with c<c and a <c<b.

Definition 2.11. ([14, Ch. 1)) A subordination < on a Boolean algebra B is a
compingent relation or a de Vries subordination if in addition it satisfies:

(S5) a<b implies a < b;

(S6) a <b implies =b < —a;

(ST) a<b implies there is c € B with a < ¢ < b;

(S8) a + 0 implies there is b+ 0 with b < a.

2.1. Duality. By [13], there is a 1-1 correspondence between quasi-modal operators
on a Boolean algebra B and closed relations on the Stone space of B, and by [16],
the same is true for precontact relations on B.! From this it follows that the same
characterization also holds for subordinations. A direct proof of this can be found
in the first draft of this paper [8].2 To keep the paper self-contained, we will briefly
outline such a characterization below.

In [16, 17] it is shown that the 1-1 correspondence between precontact relations
on B and closed relations on the Stone space of B extends naturally to include
appropriate isomorphisms, and in [13] it is shown that the 1-1 correspondence
between quasi-modal operators and closed relations extends to a full duality of
appropriate categories. For our purposes, a more general notion of morphism is
required. In this section we will discuss how this results in a more general duality.
In Remarks 2.14, 2.17, and 2.23 we compare our approach to that of [13] and
[16, 17].

We call a binary relation R on a topological space X closed if R is a closed set
in the product topology on X x X. As usual, for U ¢ X, we use R[U] and R™![U]
for the image and inverse image of U with respect to R. A convenient characteriza-
tion of closed quasi-orders (reflexive and transitive relations) on compact Hausdorff
spaces is given in [10, Prop. 2.3]. This generalizes to the following characterization
of arbitrary closed relations. (We skip the details and refer the interested reader to
[8, Lem. 3.2].)

LWhile the paper [16] contains no proofs, it was pointed out to us by the referee that the
missing proofs were recently uploaded onto Math ArXiv [17].

2At the time, we were unaware of [13]. We would like to express our thanks to Ramon Jansana
and Sergio Celani for bringing [13] to our attention.
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Lemma 2.12. Let X be a compact Hausdorff space and let R be a binary relation
on X. The following conditions are equivalent.

(1) R is a closed relation.

(2) For each closed subset F of X, both R[F] and R™'[F] are closed.
(3) If A is an arbitrary subset of X, then R[A] ¢ R[A] and R-'[A] c R71[A].
(4)

If (z,y) ¢ R, then there is an open neighborhood U of xz and an open
neighborhood V of y such that R[U]nV =g@.

For i = 1,2, let R; be a relation on X;. Following [7], we call a map f: X; > X»
stable provided xRy implies f(z)Raf(y). It is easy to see that f is stable iff
F(Ri[z]) € Ro[f(x)] for each x € X, which happens iff Ri[f~1(y)] ¢ f*(Ra[y])
for each y € X5.

We recall that a subset U of a topological space X is clopen if it is both closed
and open, and that X is zero-dimensional if it has a basis of clopen sets. A Stone
space is a compact, Hausdorff, zero-dimensional space. The celebrated Stone duality
yields that the category of Boolean algebras and Boolean homomorphisms is dually
equivalent to the category of Stone spaces and continuous maps.

Definition 2.13. Let StR be the category whose objects are pairs (X, R), where
X is a Stone space and R is a closed relation on X, and whose morphisms are
continuous stable morphisms.

For a Boolean algebra B, let X be the set of ultrafilters of B. For a € B, set
p(a) ={z e X :aca}, and topologize X by letting {¢(a) : a € B} be a basis for the
topology. The resulting space is called the Stone space of B and is denoted B,.

For (B,<) € Sub, let (B,<). = (X, R), where X is the Stone space of B and
xRy iff $x c y. To see that (X, R) € StR, it is sufficient to show that R is a closed
relation on X. If (z,y) ¢ R, then $x ¢ y. Therefore, there are a € x and b ¢ y with
a < b. But it is easy to check that a < b implies R[p(a)] € ¢(b). Set U = ¢(a) and
V =X —(b). Then U is an open neighborhood of z, V' is an open neighborhood
of y, and R[U]nV =@. Thus, by Lemma 2.12, R is a closed relation on X.

Remark 2.14. Let (B,<) € Sub and let X be the Stone space of B. If A is the
quasi-modal operator corresponding to <, then the relation R on X can alternatively
be defined by zRy iff {a € B: A(a)nz + @} €y (see [13]). On the other hand, if
0 is the precontact relation corresponding to <, then R can be defined by xRy iff
(Vaexz)(Vbey)(a d b) (see [16]).

For i = 1,2, let (B;,<;) € Sub and let (X;,R;) = (B;,<i)«. For a morphism
h: By — By in Sub, let h, : Xo - X; be given by h,(z) = h™1(z).

Lemma 2.15. If h is a morphism in Sub, then A, is a morphism in StR.

Proof. By Stone duality, h, is a well-defined continuous map. Suppose z,y € Xo
with zRoy. Then $,2 € y. Let b e $,h7*(z). So there is a € h™!(z) with a <; b.
Since h is a morphism in Sub, we have h(a) <2 h(b). Therefore, h(b) € $,2. This
implies h(b) € y. Thus, be h™(y), yielding #,h7*(z) € h™!(y). Consequently, h, is
a stable continuous map, hence a morphism in StR. O

Definition 2.16. Define (-). : Sub - StR as follows. If (B, <) € Sub, then (B, <), =
(X, R), and if h is a morphism in Sub, then h, = h7L. It is straightforward to see
that (-). is a well-defined contravariant functor.
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For a topological space X, let Clop(X) be the set of clopen subsets of X. Then
it is well known and easy to see that Clop(X) is a Boolean algebra with respect to
the set-theoretic operations of union, intersection, and complement.

For (X,R) € StR, let (X, R)* = (Clop(X),<), where U <V iff R[U] c V. It is
straightforward to check that < is a subordination on Clop(X). Therefore, (X, R)* €
Sub.

Remark 2.17. If (X, R) € StR, then the quasi-modal operator A on Clop(X)
corresponding to < is defined by A(V') = {U € Clop(X) : R[U] € V'} (see [13]). On
the other hand, the precontact relation § corresponding to < is defined by U 6 V'
ifft RIUINV # & (see [16]).

For i = 1,2, let (X;,R;) € StR and let (B;,<;) = (X;, R;)*. For a morphism
f:X1 - X5 in StR, let f*: Clop(X3) — Clop(X1) be given by f*(U) = f~1(U).

Lemma 2.18. If f is a morphism in StR, then f* is a morphism in Sub.

Proof. 1t follows from Stone duality that f* is a Boolean homomorphism. Let U,V €
Clop(X3) with U <3 V. Then Ro[U] ¢ V. This implies f~1(Ro[U]) < f~1(V). Since
f is a stable map, Ri[f~1(U)] ¢ f(Ra[U]). Therefore, R [f~1(U)] c f~1(V).
Thus, f~1(U) < f71(V), and hence f* is a morphism in Sub. O

Definition 2.19. Define (-)* : StR - Sub as follows. If (X,R) e StR, then
(X,R)* = (Clop(X),<), and if f is a morphism in StR, then f* = f~1. It is straight-
forward to see that (-)* is a contravariant functor.

Lemma 2.20. Let (B,<) € Sub and let ¢ : B —» (B,)* be the Stone map. Then
a<biff p(a)<e(b).

Proof. Let a,b e B. If a < b, then R[p(a)] € ¢(b), so ¢(a) < ¢(b). If a £ b, then
b ¢ fa. Since < is a subordination, it is easy to see that %a is a filter. Therefore,
by the ultrafilter theorem, there is an ultrafilter = such that $a € z and b ¢ . By
Zorn’s lemma, there is an ultrafilter y such that a € y and ty ¢ z (see [8, Claim
to Lem. 3.14]). Thus, there is y € B, such that y € ¢(a) and yRxz. This gives
x € R[¢(a)]. On the other hand, z ¢ ¢(b). Consequently, R[¢(a)] ¢ ©(b), yielding

p(a) £ ¢(b). O

For a Stone space X, define ¢ : X - (X*), by ¥(z) ={U € Clop(X) :x ¢ U}. Tt
follows from Stone duality that v is a homeomorphism.

Lemma 2.21. Let (X, R) € StR and let ¢ : X - (X*). be given as above. Then
xRy iff 1(x) R (y).

Proof. First suppose that xRy. To see that ¢ (x) Ry (y) we must show that $¢(z) €
¥(y). Let V € $op(x). Then there is U € ¢(z) with U < V. Therefore, z € U and
R[U] < V. Thus, y €V, so $¢(z) ¥ (y), and hence ¥ (x) R (y).

Conversely, suppose that (z,y) ¢ R. Since X has a basis of clopens and R is
a closed relation, by Lemma 2.12, there exist a clopen neighborhood U of x and
a clopen neighborhood W of y such that R[U]nW = @. Set V = X - W. Then
Uey(z), Veéu(y), and R[U]c V. Therefore, U <V, s0 V e $)(x), but V ¢ ¢¥(y).
Thus, (¢(x),1(y)) ¢ R. O

Theorem 2.22. The categories Sub and StR are dually equivalent.
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Proof. By Definition 2.16, (). : Sub — StR is a well-defined contravariant functor,
and by Definition 2.19, (=)* : StR — Sub is a well-defined contravariant functor. By
Stone duality and Lemmas 2.20 and 2.21, each (B, <) € Sub is isomorphic in Sub to
((B,<).)* and each (X, R) € StR is isomorphic in StR to ((X, R)*).. That these
isomorphisms are natural is easy to see. Thus, Sub is dually equivalent to StR. [

Remark 2.23. Since Sub is isomorphic to gqMA and PCon, it follows that each of
these categories is dually equivalent to StR. In particular, each quasi-modal algebra
(B, A) is represented as (Clop(X),A) [13, Thm. 9], and each precontact algebra
(B,0) is represented as (Clop(X),¢) [16, Thm. 3].

In [13], following the tradition in modal logic, Celani works with a stronger con-
cept of morphisms between quasi-modal algebras, which satisfy that Ah(a) is the
ideal generated by h[Aa]. Let qMAS be the (non-full) subcategory of gMA having
the same objects as qMA but whose morphisms satisfy that h[Aa] is generated
by Ah(a). Also, let StR® be the (non-full) subcategory of StR having the same
objects as StR but whose morphisms are in addition bounded morphisms (that is,
f(R1[x]) = Ra[f(z)] for each x € X;). Then the dual equivalence of qMA and StR
restricts to the dual equivalence of qMAS and StRP® of [13].

In [16, 17] the 1-1 correspondence between objects of PCon and StR is extended
naturally to include isomorphisms in Con and StR. This correspondence further
extends to a dual equivalence of PCon and StR. While PCon is isomorphic to Sub,
it appears that the definition of morphisms is more intuitive when working with
subordinations since they are required to preserve subordinations. On the other
hand, when working with precontact relations, we have to require that morphisms
reflect precontact relations (see Remark 2.8).

3. SUBORDINATIONS, STRICT IMPLICATIONS, AND JONSSON-TARSKI DUALITY

In this section we show that on objects the duality of the previous section can
also be derived from the generalized Jonsson-Tarski duality.

Definition 3.1. Let B be a Boolean algebra and let 2 be the two element Boolean
algebra. We call a map —: B x B — 2 a strict implication if it satisfies

(I1) 0»a=a—-1=1.

(I12) (avbd) > c=(a—c)n(b—c).

(I3) a—= (bac)=(a—b)A(a—c).

Example 3.2. Let < be a subordination on a Boolean algebra B. Define —_:

BxB—2by
L be 1 ifa<bd,
@7<%=1 0 otherwise.

It is easy to see that —. is a strict implication. Conversely, if >: Bx B - 2 is a
strict implication, then define <€ B x B by

a<.biffa->b=1.
It is straightforward to see that <. is a subordination on B. Moreover, a < b

iff a <,_,band a >b=a - b Thus, there is a 1-1 correspondence between
subordinations and strict implications on B.

This observation opens the door for obtaining the duality for subordinations
from Jénsson-Tarski duality [23]. Let A, B,C be Boolean algebras and X,Y,Z be
7



their respective Stone spaces. Suppose that f: A x B - C is a map. Following
the terminology of [28], we call f a meet-hemiantimorphism in the first coordinate
provided

e f(0,b) =1,
® f(avb,c):f(a,c)/\f(bm);

and a meet-hemimorphism in the second coordinate provided

e f(a,1)=1,
e f(a,bnc) = f(a,c) A f(b,c).

By the generalized Jonsson-Tarski duality [21, 28], such maps are dually described
by special ternary relations S ¢ X xY x Z. For z € Z, let

ST = {(wy) € X x Y : (w,9,2) € S,
and for U € Clop(X) and V € Clop(Y), let
Os(U,V):={zeZ: (Ve X)(VyeY) [(z,y,2) e S=ax¢UoryeV]}.

Definition 3.3. We call S ¢ X xY x Z a JT-relation (Jonsson-Tarski relation)
provided

(JT1) S~'[z] is closed for each z € Z,

(JT2) Og(U,V) is clopen for each U € Clop(X) and V € Clop(Y).

By the generalized Jénsson-Tarski duality [21, 28], the dual ternary relation
ScXxYxZof f: Ax B— C is given by

(1) (z,y,2) e Siff (Vae A)(Vbe B)(f(a,b) € z implies a ¢ x or b€ y);
and the dual map f : Clop(X) x Clop(Y) - Clop(Z) of S<€ X xY x Z is given by
(2) fU, V) =0s5(U, V).

Now let — be a strict implication on a Boolean algebra B. By Definition 3.1, —
is a meet-hemiantimorphism in the first coordinate and a meet-hemimorphism in
the second coordinate. Let X be the Stone space of B. The Stone space of 2 is the
singleton discrete space {z}, where z = {1} is the only ultrafilter of 2. Therefore,
the dual ternary relation S ¢ X x X x {z} of — is given by

(z,y,2) € S iff (Va,be B)(a—b=1impliesa ¢z or bey).
The ternary relation S gives rise to the binary relation R € X x X by setting
xRy iff (x,y,1) € S.

If < is the subordination corresponding to the strict implication —, then a < b iff
a — b=1. Therefore, the binary relation R is given by

xRy iff (Va,be B)(a<bimplies a ¢ x or bey).

Proposition 3.4. Let < be a subordination on a Boolean algebra B, and let (X, R)
be the dual of (B,<). Then $z cy iff (Va,be B)(a <b implies a ¢ x or bey).

Proof. First suppose that $z ¢ y. Let a < b and a € . Then b € $z, so b € y.

Conversely, suppose (Va,b e B)(a<b implies a ¢ x or bey). If b e $x, then there is

a € z with a < b. Therefore, y € b, and hence tz cy. (]
8



Applying Proposition 3.4 then yields
xRy iff fx cy.

Consequently, the dual binary relation R of a subordination < can be described
from the dual ternary relation S of the corresponding strict implication. In fact, if
S c X x X x{z} is a JT-relation, then (JT2) is redundant, while (JT1) means that
R is a closed relation.

The converse is also true. Given a closed relation R on a Stone space X, define
the ternary relation S ¢ X x X x {z} by

(x,y,2) € S iff xRy.

Since R is a closed relation, S satisfies (JT1), and S satisfies (JT2) trivially, hence
S is a JT-relation. Let —: Clop(X) x Clop(X) — 2 be the corresponding strict
implication. Then

1 if (Va,ye X)(zRy=x¢UoryeV)

0 otherwise.

U—)V:{

Proposition 3.5. Let X be a Stone space, R be a closed relation on X, and
U,V €Clop(X). Then R[U] <V iff (Vz,y € X)(xRy implies z ¢ U or y e V).

Proof. First suppose that R[U] €V, 2Ry, and x € U. Then y € R[U], so y e V.
Conversely, suppose that (Vz,y € X)(zRy implies x ¢ U or y € V). If y € R[U],
then there is x € U with Ry. Therefore, y € V', and hence R[U] c V. |

If < is the subordination corresponding to —, then it follows from Proposition 3.5
that U <V if R[U] ¢V iff U - V = 1. This shows that on objects our duality
for subordinations is equivalent to a special case of the generalized Jénsson-Tarski
duality.

Remark 3.6. A homomorphism between two Boolean algebras with strict im-
plication (By,—1) and (Bg,—2) is a Boolean homomorphism h : By - Bs such
that h(a —1 b) = h(a) —2 h(b). On the other hand, a morphism between two
Boolean algebras with subordination (Bp,<1) and (Ba,<2) is a Boolean homo-
morphism h : By — By such that a <1 b = h(a) <2 h(b). It is easy to verify
that a <1 b = h(a) <2 h(b) is equivalent to h(a —1 b) < h(a) —2 h(b), while
h(a =1 b) = h(a) —2 h(b) is equivalent to a <1 b iff h(a) <o h(b). Thus, contin-
uous stable morphisms dually correspond to h(a -1 b) < h(a) -2 h(b), while the
equality h(a —1 b) = h(a) —2 h(b) requires an additional condition: If y,u € X5 and
yRou, then there exist x,z € X; such that xRz, f(z) =y, and f(z) = u. This is
equivalent to f: X; — X5 being a bounded morphism with respect to the ternary
relations S; on X7 and Sy on Xos.

4. MODALLY DEFINABLE SUBORDINATIONS AND ESAKIA RELATIONS

In this section we show that modally definable subordinations dually correspond
to Esakia relations, and derive the well-known duality between the categories of
modal algebras and modal spaces from the duality of Section 2.

Definition 4.1. Let X be a Stone space. We call a binary relation R on X an
Esakia relation provided R[z] is closed for each x € X and U € Clop(X) implies
R7[U] € Clop(X).

Remark 4.2.



(1) Let V(X)) be the Vietoris space of X. It is well known (see, e.g., [19]) that
R is an Esakia relation iff the map pgr : X — V(X) given by p(z) = R[]
is a well-defined continuous map. Because of this, Esakia relations are also
called continuous relations.

(2) Tt is easy to see that Esakia relations are exactly the inverses of binary
JT-relations with the same source and target (see, e.g., [21]). Inverses of
binary JT-relations with not necessarily the same source and target were
first studied by Halmos [22].

It is a standard argument that each Esakia relation is closed, but there exist
closed relations that are not Esakia relations. In fact, for a closed relation R on a
Stone space X, the following are equivalent:

(1) R is an Esakia relation.
(2) U € Clop(X) implies R![U] € Clop(X).
(3) U open implies R™*[U] is open.
Therefore, Esakia relations are special closed relations. We show that they dually

correspond to modally definable subordinations. Our proof is a generalization of
[5, Lem. 5.6].

Lemma 4.3.
(1) Suppose that (B,<) € Sub and (X, R) = (B,<).. If < is modally definable,
then R is an Esakia relation.
(2) Suppose that R is an Esakia relation on a Stone space X and (B,<) =
(X,R)*. Then < is modally definable.

Proof. (1) Suppose that < is modally definable and O. is the largest element of
{be B:b<a}.

Claim. p(0.a) =X - R7'[X - p(a)].

Proof of Claim. We have x € X - R™[X —¢(a)] iff R[z] € ¢(a). This is equivalent
to (Vy € X)(#z € y = a € y). Since fx is a filter, by the ultrafilter theorem, it
is the intersection of the ultrafilters containing it. Therefore, the last condition
is equivalent to a € $x. Because O.a is the largest element of {b € B : b < a},
this is equivalent to O.a € x, which means that = € p(Oca). Thus, ¢(O.a) =
X -RYX -p(a)]. O

Now, let U € Clop(X). Then X-U ¢ Clop(X), so there is a € B with p(a) = X-U.
Therefore, ¢(0.a) = X - R [X - ¢(a)] = X - R7'[U]. This yields X - R7'[U] €
Clop(X), so R™'[U] € Clop(X). Since R is also a closed relation, we conclude that
R is an Esakia relation.

(2) Let U € Clop(X). We show that X — R™}[X - U] is the largest element of
{VeClop(X):V <U}. Lety e REX-R'[X-U]]. Then thereisz ¢ X-R'[X-U]
with Ry. From z € X - R7[X - U] it follows that R[x] ¢ U. Therefore, y € U,
yielding X - R™[X - U] < U. Suppose that V € Clop(X) with V < U. Then
R[V]cU,soVecX-R'X-U] Thus, X - R™'[X - U] is the largest element of
{V eClop(X):V < U}, and hence < is modally definable. O

We recall that a modal space is a pair (X, R), where X is a Stone space and R is
an Esakia relation on X. Modal spaces are also known as descriptive frames. They
are fundamental objects in the study of modal logic as they serve as dual spaces of
modal algebras (see, e.g., [12, 24, 11]).
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Let MS® be the category whose objects are modal spaces and whose morphisms
are continuous stable morphisms. Let also MSub be the full subcategory of Sub con-
sisting of the objects (B, <) of Sub in which < is modally definable. It is an imme-
diate consequence of Theorem 2.22 and Lemma 4.3 that MSub is dually equivalent
to MS®t.

But modal logicians are more interested in bounded morphisms rather than
stable morphisms since they dually correspond to modal algebra homomorphisms.
We recall that a modal homomorphism is a Boolean homomorphism h : By - Bs
such that h(Oya) = Ozh(a). We also recall that a bounded morphism is a stable
morphism f : X; - X, such that f(z)Rsy implies the existence of z € X; with
xR1z and f(z) = y (equivalently f(Ri[z]) = Ro[f(x)] for each z € X;). Let MA
be the category whose objects are modal algebras and whose morphisms are modal
homomorphisms, and let MS be the category whose objects are modal spaces and
whose morphisms are continuous bounded morphisms. (Note that MS is not a full
subcategory of MS®t.) Tt is a standard result in modal logic that MA is dually
equivalent to MS. We next show how to obtain this dual equivalence from our
results.

Let h : By - By be a morphism in MSub. For a € By, let Oja be the largest
element of {z € By : <1 a}, and for b € By, let Osb be the largest element
of {y € By : y <9 b}. Since Oja <3 a, we have h(Oya) <o h(a). Therefore,
h(O1a) <o Osh(a). Conversely, suppose that h is a Boolean homomorphism satis-
fying h(O1a) <o Osh(a) for each a € By. Let a,b € By with a <; b. Then a <1 O1b.
Therefore, h(a) <o h(O1b) <o Ogh(b). Thus, h(a) <2 h(b), and h is a morphism in
MSub.

We call a morphism h in MSub a modal homomorphism if h(O1a) = Ozh(a). Let
MSub™ be the category whose objects are the objects of MSub and whose morphisms
are modal homomorphisms. Then MSub™ is a non-full subcategory of MSub, and
it is evident that MSub™ is isomorphic to MA.

We show that MSub™ is dually equivalent to MS. For this, taking into account
the dual equivalence of MSub and MS*, it is sufficient to see that if i is a morphism
in MSub™, then h, is a morphism in MS, and that if f is a morphism in MS, then
f* is a morphism in MSub™. This is proved in the next lemma, which generalizes
[5, Lem. 5.7].

Lemma 4.4.
(1) Let (B1,<1),(B2,<2) € MSub™ and h : By - By be a morphism in MSub™.
Then h, is a morphism in MS.
(2) Let (X1,R1),(X2,R2) € MS and f: X; — X5 be a morphism in MS. Then
f* is a morphism in MSub™.

Proof. (1) From the dual equivalence of MSub and MS* we know that h, is con-
tinuous and stable. Suppose that h,(z)Riy. Then $;h7'(z) € y. Let F be the
filter generated by $,2 U h(y) and let I be the ideal generated by h(B; —y). If
FnI # @, then there exist a € §,z, b € y, and ¢ ¢ y such that a Ay h(b) <3 h(c).
Therefore, a <o h(b -1 ¢). From a €}, it follows that there is d € z with d <5 a.
So d <5 Osa. But a <5 h(b —1 ¢) implies Osa <o Osh(b -1 ¢) = L(O1(b »1 ¢)).
This yields Oy(b > ¢) € k™' (), so b —>1 c € $,h!(z) € y, which is a contradiction
since b € y and ¢ ¢ y. Thus, F'nI =@, and by the ultrafilter theorem, there is an
ultrafilter z containing F' and missing I. From $,z ¢ z it follows that xRsz, and
11



from h(y) € z and h(B; - y) Nz = @ it follows that h™!(z) = y. Consequently, there
is z such that zRsz and h.(z) =y, yielding that h, is a morphism in MS.

(2) From the dual equivalence of MSub and MS®** we know that f* is a Boolean
homomorphism satisfying U <o V implies f*(U) <1 f*(V') for each U,V € Clop(X3).
Therefore, f*(O2U) <1 01 f*(U) for each U € Clop(X3). Suppose that x € Oy f*(U).
Then Ri[z] € f1(U), so f(Ry[z]) € U. Since f is a bounded morphism, f(R;[z]) =
Ry[f(z)]. Therefore, Ry[f(z)] € U, yielding f(z) € OxU. Thus, x € f~1(0.U).
This implies that f*(0U) = O, f*(U) for each U € Clop(X3), hence f* is a mor-
phism in MSub™. (]

As a consequence, we obtain that MSub™ is dually equivalent to MS, and since
MSub™ is isomorphic to MA, as a corollary, we obtain the well-known dual equiva-
lence of MA and MS. To summarize:

Theorem 4.5.
(1) MSub is dually equivalent to MS®t.
(2) MSub™ is isomorphic to MA.
(3) MSub™ is dually equivalent to MS, hence MA is dually equivalent to MS.

In modal logic, modal algebras corresponding to reflexive, transitive, and/or
symmetric modal spaces play an important role. In [13], quasi-modal algebras
(B, A) were characterized such that the dual closed relation R on the Stone space
X of B is reflexive, transitive, and/or symmetric. The same characterization was
given in [18] (see also [16]) in terms of precontact relations on B. Namely, consider
the following axioms:

(P4) a# 0 implies a § a.

(P5) a 6 bimplies b ¢ a.

(P6) a ¢ bimplies there is ce B with a § ¢ and -¢ § .

Let (B,d) be a precontact algebra and (X, R) be its dual. Then R is reflexive iff
(B, 0) satisfies (P4), R is symmetric iff (B,¢) satisfies (P5), and R is transitive iff
(B,0) satisfies (P6).

It is easy to see that if < is the subordination corresponding to the precontact
relation §, then (S5) corresponds to (P4), (S6) corresponds to (P5), and (S7) cor-
responds to (P6). This immediately yields the following lemma.

Lemma 4.6 (cf. [13, 18]). Let (B,<) € Sub and let (X, R) be the dual of (B, <).
(1) R is reflexive iff < satisfies (S5).
(2) R is symmetric iff < satisfies (S6).
(3) R is transitive iff < satisfies (S7).

Remark 4.7. For a direct proof of Lemma 4.6, without first switching from < to
d, consult [8, Lem. 6.1].

Remark 4.8. Axioms (S5), (S6), and (S7) correspond to elementary conditions
on R. Developing a general theory which characterizes the class of axioms for
subordinations corresponding to elementary conditions on R is closely related to
the field of Sahlqvist theory in modal logic [12, 11]. In fact, by the perspective of
Section 3, Lemma 4.6 can be seen as an instance of the standard Sahlqvist theory,
applied to a binary modality. A Sahlqvist correspondence for logics corresponding
to precontact algebras is developed in [2].

Definition 4.9.
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(1) Let SubK4 be the full subcategory of Sub consisting of the (B, <) € Sub that
satisfy (S7).

(2) Let SubS4 be the full subcategory of Sub consisting of the (B, <) € Sub that
satisfy (S5) and (S7).

(3) Let SubS5 be the full subcategory of Sub consisting of the (B, <) € Sub that
satisfy (S5), (S6), and (S7).

Clearly SubS5 is a full subcategory of SubS4, and SubS4 is a full subcategory of
SubK4.

Definition 4.10.
(1) Let StR™ be the full subcategory of StR consisting of the (X, R) € StR,
where R is transitive.
(2) Let StR% be the full subcategory of StR consisting of the (X, R) € StR,
where R is a quasi-order (that is, R is reflexive and transitive).
(3) Let StR® be the full subcategory of StR consisting of the (X, R) € StR,
where R is an equivalence relation.

Clearly StR®? is a full subcategory of StR%, and StR9%° is a full subcategory
of StRY™. The next theorem is an immediate consequence of Theorem 2.22 and
Lemma 4.6.

Theorem 4.11.
(1) SubK4 is dually equivalent to StR™.
(2) SubS4 is dually equivalent to StR%.
(3) SubS5 is dually equivalent to StR®9.

Remark 4.12. We recall (see, e.g., [16, 18]) that a precontact algebra (B,d) is a
contact algebra if it satisfies the following two axioms:

(P4) a# 0 implies a 4 a.
(P5) a ¢ bimplies b § a.

Let Con be the full subcategory of PCon consisting of contact algebras. Since (P4)
is the d-analogue of (S5) and (P5) is the d-analogue of (S6), Con is isomorphic to
the full subcategory of Sub whose objects satisfy (S5) and (S6). By Lemma 4.6, Con
is dually equivalent to the full subcategory of StR consisting of such (X, R) € StR,
where R is reflexive and symmetric.

Remark 4.13. We recall that a modal algebra (B,0) is a K4-algebra if Oa < O0qa
for each a € B; a K4-algebra is an S4-algebra if Oa < a for each a € B; and an S4-
algebra is an S5-algebra if a < O<Ca for each a € B (where, as usual, ¢a = -0-a). Let
K4, S4, and S5 denote the categories of K4-algebras, S4-algebras, and S5-algebras,
respectively.

We also let TRS be the category of transitive modal spaces, QOS be the category
of quasi-ordered modal spaces, and EQS be the category of modal spaces where the
relation is an equivalence relation. Then it is a well-known fact in modal logic
that K4 is dually equivalent to TRS, S4 is dually equivalent to QOS, and S5 is
dually equivalent to EQS. These results can be obtain as corollaries of our results
as follows.

Let SubK4™, SubS4™, and SubS5™ be the subcategories of SubK4, SubS4, and
SubS5, respectively, where morphisms are modal homomorphisms. It is then clear
that SubK4™ is isomorphic to K4, SubS4™ is isomorphic to S4, and SubS5™ is

13



isomorphic to S5. It is also obvious that SubK4™ is dually equivalent to TRS,
SubS4™ is dually equivalent to QOS, and SubS5™ is dually equivalent to EQS. The
duality results for K4, S4, and S5 follow.

5. LATTICE SUBORDINATIONS AND THE PRIESTLEY SEPARATION AXIOM

An interesting class of subordinations is that of lattice subordinations of [5]. In
this section we show that a subordination < on a Boolean algebra B is a lattice
subordination iff in the dual space (X, R) of (B, <), the relation R is a Priestley
quasi-order. The duality result of [5, Cor. 5.3] follows as a corollary.

Definition 5.1. A lattice subordination is a subordination < on a Boolean algebra
B that in addition satisfies

(S9) a<b=(dceB)(c<c& a<c<h).

By [5, Lem. 2.2], a lattice subordination satisfies (S5) and (S7). In addition,
since ¢ is reflexive, in the above condition, a < ¢ < b can be replaced by a < ¢ <
b. Therefore, a lattice subordination is a subordination that satisfies (S5) and a
stronger form of (S7), where it is required that the existing c is reflexive.

If < is a lattice subordination on B, then as follows from the previous section,
in the dual space (X, R), we have that R is a quasi-order. But more is true. Let
(X, R) be a quasi-ordered set. We call a subset U of X an R-upset provided x € U
and xRy imply y € U. Similarly U is an R-downset if x € U and yRx imply y € U.
We recall (see, e.g., [27, 10]) that a quasi-order R on a compact Hausdorff space X
satisfies the Priestley separation axiom if (z,y) ¢ R implies that there is a clopen
R-upset U such that x € U and y ¢ U. If R satisfies the Priestley separation axiom,
then we call R a Priestley quasi-order. Each Priestley quasi-order is closed, but
the converse is not true in general [30, 10]. A quasi-ordered Priestley space is a
pair (X, R), where X is a Stone space and R is a Priestley quasi-order on X. As
was proved in [5, Cor. 5.3], lattice subordinations dually correspond to Priestley
quasi-orders. To see how to derive this result from our results, we will use freely
the following well-known fact about quasi-ordered Priestley spaces:

If A, B are disjoint closed subsets of a quasi-ordered Priestley space (X, R), with
A an R-upset and B an R-downset, then there is a clopen R-upset U containing A
and disjoint from B.

Lemma 5.2. Let < be a subordination on B and let (X, R) be the dual of (B, <).
Then R is a Priestley quasi-order iff < satisfies (S9).

Proof. First suppose that R is a Priestley quasi-order. Let a,b € B with a < b.
By Lemma 2.20, R[¢(a)] € ¢(b). Therefore, R[¢(a)] n (X - (b)) = @. Since
R[p(a)] is an R-upset, this yields R[¢(a)] n R [X - ¢(b)] = @. As R[¢(a)] and
R7[X - p(b)] are disjoint closed sets with R[¢(a)] an R-upset and R [X —¢(b)]
an R-downset, there is a clopen R-upset U containing R[¢(a)] and disjoint from
R [X-¢(b)]. But U = ¢(c) for some c € B. Since U is an R-upset, R[¢(c)] € ¢(c),
so c<c. As ¢(a) € R[p(a)] € v(c), we have a < c. Finally, since ¢(c) is disjoint
from R X —¢(b)], we also have p(c) n (X - (b)) =@, so ¢(c) € p(b), and hence
¢ < b. Thus, < satisfies (S9).

Next suppose that < satisfies (S9). Then < satisfies (S5) and (S7), hence R is a
quasi-order. Let x,y € X with (x,y) ¢ R. Then $z ¢ y. Therefore, there are a,be B
with a € x, a <b, and b ¢ y. By (S9), there is ¢ € B with ¢ < c and a < ¢ <b. From
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¢ < ¢ it follows that R[¢(c)] € ¢(c), so ¢(c) is a clopen R-upset of X. Since a € x
and a < ¢, we have ce x, so x € p(c). As c<band b ¢ y, we also have ¢ ¢ y, hence
y ¢ ¢(c). Thus, there is a clopen R-upset ¢(c) such that = € p(c) and y ¢ ¢(c),
yielding that R is a Priestley quasi-order. [

Let LSub be the full subcategory of Sub consisting of the (B, <) € Sub, where <
is a lattice subordination. Let also QPS be the full subcategory of StR consisting of
quasi-ordered Priestley spaces. It is an immediate consequence of our results that
the dual equivalence of Sub and StR restricts to a dual equivalence of LSub and
QPS. Thus, we arrive at the following result of [5, Cor. 5.3].

Theorem 5.3. LSub is dually equivalent to QPS.

6. IRREDUCIBLE EQUIVALENCE RELATIONS, COMPACT HAUSDORFF SPACES, AND
DE VRIES DUALITY

In this final section we prove our main results by introducing irreducible equiv-
alence relations, Gleason spaces, and providing a “modal-like” alternative to de
Vries duality. We recall [14] that a compingent algebra is a pair (B, <), where B is
a Boolean algebra and < is a binary relation on B satisfying (S1)—(S8). In other
words, a compingent algebra is an object of SubS5 that in addition satisfies (S8).
It follows from our duality results that the dual of (B, <) € SubS5 is a pair (X, R),
where X is a Stone space and R is a closed equivalence relation on X. Since X is
compact Hausdorff and R is a closed equivalence relation on X, the quotient space
X/R is also compact Hausdorff. In order to give the dual description of (S8), we
recall that an onto continuous map f: X — Y between compact Hausdorff spaces
is irreducible provided the f-image of each proper closed subset of X is a proper
subset of Y.

Definition 6.1. We call a closed equivalence relation R on a compact Hausdorff
space X irreducible if the quotient map 7 : X — X /R is irreducible.

Remark 6.2. Clearly a closed equivalence relation R on a compact Hausdorff space
X is irreducible iff for each proper closed subset F' of X, we have R[F'] is a proper
subset of X. If X is a Stone space, then an immediate application of Esakia’s
lemma ([19, 6]) yields that we can restrict the condition to proper clopen subsets
of X.

Lemma 6.3. Let (B, <) € SubS5 and let (X, R) be the dual of (B,<). Then the
closed equivalence relation R is irreducible iff < satisfies (S8).

Proof. First suppose that R is irreducible. Let a € B with a # 0. Then ¢(a) # @,
so X — ¢(a) is a proper closed subset of X. Since R is irreducible, R[X - ¢(a)]
is a proper subset of X. Therefore, X - R[X - p(a)] + @, and as R[X - ¢(a)] is
closed, X - R[X —¢(a)] is open. As X is a Stone space, there is a nonempty clopen
subset U of X contained in X — R[X - ¢(a)]. But U = ¢(b) for some b € B. Since
U+ @, we have b+ 0. As ¢(b) € X - R[X - ¢(a)] and R is an equivalence relation,
R[p(b)] € p(a). Thus, there is b+ 0 with b < a, and so < satisfies (S8).

Next suppose that < satisfies (S8). Let F' be a proper closed subset of X. Then
X -F is anonempty open subset of X. Since X is a Stone space, there is a nonempty
clopen set contained in X — F. Therefore, there is a € B—{0} with p(a) ¢ X -F. By
(S8), there is be B - {0} with b<a. Thus, R[¢(b)] € p(a). As R is an equivalence
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relation, this yields ¢(b) € X - R[X -p(a)] € X - R[F]. So R[F] c X —¢(b). Since
b+ 0, we see that X — (b) is a proper subset of X, hence R[F] is a proper subset
of X. Consequently, R is irreducible. O

Let Com be the full subcategory of SubS5 consisting of compingent algebras;
that is, Com consists of the objects of SubS5 that in addition satisfy (S8). Let also
StR*® be the full subcategory of StR®I consisting of the pairs (X, R), where R is an
irreducible equivalence relation on a Stone space X. The above results yield:

Theorem 6.4. Com is dually equivalent to StR¥®9.
Definition 6.5 ([14, 3]). A de Vries algebra is a complete compingent algebra.

We recall that a space X is extremally disconnected if the closure of every open
set is open. We call an extremally disconnected Stone space an ED-space. (Equiva-
lently, ED-spaces are extremally disconnected compact Hausdorff spaces.) It is well
known that a Boolean algebra B is complete iff its Stone space X is an ED-space.
Therefore, the duals of de Vries algebras are pairs (X, R), where X is an ED-space
and R is an irreducible equivalence relation on X.

Definition 6.6. We call a pair (X, R) a Gleason space if X is an ED-space and R
is an irreducible equivalence relation on X.

Our choice of terminology is motivated by the fact that Gleason spaces arise
naturally by taking Gleason covers [20] of compact Hausdorff spaces. We recall that
the Gleason cover of a compact Hausdorff space X is a pair (Y, 7), where Y is an
ED-space and 7 : Y — X is an irreducible map. It is well known that Gleason covers
are unique up to homeomorphism. Suppose X is compact Hausdorff and (Y, 7) is
the Gleason cover of X. Define R on Y by xRy iff 7(z) = n(y). Since 7 is an
irreducible map, it is easy to see that R is an irreducible equivalence relation on Y,
hence (Y, R) is a Gleason space. In fact, each Gleason space arises this way because
if (Y, R) is a Gleason space, then as R is a closed equivalence relation, the quotient
space X := Y/R is compact Hausdorff. Moreover, since R is irreducible, the quotient
map 7 : Y — X is an irreducible map, yielding that (Y, 7) is (homeomorphic to) the
Gleason cover of X [20]. Thus, we have a convenient 1-1 correspondence between
compact Hausdorff spaces and Gleason spaces, and both dually correspond to de
Vries algebras.

Definition 6.7 ([14, 3]). A map h: A - B between two de Vries algebras is a de
Viries morphism if it satisfies the following conditions:

(M1) h(0)=0.

(M2) h(aAb)=h(a)Ah(b).

(M3) a < b implies =h(-a) < h(b).

(M4) h(a) =V{h(b):b<a}.

Remark 6.8. Condition (M3) entails a more standard condition a < b implies
h(a) < h(b) (see [4, Lem. 2.2]) and is equivalent to a < ¢ and b < d imply h(a v b) <
h(e) v h(d) [15, Prop. 3.10 and Cor. 4.20] (see also [9, Prop. 7.4]).

It is an easy consequence of (M1) and (M3) that a de Vries morphism h also
satisfies h(1) = 1. Therefore, each de Vries morphism is a meet-hemimorphism [22].
Let X be the Stone space of A and Y be the Stone space of B. As follows from [22],
meet-hemimorphisms h : A — B are dually characterized by relations r € Y x X
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satisfying 7[y] is closed for each y € Y and r~*[U] is clopen for each clopen U ¢ X.
In [22] such relations are called Boolean relations.

Remark 6.9.
(1) In [22] Halmos worked with join-hemimorphisms, which generalize the modal
operator &, while meet-hemimorphisms generalize the modal operator O.
(2) Boolean relations are exactly the inverses of binary JT-relations, and if
X =Y, then Boolean relations are nothing more but Esakia relations (see
Remark 4.2(2)).

We recall that the dual correspondence between h: A - B and r €Y x X is
obtained as follows. Given h: A - B, define r €Y x X by setting

(y,z)eriff (Vae A)(h(a) ey =acx).
Conversely, given 7 : Y x X, define h: Clop(X) — Clop(Y") by setting
r(U)=Y - [X -U].

In order to simplify notation, instead of (y,x) € r, we will often write yrz. We also
set

OU:=Y -r ' [X-U]
Thus, H(U) = 0,U.
Definition 6.10. Suppose r €Y x X.
(1) We say that r is cofinal provided (Vy e Y)(3z € X)(yrx).
(2) We say that r satisfies the forth condition provided
(Vy,y" e Y)(Va,2" € X)(yRy' & yrz & y'ra’ = zRa’).

, r

Y

7|

947”’

R

T !
A
|
|
|
T

(3) We say that r satisfies the de Vries condition provided
(VU € Clop(X))(r 1(U) = int(r 'R [U])).

Lemma 6.11. Let (A4,<) and (B,<) be de Vris algebras, (X, R) be the dual of
(A, <), and (Y, R) be the dual of (B, <). Suppose h : A - B is a meet-hemimorphism
and r €Y x X is its dual.

(1) h satisfies (M1) iff r is cofinal.
(2) h satisfies (M3) iff r satisfies the forth condition.
(3) h satisfies (M4) iff r satisfies the de Vries condition.

Proof. (1) We have h(0) =0 iff 0, (@) = @, which happens iff ~![X] =Y. This in
turn is equivalent to (Vy € Y)(3x € X)(yrz). Thus, h satisfies (M1) iff r is cofinal.

(2) First suppose that h satisfies (M3). Let y,y’ € Y and z,2’ € X with yRy/,
yrz, and y'rz’. To see that xRz’ we must show that $z ¢ 2’. Let b € $z. Then
there is a € x with a < b. By (M3), -=h(-a) < h(b). Since a € x, we have -a ¢ .
As yrx, this yields h(-a) ¢ y. Because y is an ultrafilter, -h(-a) € y. Therefore,
h(b) € ty. Since yRy’, this gives h(b) € y'. Thus, by y'ra’, we obtain b € z’, so
zRx'. Consequently, r satisfies the forth condition.
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Next suppose that r satisfies the forth condition. Let a,b € A with a <b. Then
R[p(a)] € ¢(b). We have p(=h(-a)) =77 [p(a)] and ¢(h(b)) = O,¢(b). Therefore,
to see that —h(-a) < h(b), it is sufficient to show that R[r™*[¢(a)]] € O,¢(b). Let
y" € R[r'[¢(a)]]. Then there are x € ¢(a) and y € Y with yRy’ and yrz. Suppose
x' € X with y'rz’. So yRy', yrx, and y'rz’, which by the forth condition gives x Rx’.
Therefore, ' € R[¢(a)], yielding =’ € ¢(b). Thus, y' € O,.p(b). Consequently,
R[r'[p(a)]] € O,¢(b), and hence h satisfies (M3).

(3) We recall that if S ¢ A, then o(V.S) = U{¢(s):s€S}. Also, by Esakia’s
lemma ([19, 6]), if {U; : 4 € I'} is an upward directed family of clopens (meaning that
for all ¢,j € I there is k € I such that U;,U; € Uy, then O, U{U; : t € I'} = U{O, U, :
i € I'}. Therefore, for each a € A, we have p(h(a)) = O.¢(a) and

e(V{h(b):b<a}) U{Br¢(0) - Rlp(b)] € p(a)}
U{Br¢(b) - (b) € Orep(a)}
O, U{e(d) : o(b) € Orp(a)}
O0,0r¢(a).

Thus, h satisfies (M4) iff O,.p(a) = O,0gp(a) for each a € A. This is equivalent to
Y —r U] =Y —int(r*R7![U]) for each U € Clop(U). This in turn is equivalent
to r~1[U] = int(r "L R7I[U]) for each U € Clop(U), yielding that h satisfies (M4) iff
r satisfies the de Vries condition. ]

Definition 6.12. Let (Y, R) and (X, R) be Gleason spaces. We call a relation
rcY x X a de Vries relation provided r is a cofinal Boolean relation satisfying the
forth and de Vries conditions.

As follows from Lemma 6.11, de Vries relations dually correspond to de Vries
morphisms. As with de Vries morphisms, because of the de Vries condition, the
composition of two de Vries relations may not be a de Vries relation. Thus, for two
de Vries relations r; € X1 xXs and 79 € X5 x X3, we define ro*1; € X x X3 as follows.
Let hq : Clop(X3) — Clop(X1) be the dual of r; and hs : Clop(X3) — Clop(X2) be
the dual of 7. Let hg = hy * ho be the composition of h; and hs in the category
DeV of de Vries algebras. Then hg : Clop(X3) — Clop(X1) is a de Vries morphism.
Let r3 € X7 x X3 be the dual of h3, and set r3 = ro * 1. With this composition,
Gleason spaces and de Vries relations form a category we denote by Gle. We also
let KHaus denote the category of compact Hausdorff spaces and continuous maps.
The following is an immediate consequence of the above observations.

Theorem 6.13. Gle is dually equivalent to DeV, hence Gle is equivalent to KHaus.

Thus, Gle is another dual category to DeV. This provides an alternative more
“modal-like” duality to de Vries duality.

Remark 6.14. The functor ® : Gle - KHaus establishing an equivalence of Gle and
KHaus can be constructed directly, without first passing to DeV. For (X, R) € Gle,
let ®(X,R) = X/R. Clearly X/R € KHaus. For r €Y x X a morphism in Gle, let
®(r) = f, where f : Y/R - X/R is defined as follows. Let m: X - X/R be the
quotient map. Since r is cofinal, for each y € Y there is x € X with yrz. We set
f(x(y)) = m(x), where yrz. Since r satisfies the forth condition, f is well defined,
and as r is a Boolean relation, f is continuous. Thus, f is a morphism in KHaus.
From this it is easy to see that ® is a functor. We already saw that there is a
18
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correspondence between Gleason spaces and compact Hausdorff spaces. The

functor ® is full because for each continuous function f:Y — X between compact
Hausdorff spaces, f = ®(r), where r is the de Vries relation corresponding to the de
Vries dual of f. Finally, the functor is faithful because among the cofinal Boolean
relations r that satisfy the forth condition and yield the same continuous function
f:Y - X in KHaus, there is the largest one, which satisfies the de Vries condition.
Consequently, by [25, Thm. IV.4.1], ® : Gle - KHaus is an equivalence.
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